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We investigate the problem of detecting gravitational waves from binaries of nonspinning black holes with

masses m55 –20M ( , moving on quasicircular orbits, which are arguably the most promising sources for

first-generation ground-based detectors. We analyze and compare all the currently available post-Newtonian

approximations for the relativistic two-body dynamics; for these binaries, different approximations predict

different waveforms. We then construct examples of detection template families that embed all the approximate

models and that could be used to detect the true gravitational-wave signal ~but not to characterize accurately its

physical parameters!. We estimate that the fitting factor for our detection families is *0.95 ~corresponding to

an event rate loss &15%) and we estimate that the discretization of the template family, for ;104 templates,

increases the loss to &20%.
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I. INTRODUCTION

A network of broadband ground-based laser interferom-

eters, aimed at detecting gravitational waves ~GWs! in the

frequency band 10–103 Hz, is currently beginning operation

and, hopefully, will start the first science runs within this

year ~2002!. This network consists of the British-German

GEO, the American Laser Interferometer Gravitational-Wave

Observatory ~LIGO!, the Japanese TAMA and the Italian-

French VIRGO ~which will begin operating in 2004! @1#.
The first detection of gravitational waves with LIGO and

VIRGO interferometers is likely to come from binary black-

hole systems where each black hole has a mass @2# of a few

M ( , and the total mass is roughly in the range 10–40M (

@3#, and where the orbit is quasicircular ~it is generally as-

sumed that gravitational radiation reaction will circularize

the orbit by the time the binary is close to the final coales-

cence @4#!. It is easy to see why. Assuming for simplicity that

the GW signal comes from a quadrupole-governed, Newton-

ian inspiral that ends at a frequency outside the range of

good interferometer sensitivity, the signal-to-noise ratio

~S/N! is }M 5/6/d ~see, e.g., Ref. @5#!, where M5Mh3/5 is
the chirp mass ~with M5m11m2 the total mass and h
5m1m2 /M 2), and d is the distance between the binary and
the Earth. Therefore, for a given signal-to-noise detection
threshold ~see Sec. II! and for equal-mass binaries (h
51/4), the larger is the total mass, the larger is the distance
d that we are able to probe. ~In Sec. V we shall see how this
result is modified when we relax the assumption that the
signal ends outside the range of good interferometer sensi-
tivity.!

For example, a black-hole–black-hole binary ~BBH! of
total mass M520M ( at 100 Mpc gives ~roughly! the same
S/N as a neutron-star–neutron-star binary ~BNS! of total
mass M52.8M ( at 20 Mpc. The expected measured-event

rate scales as the third power of the probed distance, al-

though of course it depends also on the system’s coalescence

rate per unit volume in the universe. To give some figures,

computed using LIGO-I’s sensitivity specifications, if we as-

sume that BBHs originate from main-sequence binaries @6#,

the estimated detection rate per year is &431023 –0.6 at

100 Mpc @7,8#, while if globular clusters are considered as

incubators of BBHs @9# the estimated detection rate per year

is ;0.04–0.6 at 100 Mpc @7,8#; by contrast, the BNS detec-

tion rate per year is in the range 331024 –0.3 at 20 Mpc

@7,8#. The very large cited ranges for the measured-event

rates reflect the uncertainty implicit in using population-

synthesis techniques and extrapolations from the few known

galactic BNSs to evaluate the coalescence rates of binary

systems. @In a recent article @10#, Miller and Hamilton sug-

gest that four-body effects in globular clusters might enhance

considerably the BBH coalescence rate, brightening the pros-

pects for detection with first-generation interferometers; the

BBHs involved might have relatively high BH masses

(;100M () and eccentric orbits, and they will not be con-

sidered in this paper.#
The GW signals from standard comparable-mass BBHs

with M510–40M ( contain only a few (50–800) cycles in
the LIGO-VIRGO frequency band, so we might expect that
the task of modeling the signals for the purpose of data
analysis could be accomplished easily. However, the fre-
quencies of best interferometer sensitivity correspond to
GWs emitted during the final stages of the inspiral, where the
post–Newtonian ~PN! expansion @11#, which for compact
bodies is essentially an expansion in the characteristic orbital
velocity v/c , begins to fail. It follows that these sources
require a very careful analysis. As the two bodies draw
closer, and enter the nonlinear, strong-curvature phase, the
motion becomes relativistic, and it becomes harder and
harder to extract reliable information from the PN series. For
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example, using the Keplerian formula v5(pM f GW)1/3

~where f GW is the GW frequency! and taking f GW5153 Hz

~the LIGO-I peak-sensitivity frequency! we get v(M )

50.14(M /M ()1/3; hence, for BNSs v(2.8M ()50.2, but for

BBHs v(20M ()50.38 and v(40M ()50.48.

The final phase of the inspiral ~at least when BH spins are

negligible! includes the transition from the adiabatic inspiral

to the plunge, beyond which the motion of the bodies is

driven ~almost! only by the conservative part of the dynam-

ics. Beyond the plunge, the two BHs merge, forming a single

rotating BH in a very excited state; this BH then eases into

its final stationary Kerr state, as the oscillations of its quasi-

normal modes die out. In this phase the gravitational signal

will be a superposition of exponentially damped sinusoids

~ringdown waveform!. For nonspinning BBHs, the plunge

starts roughly at the innermost stable circular orbit ~ISCO! of

the BBH. At the ISCO, the GW frequency @evaluated in the

Schwarzschild test-mass limit as f GW
ISCO(M ).0.022/M ] is

f GW
ISCO(20M ().220 Hz and f GW

ISCO(30M ().167 Hz. These

frequencies are well inside the LIGO and VIRGO bands.
The data analysis of inspiral, merger ~or plunge!, and

ringdown of compact binaries was first investigated by
Flanagan and Hughes @12#, and more recently by Damour,
Iyer and Sathyaprakash @13#. Flanagan and Hughes @12#
model the inspiral using the standard quadrupole prediction
~see, e.g., Ref. @5#!, and assume an ending frequency of
0.02/M ~the point where, they argue, PN and numerical-
relativity predictions start to deviate by ;5% @14#!. They
then use a crude argument to estimate upper limits for the
total energy radiated in the merger phase (;0.1M ) and in
the ringdown phase (;0.03M ) of maximally spinning BBH
coalescences. Damour, Iyer and Sathyaprakash @13# study the
nonadiabatic PN-resummed model for nonspinning BBHs of
Refs. @15–17#, where the plunge can be seen as a natural
continuation of the inspiral @16# rather than a separate phase;
the total radiated energy is 0.007M in the merger and
0.007M in the ringdown @18#. ~All these values for the en-
ergy should be also compared with the value, 0.25–0.3M ,
estimated recently in Ref. @19# for the plunge and ringdown
for nonspinning BBHs.! When we deal with nonadiabatic
models, we too shall choose not to separate the various
phases. Moreover, because the ringdown phase does not give
a significant contribution to the signal-to-noise ratio for M

<200M ( @12,13#, we shall not include it in our investiga-
tions.

BHs could have large spins: various studies @20,21# have
shown that when this is the case, the time evolution of the
GW phase and amplitude during the inspiral will be signifi-
cantly affected by spin-induced modulations and irregulari-
ties. These effects can become dramatic if the two BH spins
are large and are not aligned or antialigned with the orbital
angular momentum. There is a considerable chance that the
analysis of interferometer data, carried out without taking
into account spin effects, could miss the signals from spin-
ning BBHs altogether. We shall tackle the crucial issue of
spin in a separate paper @22#.

The purpose of the present paper is to discuss the problem
of the failure of the PN expansion during the last stages of

inspiral for nonspinning BHs, and the possible ways to deal

with this failure. This problem is known in the literature as

the intermediate binary black hole ~IBBH! problem @23#. De-

spite the considerable progress made by the numerical-

relativity community in recent years @14,24–26#, a reliable

estimate of the waveforms emitted by BBHs is still some

time away ~some results for the plunge and ringdown wave-

forms were obtained very recently @19#, but they are not very
useful for our purposes because they do not include the last
stages of the inspiral before the plunge, and their initial data
are endowed with large amounts of spurious GWs!. To tackle
the delicate issue of the late orbital evolution of BBHs, vari-
ous nonperturbative analytical approaches to that evolution
~also known as PN resummation methods! have been pro-
posed @15–17,27#.

The main features of PN resummation methods can be
summarized as follows: ~i! they provide an analytic ~gauge-
invariant! resummation of the orbital energy function and
gravitational flux function ~which, as we shall see in Sec. III,
are the two crucial ingredients to compute the gravitational
waveforms in the adiabatic limit!; ~ii! they can describe the
motion of the bodies ~and provide the gravitational wave-
form! beyond the adiabatic approximation; and ~iii! in prin-
ciple they can be extended to higher PN orders. More impor-
tantly, they can provide initial dynamical data for the two
BHs at the beginning of the plunge ~such as their positions
and momenta!, which can be used ~in principle! in numerical
relativity to help build the initial gravitational data ~the met-
ric and its time derivative! and then to evolve the full Ein-
stein equations through the merger phase. However, these
resummation methods are based on some assumptions that,
although plausible, have not been proved: for example, when
the orbital energy and the gravitational flux functions are
derived in the comparable-mass case, it is assumed that they
are smooth deformations of the analogous quantities in the
test-mass limit. Moreover, in the absence of both exact solu-
tions and experimental data, we can test the robustness and
reliability of the resummation methods only by internal con-
vergence tests.

In this paper we follow a more conservative point of view.
We shall maintain skepticism about waveforms emitted by
BBH with M510–40M ( and evaluated from PN calcula-
tions, as well as all other waveforms ever computed for the
late BBH inspiral and plunge, and we shall develop families
of search templates that incorporate this skepticism. More
specifically, we shall be concerned only with detecting BBH
GWs, and not with extracting physical parameters, such as
masses and spins, from the measured GWs. The rationale for
this choice is twofold. First, detection is the more urgent
problem at a time when GW interferometers are about to
start their science runs; second, a viable detection strategy
must be constrained by the computing power available to
process a very long stream of data, while the study of de-
tected signals to evaluate physical parameters can concen-
trate many resources on a small stretch of detector output. In
addition, as we shall see in Sec. VI, and briefly discuss in
Sec. VI D, the different PN methods will give different pa-
rameter estimations for the same waveform, making a full
parameter extraction fundamentally difficult.
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This is the strategy that we propose: we guess ~and hope!
that the conjunction of the waveforms from all the post-
Newtonian models computed to date spans a region in signal
space that includes ~or almost includes! the true signal. We
then choose a detection ~or effective! template family that
approximates very well all the PN expanded and resummed
models ~henceforth denoted as target models!. If our guess is
correct, the effectualness @27# of the effective model in ap-
proximating the targets ~i.e., its capability of reproducing
their signal shapes! should be indicative of its effectualness
in approximating the true signals. Because our goal is the
detection of BBH GWs, we shall not require the detection
template family to be faithful @27# ~i.e., to have a small bias
in the estimation of the masses!.

As a backup strategy, we require the detection template
family to embed the targets in a signal space of higher di-
mension ~i.e., with more parameters!, trying to guess the
functional directions in which the true signals might lie with
respect to the targets ~of course, this guess is rather delicate!.
So, the detection template families constructed in this paper
cannot be guaranteed to capture the true signal, but they
should be considered as indications.

This paper is organized as follows. In Sec. II we briefly
review the theory of matched-filtering GW detections, which
underlies the searches for GWs from inspiraling binaries.
Then in Secs. III, IV, and V we present the target models and
give a detailed analysis of the differences between them,
both from the point of view of the orbital dynamics and of
the gravitational waveforms. More specifically, in Sec. III we
introduce the two-body adiabatic models, both PN expanded
and resummed; in Sec. IV we introduce nonadiabatic ap-
proximations to the two-body dynamics; and in Sec. V we
discuss the signal-to-noise ratios obtained for the various
two-body models. Our proposals for the detection template
families are discussed in the Fourier domain in Sec. VI, and
in the time domain in Sec. VII, where we also build the
mismatch metric @28,29# for the template banks and use it to
evaluate the number of templates needed for detection. Sec-
tion VIII summarizes our conclusions.

Throughout this paper we adopt the LIGO noise curve
given in Fig. 1 and Eq. ~28!, and used also in Ref. @13#.

Because the noise curve anticipated for VIRGO ~see Fig. 1!
is quite different ~both at low frequencies, and in the location
of its peak-sensitivity frequency! our results cannot be ap-
plied naively to VIRGO. We plan to repeat our study for
VIRGO in the near future.

II. THE THEORY OF MATCHED-FILTERING SIGNAL

DETECTION

The technique of matched-filtering detection for GW sig-
nals is based on the systematic comparison of the measured
detector output s with a bank of theoretical signal templates

$u i% that represent a good approximation to the class of
physical signals that we seek to measure. This theory was
developed by many authors over the years, who have pub-
lished excellent expositions @29–40,12,27#. In the following,
we summarize the main results and equations that are rel-
evant to our purposes, and we establish our notation.

A. The statistical theory of signal detection

The detector output s consists of noise n and possibly of a
true gravitational signal h i ~part of a family $h i% of signals
generated by different sources for different source param-
eters, detector orientations, and so on!. Although we may be
able to characterize the properties of the noise in several
ways, each separate realization of the noise is unpredictable,
and it might in principle fool us by hiding a physical signal
~hence the risk of a false dismissal! or by simulating one
~false alarm!. Thus, the problem of signal detection is essen-
tially probabilistic. In principle, we could try to evaluate the
conditional probability P(hus) that the measured signal s

actually contains one of the h i . In practice, this is inconve-
nient because the evaluation of P(hus) requires the knowl-
edge of the a priori probability that a signal belonging to the
family $h i% is present in s.

What we can do, instead, is to work with a statistic ~a
functional of s and of the h i) that ~for different realizations
of the noise! will be distributed around low values if the
physical signal h i is absent, and around high value if the
signal is present. Thus, we shall establish a decision rule as
follows @33#: we will claim a detection if the value of a
statistic ~for a given instance of s and for a specific h i) is
higher than a predefined threshold. We can then study the
probability distribution of the statistic to estimate the prob-
ability of false alarm and of false dismissal. The steps in-
volved in this statistical study are easily laid down for a
generic model of noise, but it is only in the much simplified
case of normal noise that it is possible to obtain manageable
formulas; while noise will definitely not be normal in a real
detector, the Gaussian formulas can still provide useful
guidelines for the detection problems. Eventually, the statis-
tical analysis of detector search runs will be carried out with
numerical Monte Carlo techniques that make use of the mea-
sured characteristics of the noise. So throughout this paper
we shall always assume Gaussian noise.

The statistic that is generally used is based on the sym-
metric inner product ^g ,h& between two real signals g and h,
which represents essentially the cross-correlation between g

FIG. 1. Square root of the noise spectral density ASn( f ) versus

frequency f, for LIGO-I @Eq. ~28!#, and VIRGO ~from Table IV of

Ref. @13#!.
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and h, weighted to emphasize the correlation at the frequen-
cies where the detector sensitivity is better. We follow Cutler
and Flanagan’s conventions @36# and define

^g ,h&52E
2`

1` g̃*~ f !h̃~ f !

Sn~ u f u!
d f 54 Re E

0

1` g̃*~ f !h̃~ f !

Sn~ f !
d f ,

~1!

where Sn( f ), the one-sided noise power spectral density, is
given by

ñ*~ f 1!ñ~ f 2!5

1

2
d~ f 12 f 2!Sn~ f 1! for f 1.0, ~2!

and Sn( f 1)50 for f 1,0. We then define the signal-to-noise

ratio r ~for the measured signal s after filtering by h i), as

r~h i!5
^s ,h i&

rms^n ,h i&
5

^s ,h i&

A^h i ,h i&
, ~3!

where the equality follows because ^h i ,n&^n ,h i&5^h i ,h i&
~see, e.g., @33#!. In the case of Gaussian noise, it can be
proved that this filtering technique is optimal, in the sense
that it maximizes the probability of correct detection for a
given probability of false detection.

In the case when s5n , and when noise is Gaussian, it is
easy to prove that r is a normal variable with a mean of zero
and a variance of one. If instead s5h i1n , then r is a normal

variable with mean A^h i ,h i& and unit variance. The thresh-

old r
*

for detection is set as a tradeoff between the resulting
false-alarm probability,

F5A 1

2p
E

r
*

1`

e2r2/2dr5

1

2
erfc~r

*
/A2 ! ~4!

~where erfc is the complementary error function @41#!, and
the probability of correct detection

D5

1

2
erfc@~r

*
2A^h i ,h i& !/A2# ~5!

~the probability of false dismissal is just 12D).

B. Template families and extrinsic parameters

We can now go back to the initial strategy of comparing
the measured signal against a bank of Ni templates $u i% that
represent a plurality of sources of different types and physi-
cal parameters. For each stretch s of detector output, we shall

compute the signal-to-noise ratio ^s ,u i&/A^u i ,u i& for all the
u i , and then apply our rule to decide whether the physical
signal corresponding to any one of the u i is actually present
within s @5#. Of course, the threshold r

*
needs to be adjusted

so that the probability Ftot of false alarm over all the tem-

plates is still acceptable. Under the assumption that all the
inner products ^n ,u i& of the templates with noise alone are
statistically independent variables @this hypothesis entails

^u i ,u j&.0], Ftot is just 12(12F)Ni;NiF. If the tem-
plates are not statistically independent, this number is an

upper limit on the false alarm rate. However, we first need to
note that, for any template u i , there are a few obvious ways
~parametrized by the so-called extrinsic parameters! of
changing the signal shape that do not warrant the inclusion
of the modified signals as separate templates @42#.

The extrinsic parameters are the signal amplitude, phase

and time of arrival. Any true signal h can be written in all
generality as

h~ t !5Ahah@ t2th#cos@Fh~ t2th!1fh# , ~6!

where ah(t)50 for t,0, where Fh(0)50, and where ah(t)

is normalized so that ^h ,h&5A h
2 . While the template bank

$u i% must contain signal shapes that represent all the physi-
cally possible functional forms a(t) and F(t), it is possible
to modify our search strategy so that the variability in Ah ,
fh and th is automatically taken into account without creat-
ing additional templates.

The signal amplitude is the simplest extrinsic parameter.
It is expedient to normalize the templates u i so that ^u i ,u i&
51, and r(u i)5^s ,u i&. Indeed, throughout the rest of this
paper we shall always assume normalized templates. If s

contains a scaled version h i5Au i of a template u i ~here A is

known as the signal strength!, then r(u i)5A. However, the
statistical distribution of r is the same in the absence of the

signal. Then the problem of detection signals of known
shape and unknown amplitude is easily solved by using a
single normalized template and the same threshold r

*
as

used for the detection of completely known signals @33#.
Quite simply, the stronger an actual signal, the easier it will
be to reach the threshold.

We now look at phase, and we try to match h with a
continuous one-parameter subfamily of templates u(f t ;t)
5ah(t)cos@Fh(t)1ft#. It turns out that for each time signal
shape $a(t),F(t)%, we need to keep in our template bank
only two copies of the corresponding u i , for f t50 and f t

5p/2, and that the signal to noise of the detector output s

against u i , for the best possible value of f t , is automatically
found as @33#

rf5max
f t

^s ,u i~f t!&5Au^s ,u i~0 !&u2
1u^s ,u i~p/2!&u2,

~7!

where u i(0) and u i(p/2) have been orthonormalized. The
statistical distribution of the phase-maximized statistic rf ,
for the case of ~normal! noise alone, is the Raleigh distribu-

tion @33#

p0~rf!5rfe2rf
2

/2, ~8!

and the false-alarm probability for a threshold rf*
is just

F5e2rf*
2

/2. ~9!

Throughout this paper, we will find it useful to consider
inner products that are maximized ~or minimized! with re-
spect to the phases of both templates and reference signals.
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In particular, we shall follow Damour, Iyer and
Sathyaprakash in making a distinction between the best

match or maxmax match

maxmax^h ,u i&5max
fh

max
f t

^h~fh!,u i~f t!&, ~10!

which represents the most favorable combination of phases
between the signals h and u i , and the minmax match

minmax^h ,u i&5min
fh

max
f t

^h~fh!,u i~f t!&, ~11!

which represents the safest estimate in the realistic situation,
where we cannot choose the phase of the physical measured
signal, but only of the template used to match the signal.
Damour, Iyer and Sathyaprakash ~see Appendix B of Ref.
@27#! show that both quantities are easily computed as

S maxmax

minmax
D 5H A1B

2
6F S A2B

2
D 2

1C2G1/2J 1/2

, ~12!

where

A5^h~0 !,u i~0 !&2
1^h~0 !,u i~p/2!&2, ~13!

B5^h~p/2!,u i~0 !&2
1^h~p/2!,u i~p/2!&2, ~14!

C5^h~0 !,u i~0 !&^h~p/2!,u i~0 !&

1^h~0 !,u i~p/2!&^h~p/2!,u i~p/2!& . ~15!

In these formulas we have assumed that the two bases

$h(0),h(p/2)% and $u i(0),u i(p/2)% have been orthonormal-
ized.

The time of arrival th is an extrinsic parameter because
the signal to noise for the normalized, time-shifted template
u(t2t0) against the signal s is just

^s ,u~ t0!&54 Re E
0

1` s̃*~ f !ũ~ f !

Sn~ f !
e i2p f t0d f , ~16!

where we have used a well-known property of the Fourier
transform of time-shifted signals. These integrals can be
computed at the same time for all the time of arrivals $t0%,
using a fast Fourier transform technique that requires
;Nslog Ns operations ~where Ns is the number of the

samples that describe the signals! as opposed to ;Ns
2 re-

quired to compute all the integrals separately @43#. Then we
can look for the optimal t0 that yields the maximum signal to
noise.

We now go back to adjusting the threshold r
*

for a search
over a vast template bank, using the estimate ~9! for the
false-alarm probability. Assuming that the statistics rf for
each signal shape and starting time are independent, we re-
quire that

e2rf*
2

/2.
Ftot

N timesNshapes

, ~17!

or

r
*

.A2~ log N times1log Nshapes2log Ftot!. ~18!

It is generally assumed that N times;331010 ~equivalent to
templates displaced by 0.01 s over one year @44,12#! and that
the false-alarm probability Ftot;1023. Using these values,
we find that an increase of r

*
by about ;3% is needed each

time we increase Nshapes by one order of magnitude. So there
is a tradeoff between the improvement in signal-to-noise ra-
tio obtained by using more signal shapes and the correspond-
ing increase in the detection threshold for a fixed false-alarm
probability.

C. Imperfect detection and discrete families of templates

There are two distinct reasons why the detection of a
physical signal h by matched filtering with a template bank

$u i% might result in signal-to-noise ratios lower than the op-
timal signal-to-noise ratio,

ropt5A^h ,h& . ~19!

First, the templates, understood as a continuous family

$u(lA)% of functional shapes indexed by one or more intrin-

sic parameters lA ~such as the masses, spins, etc.!, might
give an unfaithful representation of h, introducing errors in
the representation of the phasing or the amplitude. The loss
of signal to noise due to unfaithful templates is quantified by
the fitting factor ~FF!, introduced by Apostolatos @45#, and
defined by

FF„h ,u~lA!…5
maxlA^h ,u~lA!&

A^h ,h&
. ~20!

In general, we will be interested in the FF of the continuous
template bank in representing a family of physical signals

$h(uA)%, dependent upon one or more physical parameters
uA: so we shall write FF(uA)5FF„h(uA),u(lA)…. Although
it is convenient to index the template family by the same
physical parameters uA that characterize h(uA), this is by no
means necessary; the template parameters lA might be a
different number than the physical parameters ~indeed, this is
desirable when the uA get to be very many!, and they might
not carry any direct physical meaning. Notice also that the
value of the FF will depend on the parameter range chosen to
maximize the lA.

The second reason why the signal-to-noise will be de-
graded with respect to its optimal value is that, even if our
templates are perfect representations of the physical signals,
in practice we will not adopt a continuous family of tem-
plates, but we will be limited to using a discrete bank $u i

[u(l i
A)%. This loss of signal to noise depends on how finely

templates are laid down over parameter space @37–39#; a
notion of metric in template space ~the mismatch metric

@28,29,46#! can be used to guide the disposition of templates
so that the loss ~in the perfect-template abstraction! is limited
to a fixed, predetermined value, the minimum match ~MM!,
introduced in Refs. @29,37#, and defined by
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MM5min
l̂A

max

l
i
A

^u~ l̂A!,u~l i
A!&

5min
l̂A

max

Dl
i
A

^u~ l̂A!,u~ l̂A
1Dl i

A!& , ~21!

where Dl i
A[l i

A
2l̂A. The mismatch metric gBC(l̂A) for the

template space $u(lA)% is obtained by expanding the inner

product ~or match! ^u(l̂A),u(l̂A
1DlA)& about its maxi-

mum of 1 at DlA
50:

^u~ l̂A!,u~ l̂A
1DlA!&

5M ~ l̂A,l̂A
1DlA!

511

1

2

]2M

]DlB]DlC U
l̂A

DlBDlC
1••• , ~22!

so the mismatch 12M between u(l̂A) and the nearby tem-

plate u(l̂A
1DlA) can be seen as the square of the proper

distance in a differential manifold indexed by the coordinates
lA @29#,

12M ~ l̂A,l̂A
1DlA!5gBCDlBDlC, ~23!

where

gBC52

1

2

]2M

]DlB]DlC U
l̂A

. ~24!

If, for simplicity, we lay down the n-dimensional discrete

template bank $u(l i
A)% along a hypercubical grid of cell-size

dl in the metric gAB ~a grid in which all the templates on
nearby corners have a mismatch of dl with each other!, the

minimum match occurs when l̂A lies exactly at the center of
one of the hypercubes: then 12MM5n(dl/2)2. Conversely,
given MM, the volume of the corresponding hypercubes is

given by VMM5@2A(12MM)/n#n. The number of tem-
plates required to achieve a certain MM is obtained by inte-
grating the proper volume of parameter space within the re-
gion of physical interest, and then dividing by VMM :

N@g ,MM#5

E AugudlA

~2A@12MM#/n !n
. ~25!

In practice, if the metric is not constant over parameter space
it will not be possible to lay down the templates on an exact
hypercubical grid of cell-size dl , so N will be somewhat
higher than predicted by Eq. ~25!. However, we estimate that
this number should be correct within a factor of two, which
is adequate for our purposes.

In the worst possible case, the combined effect of unfaith-
ful modeling (FF,1) and discrete template family (MM
,1) will degrade the optimal signal to noise by a factor of
about FF1MM21. This estimate for the total signal-to-
noise loss is exact when, in the space of signals, the two

segments that join h( ûA) to its projection u(l̂A) and u(l̂A)

to the nearest discrete template u(l̂ i
A) can be considered or-

thogonal:

^h~uA!2u~ l̂A!,u~ l̂A!2u~ l̂ i
A!&.0. ~26!

This assumption is generally very accurate if FF and MM are
small enough, as in this paper; so we will adopt this estimate.
However, it is possible to be more precise, by defining an

external metric gAB
E @28,47# that characterizes directly the

mismatch between h( ûA) and a template u(l̂A
1DlA) that is

displaced with respect to the template u(l̂A) that is yields

the maximum match with h( ûA).
Since the strength of gravity-wave signals scales as the

inverse of the distance @48#, the matched-filtering scheme,
with a chosen signal-to-noise threshold r

*
, will allow the

reliable detection of a signal h, characterized by the signal

strength Ad0
5A^h ,h& at the distance d0 , out to a maximum

distance

dmax

d0

5

Ad0

r
*

. ~27!

If we assume that the measured GW events happen with a
homogeneous event rate throughout the accessible portion of

the universe, then the detection rate will scale as dmax
3 . It

follows that the use of unfaithful, discrete templates $u i% to
detect the signal h will effectively reduce the signal strength,
and therefore dmax , by a factor FF1MM21. This loss in the
signal-to-noise ratio can also be seen as an increase in the
detection threshold r

*
necessary to achieve the required

false-alarm rate, because the imperfect templates introduce
an element of uncertainty. In either case, the detection rate
will be reduced by a factor (FF1MM21)3.

D. Approximations for detector noise spectrum

and gravitational-wave signal

For LIGO-I we use the analytic fit to the noise power
spectral density given in Ref. @13#, and plotted in Fig. 1:

Sn~ f !

Hz21
59.00310246F S 4.49

f

f 0
D 256

10.16S f

f 0
D 24.52

10.5210.32S f

f 0
D 2G , ~28!

where f 05150 Hz. The first term in the square brackets rep-
resents seismic noise, the second and third, thermal noise,
and the fourth, photon shot noise.

Throughout this paper, we shall compute BBH waveforms
in the quadrupole approximation ~we shall compute the
phase evolution of the GWs with the highest possible accu-
racy, but we shall omit all harmonics higher than the quad-
rupole, and we shall omit post-Newtonian corrections to the
amplitude; this is a standard approach in the field, see, e.g.,
@11#!. The signal received at the interferometer can then be
written as @5,32#
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h~ t !5

Q

dL

Mh~pM f GW!2/3cos wGW , ~29!

where f and wGW are the instantaneous GW frequency and
phase at the time t, dL is the luminosity distance, M and h
are, respectively, the BBH total mass m11m2 and the di-
mensionless mass ratio m1m2 /M 2, and where we have taken
G5c51. The coefficient Q depends on the inclination of the
BBH orbit with respect to the plane of the sky, and on the
polarization and direction of propagation of the GWs with
respect to the orientation of the interferometer. Finn and
Chernoff @32# examine the distribution of Q , and show that
Qmax54, while rms Q58/5. We shall use this last value
when we compute optimal signal-to-noise ratios. The wave-
form given by Eq. ~29!, after dropping the factor QMh/dL ,
is known as restricted waveform.

III. ADIABATIC MODELS

We turn, now, to a discussion of the currently available
mathematical models for the inspiral of BBHs. Table I shows
a list of the models that we shall consider in this paper,
together with the shorthands that we shall use to denote
them. We begin in this section with adiabatic models. BBH
adiabatic models treat the orbital inspiral as a quasistationary
sequence of circular orbits, indexed by the invariantly de-
fined velocity

v5~M ẇ !1/3
5~pM f GW!1/3. ~30!

The evolution of the inspiral ~and in particular of the orbital
phase w) is completely determined by the energy-balance

equation

dE~v !

dt
52F~v !. ~31!

This equation relates the time derivative of the energy func-
tion E(v) ~which is given in terms of the total relativistic
energy Etot by E5Etot2m12m2 , and which is conserved in
absence of radiation reaction! to the gravitational flux ~or
luminosity! function F(v). Both functions are known for
quasicircular orbits as a PN expansion in v . It is easily
shown that Eq. ~31! is equivalent to the system ~see, e.g.,
Ref. @27#!

dwGW

dt
5

2v
3

M
,

dv

dt
52

F~v !

M dE~v !/dv

. ~32!

In accord with the discussion around Eq. ~29!, we shall only
consider the restricted waveform h(t)5v

2cos wGW(t), where
the GW phase wGW is twice the orbital phase w .

A. Adiabatic PN expanded models

The equations of motion for two compact bodies at 2.5PN
order were first derived in Refs. @49#. The 3PN equations of
motion have been obtained by two separate groups of re-
searchers: Damour, Jaranowski and Schäfer @50# used the
Arnowitt-Deser-Misner ~ADM! canonical approach, while
Blanchet, Faye and de Andrade @51# worked with the PN
iteration of the Einstein equations in the harmonic gauge.
Recently Damour and colleagues @52#, working in the ADM
formalism and applying dimensional regularization, deter-
mined uniquely the static parameter that enters the 3PN
equations of motion @50,51# and that was until then un-
known. In this paper we shall adopt their value for the static
parameter. Thus at present the energy function E is known up
to 3PN order.

The gravitational flux emitted by compact binaries was
first computed at 1PN order in Ref. @53#. It was subsequently
determined at 2PN order with a formalism based on multi-
polar and post–Minkowskian approximations, and, indepen-

TABLE I. Post-Newtonian models of two-body dynamics defined in this paper. The notation X(nPN,mPN; û) denotes the model X, with

terms up to order nPN for the conservative dynamics, and with terms up to order mPN for radiation-reaction effects; for m>3 we also need

to specify the arbitrary flux parameter û ~see Sec. III A!; for n>3, the effective-one-body models need also two additional parameters z̃1 and

z̃2 ~see Sec. IV C!.

Model Shorthand Evolution equation Section

Adiabatic model with Taylor-expanded

energy E(v) and flux F(v)
T(nPN,mPN; û) energy-balance equation Sec. III A

Adiabatic model with Padé-expanded

energy E(v) and flux F(v)
P(nPN,mPN; û) energy-balance equation Sec. III B

Adiabatic model with Taylor-expanded energy E(v)

and flux F(v) in the stationary-phase approximation

SPA(nPN[mPN) energy-balance equation in

the frequency domain

Sec. VI F

Nonadiabatic Hamiltonian model with

Taylor-expanded GW flux
HT(nPN,mPN; û) Hamilton equations Sec. IV A

Nonadiabatic Hamiltonian model with

Padé-expanded GW flux
HP(nPN,mPN; û) Hamilton equations Sec. IV A

Nonadiabatic Lagrangian model L(nPN,mPN) F5ma Sec. IV B

Nonadiabatic effective-one-body model

with Taylor-expanded GW flux
ET(nPN,mPN; û; z̃1 , z̃2) effective Hamilton equations Sec. IV C

Nonadiabatic effective-one-body model

with Padé-expanded GW flux
EP(nPN,mPN; û; z̃1 , z̃2) effective Hamilton equations Sec. IV C
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dently, with the direct integration of the relaxed Einstein
equations @54#. Nonlinear effects of tails at 2.5PN and 3.5PN
orders were computed in Refs. @55#. More recently, Blanchet
and colleagues derived the gravitational-flux function for
quasicircular orbits up to 3.5PN order @56,57#. However, at
3PN order @56,57# the gravitational-flux function depends on

an arbitrary parameter û that could not be fixed in the regu-
larization scheme used by these authors.

1. PN energy and flux

Denoting by ETN
and FTN

the N th-order Taylor approxi-

mants (T approximants! to the energy and the flux functions,
we have

ET2N
~v ![ENewt~v !(

k50

N

Ek~h !v2k, ~33!

FTN
~v ![FNewt~v !(

k50

N

Fk~h !vk, ~34!

where ‘‘Newt’’ stands for Newtonian order, and the sub-
scripts 2N and N stand for post2N-Newtonian and
postN-Newtonian order. The quantities in these equations are

ENewt~v !52

1

2
hv

2, FNewt~v !5

32

5
h2

v
10, ~35!

E0~h !51, E1~h !52

3

4
2

h

12
, E2~h !52

27

8
1

19

8
h2

h2

24
,

~36!

E3~h !52

675

64
1S 34445

576
2

205

96
p2Dh2

155

96
h2

2

35

5184
h3,

~37!

F0~h !51, F1~h !50, F2~h !52

1247

336
2

35

12
h ,

F3~h !54p , ~38!

F4~h !52

44711

9072
1

9271

504
h1

65

18
h2,

F5~h !52S 8191

672
1

535

24
h Dp , ~39!

F6~h !5

6643739519

69854400
1

16

3
p2

2

1712

105
gE2

856

105
log~16v

2!

1S 2

2913613

272160
1

41

48
p2

2

88

3
û Dh2

94403

3024
h2

2

775

324
h3, ~40!

F7~h !5S 2

16285

504
1

176419

1512
h1

19897

378
h2Dp . ~41!

Here h5m1m2 /(m11m2)2, gE is Euler’s gamma, and û is
the arbitrary 3PN flux parameter @56,57#. From Table I of
Ref. @56# we read that the extra number of GW cycles accu-
mulated by the PN terms of a given order decreases
~roughly! by an order of magnitude when we increase the PN
order by one. Hence, we find it reasonable to expect that at

3PN order the parameter û should be of order unity, and we

choose as typical values û50,62.
In Fig. 2 we plot the normalized flux FTN

/FNewt as a

function of v at various PN orders for the equal mass case
h50.25. To convert v to a GW frequency we can use

f GW.3.23104S 20M (

M
D v

3. ~42!

The two long-dashed vertical lines in Fig. 2 correspond to

v.0.18 and v.0.53; they show the velocity range that cor-
responds to the LIGO frequency band 40< f GW<240 Hz for
BBHs with total mass in the range 10–40M ( . At the
LIGO-I peak-sensitivity frequency, which is 153 Hz accord-
ing to our noise curve, and for a (10110)M ( BBH, we have

v.0.362; and the percentage difference between subsequent
PN orders is Newt→1PN:258%; 1PN→1.5PN:1142%;
1.5PN→2PN:20.2%; 2PN→2.5PN:234%; 2.5PN

→3PN( û50):143%; 3PN→3.5PN( û50):10.04%. The

percentage difference between the 3PN fluxes with û562 is
;7%. It is interesting to notice that while there is a big
difference between the 1PN and 1.5PN orders, and between
the 2PN and 2.5PN orders, the 3PN and 3.5PN fluxes are
rather close. Of course this observation is insufficient to con-
clude that the PN sequence is converging at 3.5PN order.

In the left panel of Fig. 3, we plot the T approximants for
the energy function versus v , at different PN orders, while in
the right panel we plot ~as a function of the total mass M, and
at the LIGO-I peak-sensitivity GW frequency f peak

5153 Hz) the percentage difference of the energy function
between T approximants to the energy function of successive

FIG. 2. Normalized flux function FTN
/FNewt versus v , at differ-

ent PN orders for equal-mass binaries, h50.25. Note that the

1.5PN and 2PN flux, and the 3PN and 3.5PN flux, are so close that

they cannot be distinguished in these plots. The two long-dashed

vertical lines correspond to v.0.18 and v.0.53; they show the

velocity range that corresponds to the LIGO frequency band 40

< f GW<240 Hz for BBHs with total mass in the range 10–40M ( .

BUONANNO, CHEN, AND VALLISNERI PHYSICAL REVIEW D 67, 024016 ~2003!

024016-8



PN orders. We note that the 1PN and 2PN energies are dis-
tant, but the 2PN and 3PN energies are quite close.

2. Definition of the models

The evolution equations ~32! for the adiabatic inspiral
lose validity ~the inspiral ceases to be adiabatic! a little be-

fore v reaches v
MECO

TN , where MECO stands for maximum-

binding-energy circular orbit @58,59#. This v
MECO

TN is com-

puted as the value of v at which dETN
(v)/dv50. In building

our adiabatic models we evolve Eqs. ~32! right up to vMECO

and stop there. We shall refer to the frequency computed by
setting v5vMECO in Eq. ~42! as the ending frequency for
these waveforms, and in Table II we show this frequency for
some BH masses. However, for certain binaries, the 1PN and

2.5PN flux functions can go to zero before v5v
MECO

TN ~see

Fig. 2!. In those cases we choose as the ending frequency the
value of f 5v

3/(pM ) where F(v) becomes 10% of
FNewt(v). ~When using the 2.5PN flux, our choice of the
ending frequency differs from the one used in Ref. @13#,
where the authors stopped the evolution at the GW frequency
corresponding to the Schwarzschild innermost stable circular
orbit. For this reason there are some differences between our
overlaps and theirs.!

We shall refer to the models discussed in this section as
T(nPN,mPN), where nPN (mPN) denotes the maximum

PN order of the terms included for the energy ~the flux!. We
shall consider (nPN,mPN)5(1,1.5),(2,2),(2,2.5) and

(3,3.5,û) ~at 3PN order we need to indicate also a choice of

the arbitrary flux parameter û).

3. Waveforms and matches

In Table III, for three typical choices of BBH masses, we
perform a convergence test using Cauchy’s criterion @27#,
namely, the sequence TN converges if and only if for each k

^TN ,TN1k&→1 as N→` . One requirement of this criterion
is that ^TN ,TN11&→1 as N→` , and this is what we test in
Table III, setting TN[T(N ,N10.5). The values quoted as-
sume maximization on the extrinsic parameters but not on
the intrinsic parameters. @For the case (10110)M ( , we
show in parentheses the maxmax matches obtained by maxi-
mizing with respect to the intrinsic and extrinsic parameters,
together with the intrinsic parameters M and h of TN11

where the maxima are attained.# These results suggest that
the PN expansion is far from converging. However, the very
low matches between N51 and N52, and between N52
and N53, are due to the fact that the 2.5PN flux goes to zero
before the MECO can be reached. If we redefine T2 as
T(2,2) instead of T(2,2.5), we obtain the higher values
shown in brackets is Table III.

In Fig. 4 we plot the frequency-domain amplitude of the
T-approximated waveforms, at different PN orders, for a

FIG. 3. In the left panel, we plot the energy function ETN
versus v , at different PN orders, for h50.25. The two long-dashed vertical lines

in the left figure correspond to v.0.18 and v.0.53; they show the velocity range that corresponds to the LIGO frequency band 40

< f GW<240 Hz, for BBHs with total mass in the range 10–40M ( . In the right panel, we plot the percentage difference dETN

5100u(ETN11
2ETN

)/ETN
u versus the total mass M, for N51,2, at the LIGO-I peak-sensitivity GW frequency, f peak5153 Hz @note: vpeak

5(pM f peak)
1/3].

TABLE II. Location of the MECO/ISCO. The first six columns show the GW frequency at the maximum binding energy for circular

orbits ~MECO!, computed using the T and P approximants to the energy function; the remaining columns show the GW frequency at the

innermost stable circular orbit ~ISCO!, computed using the H approximant to the energy, and using the EOB improved Hamiltonian ~91! with

z̃15 z̃250. For the H approximant the ISCO exists only at 1PN order.
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(15115)M ( BBH. The Newtonian amplitude, ANewt( f )

5 f 27/6, is also shown for comparison. In the T(1,1) and

T(2,2.5) cases, the flux function goes to zero before v

5v
MECO

TN ; this means that the radiation-reaction effects be-

come negligible during the last phase of evolution, so the

binary is able to spend many cycles at those final frequen-

cies, skewing the amplitude with respect to the Newtonian

result. For T(2,2), T(3,3), and T(3,3.5), the evolution is

stopped at v5v
MECO

TN , and, although f MECO
GW .270–300 Hz

~see Table II! the amplitude starts to deviate from f 27/6

around 100 Hz. This is a consequence of the abrupt termi-
nation of the signal in the time domain.

The effect of the arbitrary parameter û on the T wave-
forms can be seen in Table IV in the intersection between the
rows and columns labeled T(3,3.5,12) and T(3,3.5,22).
For three choices of BBH masses, this table shows the max-
max matches between the search models at the top of the
columns and the target models at the left end of the rows,
maximized over the mass parameters of the search models in

the columns. These matches are rather high, suggesting that
for the range of BBH masses we are concerned with, the

effect of changing û is just a remapping of the BBH mass

parameters. Therefore, in the following we shall consider

only the case of û50.
A quantitative measure of the difference between the

T(2,2), T(2,2.5) and T(3,3.5) waveforms can be seen in
Table V in the intersection between the rows and columns
labeled T( . . . ). For four choices of BBH masses, this table
shows the maxmax matches between the search models in
the columns and the target models in the rows, maximized
over the search-model parameters M and h; in the search, h
is restricted to its physical range 0,h<1/4, where 0 corre-
sponds to the test-mass limit, while 1/4 is obtained in the
equal-mass case. These matches can be interpreted as the
fitting factors @see Eq. ~20!# for the projection of the target
models onto the search models. For the case T(2,2.5) the
values are quite low: if the T(3,3.5) waveforms turned out to
give the true physical signals and if we used the T(2,2.5)
waveforms to detect them, we would lose ;32–49 % of the
events. The model T(2,2) would do match better, although it
would still not be very faithful. Once more, the difference
between T(2,2) and T(2,2.5) is due to the fact that the
2.5PN flux goes to zero before the BHs reach the MECO.

B. Adiabatic PN resummed methods: Padé approximants

The PN approximation outlined above can be used quite
generally to compute the shape of the GWs emitted by BNSs
or BBHs, but it cannot be trusted in the case of binaries with
comparable masses in the range M.10–40M ( , because for
these sources LIGO and VIRGO will detect the GWs emitted
when the motion is strongly relativistic, and the convergence
of the PN series is very slow. To cope with this problem,
Damour, Iyer and Sathyaprakash @27# proposed a new class
of models based on the systematic application of Padé re-
summation to the PN expansions of E(v) and F(v). This is
a standard mathematical technique used to accelerate the
convergence of poorly converging or even divergent power
series.

If we know the function g(v) only through its Taylor
approximant GN(v)5g01g1v1•••1gNv

N[TN@g(v)# ,
the central idea of Padé resummation @60# is the replacement

FIG. 4. Frequency-domain amplitude versus frequency for the

T-approximated ~restricted! waveforms at different PN orders for a

(15115)M ( BBH. The T(3,3.5,û50) curve, not plotted, is almost

identical to the T(3,3,û50) curve.

TABLE III. Test for the Cauchy convergence of the T approximants. The values quoted are maxmax

matches obtained by maximizing with respect to the extrinsic parameters, but not to the intrinsic parameters

~i.e., the matches are computed for T waveforms with the same masses, but different PN orders!. Here we

define T05T(0,0), T15T(1,1.5) T25T(2,2.5), T35T(3,3.5,û). In the Newtonian case, T05(0,0), the

MECO does not exist and we stop the integration of the balance equation at v51. The values in brackets,

‘‘@•••# ,’’ are obtained by setting T25T(2,2) instead of T(2,2.5); the values in parentheses, ‘‘(•••),’’ are

obtained by maximizing with respect to the extrinsic and intrinsic parameters, and they are shown together

with the TN11 parameters M and h where the maxima are achieved. In all cases the integration of the

equations is started at a GW frequency of 20 Hz.

^TN ,TN11&
N (5120)M ( (10110)M ( (15115)M (

0 0.432 0.553 ~0.861, 19.1, 0.241! 0.617

1 0.528 @0.638# 0.550 ~0.884, 22.0, 0.237! 0.645 @0.712#

2( û512) 0.482 @0.952# 0.547 ~0.841, 18.5, 0.25! 0.563 @0.917#

2( û522) 0.457 @0.975# 0.509 ~0.821, 18.7, 0.241! 0.524 @0.986#
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TABLE IV. Fitting factors between T and ET models, at 2PN and 3PN orders, and for different choices of the arbitrary flux parameter û . For three choices of BBH masses, this table

shows the maxmax matches @see Eq. ~10!# between the search models at the top of the columns and the target models at the left end of the rows, maximized over the mass parameters

of the models in the columns. For each intersection, the three numbers mm, M and h denote the maximized match and the search-model mass parameters at which the maximum is

attained. The matches can be interpreted as the fitting factors for the projection of the target models onto the search models. See the caption to Table VIII for further details.

T(2,2.5) ET(2,2.5) T(3,3.5,12) T(3,3.5,22) ET(3,3.5,12) ET(3,3.5,22)

mm M h mm M h mm M h mm M h mm M h mm M h

(15115)M ( 0.914 27.58 0.248

T(2,2.5) (1515)M ( 0.916 16.81 0.249

(515)M ( 0.900 10.13 0.241

(15115)M ( 0.922 33.93 0.241

ET(2,2.5) (1515)M ( 0.971 33.17 0.076

(515)M ( 0.984 13.57 0.147

(15115)M ( 0.995 29.83 0.243 0.963 30.52 0.240 0.974 30.32 0.240

T(3,3.5,12) (1515)M ( 1.000 19.06 0.204 0.984 20.03 0.186 0.974 20.09 0.182

(515)M ( 0.981 9.96 0.250 0.991 10.16 0.242 0.972 9.94 0.250

(15115)M ( 0.998 30.94 0.242 0.951 31.27 0.239 0.960 30.59 0.241

T(3,3.5,22) (1515)M ( 1.000 20.93 0.173 0.985 20.89 0.173 0.983 20.27 0.181

(515)M ( 0.999 10.61 0.226 0.994 10.26 0.240 0.993 10.19 0.241

(15115)M ( 0.951 30.39 0.240 0.931 29.76 0.241 0.994 30.06 0.241

ET(3,3.5,12) (1515)M ( 0.981 20.16 0.186 0.985 18.97 0.207 1.000 19.23 0.201

(515)M ( 0.996 10.22 0.240 0.985 9.96 0.250 0.979 9.95 0.250

(15115)M ( 0.963 30.94 0.240 0.953 30.30 0.241 0.999 31.07 0.238

ET(3,3.5,22) (1515)M ( 0.983 20.65 0.179 0.980 20.32 0.182 1.000 20.83 0.175

(515)M ( 0.987 10.27 0.240 0.996 10.21 0.241 1.000 10.51 0.230
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TABLE V. ~Continued in Table VIII.! Fitting factors between several PN models, at 2PN and 3PN orders. For three choices of BBH

masses, this table shows the maxmax matches @see Eq. ~10!# between the search models at the top of the columns and the target models at

the left end of the rows, maximized over the intrinsic parameters of the search models in the columns. For each intersection, the three

numbers mm, M5m11m2 and h5m1m2 /M 2 denote the maximized match and the search-model mass parameters at which the maximum

is attained. In computing these matches, the parameter h of the search models was restricted to its physical range 0,h<1/4. The arbitrary

flux parameter û was always set equal to zero. These matches represent the fitting factors @see Eq. ~20!# for the projection of the target

models onto the search models. The reader will notice that the values shown are not symmetric across the diagonal: for instance, the match

for the search model T(2,2.5) against the target model P(2,2.5) is higher than the converse. This is because the matches represent the inner

product ~1! between two different pairs of model parameters: in the first case, the target parameters (m1515M ( ,m2515M ()P[(M

530M ( ,h50.25)P are mapped to the maximum-match search parameters (M539.7M ( ,h50.24)T ; in the second case, the target param-

eters (m1515M ( ,m2515M ()T[(M530M ( ,h50.25)T are mapped to the maximum-match parameters (M525.37M ( ,h50.24)P @so

the symmetry of the inner product ~1! is reflected by the fact that the search parameters (M525.3M ( ,h50.24)P are mapped into the target

parameters (M530M ( ,h50.25)T].

T(2,2) T(2,2.5) T(3,3.5,0) P(2,2.5) P(3,3.5,0)
mm M h mm M h mm M h mm M h mm M h

T(2,2) (20120)M ( 0.924 54.47 0.23 0.999 40.47 0.24 0.977 39.13 0.25 0.999 41.93 0.24
(15115)M ( 0.873 39.46 0.24 0.999 30.35 0.24 0.980 29.69 0.25 0.998 31.54 0.23
(1515)M ( 0.885 29.45 0.10 0.998 19.64 0.19 0.992 18.07 0.22 0.998 20.23 0.18
(515)M ( 0.988 21.28 0.06 0.998 10.61 0.22 0.994 10.54 0.22 0.999 11.16 0.20

T(2,2.5) (20120)M ( 0.882 31.44 0.25 0.870 31.54 0.25 0.824 30.25 0.25 0.893 33.09 0.25
(15115)M ( 0.845 24.85 0.25 0.835 25.21 0.25 0.796 25.35 0.25 0.863 26.20 0.25
(1515)M ( 0.848 15.34 0.25 0.865 15.74 0.25 0.870 15.85 0.25 0.894 15.90 0.25
(515)M ( 0.801 9.41 0.25 0.823 9.51 0.25 0.826 9.51 0.25 0.849 9.61 0.25

T(3,3.5,0) (20120)M ( 0.999 39.57 0.24 0.916 54.63 0.23 0.989 39.03 0.24 0.997 41.56 0.23
(15115)M ( 0.999 29.71 0.24 0.855 39.46 0.24 0.992 29.25 0.25 1.000 31.97 0.21
(1515)M ( 0.999 20.98 0.16 0.877 29.20 0.10 0.997 18.82 0.20 1.000 20.81 0.17
(515)M ( 0.991 9.67 0.25 0.986 19.49 0.07 0.998 9.90 0.24 1.000 10.57 0.22

P(2,2.5) (20120)M ( 0.970 40.47 0.24 0.879 56.77 0.23 0.991 41.80 0.22 0.999 46.01 0.18
(15115)M ( 0.967 30.15 0.24 0.816 39.66 0.24 0.998 32.66 0.20 0.999 34.02 0.19
(1515)M ( 0.989 23.77 0.12 0.792 20.56 0.20 0.996 21.55 0.15 0.998 21.83 0.15
(515)M ( 0.989 9.67 0.25 0.882 13.04 0.15 0.998 10.08 0.24 0.997 10.75 0.21

P(3,3.5,0) (20120)M ( 0.999 38.33 0.24 0.923 51.51 0.24 0.997 38.97 0.24 0.971 37.70 0.25
(15115)M ( 0.997 28.47 0.25 0.979 51.01 0.10 0.997 28.96 0.25 0.961 28.88 0.25
(1515)M ( 0.997 19.53 0.18 0.825 20.89 0.19 1.000 19.12 0.19 0.998 18.32 0.21
(515)M ( 0.949 9.80 0.24 0.988 17.70 0.09 0.993 9.75 0.25 0.991 9.75 0.25

EP(2,2.5) (20120)M ( 0.954 38.10 0.25 0.936 51.14 0.24 0.933 39.10 0.25 0.878 38.22 0.25 0.962 39.94 0.25
(15115)M ( 0.965 29.34 0.25 0.895 37.45 0.25 0.960 29.60 0.25 0.903 29.56 0.25 0.975 30.15 0.25
(1515)M ( 0.988 20.79 0.16 0.769 21.97 0.19 0.983 20.22 0.18 0.969 19.54 0.19 0.980 20.85 0.17
(515)M ( 0.996 9.70 0.25 0.980 20.46 0.07 0.997 10.29 0.23 0.995 10.22 0.23 0.997 10.83 0.21

EP(3,3.5,0) (20120)M ( 0.946 37.11 0.25 0.949 48.90 0.24 0.930 37.84 0.25 0.867 36.72 0.25 0.954 38.80 0.24
(15115)M ( 0.955 28.78 0.24 0.913 35.38 0.24 0.948 28.89 0.25 0.893 28.82 0.25 0.968 29.50 0.25
(1515)M ( 0.992 18.51 0.20 0.808 22.15 0.18 0.985 18.92 0.20 0.970 18.34 0.21 0.983 19.63 0.19
(515)M ( 0.968 9.65 0.25 0.985 18.41 0.08 0.994 9.76 0.25 0.992 9.77 0.25 0.998 10.16 0.23

HT(2,2) (20120)M ( 0.777 21.39 0.25 0.890 27.58 0.25 0.768 21.61 0.25 0.732 21.63 0.25 0.789 22.57 0.25
(15115)M ( 0.674 20.20 0.24 0.780 21.83 0.25 0.673 21.02 0.25 0.657 21.03 0.25 0.687 21.07 0.25
(1515)M ( 0.616 15.88 0.20 0.666 18.84 0.18 0.625 17.37 0.18 0.645 16.10 0.22 0.631 17.14 0.18
(515)M ( 0.796 9.62 0.25 0.935 10.00 0.25 0.833 9.73 0.25 0.834 9.74 0.25 0.856 9.75 0.25

HT(3,3.5,0) (20120)M ( 0.812 32.35 0.25 0.925 44.91 0.24 0.795 34.76 0.25 0.737 32.98 0.25 0.812 37.10 0.24
(15115)M ( 0.848 27.97 0.25 0.919 33.30 0.25 0.835 28.70 0.25 0.788 28.78 0.25 0.875 29.07 0.25
(1515)M ( 0.998 23.08 0.13 0.788 21.15 0.20 0.999 21.25 0.16 0.994 19.77 0.18 0.999 21.81 0.15
(515)M ( 0.952 9.65 0.25 0.828 10.36 0.24 0.984 9.76 0.25 0.984 9.77 0.25 0.992 9.99 0.24

HP(2,2.5) (20120)M ( 0.756 18.71 0.25 0.853 23.74 0.24 0.752 18.96 0.25 0.725 19.09 0.25 0.769 19.70 0.25
(15115)M ( 0.631 17.87 0.24 0.714 18.06 0.25 0.634 17.86 0.25 0.630 18.46 0.25 0.642 18.53 0.25
(1515)M ( 0.582 14.33 0.25 0.631 16.88 0.20 0.587 14.54 0.25 0.600 16.40 0.18 0.589 17.88 0.15
(515)M ( 0.731 9.41 0.25 0.869 9.75 0.25 0.755 9.51 0.25 0.755 9.54 0.25 0.765 9.54 0.25

HP(3,3.5,0) (20120)M ( 0.748 32.36 0.25 0.879 42.53 0.25 0.733 32.51 0.25 0.679 30.72 0.25 0.756 34.48 0.25
(15115)M ( 0.789 27.41 0.24 0.915 31.80 0.25 0.782 27.43 0.25 0.741 27.43 0.25 0.817 28.60 0.25
(1515)M ( 0.998 21.75 0.15 0.792 20.41 0.21 1.000 20.57 0.17 0.995 19.29 0.19 0.999 21.17 0.16
(515)M ( 0.912 9.62 0.25 0.990 16.20 0.10 0.959 9.73 0.25 0.961 9.76 0.25 0.982 9.76 0.25
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of the power series GN(v) by the sequence of rational func-
tions

PK
M@g~v !#5

AM~v !

BK~v !
[

(
j50

M

a jv
j

(
j50

K

b jv
j

, ~43!

with M1K5N and TM1K@PK
M(v)#5GN(v) ~without loss of

generality, we can set b051). We expect that for M ,K→

1` , PK
M@g(v)# will converge to g(v) more rapidly than

TN@g(v)# converges to g(v) for N→1` .

1. PN energy and flux

Damour, Iyer and Sathyaprakash @27#, and then Damour,
Schäfer and Jaranowski @17#, proposed the following

Padé-approximated (P-approximated! EPN
(v) and FPN

(v)

~for N52,3):

EP
N
5A112hA11eP

N
~v !2121, ~44!

FPN
5

32

5
h2

v
10

1

12v/v
pole

PN
f PN

~v ,h !, ~45!

where

eP2
~v !52v

2

11

1

3
h2S 42

9

4
h1

1

9
h2D v

2

11

1

3
h2S 32

35

12
h D v

2

, ~46!

eP3
~v !52v

2

12F11

1

3
h1w3~h !Gv2

2F32

35

12
h2S 11

1

3
h Dw3~h !Gv4

12w3~h !v2
, ~47!

w35

40

36235h F27

10
1

1

16
S 41

4
p2

2

4309

15
Dh1

103

120
h2

2

1

270
h3G , ~48!

f P2
~v !5S 11

c1v

11

c2v

11 . . .
D 21

~up to c5), ~49!

f P3
~v !5S 12

1712

105
v

6log
v

v
MECO

P2 D S 11

c1v

11

c2v

11 . . .
D 21

~up to c7). ~50!

Here the dimensionless coefficients c i depend only on h .
The ck’s are explicit functions of the coefficients f k (k

51, . . . ,5),

c152 f 1 , c25 f 12

f 2

f 1

, c35

f 1 f 32 f 2
2

f 1~ f 1
2
2 f 2!

, ~51!

c452

f 1@ f 2
3
1 f 3

2
1 f 1

2 f 42 f 2~2 f 1 f 31 f 4!#

~ f 1
2
2 f 2!~ f 1 f 32 f 2

2!
, ~52!

c552

~ f 1
2
2 f 2!~2 f 3

3
12 f 2 f 3 f 42 f 1 f 4

2
2 f 2

2 f 51 f 1 f 3 f 5!

~ f 1 f 32 f 2
2!@ f 2

3
1 f 3

2
1 f 1

2 f 42 f 2~2 f 1 f 31 f 4!#
,

~53!

where

f k5Fk2

Fk21

v
pole

P2
. ~54!

Here Fk is given by Eqs. ~38!–~41! @for k56 and k57,
the term 2856/105 log 16v

2 should be replaced by

2856/105 log 16(v
MECO

P2 )2]. The coefficients c7 and c8 are

straightforward to compute, but we do not show them be-
cause they involve rather long expressions. The quantity

v
MECO

P2 is the MECO of the energy function eP2
@defined by

deP2
(v)/dv50]. The quantity v

pole

P2 , given by

v
pole

P2
5

1

A3A 11

1

3
h

12

35

36
h

, ~55!
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is the pole of eP2
, which plays an important role in the

scheme proposed by Damour, Iyer and Sathyaprakash @27#. It
is used to augment the Padé resummation of the PN ex-
panded energy and flux with information taken from the test-
mass case, where the flux ~known analytically up to 5.5PN
order! has a pole at the light ring. Under the hypothesis of
structural stability @27#, the flux should have a pole at the
light ring also in the comparable-mass case. In the test-mass
limit, the light ring corresponds to the pole of the energy, so
the analytic structure of the flux is modified in the

comparable-mass case to include v
pole

P2 (h). At 3PN order,

where the energy has no pole, we choose ~somewhat arbi-

trarily! to keep using the value v
pole

P2 (h); the resulting 3PN

approximation to the test-mass flux is still very good.
In Fig. 5 we plot the P approximants for the flux function

FPN
(v), at different PN orders. Note that at 1PN order the P

approximant has a pole. At the LIGO-I peak-sensitivity fre-
quency, 153 Hz, for a (10110)M ( BBH, the value of v is
.0.362, and the percentage difference in FPN

(0.362), be-

tween successive PN orders is 1.5PN→2PN:28%; 2PN

→2.5PN:12.2%; 2.5PN→3PN( û522):13.6%; 3PN

→3.5PN( û522):10.58%. So the percentage difference
decreases as we increase the PN order. While in the test-mass

limit it is known that the P-approximants converge quite well
to the known exact flux function ~see Fig. 3 of Ref. @27#!, in
the equal-mass case we cannot be sure that the same is hap-
pening, because the exact flux function is unknown. ~If we
assume that the equal-mass flux function is a smooth defor-
mation of the test-mass flux function, with h the deformation
parameter, then we could expect that the P approximants are
converging.! In the left panel of Fig. 6, we plot the P ap-
proximants to the energy function as a function of v , at 2PN
and 3PN orders; in the right panel, we plot the percentage
difference between 2PN and 3PN P approximants to the en-
ergy function, as a function of the total mass M, evaluated at
the LIGO-I peak-sensitivity GW frequency f peak5153 Hz.

2. Definition of the models

When computing the waveforms for P-approximant adia-
batic models, the integration of Eqs. ~32! is stopped at v

5v
MECO

PN , which is the solution of the equation

dEPN
(v)/dv50. The corresponding GW frequency will be

the ending frequency for these waveforms, and in Table II we
show this frequency for typical BBH masses. Henceforth, we
shall refer to the P-approximant models as P(nPN,mPN),

and we shall consider (nPN,mPN)5(2,2.5),(3,3.5,û). @Re-
call that nPN and mPN are the maximum post-Newtonian
order of the terms included, respectively, in the energy and
flux functions E(v) and F(v); at 3PN order we need to in-

dicate also a choice of the arbitrary flux parameter û .]

3. Waveforms and matches

In Table VI, for three typical choices of BBH masses, we
perform a convergence test using Cauchy’s criterion @27#.
The values are quite high, especially if compared to the same
test for the T approximants when the 2.5PN flux is used; see
Table III. However, as we already remarked, we do not have
a way of testing whether they are converging to the true
limit. In Fig. 7 we plot the frequency-domain amplitude of
the P-approximated ~restricted! waveform, at different PN
orders, for a (15115)M ( BBH. The Newtonian amplitude,
ANewt( f )5 f 27/6, is also shown for comparison. At 2.5PN

and 3.5PN orders, the evolution is stopped at v5v
MECO

PN ;

FIG. 5. Normalized flux function FPN
/FNewt versus v at differ-

ent PN orders. The two long-dashed vertical lines give v.0.18 and

v.0.53; they show the velocity range that corresponds to the LIGO

frequency band 40< f GW<240 Hz for BBHs with total mass in the

range 10–40M ( . Compare with Fig. 2.

FIG. 6. In the left panel, we plot the energy function EPN
versus v at different PN orders. In the right panel, we plot the percentage

difference between 2PN and 3PN P approximants, dEP(vpeak)5100u@EP3
(vpeak)2EP2

(vpeak)#/EP2
(vpeak)u versus the total mass M, again

evaluated at the LIGO-I peak-sensitivity GW frequency f peak5153 Hz @note: vpeak5(pM f peak)
1/3].
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although f MECO
GW .1902290 Hz ~see Table II!, the amplitude

starts to deviate from f 27/6 around 100 Hz, well inside the
LIGO frequency band. Again, this is a consequence of the
abrupt termination of the signal in the time domain.

A quantitative measure of the difference between the
P(2,2.5) and P(3,3.5) waveforms can be seen in Table V in
the intersection between the rows and columns labeled
P( . . . ). For three choices of BBH masses, this table shows
the maxmax matches between the search models in the col-
umns and the target models in the rows, maximized over the
search-model parameters M and h , with the restriction 0
,h<1/4. These matches are quite high, but the models are
not very faithful to each other. The same table shows also the
maximized matches ~i.e., fitting factors! between T and P

models. These matches are low between T(2,2.5) and
P(2,2.5) ~and vice versa!, between T(2,2.5) and P(3,3.5)
~and vice versa!, but they are high between T(2,2), T(3,3.5)
and 3PN P approximants ~although the estimation of mass
parameters is imprecise!. Why this happens can be under-

stood from Fig. 8 by noticing that at 3PN order the percent-
age difference between the T-approximated and
P-approximated binding energies is rather small (<0.5%),
and that the percentage difference between the
T-approximated and P-approximated fluxes at 3PN order ~al-
though still ;10%) is much smaller than at 2PN order.

IV. NONADIABATIC MODELS

By contrast with the models discussed in Sec. III, in nona-
diabatic models we solve equations of motions that involve
~almost! all the degrees of freedom of the BBH systems.
Once again, all waveforms are computed in the restricted
approximation of Eq. ~29!, taking the GW phase wGW as
twice the orbital phase w .

A. Nonadiabatic PN expanded methods:

Hamiltonian formalism

Working in the ADM gauge, Damour, Jaranowski and G.
Schäfer have derived a PN expanded Hamiltonian for the
general-relativistic two-body dynamics @17,50,52#:

Ĥ~q,p!5ĤNewt~q,p!1Ĥ1PN~q,p!1Ĥ2PN~q,p!1Ĥ3PN~q,p!, ~56!

where

FIG. 7. Frequency-domain amplitude versus frequency for the

P-approximated ~restricted! waveform at different PN orders for a

(15115)M ( BBH.

FIG. 8. In the left panel, we plot the percentage difference dEPT(vpeak)5100u@EPN
(vpeak)2ETN

(vpeak)#/EPN
(vpeak)u versus the total mass

M, for N52,3, at the LIGO-I peak-sensitivity GW frequency f peak5153 Hz @note: vpeak5(pM f peak)
1/3]. In the right panel, we plot the

percentage difference between 2PN and 3PN P approximants, dFP(vpeak)5100u@FP3
(vpeak)2FP2

(vpeak)#/FP2
(vpeak)u versus the total mass

M, again evaluated at the LIGO-I peak-sensitivity GW frequency f peak5153 Hz.

TABLE VI. Test for the Cauchy convergence of the P approxi-

mants. The values quoted are maxmax matches obtained by maxi-

mizing with respect to the extrinsic parameters, but not to the in-

trinsic parameters ~i.e., the matches are computed for P waveforms

with the same masses, but different PN orders!. Here we define

P25P(2,2.5), P35P(3,3.5). The values in parentheses are the

maxmax matches obtained by maximizing with respect to the ex-

trinsic and intrinsic parameters, shown together with the PN11 pa-

rameters M and h where the maxima are attained. In all cases the

integration of the equations is started at a GW frequency of 20 Hz.

^PN ,PN11&
N (2015)M ( (10110)M ( (15115)M (

2 ( û512) 0.902 0.915 ~0.973, 20.5, 0.242! 0.868

2 ( û522) 0.931 0.955 ~0.982, 20.7, 0.236! 0.923
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ĤNewt~q,p!5

p2

2
2

1

q
, ~57!

Ĥ1PN~q,p!5

1

8
~3h21 !~p2!2

2

1

2
@~31h !p2

1h~n•p!2#
1

q
1

1

2q2
, ~58!

Ĥ2PN~q,p!5

1

16
~125h15h2!~p2!3

1

1

8
@~5220h23h2!~p2!2

22h2~n•p!2p2
23h2~n•p!4#

1

q

1

1

2
@~518h !p2

13h~n•p!2#
1

q2
2

1

4
~113h !

1

q3
, ~59!

Ĥ3PN~q,p!5

1

128
~25135h270h2

135h3!~p2!4
1

1

16
@~27142h253h2

25h3!~p2!3

1~223h !h2~n•p!2~p2!2
13~12h !h2~n•p!4p2

25h3~n•p!6#
1

q

1F 1

16
~2271136h1109h2!~p2!2

1

1

16
~17130h !h~n•p!2p2

1

1

12
~5143h !h~n•p!4G 1

q2
~60!

1H F2

25

8
1S 1

64
p2

2

335

48
Dh2

23

8
h2Gp2

1S 2

85

16
2

3

64
p2

2

7

4
h Dh~n•p!2J 1

q3

1F1

8
1S 109

12
2

21

32
p2DhG 1

q4
. ~61!

Here the reduced nonrelativistic Hamiltonian in the center-

of-mass frame, Ĥ[HNR/m , is written as a function of the
reduced canonical variables p[p1 /m52p2 /m , and q[(x1

2x2)/M , where x1 and x2 are the positions of the BH cen-
ters of mass in quasi-Cartesian ADM coordinates ~see Refs.
@17,50,52#!; the scalars q and p are the ~coordinate! lengths
of the two vectors; and the vector n is just q/q .

1. Equations of motion

We now restrict the motion to a plane, and we introduce
radiation-reaction ~RR! effects as in Ref. @16#. The equations
of motion then read ~using polar coordinates r and w ob-
tained from the q with the usual Cartesian-to-polar transfor-
mation!

dr

d t̂
5

]Ĥ

]pr

~r ,pr ,pw!,
dw

d t̂
[v̂5

]Ĥ

]pw
~r ,pr ,pw!, ~62!

dpr

d t̂
52

]Ĥ

]r
~r ,pr ,pw!1F̂r~r ,pr ,pw!,

dpw

d t̂
5F̂w@v̂~r ,pr ,pw!# , ~63!

where t̂5t/M , v̂5vM ; and where F̂w[Fw/m and F̂r

[Fr/m are the reduced angular and radial components of the
RR force. Assuming Fr

!Fw @16#, averaging over an orbit,
and using the balance equation ~31!, we can express the an-
gular component of the radiation-reaction force in terms of
the GW flux at infinity @16#. More explicitly, if we use the
P-approximated flux, we have

F̂w[FPN
@vv#52

1

h vv
3
FPN

@vv#

52

32

5
h vv

7
f PN

~vv ;h !

12vv /v
pole

P2 ~h !
, ~64!

while if we use the T-approximated flux we have

F̂w[FTN
@vv#52

1

h vv
3
FTN

@vv# , ~65!

where vv[v̂1/3[(dw/d t̂ )1/3. This vv is used in Eq. ~29! to
compute the restricted waveform. Note that at each PN order,
say nPN, we define our Hamiltonian model by evolving the
Eqs. ~62! and ~63! without truncating the partial derivatives
at the nPN order ~differentiation with respect to the canoni-
cal variables can introduce terms of order higher than nPN).
Because of this choice, and because of the approximation
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used to incorporate radiation-reaction effects, these nonadia-
batic models are not, strictly speaking, purely post-
Newtonian.

2. Innermost stable circular orbit

Circular orbits are defined by setting r5const while ne-
glecting radiation-reaction effects. In our PN Hamiltonian

models, this implies ]Ĥ/]pr50 through Eq. ~62!; because at

all PN orders the Hamiltonian Ĥ @Eqs. ~56!–~61!# is qua-
dratic in pr , this condition is satisfied for pr50; in turn, this

implies also ]Ĥ/]r50 @through Eq. ~63!#, which can be

solved for pw . The orbital frequency is then given by v̂

5]Ĥ/]pw .
The stability of circular orbits under radial perturbations

depends on the second derivative of the Hamiltonian:

]2Ĥ

]r2
.0⇔stable orbit;

]2Ĥ

]r2
,0⇔unstable orbit.

~66!

For a test particle in Schwarzschild geometry ~the h→0 of a
BBH!, an innermost stable circular orbit ~ISCO! always ex-
ists, and it is defined by

]ĤSchw

]r
U

pr50

5

]2ĤSchw

]r2 U
pr50

50, ~67!

where ĤSchw(r ,pr ,pw) is the ~reduced! nonrelativistic test-
particle Hamiltonian in the Schwarzschild geometry. Simi-
larly, if such an ISCO exists for the ~reduced! nonrelativistic

PN Hamiltonian Ĥ @Eq. ~56!#, it is defined by

]Ĥ

]r
U

pr50

5

]2Ĥ

]r2 U
pr50

50. ~68!

Any inspiral built as an adiabatic sequence of quasicircular
orbits cannot be extended to orbital separations smaller than
the ISCO. In our model we integrate the Hamiltonian equa-
tions ~62! and ~63!, including terms up to a given PN order,
without retruncating the equations to exclude terms of higher
order that have been generated by differentiation with respect
to the canonical variables. Consistently, the value of the
ISCO that is relevant to our model should be derived by
solving Eq. ~68! without any further PN truncation.

How is the ISCO related to the maximum binding energy
for circular orbit ~MECO!, used above for nonadiabatic mod-
els such as T? The PN expanded energy for circular orbits

ETn
(v̂) at order nPN can be recovered by solving the equa-

tions

]Ĥ~r ,pr50,pw!

]r
50,

]Ĥ~r ,pr50,pw!

]pw
5v̂ , ~69!

for r and pw as functions of v̂ , and by using the solutions to
define

Ĥ~v̂ ![Ĥ@r~v̂ !,pr50,pw~v̂ !# . ~70!

Then Ĥ(v̂[v
3)5ETn

(v) as given by Eq. ~33!, if and only if

in this procedure we are careful to eliminate all terms of
order higher than nPN ~see, e.g., Ref. @58#!.

In the context of nonadiabatic models, the MECO is then
defined by

dĤ

dv̂
50, ~71!

and it also characterizes the end of adiabatic sequences of
circular orbits. Computing the variation of Eq. ~70! between
nearby circular orbits, and setting pr50, dpr50, we get

dv̂5

]2Ĥ

]r]pw
dr1

]2Ĥ

]pw
2

dpw ,
]2Ĥ

]r2
dr1

]2Ĥ

]r]pw
dpw50,

~72!

and combining these two equations we get

dpw

dv̂
52

]2Ĥ

]r2 F S ]2Ĥ

]r]pw
D 2

2

]2Ĥ

]pw
2

]2Ĥ

]r2 G21

. ~73!

So finally we can write

dĤ

dv̂
5

]Ĥ

]pw

dpw

dv̂
52

]2Ĥ

]r2

]Ĥ

]pw
F S ]2Ĥ

]r]pw
D 2

2

]2Ĥ

]pw
2

]2Ĥ

]r2 G21

.

~74!

Not surprisingly, Eqs. ~74! and ~70! together are formally
equivalent to the definition of the ISCO, Eq. ~68! @note that
the second and third terms on the right-hand side of Eq. ~74!

are never zero#. Therefore, if we knew the Hamiltonian Ĥ

exactly, we would find that the MECO defined by Eq. ~71! is
numerically the same as the ISCO defined by Eq. ~68!. Un-
fortunately, we are working only up to a finite PN order ~say
nPN); thus, to recover the MECO as given by Eq. ~33!, all
three terms on the right-hand side of Eq. ~74! must be written

in terms of v̂ , truncated at nPN order, then combined and
truncated again at nPN order. This value of the MECO, how-
ever, will no longer be the same as the ISCO obtained by
solving Eq. ~68! exactly without truncation.

If the PN expansion was converging rapidly, then the dif-
ference between the ISCO and the MECO would be mild;
but for the range of BH masses that we consider the PN
convergence is bad, and the discrepancy is rather important.
The ISCO is present only at 1PN order, with r ISCO59.907

and v̂ ISCO50.02833. The corresponding GW frequencies are
given in Table II for a few BBHs with equal masses. At 3PN

order we find the formal solution r ISCO
51.033 and pw

ISCO

50.355, but since we do not trust the PN expanded Hamil-
tonian when the radial coordinate gets so small, we conclude
that there is no ISCO at 3PN order.
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3. Definition of the models

In order to build a quasicircular orbit with initial GW
frequency f 0 , our initial conditions (r init ,pr init ,pw init) are

set by imposing ẇ init5p f 0 , ṗr init50 and dr init /d t̂5

2F/(hdĤ/dr)circ , as in Ref. @40#. The initial orbital phase
w init remains a free parameter. For these models, the criterion
used to stop the integration of Eqs. ~62!, ~63! is rather arbi-
trary. We decided to push the integration of the dynamical
equations up to the time when we begin to observe unphysi-
cal effects due to the failure of the PN expansion, or when

the assumptions that underlie Eqs. ~63! @such as F̂r
!F̂w],

cease to be valid. When the 2.5PN flux is used, we stop the
integration when FTN

equals 10% of FNewt , and we define

the ending frequency for these waveforms as the instanta-
neous GW frequency at that time. To be consistent with the
assumption of quasicircular motion, we require also that the
radial velocity be always much smaller than the orbital ve-

locity, and we stop the integration when u ṙu.0.3(rẇ) if this
occurs before FTN

equals 10% of FNewt . In some cases, dur-

ing the last stages of inspiral v̂ reaches a maximum and then
drops quickly to zero ~see the discussion in Sec. V!. When

this happens, we stop the evolution at v̇̂50.
We shall refer to these models as HT(nPN,mPN) ~when

the T approximant is used for the flux! or HP(nPN,mPN)

~when the P approximant is used for the flux!, where nPN

(mPN) denotes the maximum PN order of the terms included

in the Hamiltonian ~the flux!. We shall consider

(nPN,mPN)5(1,1.5),(2,2),(2,2.5), and (3,3.5,û) ~at 3PN

order we need to indicate also a choice of the arbitrary flux

parameter û).

4. Waveforms and matches

In Table VII, for three typical choices of BBH masses, we

perform a convergence test using Cauchy’s criterion @27#.

The values are very low. For N50 and N51, the low values

are explained by the fact that at 1PN order there is an ISCO

@see the discussion below Eq. ~74!#, while at Newtonian and

2PN, 3PN order there is not. Because of the ISCO, the stop-

ping criterion @ u ṙu.0.3(rẇ) or v̇̂50] is satisfied at a much
lower frequency, hence at 1PN order the evolution ends
much earlier than in the Newtonian and 2PN order cases. In
Fig. 9 we show the inspiraling orbits in the (x ,y) plane for
equal-mass BBHs, computed using the HT(1,1.5) model ~in
the left panel! and the HT(3,3.5,0) model ~in the right
panel!. For N52, the low values are due mainly to differ-
ences in the conservative dynamics, that is, to differences
between the 2PN and 3PN Hamiltonians. Indeed, for a (10
110)M ( BBH we find ^HT(2,2),HT(3,2)&50.396, still

FIG. 9. Inspiraling orbits in

the (x ,y) plane when h50.25 for

HT(1,1.5) ~in the left panel! and

HT(3,3.5,0) ~in the right panel!.

For a (15115)M ( BBH the evo-

lution starts at f GW534 Hz and

ends at f GW597 Hz for

HT(1,1.5) panel and at f GW

5447 Hz for the HT(3,3.5,0).

The dynamical evolution is rather

different because at 1PN order

there is an ISCO (r ISCO.9.9M ),

while at 3PN order it does not ex-

ist.

TABLE VII. Test for the Cauchy convergence of the HT and HP approximants. The values quoted are maxmax matches obtained by

maximizing with respect to the extrinsic parameters, but not to the intrinsic parameters ~i.e., the matches are computed for H waveforms with

the same masses, but different PN orders!. Here we define HT05HT(0,0), HT15HT(1,1.5), HT25HT(2,2) @because the 2.5PN flux goes

to zero before the MECO is reached, so we use the 2PN flux#, HT35HT(3,3.5,û); we also define HP05HP(0,0), HP15HP(1,1.5),

HP25HP(2,2.5), and HP35HP(3,3.5,û). The values in parentheses are the maxmax matches obtained by maximizing with respect to the

extrinsic and intrinsic parameters, shown together with the HN11 parameters M and h where the maxima are attained. In all cases the

integration of the equations is started at a GW frequency of 20 Hz.

BUONANNO, CHEN, AND VALLISNERI PHYSICAL REVIEW D 67, 024016 ~2003!

024016-18



low, while ^HT(2,2),HT(2,3.5)&50.662, considerably
higher than the values in Table VII.

In Fig. 10 we plot the frequency-domain amplitude of the
HT-approximated ~restricted! waveforms, at different PN or-
ders, for a (15115)M ( BBH. The Newtonian amplitude,
ANewt( f )5 f 27/6, is also shown for comparison. For
HT(1,1.5), because the ISCO is at r.9.9M , the stopping

criterion u ṙu.0.3ẇ r is reached at a very low frequency and
the amplitude deviates from the Newtonian prediction al-
ready at f ;50 Hz. For HT(2,2.5), the integration of the
dynamical equation is stopped as the flux function goes to
zero; just before this happens, the RR effects become weaker
and weaker, and in the absence of an ISCO the two BHs do
not plunge, but continue on a quasicircular orbit until FT(v)
equals 10% of FNewt . So the binary spends many cycles at
high frequencies, skewing the amplitude with respect to the
Newtonian result, and producing the oscillations seen in Fig.
10. We consider this behavior rather unphysical, and in the
following we shall no longer take into account the HT(2,2.5)
model, but at 2PN order we shall use HT(2,2).

The situation is similar for the HP models. Except at 1PN
order, the HT and HP models do not end their evolution
with a plunge. As a result, the frequency-domain amplitude
of the HT and HP waveforms does not decrease markedly at
high frequencies, as seen in Fig. 10, and in fact it does not
deviate much from the Newtonian result ~especially at 3PN
order!.

Quantitative measures of the difference between HT and
HP models at 2PN and 3PN orders, and of the difference
between the Hamiltonian models and the adiabatic models,
can be seen in Tables V, VIII. For some choices of BBH
masses, these tables show the maxmax matches between the
search models in the columns and the target models in the

rows, maximized over the search-model parameters M and
h , with the restriction 0,h<1/4. The matches between the
H(2,2) and the H(3,3.5) waveforms are surprisingly low.
More generally, the H(2,2) models have low matches with
all the other PN models. We consider these facts as an indi-
cation of the unreliability of the H models. In the following
we shall not give much credit to the H(2,2) models, and
when we discuss the construction of detection template fami-
lies we shall consider only the H(3,3.5) models. @We will,
however, comment on the projection of the H(2,2) models
onto the detection template space.#

As for the H(3,3.5) models, their matches with the 2PN
adiabatic models are low; but their matches with the 3PN
adiabatic models are high, at least for M<30M ( . For M

540M ( ~as shown in Tables V and VIII!, the matches can
be quite low, as the differences in the late dynamical evolu-
tion become significant.

B. Nonadiabatic PN expanded methods:

Lagrangian formalism

1. Equations of motion

In the harmonic gauge, the equations of motion for the
general-relativistic two-body dynamics in the Lagrangian
formalism read @49,61,62#

ẍ5aN1aPN1a2PN1a2.5RR1a3.5RR , ~75!

where

aN52

M

r2
n̂, ~76!

aPN52

M

r2 H n̂F ~113h !v2
22~21h !

M

r
2

3

2
h ṙ2G22~22h ! ṙvJ , ~77!

a2PN52

M

r2 H n̂F3

4
~12129h !S M

r
D 2

1h~324h !v4
1

15

8
h~123h ! ṙ4

2

3

2
h~324h !v2ṙ2

2

1

2
h~1324h !

M

r
v

2

2~2125h12h2!
M

r
ṙ2G2

1

2
ṙvFh~1514h !v2

2~4141h18h2!
M

r
23h~312h ! ṙ2G J , ~78!

FIG. 10. Frequency-domain

amplitude versus frequency for

the HT and HP ~restricted! wave-

forms at different PN orders for a

(15115)M ( BBH. The

HT(3,3.5,û50) curve, not plot-

ted, is almost identical to the

HT(3,3,û50) curve.
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TABLE VIII. ~Continued from Table V.! Fitting factors between several PN models, at 2PN and 3PN orders. Please see the caption to Table V.

EP(2,2.5) EP(3,3.5,0) HT(2,2) HT(3,3.5,0) HP(2,2.5) HP(3,3.5,0)
mm M h mm M h mm M h mm M h mm M h mm M h

T(2,2) (20120)M ( 0.953 41.67 0.24 0.952 43.00 0.24 0.951 80.34 0.24 0.855 56.69 0.24 0.965 90.12 0.24 0.859 74.80 0.25
(15115)M ( 0.962 30.41 0.24 0.991 35.32 0.17 0.899 58.93 0.24 0.997 33.03 0.20 0.922 67.38 0.24 0.998 33.67 0.20
(1515)M ( 0.988 19.11 0.20 0.992 20.93 0.17 0.924 69.96 0.05 0.998 19.38 0.19 0.876 57.94 0.07 0.999 19.81 0.18
(515)M ( 0.997 10.33 0.23 0.998 11.09 0.20 0.788 9.93 0.25 0.998 10.92 0.21 0.727 10.19 0.25 0.999 11.19 0.20

T(2,2.5) (20120)M ( 0.908 31.37 0.25 0.929 32.98 0.25 0.959 58.39 0.24 0.928 35.74 0.24 0.955 67.85 0.24 0.892 36.87 0.23
(15115)M ( 0.861 24.52 0.25 0.893 25.58 0.25 0.932 53.46 0.17 0.926 26.82 0.25 0.920 51.38 0.24 0.921 27.99 0.24
(1515)M ( 0.822 15.40 0.25 0.867 15.81 0.25 0.790 16.59 0.25 0.903 15.81 0.25 0.839 51.91 0.07 0.955 16.03 0.25
(515)M ( 0.814 9.52 0.25 0.839 9.59 0.25 0.941 9.63 0.25 0.838 9.52 0.25 0.872 9.80 0.25 0.866 9.61 0.25

T(3,3.5,0) (20120)M ( 0.925 40.09 0.24 0.918 42.90 0.24 0.940 80.76 0.24 0.833 57.71 0.24 0.958 89.85 0.24 0.840 73.84 0.25
(15115)M ( 0.955 29.98 0.24 0.937 30.78 0.24 0.887 58.83 0.24 0.996 32.67 0.20 0.914 66.56 0.24 0.758 31.32 0.24
(1515)M ( 0.983 19.68 0.18 0.985 20.97 0.16 0.926 69.81 0.05 0.999 19.47 0.19 0.887 60.02 0.07 1.000 19.79 0.18
(515)M ( 0.992 9.99 0.24 0.997 10.40 0.22 0.826 9.83 0.25 0.993 10.48 0.22 0.749 10.07 0.25 0.995 10.81 0.21

P(2,2.5) (20120)M ( 0.866 41.72 0.24 0.859 43.14 0.24 0.912 83.09 0.24 0.795 65.45 0.24 0.934 92.91 0.24 0.805 82.71 0.25
(15115)M ( 0.898 30.06 0.24 0.963 38.21 0.14 0.857 62.07 0.24 0.992 33.28 0.19 0.890 69.31 0.24 0.709 59.88 0.25
(1515)M ( 0.966 20.48 0.17 0.966 21.86 0.15 0.907 70.42 0.05 0.993 20.08 0.17 0.904 64.71 0.06 0.997 20.29 0.17
(515)M ( 0.995 9.79 0.25 0.994 10.43 0.22 0.825 9.81 0.25 0.990 10.51 0.22 0.748 10.05 0.25 0.992 10.83 0.21

P(3,3.5,0) (20120)M ( 0.960 40.10 0.23 0.953 41.06 0.24 0.943 76.61 0.24 0.835 53.85 0.24 0.961 86.56 0.24 0.842 70.76 0.25
(15115)M ( 0.965 29.33 0.24 0.966 30.14 0.24 0.893 56.29 0.24 0.993 31.83 0.20 0.920 63.91 0.24 0.996 32.41 0.20
(1515)M ( 0.982 18.87 0.20 0.983 20.29 0.17 0.926 68.98 0.05 0.996 19.15 0.19 0.886 58.97 0.07 0.999 19.45 0.19
(515)M ( 0.973 9.74 0.25 0.998 9.85 0.25 0.849 9.81 0.25 0.992 10.02 0.24 0.761 10.04 0.25 0.993 10.46 0.22

EP(2,2.5) (20120)M ( 0.996 41.72 0.24 0.953 75.09 0.24 0.929 47.51 0.24 0.948 84.61 0.24 0.907 59.72 0.24
(15115)M ( 0.999 32.66 0.21 0.908 56.68 0.24 0.889 32.89 0.24 0.915 64.87 0.24 0.997 33.00 0.20
(1515)M ( 0.999 21.35 0.16 0.909 70.41 0.05 0.992 19.52 0.19 0.858 64.23 0.06 0.986 20.00 0.18
(515)M ( 0.999 10.75 0.21 0.807 9.84 0.25 0.997 10.69 0.21 0.733 10.08 0.25 0.998 10.99 0.20

EP(3,3.5,0) (20120)M ( 0.995 38.25 0.25 0.958 72.99 0.24 0.918 45.74 0.24 0.956 81.66 0.24 0.896 59.30 0.25
(15115)M ( 0.992 28.77 0.25 0.938 70.37 0.14 0.999 31.41 0.21 0.922 61.77 0.24 1.000 32.11 0.21
(1515)M ( 0.999 18.53 0.20 0.905 69.04 0.05 0.998 18.97 0.20 0.858 61.43 0.06 0.994 19.26 0.19
(515)M ( 0.982 9.74 0.25 0.832 10.00 0.24 0.996 10.24 0.23 0.748 10.06 0.25 0.997 10.61 0.22

HT(2,2) (20120)M ( 0.794 21.34 0.25 0.815 22.35 0.25 0.840 24.31 0.25 0.968 46.75 0.25 0.835 25.77 0.25
(15115)M ( 0.651 18.40 0.24 0.674 19.03 0.24 0.377 37.58 0.25 0.936 36.99 0.24 0.392 47.22 0.25
(1515)M ( 0.624 14.96 0.25 0.632 15.15 0.25 0.608 17.70 0.17 0.965 17.85 0.22 0.612 17.35 0.18
(515)M ( 0.817 9.72 0.25 0.845 9.74 0.25 0.845 9.74 0.25 0.841 9.97 0.25 0.865 9.76 0.25

HT(3,3.5,0) (20120)M ( 0.904 34.61 0.24 0.920 37.64 0.24 0.903 65.68 0.24 0.873 74.44 0.25 0.999 41.41 0.23
(15115)M ( 0.891 27.49 0.25 0.926 28.59 0.25 0.883 49.56 0.24 0.867 59.23 0.24 1.000 31.02 0.23
(1515)M ( 0.986 20.73 0.16 0.986 21.99 0.15 0.919 71.02 0.05 0.886 61.90 0.07 1.000 20.34 0.17
(515)M ( 0.964 9.75 0.25 0.993 9.79 0.25 0.834 9.83 0.25 0.749 10.07 0.25 1.000 10.35 0.23

HP(2,2.5) (20120)M ( 0.762 18.74 0.25 0.784 19.44 0.25 0.973 36.64 0.21 0.794 20.75 0.24 0.801 21.53 0.25
(15115)M ( 0.595 16.37 0.24 0.617 16.40 0.24 0.931 27.84 0.21 0.329 40.09 0.25 0.343 48.60 0.25
(1515)M ( 0.577 16.04 0.20 0.599 14.32 0.25 0.957 22.10 0.14 0.589 15.53 0.21 0.593 15.59 0.21
(515)M ( 0.741 9.50 0.25 0.754 9.53 0.25 0.975 11.46 0.18 0.755 9.52 0.25 0.770 9.61 0.25

HP(3,3.5,0) (20120)M ( 0.832 31.43 0.25 0.840 35.15 0.25 0.850 60.63 0.25 0.974 37.71 0.25 0.806 72.61 0.25
(15115)M ( 0.831 26.96 0.25 0.860 28.03 0.25 0.852 46.65 0.24 0.975 28.95 0.25 0.842 55.71 0.24
(1515)M ( 0.986 20.13 0.17 0.986 21.50 0.15 0.922 70.24 0.05 1.000 19.64 0.18 0.884 60.67 0.07
(515)M ( 0.933 9.72 0.25 0.971 9.75 0.25 0.857 9.80 0.25 0.991 9.75 0.25 0.758 10.03 0.25
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For the sake of convenience, in this section we are using the
same symbols as Sec. IV A to denote different physical
quantities ~such as coordinates in different gauges!. Here the
vector x[x12x2 is the difference, in pseudo–Cartesian har-
monic coordinates @49#, between the positions of the BH
centers of mass; the vector v5dx/dt is the corresponding
velocity; the scalar r is the ~coordinate! length of x; the

vector n̂[x/r; and overdots denote time derivatives with
respect to the post–Newtonian time. We have included nei-
ther the 3PN order corrections a3PN derived in Ref. @51# nor
the 4.5PN order term a4.5PN for the radiation-reaction force
computed in Ref. @63#. Unlike the Hamiltonian models,
where the radiation-reaction effects were averaged over cir-
cular orbits but were present up to 3PN order, here radiation-
reaction effects are instantaneous, and can be used to com-
pute generic orbits, but are given only up to 1PN order
beyond the leading quadrupole term.

We compute waveforms in the quadrupole approximation
of Eq. ~29!, defining the orbital phase w as the angle between
x and a fixed direction in the orbital plane, and the invari-

antly defined velocity v as (M ẇ)1/3.

2. Definition of the models

For these models, just as for the HT and HP models, the
choice of the endpoint of evolution is rather arbitrary. We
decided to stop the integration of the dynamical equations
when we begin to observe unphysical effects due to the fail-
ure of the PN expansion. For many ~if not all! configurations,
the PN-expanded center-of-mass binding energy @given by
Eqs. ~2.7a!–~2.7e! of Ref. @20## begins to increase during the
late inspiral, instead of continuing to decrease. When this
happens, we stop the integration. The instantaneous GW fre-
quency at that time will then be the ending frequency for
these waveforms. We shall refer to these models as
L(nPN,mPN), where nPN (nPN) denotes the maximum PN
order of the terms included in the Hamiltonian ~the radiation-
reaction force!. We shall consider (nPN,mPN)
5(2,0),(2,1).

3. Waveforms and matches

In Fig. 11 we plot the frequency-domain amplitude versus
frequency for the L-approximated ~restricted! waveforms, at

different PN orders, for a (15115)M ( BBH. The amplitude

deviates from the Newtonian prediction slightly before

100 Hz. Indeed, the GW ending frequencies are 116 Hz and

107 Hz for the L(2,0) and L(2,1) models, respectively.

These frequencies are quite low, because the unphysical be-

havior of the PN-expanded center-of-mass binding energy

appears quite early @at rend56.6 and rend57.0 for the L(2,0)

and L(2,1) models, respectively#. So the L models do not

provide waveforms for the last stage of inspirals and plunge.
Table IX shows the maxmax matches between the L ap-

proximants and a few other selected PN models. The over-
laps are quite high, except with the EP(2,2.5) and
EP(3,3.5,0) at high masses, but extremely unfaithful. More-
over, we could expect the L(2,0) and L(2,1) models to have
high fitting factors with the adiabatic models T(2,0) and
T(2,1). However, this is not the case. As Table X shows, the
T models are neither effectual nor faithful in matching the L

models, and vice versa. This might be due to one of the
following factors: ~i! the PN-expanded conservative dynam-
ics in the adiabatic limit (T models! and in the nonadiabatic
case (L models! are rather different; ~ii! there is an important
effect due to the different criteria used to end the evolution in
the two models, which make the ending frequencies rather
different. All in all, the L models do not seem very reliable,
so we shall not give them much credit when we discuss
detection template families. However, we shall investigate
where they lie in the detection template space.

C. Nonadiabatic PN resummed methods:

The effective-one-body approach

The basic idea of the effective-one-body ~EOB! approach
@15# is to map the real two-body conservative dynamics,
generated by the Hamiltonian ~56! and specified up to 3PN
order, onto an effective one-body problem where a test par-
ticle of mass m5m1m2 /M ~with m1 and m2 the BH masses,
and M5m11m2) moves in an effective background metric

gmn
eff given by

dseff
2 [gmn

eff dxmdxn
52A~R !c2dt2

1

D~R !

A~R !
dR2

1R2~du2
1sin2u dw2!, ~81!
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where

A~R !511a1

GM

c2R
1a2S GM

c2R
D 2

1a3S GM

c2R
D 3

1a4S GM

c2R
D 4

1••• , ~82!

D~R !511d1

GM

c2R
1d2S GM

c2R
D 2

1d3S GM

c2R
D 3

1••• .

~83!

The motion of the particle is described by the action

Seff52mcE dseff . ~84!

For the sake of convenience, in this section we shall use the
same symbols of Secs. IV A and IV B 2 to denote different
physical quantities ~such as coordinates in different gauges!.
The mapping between the real and the effective dynamics is
worked out within the Hamilton-Jacobi formalism, by im-
posing that the action variables of the real and effective de-
scription coincide ~i.e., J real5Jeff , Ireal5Ieff , where J de-
notes the total angular momentum, and I the radial action
variable @15#!, while allowing the energy to change,

Eeff
NR

mc2
5

Ereal
NR

mc2 F 11a1

Ereal
NR

mc2
1a2S Ereal

NR

mc2D
2

1a3S Ereal
NR

mc2D
3

1•••G ,

~85!

here E eff
NR is the nonrelativistic effective energy, while is re-

lated to the relativistic effective energy Eeff by the equation

E eff
NR

5Eeff2mc2; Eeff is itself defined uniquely by the action

~84!. The nonrelativistic real energy Ereal
NR[H(q,p), where

H(q,p) is given by Eq. ~56! with H(q,p)5mĤ(q,p). From
now on, we shall relax our notation and set G5c51.

1. Equations of motion

Damour, Jaranowski and Schäfer @17# found that, at 3PN
order, this matching procedure contains more equations to
satisfy than free parameters to solve for (a1 , a2 , a3 , d1 , d2 ,
d3 , and a1 , a2 , a3). These authors suggested the following
two solutions to this conundrum. At the price of modifying

FIG. 11. Frequency-domain amplitude versus frequency for the

L-approximated ~restricted! waveforms, at different PN orders, for a

(15115)M ( BBH.
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the energy map and the coefficients of the effective metric at
the 1PN and 2PN levels, it is still possible at 3PN order to
map uniquely the real two-body dynamics onto the dynamics
of a test mass moving on a geodesic ~for details, see Appen-
dix A of Ref. @17#!. However, this solution appears very com-
plicated; more importantly, it seems awkward to have to
compute the 3PN Hamiltonian as a foundation for deriving
the matching at the 1PN and 2PN levels. The second solution
is to abandon the hypothesis that the effective test mass
moves along a geodesic, and to augment the Hamilton-Jacobi

equation with ~arbitrary! higher-derivative terms that provide
enough coefficients to complete the matching. With this pro-
cedure, the Hamilton-Jacobi equation reads

05m2
1geff

mh~x !pmph1Amhrs~x !pmphprps1••• .
~86!

Because of the quartic terms Aabgd, the effective 3PN rela-
tivistic Hamiltonian is not uniquely fixed by the matching
rules defined above; the general expression is @17#:

E eff
NR[Ĥeff~q,p!5AA~q !F11p2

1S A~q !

D~q !
21 D ~n•p!2

1

1

q2
@z1~p2!2

1z2p2~n•p!2
1z3~n•p!4#G , ~87!

here we use the reduced relativistic effective Hamiltonian

Ĥeff5Heff /m , and q and p are the reduced canonical vari-
ables, obtained by rescaling the canonical variables by M and
m , respectively. The coefficients z1 , z2 and z3 are arbitrary,
subject to the constraint

8z114z213z356~423h !h . ~88!

Moreover, we slightly modify the EOB model at 3PN order
of Ref. @17# by requiring that in the test-mass limit the 3PN
EOB Hamiltonian equals the Schwarzschild Hamiltonian. In-
deed, one of the original rationales of the PN resummation
methods was to recover known exact results in the test-mass
limit. To achieve this, z1 , z2 and z3 must go to zero as h

→0. A simple way to enforce this limit is to set z15h z̃1 ,

z25h z̃2 and z35h z̃3 . With this choice the coefficients A(r)
and D(r) in Eq. ~87! read

A~r !512

2

r
1

2h

r3
1F S 94

3
2

41

32
p2D2 z̃1G h

r4
, ~89!

D~r !512

6h

r2
1@7 z̃11 z̃21~3h226!#

h

r3
, ~90!

where we set r5uqu. The authors of Ref. @17# restricted

themselves to the case z15z250 ( z̃15 z̃250). Indeed, they
observed that for quasicircular orbits the terms proportional
to z2 and z3 in Eq. ~87! are very small, while for circular
orbits the term proportional to z1 contributes to the coeffi-
cient A(r), as seen in Eq. ~89!. So, if the coefficient z1

5h z̃1Þ0, its value could be chosen such as to cancel the
3PN contribution in A(r). To avoid this fact, which can be
also thought as a gauge effect due to the choice of the coor-

TABLE X. Fitting factors @see Eq. ~20!# for the projection of the L(2,1) and L(2,0) ~target! waveforms

onto the T(2,0) and T(2,1) ~search! models. The values quoted are obtained by maximizing the maxmax

~mm! match over the search-model parameters M and h .

L(2,0) T(2,0) L(2,1) T(2,1)

mm M h mm M h mm M h mm M h

(15115)M ( 0.884 42.02 0.237

L(2,0) (1515)M ( 0.769 24.71 0.201

(515)M ( 0.996 21.70 0.068

(15115)M ( 0.834 23.44 0.247

T(2,0) (1515)M ( 0.823 14.90 0.247

(515)M ( 0.745 9.11 0.250

(15115)M ( 0.837 60.52 0.236

L(2,1) (1515)M ( 0.844 55.70 0.052

(515)M ( 0.626 11.47 0.238

(15115)M ( 0.663 19.38 0.250

T(2,1) (1515)M ( 0.672 13.56 0.250

(515)M ( 0.631 9.22 0.243
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dinate system in the effective description, the authors of Ref.

@17# decided to pose z150 ( z̃150). By contrast, in this pa-
per we prefer to explore the effect of having z1,2Þ0. So we
shall depart from the general philosophy followed by the
authors in Ref. @17#, pushing ~or expanding! the EOB ap-
proach to more extreme regimes.

Now, the reduction to the one-body dynamics fixes the
arbitrary coefficients in Eq. ~85! uniquely to a15h/2, a2

50, and a350, and provides the resummed ~improved!

Hamiltonian @obtained by solving for Ereal
NR in Eq. ~85! and

imposing H improved[Ereal
NR]:

H improved
5M A112h S Heff2m

m D . ~91!

Including radiation-reaction effects, we can then write the
Hamilton equations in terms of the reduced quantities

Ĥ improved
5H improved/m , t̂5t/M , v̂5v M @16#,

dr

d t̂
5

]Ĥ improved

]pr

~r ,pr ,pw!, ~92!

dw

d t̂
[v̂5

]Ĥ improved

]pw
~r ,pr ,pw!, ~93!

dpr

dt
52

]Ĥ improved

]r
~r ,pr ,pw!, ~94!

dpw

d t̂
5F̂w@v̂~r ,pr ,pw!# , ~95!

where for the w component of the radiation-reaction force we
use the T and P approximants to the flux function @see Eqs.
~64!, ~65!#. Note that at each PN order, say nPN, we inte-
grate the Eqs. ~92!–~95! without further truncating the partial
derivatives of the Hamiltonian at nPN order ~differentiation
with respect to the canonical variables can introduce terms of
order higher than nPN).

Following the discussion around Eq. ~68!, the ISCO of

these models is determined by setting ]H0
improved/]r

5]2H0
improved/]r2

50, where H0
improved(r ,pr ,pw)

5H improved(r ,0,pw). If we define

Ĥeff
2 ~r ,0,pw![Wpw

5A~r !S 11

pw
2

r2
1h z̃1

pw
4

r6 D , ~96!

we extract the ISCO by imposing ]Wpw
(r)/]r50

5]2Wpw
(r)/]2r . Damour, Jaranowski and Schäfer @17# no-

ticed that at 3PN order, for z̃15 z̃250, and using the PN
expanded form for A(r) given by Eq. ~89!, there is no ISCO.
To improve the behavior of the PN expansion of A(r) and
introduce an ISCO, they proposed replacing A(r) with the
Padé approximants

AP2
~r !5

r~2412r1h !

2r2
12h1rh

, ~97!

and

AP3
~r !5

r2@~a4~h ,0!18h216!1r~822h !#

r3 ~822h !1r2 @a4~h ,0!14h#1r@2a4~h ,0!18h#14@h2
1a4~h ,0!#

, ~98!

FIG. 12. In the left panel we plot the binding energy evaluated using the improved Hamiltonian ~91! as a function of the velocity

parameter v for equal-mass BBHs, h50.25. We plot different PN orders for the E model varying also the parameter z̃1 . In the right panel

we plot the GW frequency at the ISCO at 3PN order as a function of the parameter z̃1 for (15115)M ( BBH.
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where

a4~h , z̃1!5F94

3
2

41

32
p2

2 z̃1G h . ~99!

In Table II, we show the GW frequency at the ISCO for some
typical choices of BBH masses, computed using the above
expressions for A(r) in the improved Hamiltonian ~91! with

z̃15 z̃250.
We use the Padé resummation for A(r) of Ref. @17# also

for the general case z̃1Þ0, because for the PN expanded
form of A(r) the ISCO does not exist for a wide range of

values of z̃1 . @However, when we discuss Fourier-domain

detection template families in Sec. VI, we shall investigate

also EOB models with PN-expanded A(r).]

In Fig. 12 we plot the binding energy as evaluated using

the improved Hamiltonian ~91!, at different PN orders, for

equal-mass BBHs. At 3PN order, we use as typical values

z̃150,64. ~For z̃1.4 the location of the ISCO is no longer

a monotonic function of z̃1 . So we set z̃1<4.) In the right
panel of Fig. 12, we show the variation in the GW frequency

at the ISCO as a function of z̃1 for a (15115)M ( BBH.
Finally, in Fig. 13, we compare the binding energy for a few

selected PN models, where for the E models we fix z̃15 z̃2

50 ~see the left panel of Fig. 12 for the dependence of the

binding energy on the coefficient z̃1). Notice in the left panel
that the 2PN and 3PN T energies are much closer to each
other than the 2PN and 3PN P energies are, and than the 2PN
and 3PN E energies are; notice also that the 3PN T and P

energies are very close. The closeness of the binding ener-
gies ~and of the MECOs and ISCOs! predicted by PN ex-

panded and resummed models at 3PN order ~with z̃150),
and of the binding energy predicted by the numerical quasi-
equilibrium BBH models of Ref. @26# was recently pointed
out in Refs. @58,59#. However, the EOB results are very close
to the numerical results of Ref. @26# only if the range of

variation of z̃1 is restricted.

2. Definition of the models

For these models, we use the initial conditions laid down
in Ref. @40#, and also adopted in this paper for the HT and
HP models ~see Sec. IV A!. At 2PN order, we stop the inte-

FIG. 13. Binding energy as a function of the velocity parameter

v for equal-mass BBHs. We plot different PN orders for selected

PN models. For the E model at 3PN order we fix z̃1505 z̃2 .

TABLE XI. Fitting factors for the projection of EP(3,3.5,0) templates onto themselves, for various choices of the parameters z1 and z2 .

The values quoted are obtained by maximizing the maxmax ~mm! match over the mass parameters of the ~search! models in the columns,

while keeping the mass parameters of the ~target! models in the rows fixed to their quoted values, (15115)M ( , (1515)M ( (5

15)M ( . The three numbers shown at each intersection are the maximized match and the search parameters at which the maximum was

attained. In labeling rows and columns we use the notation EP(3,3.5,û ,z1 ,z2). See the caption to Table VIII for further details.

EP(3,3.5,2,24,0) EP(3,3.5,2,0,24) EP(3,3.5,2,0,0) EP(3,3.5,2,0,4) EP(3,3.5,2,4,0)

mm M h mm M h mm M h mm M h mm M h

(15115)M ( 0.995 30.93 0.238 0.994 30.85 0.240 0.995 30.87 0.239 0.952 31.17 0.242

EP(3,3.5,2,24,0) (1515)M ( 0.998 20.61 0.177 0.999 20.71 0.176 0.999 20.60 0.177 0.993 21.59 0.162

(515)M ( 0.999 10.22 0.240 0.999 10.22 0.240 0.999 10.22 0.240 0.996 10.46 0.231

(15115)M ( 0.983 30.12 0.241 0.999 30.47 0.240 0.999 30.43 0.241 0.987 30.88 0.240

EP(3,3.5,2,0,24) (1515)M ( 0.999 19.28 0.201 1.000 20.06 0.186 1.000 20.03 0.187 0.999 20.70 0.175

(515)M ( 0.993 10.01 0.249 0.996 10.19 0.241 0.996 10.19 0.241 0.998 10.22 0.240

(15115)M ( 0.983 30.12 0.241 0.999 30.47 0.241 0.999 30.42 0.241 0.987 30.88 0.240

EP(3,3.5,2,0,0) (1515)M ( 0.999 19.26 0.202 1.000 20.06 0.186 1.000 20.03 0.187 0.999 20.70 0.175

(515)M ( 0.993 9.99 0.250 1.000 10.00 0.250 0.996 10.19 0.241 0.998 10.22 0.240

(15115)M ( 0.982 30.12 0.241 0.999 30.54 0.240 0.999 30.54 0.240 0.987 30.88 0.240

EP(3,3.5,2,0,4) (1515)M ( 0.999 19.35 0.200 1.000 20.05 0.187 1.000 19.98 0.188 0.998 20.73 0.175

(515)M ( 0.993 10.01 0.249 1.000 10.00 0.250 0.996 10.19 0.241 0.998 10.22 0.240

(15115)M ( 0.929 29.60 0.240 0.968 30.11 0.242 0.968 30.16 0.240 0.967 30.15 0.240

EP(3,3.5,2,4,0) (1515)M ( 0.992 18.42 0.219 0.998 19.29 0.201 0.998 19.36 0.199 0.998 19.29 0.201

(515)M ( 0.970 10.17 0.241 0.993 9.99 0.250 0.993 9.99 0.250 0.993 9.99 0.250
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gration of the Hamilton equations at the light ring given by
the solution of the equation r3

23r2
15h50 @16#. At 3PN

order, the light ring is defined by the solution of

d

du
@u2 AP3

~u !#50, ~100!

with u51/r and AP3
is given by Eq. ~98!. For some configu-

rations, the orbital frequency and the binding energy start to
decrease before the binary can reach the 3PN light ring, so

we stop the evolution when v̇̂50 ~see the discussion in Sec.
IV D!. For other configurations, it happens that the radial
velocity becomes comparable to the angular velocity before
the binary reaches the light ring; in this case, the approxima-
tion used to introduce the RR effects into the conservative
dynamics is no longer valid, and we stop the integration of

the Hamilton equations when u ṙ/(rẇ)u reaches 0.3. For some

models, usually those with z̃1,2Þ0, the quantity u ṙ/(rẇ)u
reaches a maximum during the last stages of evolution, then

it starts decreasing, and ṙ becomes positive. In such cases,

we choose to stop at the maximum of u ṙ/(rẇ)u. In any of
these cases, the instantaneous GW frequency at the time
when the integration is stopped defines the ending frequency

for these waveforms.
We shall refer to the EOB models (E approximants! as

ET(nPN,mPN) ~when the T approximant is used for the
flux! or EP(nPN,mPN) ~when the P approximant is used for
the flux!, where nPN (mPN) denotes the maximum PN order
of the terms included in the Hamiltonian ~flux!. We shall

consider (nPN,mPN)5(1,1.5), (2,2.5), and (3,3.5,û) @at
3PN order we need to indicate also a choice of the arbitrary

flux parameter û].

3. Waveforms and matches

In Table XI, we investigate the dependence of the E wave-

forms on the values of the unknown parameters z̃1 and z̃2

that appear in the EOB Hamiltonian at 3PN order. The coef-

ficients z̃1 and z̃2 are, in principle, completely arbitrary.

When z̃1Þ0, the location of the ISCO changes, as shown in

Fig. 12. Moreover, because in Eq. ~87! z̃1 multiplies a term
that is not zero on circular orbits, the motion tends to become
noncircular much earlier, and the criteria for ending the in-
tegration of the Hamilton equations are satisfied earlier. ~See
the discussion of the ending frequency in the preceding sec-
tion.! This effect is much stronger in equal-mass BBHs with

high M. For example, for (15115)M ( BBHs and for z̃2

50, the fitting factor ~the maxmax match, maximized over M

and h) between an EP target waveform with z̃150 and EP

search waveforms with 240 & z̃1,24 can well be < 0.9.

However, if we restrict z̃1 to the range @24,4# , we get very
high fitting factors, as shown in Table XI.

In Eq. ~87!, the coefficients z̃2 and z̃3 multiply terms that

are zero on circular orbits. @The coefficient z̃2 appears also in
D(r), given by Eq. ~90!.# So their effect on the dynamics is
not very important, as confirmed by the very high matches

obtained in Table XI between EP waveforms with z̃250 and

EP waveforms with z̃2564. It seems that the effect of

changing z̃2 is nearly the same as a remapping of the BBH
mass parameters.

We investigated also the case in which we use the PN
expanded form for A(r) given by Eq. ~89!. For example, for

(15115)M ( BBHs and z̃250, the fitting factors between

EP target waveforms with z̃15240,24,4,40 and EP search

waveforms with z̃150 are (maxmax,M ,h)
5(0.767,39.55,0.240), ~0.993,30.83,0.241!, ~0.970,30.03,
0.241!, and ~0.915,28.23,0.242!, respectively. So the over-
laps can be quite low.

In Table XII, for three typical choices of BBH masses, we
perform a convergence test using Cauchy’s criterion. The
values are quite high. However, as for the P approximants,
we have no way to test whether the E approximants are con-
verging to the true limit. In Fig. 14 we plot the frequency-
domain amplitude of the EP-approximated ~restricted!
waveforms, at different PN orders, for a (15115)M ( BBH.
The evolution of the EOB models contains a plunge charac-
terized by quasicircular motion @16#. This plunge causes the
amplitude to deviate from the Newtonian amplitude, ANewt

5 f 27/6 around 200 Hz, which is a higher frequency than we

FIG. 14. Frequency-domain amplitude versus frequency for the

EP-approximated ~restricted! waveform, at different PN orders, for

a (15115)M ( BBH.

TABLE XII. Test for the Cauchy convergence of the EP ap-

proximants. The values quoted assume optimization on the extrinsic

parameters but the same intrinsic parameters ~i.e., they assume the

same masses!. Here we define EP05EP(0,0), EP15EP(1,1.5),

EP25EP(2,2.5), and EP35EP(3,3.5,û , z̃15 z̃250). The values

in parentheses are the maxmax matches obtained by maximizing

with respect to the extrinsic and intrinsic parameters, shown to-

gether with the EPN11 parameters M and h where the maxima are

attained. In all cases the integration of the equations is started at a

GW frequency of 20 Hz.

N ^EPN ,EPN11&
(5120)M ( (10110)M ( (15115)M (

0 0.677 0.584 (0.769, 17.4, 0.246) 0.811

1 0.766 0.771 (0.999, 21.8, 0.218) 0.871

2( û512) 0.862 0.858 (0.999, 21.3, 0.222) 0.898

2( û522) 0.912 0.928 (0.999, 21.9, 0.211) 0.949
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found for the adiabatic models ~see Figs. 4 and 7!.
In Table IV, for some typical choices of the masses, we

evaluate the fitting factors between the ET(2,2.5) and

ET(3,3.5) waveforms ~with z̃15 z̃250) and the T(2,2.5) and
T(3,3.5) waveforms. This comparison should emphasize the
effect of moving from the adiabatic orbital evolution, ruled
by the energy-balance equation, to the ~almost! full Hamil-
tonian dynamics, ruled by the Hamilton equations. More spe-
cifically, we see the effect of the differences in the conser-

vative dynamics between the PN expanded T model and the
PN resummed E model ~the radiation-reaction effects are in-
troduced in the same way in both models!. While the
matches are quite low at 2PN order, they are high (>0.95) at
3PN order, at least for M<30M ( , but the estimation of m1

and m2 is poor. This result suggests that, for the purpose of
signal detection as opposed to parameter estimation, the con-
servative dynamics predicted by the EOB resummation and
by the PN expansion are very close at 3PN order, at least for
M<30M ( . Moreover, the results of Table IV suggest also

that the effect of the unknown parameter û is rather small, at

least if û is of order unity, so in the following we shall

always set û50.
In Tables V and VIII we study the difference between the

EP(2,2.5) and EP(3,3.5) models ~with z̃15 z̃250), and all
the other adiabatic and nonadiabatic models. For some
choices of BBH masses, these tables show the maxmax
matches between the search models in the columns and the
target models in the rows, maximized over the search-model
parameters M and h , with the restriction 0,h<1/4. At 2PN
order, the matches with the T(2,2.5), HT(2,2) and
HP(2,2.5) models are low, while with the matches with the
T(2,2) and P(2,2.5) models are high, at least for M

<30M ( ~but the estimation of the BH masses is poor!. At

3PN order, the matches with T(3,3.5,û), P(3,3.5,û),

HP(3,3.5,û) and HT(3,3.5,û) are quite high if M

<30M ( . However, for M540M ( , the matches can be
quite low. We expect that this happens because in this latter
case the differences in the late dynamical evolution become
crucial.

D. Features of the late dynamical evolution

in nonadiabatic models

While studying the numerical evolution of nonadiabatic
models, we encounter two kinds of dynamical behavior that
are inconsistent with the assumption of quasicircular motion
used to include the radiation-reaction effects, so when one of
these two behaviors occurs, we immediately stop the integra-
tion of the equations of motion. First, in the late stage of

evolution v̂ can reach a maximum, and then drop quickly to

zero; so we stop the integration if v̇̂50. Second, the radial

velocity ṙ can become a significant portion of the total speed,

so we stop the integration if ṙ50.3(rv̂).
The first behavior is found mainly in the H models at 3PN

order, when h is relatively small (&0.21). As we shall see
below, it is not characteristic of either the Schwarzschild
Hamiltonian or the EOB Hamiltonian. In the left panel of

Fig. 15, we plot the binding energy evaluated from Ĥ(r ,pr

50,pw) @given by Eq. ~56!# as a function of r at h50.16, for
various values of the ~reduced! angular momentum pw . As
this plot shows, there exists a critical radius, rcrit , below
which no circular orbits exist. This rcrit can be derived as
follows. From Fig. 15 ~left!, we deduce that

dĤ

dr
U

circ

→` , r→rcrit . ~101!

Because circular orbits satisfy the conditions

pr50,
]Ĥ

]r
50, ~102!

and

dpw

dr
U

circ

52

]2Ĥ

]r2
S ]2Ĥ

]r]pw
D 21

, ~103!

we get

FIG. 15. Ending points of the H models at 3PN order for low values of h . In the left panel, we plot as a function of r the Hamiltonian

Ĥ(r ,pr50,pw) @given by Eq. ~56!#, evaluated at h50.16 for a (5120)M ( BBH, for various values of the ~reduced! angular momentum pw .

The circular-orbit solutions are found at the values of r and Ĥ joined by the dashed line. At rcrit54.524 there is a critical radius, below which

there is no circular orbit. In the right panel we plot as a function of h the orbital angular frequency v̂crit(h) corresponding to the critical

radius, for 0.1,h,0.21 ~solid line!. This curve agrees well with the ending frequencies of the HT and HP models at 3PN order, which are

shown as dotted and dashed lines in the figure.
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dĤ

dr
U

circ

5

]Ĥ

]r
1

]Ĥ

]pw

dpw

dr
U

circ

52

]Ĥ

]pw

]2Ĥ

]r2
S ]2Ĥ

]r]pw
D 21

.

~104!

Combining these equations we obtain two conditions that
define rcrit :

]Ĥ

]r
U

rcrit

50,
]2Ĥ

]r]pw
U

rcrit

50. ~105!

In the right panel of Fig. 15, we plot the critical orbital

frequency v̂crit as a function of h in the range @0.1, 0.21#. In
the same figure, we show also the ending frequencies for the
HT(3,3.5,62) and HP(3,3.5,62) models. For 0.1,h
,0.21, these ending frequencies are in good agreement with

the critical frequencies v̂crit ; for h.0.21, the ending condi-

tion ṙ50.3(rv̂) is satisfied before v̇̂50. For 0.1,h
,0.21, this good agreement can be explained as follows: for
the H models at 3PN order with h&0.21, the orbital evolu-

tion is almost quasicircular ~i.e., ṙ remains small and v̂
keeps increasing! until the critical point is reached; beyond
this point, there is no way to keep the orbit quasicircular, as
the angular motion is converted significantly into radial mo-

tion, and v̂ begins to decrease. This behavior ( v̇̂→0) is also
present in the E model in the vicinity of the light ring, be-

cause the light ring is also a minimal radius for circular or-
bits @the conditions ~101! are satisfied also in this case#.
However, the behavior of the energy is qualitatively different
for the H and E models: in the E models ~just as for a test
particle in Schwarzchild spacetime! the circular-orbit energy
goes to infinity, while this is not the case for the H models.

The second behavior is usually caused by radiation-
reaction effects, and accelerated by the presence of an ISCO
~and therefore of a plunge!. However, it is worth mentioning

another interesting way in which the criterion ṙ50.3(rv̂)
can be satisfied for some E evolutions at 3PN order. During

the late stages of evolution, ṙ sometimes increases suddenly
and drastically, and the equations of motion become singular.
This behavior is quite different from a plunge due to the
presence of an ISCO ~in that case the equations of motion do
not become singular!. The cause of this behavior is that at
3PN order the coefficient D(r) @see Eq. ~90!# can go to zero

and become negative for a sufficiently small r. For z̃15 z̃2

50, this occurs at the radius rD given by

rD
3

26hrD12~3h226!h50; ~106!

rD can fall outside the light ring. For example, for h50.25
we have rD52.54, while the light rings sits at r52.31. On
the transition from D(r).0 to D(r),0, the effective EOB
metric unphysical, and the E model then becomes invalid.
Using the Hamiltonian equation of motion ~92!, it is straight-
forward to prove that a negative D(r) causes the radial ve-
locity to become very large:

ṙ5

]Ĥ

]pr

}
pr

D~r !
→` as r→rD . ~107!

V. SIGNAL-TO-NOISE RATIO FOR THE TWO-BODY

MODELS

In Fig. 16 we plot the optimal signal-to-noise ratio ropt for
a few selected PN models. The value of ropt is computed
using Eqs. ~1! and ~19! with the waveform given by Eq. ~29!,
for a luminosity distance of 100 Mpc and the rms Q58/5
@see the discussion around Eq. ~29!#; for the EP model we

set z̃15 z̃250. Notice that, because the E models have a
plunge, their signal-to-noise ratios are much higher ~at least
for M>30M () than those for the adiabatic models, which
we cut off at the MECO. See also Fig. 17, which compares
the S/N for EP(2,2.5) waveforms with and without the

FIG. 16. Signal-to-noise ratio

at 100 Mpc versus total mass M

for selected PN models. The S/N

is computed for equal-mass BBHs

using the LIGO-I noise curve ~28!

and the waveform expression ~29!

with the rms Q58/5; for the E

model at 3PN we set z̃15 z̃250.

FIG. 17. Effect of the plunge on the signal-to-noise ratio. The

S/N is computed at 100 Mpc for equal-mass BBHs as a function of

the total mass for the T(2,2) adiabatic model ~for comparison!, for

the EP(2,2.5) model with ending frequency at the ISCO, and at the

light ring ~in this latter case the signal includes a plunge!. Here we

use the LIGO-I noise curve ~28! and the waveform expression ~29!

with the rms Q58/5.
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plunge; for M520M ( , excluding the plunge decreases the
S/N by ; 4% ~which corresponds to a decrease in the detec-
tion rate of 12% for a fixed detection threshold!; while for
M530M ( , excluding the plunge decreases the S/N by ;
22% ~which corresponds to a decrease in the detection rate of
54%!. This result confirms the similar conclusion drawn in
Ref. @13#.

Because at 2PN and 3PN order the H models do not have
a plunge, but the two BHs continue to move on quasicircular
orbits even at close separations, the number of total GW
cycles is increased, and so is the signal-to-noise ratio, as
shown in the right panel of Fig. 16. However, we do not trust
the H models much, because they show a very different be-
havior at different PN orders, as already emphasized in Sec.
IV A.

VI. PERFORMANCE OF FOURIER-DOMAIN

DETECTION TEMPLATES, AND CONSTRUCTION

OF A FOURIER-DOMAIN DETECTION-TEMPLATE BANK

In the previous sections we have seen ~for instance, in
Table V! that the overlaps between the various PN wave-
forms are not very high, and that there could be an important
loss in the event rate if, for the purpose of detection, we
restricted ourselves to only one of the two-body models ~see
Figs. 16 and 17!. To cope with this problem we propose the
following strategy. We guess that the conjunction of the
waveforms from all the PN models spans a region in signal
space that includes ~or almost includes! the true signals, and
we build a detection template family that embeds all the PN
models in a higher-dimensional space. The PN models that
we have considered ~expanded and resummed, adiabatic and
nonadiabatic! rely on a wide variety of very different dy-
namical equations, so the task of consolidating them under a
single set of generic equations seems arduous. On the other
hand, we have reason to suspect, from the values of the
matches, and from direct investigations, that the frequency-
domain amplitude and phasing ~the very ingredients that en-
ter the determination of the matches! are, qualitatively, rather
similar functions for all the PN models. We shall therefore
create a family of templates that model directly the Fourier
transform of the GW signals, by writing the amplitude and
phasing as simple polynomials in the GW frequency f GW .
We shall build these polynomials with the specific powers of
f GW that appear in the Fourier transform of PN expanded
adiabatic waveforms, as computed in the stationary-phase
approximation. However, we shall not constrain the coeffi-
cients of these powers to have the same functional depen-
dence on the physical parameters that they have in that
scheme. More specifically, we define our generic family of
Fourier-domain effective templates as

heff~ f !5Aeff~ f !e iceff( f ), ~108!

where

Aeff~ f !5 f 27/6~12a f 2/3!u~ f cut2 f !, ~109!

ceff~ f !52p f t01f01 f 25/3~c01c1/2 f 1/3
1c1 f 2/3

1c3/2 f

1c2 f 4/3
1••• !, ~110!

where t0 and f0 are the time of arrival and the frequency-
domain phase offset, and where u( . . . ) is the Heaviside step
function. This detection template family is similar in some
respects to the template banks implicitly used in fast chirp
transform techniques @64#. However, because we consider
BBHs with masses 10–40M ( , the physical GW signal can
end within the LIGO frequency band; and the predictions for
the ending frequency given by different PN models can be
quite different. Thus, we modify also the Newtonian formula
for the amplitude, by introducing the cutoff frequency f cut

and the shape parameter a .
The significance of f cut with respect to true physical sig-

nals deserves some discussion. If the best match for the
physical signal g is the template h f cut

, which ends at the

instantaneous GW frequency f cut @so that h f cut
( f ).g( f ) for

f , f cut and h f cut
( f )50 for f . f cut], then we can be certain to

lose a fraction of the optimal r that is given approximately
by

rcut

ropt

<

AE
0

f cutug̃~ f !u2

Sn~ f !
d f

AE
0

` ug̃~ f !u2

Sn~ f !
d f

.12

1

2

E
f cut

` ug̃~ f !u2

Sn~ f !
d f

E
0

` ug̃~ f !u2

Sn~ f !
d f

.

~111!

On the other hand, if we try to match g with the same tem-
plate family without cuts ~and if indeed the h’s are com-
pletely inadequate at modeling the amplitude and phasing of
g above f cut), then even the best-match template hno cut @de-
fined by hno cut( f ).g( f ) for f , f cut , and by zero correlation,

hno cut( f )g*( f ).0 for f . f cut] will yield an additional loss
in r caused by the fact that we are spreading the power of the
template beyond the range where it can successfully match g.
Mathematically, this loss comes from the different normal-
ization factor for the templates h f cut

and hno cut , and it is

given by

rno cut

rcut

<

AE
0

f cutuh̃~ f !u2

Sn~ f !
d f

AE
0

` uh̃~ f !u2

Sn~ f !
d f

.12

1

2

E
f cut

` uh̃~ f !u2

Sn~ f !
d f

E
0

` uh̃~ f !u2

Sn~ f !
d f

.

~112!

If we assume that g and hno cut have roughly the same ampli-
tude distribution, the two losses are similar.

In the end, we might be better off cutting templates if we
cannot be sure that their amplitude and phasing, beyond a
certain frequency, are faithful representations of the true sig-
nal. Doing so, we approximately halve the worst-case loss of
r , because instead of losing a factor
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TABLE XIII. Fitting factors for the projection of the target models ~in the rows! onto the (c0 ,c3/2 ,a , f cut) Fourier-domain detection

template family. For ten choices of BBH masses, this table shows the minmax matches between the target ~adiabatic! models and the

Fourier-domain search model, maximized over the intrinsic parameters c0 , c3/2 , and a , f cut , and over the extrinsic parameter a . For each

intersection, the six numbers shown report the ending frequency f end ~defined in Sec. VI B! of the PN model for the BBH masses quoted, the

minmax FF mn, and the search parameters at which the maximum is attained.
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TABLE XIII. ~Continued!.
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rno cut

rcut

rcut

ropt

.12

1

2

E
f cut

` uh̃~ f !u2

Sn~ f !
d f

E
0

` uh̃~ f !u2

Sn~ f !
d f

2

1

2

E
f cut

` ug̃~ f !u2

Sn~ f !
d f

E
0

` ug̃~ f !u2

Sn~ f !
d f

.12

E
f cut

` ug̃~ f !u2

Sn~ f !
d f

E
0

` ug̃~ f !u2

Sn~ f !
d f

, ~113!

we lose only the factor rcut /ropt . On the other hand, we do
not want to lose the signal-to-noise ratio that is accumulated
at high frequencies if our templates have a fighting chance of
matching the true signal there; so it makes sense to include in
the detection bank the same template with several different
values of f cut .

It turns out that using only the two parameters c0 and c3/2

in the phasing ~and setting all other c coefficients to zero!
and the two amplitude parameters, f cut and a , we obtain a
family that can already match all the PN models of Secs. III
and IV with high fitting factors FF. This is possible largely
because we restrict our focus to BBHs with relatively high

TABLE XIII. ~Continued!.

BUONANNO, CHEN, AND VALLISNERI PHYSICAL REVIEW D 67, 024016 ~2003!

024016-32



masses, where the number of GW cycles in the LIGO range
@and thus the total range of the phasing c( f ) that we need to
consider# is small.

In Table XIII we list the minmax ~see Sec. II! fitting fac-
tor for the projection of the PN models onto our frequency-
domain effective templates, for a set of BBH masses ranging
from (515)M ( to (20120)M ( . In computing the fitting
factors, we used the simplicial search algorithm AMOEBA

@65# to search for the optimal set of parameters
(c0 , c3/2 , f cut , a) ~as always, the time of arrival and initial
phase of the templates were automatically optimized as de-
scribed in Sec. II!. From Table XIII we draw the following
conclusions:

~1! All the adiabatic models (T and P) are matched with
fitting factors FF.0.97. Lower-mass BBHs are matched bet-
ter than higher-mass BBHs, presumably because for the lat-
ter the inspiral ends at lower frequencies within the LIGO
band, producing stronger edge effects, which the effective
templates cannot capture fully. 3PN models are matched bet-
ter than 2PN models.

~2! The effective-one-body models (ET and EP) are
matched even better than the adiabatic models, presumably
because they have longer inspirals and less severe edge ef-
fects at the end of inspiral. Unlike the adiabatic models,
however, ET and EP are matched better for higher-mass
BBHs. In fact, all the FFs are .0.99 except for (515)M (

BBHs, where FF*0.979. The reason for this is probably that
this low-mass BBH has more GW cycles in the LIGO fre-
quency band than any other one, and the two phasing param-
eters of our effective templates cannot quite model the evo-
lution of the phasing. ~In the adiabatic models, these effects
may be overshadowed by the loss in signal to noise ratio due
to the edge effects at high frequencies.! When the parameters

z̃1,2 are allowed to be nonzero, the matches get worse, but not

by much. For all the plausible values of z̃1 , the worst situa-

tion seems to happen at z̃15240, where the overlaps are
still higher than ;0.95 ~with minimum 0.947!.

~3! The Hamiltonian models (HT and HP) at 3PN order
are not matched as precisely, but the detection template fam-

ily still works reasonably well. We usually have FF.0.96,

but there are several exceptions, with FF as low as 0.948. For
these models, the overlaps are lower in the equal-mass cases,
where the ending frequencies of the waveforms are much
higher than for the other models; it seems that the effective
templates are not able to reproduce this late portion of the
waveforms ~this might not be so bad, because it does not
seem likely that this part of the signal reflects the true be-
havior of BBH waveforms!.

~4! The Lagrangian models ~L! are matched a bit worse
than the Hamiltonian models (HT and HP) at 3PN, but they
still have FF higher than 0.95 in most cases, with several
exceptions @at either (20120)M ( or (515)M (], which
can be as low as 0.93.

~5! HT and HP models at 2PN are matched the worst,
with typical values lower than 0.95 and higher than 0.85.

Finally, we note that our amplitude function Aeff( f ) is a
linear combination of two terms, so we can search automati-
cally over the correction coefficient a , in essentially the
same way as discussed in Sec. II for the orbital phase. In
other words, a is an extrinsic parameter. ~Although we do
search over a , it is only to show the required range, which
will be a useful piece of information when one is deciding
how to lay down a mesh of discrete templates on the con-
tinuous detection-template space.!

A. Internal match and metric

To understand the matches between the Fourier-domain
templates and the PN models, and to prepare to compute the
number of templates needed to achieve a given ~internal!
MM, we need to derive an expression for the match between
two Fourier-domain effective templates.

We shall first restrict our consideration to effective tem-
plates with the same amplitude function ~i.e., the same a and
f cutoff). The overlap ^h(c0 ,c3/2),h(c01Dc0 ,c3/2

1Dc3/2)& between templates with close values of c0 and
c3/2 can be described ~to second order in Dc0 and Dc3/2) by
the mismatch metric g i j @29#:

^h~c0 ,c3/2!,h~c01Dc0 ,c3/21Dc3/2!&512 (
i , j50,3/2

g ijDc iDc j . ~114!

The metric coefficients g i j can be evaluated analytically from the overlap

^h~c0 ,c3/2!,h~c01Dc0 ,c3/21Dc3/2!&.F max
Df0 ,Dt0

E d f
uA~ f !u2

Sh~ f !
cosS (

i

Dc i

f n i
1Df012p f Dt0D GY F E d f

uA~ f !u2

Sh~ f !
G ~115!

.12

1

2 F max
Df0 ,Dt0

E d f
uA~ f !u2

Sh~ f ! S (
i

Dc i

f n i
1Df012p f Dt0D 2GY F E d f

uA~ f !u2

Sh~ f !
G ,

~116!

where n0[5/3 and n3/2[2/3. Comparison with Eq. ~114! then gives
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(
i , j

g ij Dc iDc j5

1

2
min

Df0 ,Dt0

H ~Dc0 Dc3/2!M(1)S Dc0

Dc3/2
D 12~Df0 2pDt0!M(2)S Dc0

Dc3/2
D ~117!

1~Df0 2pDt0!M(3)S Df0

2pDt0
D J , ~118!

where the M(1) . . . (3) are the matrices

M(1)5F J~2n0! J~n01n3/2!

J~n01n3/2! J~2n3/2!
G , ~119!

M(2)5F J~n0! J~n3/2!

J~n021 ! J~n3/221 !
G , ~120!

M(3)5F J~0 ! J~21 !

J~21 ! J~22 !
G , ~121!

and where

J~n ![F E d f
uA~ f !u2

Sh~ f !

1

f nGY F E d f
uA~ f !u2

Sh~ f !
G . ~122!

Since M(3) describes the mismatch caused by (Df0 ,Dt0), it
must be positive definite; because the right-hand side of Eq.
~117! reaches its minimum with respect to variations of Df0

and Dt0 when

2M(2)S Dc0

Dc3/2
D 12M(3)S Df0

2pDt0
D 50, ~123!

we obtain

g ij5
1

2
@M(1)2M(2)

T M(3)
21M(2)# i j . ~124!

We note also that the mismatch ^h(c0 ,c3/2),h(c0

1Dc0 ,c3/21Dc3/2)& is translationally invariant in the
(c0 ,c3/2) plane, so the metric g i j is constant everywhere. In

the left panel of Fig. 18 we plot the iso-match contours ~at
matches of 0.99, 0.975 and 0.95! in the (Dc0 ,Dc3/2) plane,
as given by the metric ~124! ~solid ellipses!, compared with
the actual values obtained from the numerical computation
of the matches ~dashed lines!. For our purposes, the second-
order approximation given by the metric is quite acceptable.
In this computation we use a Newtonian amplitude function
A( f )5 f 27/6 ~i.e., we set a50 and we set our cutoff fre-
quency at 400 Hz).

We move now to the mismatch induced by different cutoff
frequencies f cut . Unlike the case of the c0 , c3/2 parameters,
this mismatch is first order in D f cut , so it cannot be de-
scribed by a metric. Suppose that we have two effective tem-
plates h( f cut) and h( f cut1D f cut) with the same phasing and
amplitude D f .0, but different cutoff frequencies. The match
is then given by

FIG. 18. In the left panel, we plot the iso-match contours for the function ^h(c0 ,c3/2),h(c01Dc0 ,c3/21Dc3/2)&; contours are given at

matches of 0.99, 0.975 and 0.95. Solid lines give the indications of the mismatch metric; dashed lines give actual values. Here we use a

Newtonian amplitude function A( f )5 f 27/6 ~we set a50 and we do not cut the template in the frequency domain. In fact, f cut

5400 Hz). In the right panel we plot the values of D f cut ~versus f cut) required to obtain matches ^h( f cut),h( f cut1D f cut)& of 0.95 ~uppermost

curve!, 0.975 and 0.99 ~lowermost!. In the region below each contour the match is larger than the value quoted for the contour. Again, here

we use a Newtonian amplitude function A( f )5 f 27/6 ~we set a50).

FIG. 19. Projection of the ET(2,2.5) waveforms onto the

frequency-domain effective template space. For a we choose the

optimal value found by the search. The (c0 ,c3/2 , f cut) surface is

interpolated from the then mass pairs shown in Table III.
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This result depends strongly on f cut . In the right panel of
Fig. 18 we plot the values of D f cut that correspond to
matches of 0.95, 0.975 and 0.99, according to the first order
approximation ~solid lines!, and to the exact numerical cal-
culations ~dashed lines!, both of which are given in the sec-
ond line of Eq. ~126!. In the region below each contour the
match is larger than the value that characterizes the contour.
As we can see from the graph, the linear approximation is
not very accurate, thus in the following we shall use the
exact formula.

B. Construction of the effective template bank:

Parameter range

All the PN target models are parametrized by two inde-
pendent numbers ~e.g., the two masses or the total mass and
the mass ratio!; if we select a range of interest for these
parameters, the resulting set of PN signals can be seen as a

two-dimensional region in the (m1 ,m2) or (M ,h) plane. Un-
der the mapping that takes each PN signal into the Fourier-
domain effective template that matches it best, this two-
dimensional region is projected into a two-dimensional
surface in the (c0 ,c3/2 , f cut) parameter space ~with the
fourth parameter a50). As an example, we show in Fig. 19
the projection of the ET(2,2.5) waveforms with ~single-BH!

FIG. 20. Projection of the PN waveforms onto the (c0 ,c3/2)

plane, for BBHs with masses (515)M ( , (1015)M ( , . . . ,(20

120)M ( ~see Table III!. The projection was computed by maxi-

mizing the maxmax match over the parameters c0 , c3/2 and f cut ;

the correction coefficient a was set to zero. The thin dotted and

dashed lines show the boundaries of the projected images for the

models ~from the top! T(2,2.5), HT(3,3.5,û52) and P(2,2.5).

Solid lines ~the BH mass lines! link the images of the same BBH for

different PN models. The ends of the BH mass lines are marked

with the BBH masses and with the minimum value min$fend , f cut%
across all the PN models. The thick dashed lines delimit the region

that will be covered by the effective template bank; the (c0 ,c3/2)

coordinates are marked on the vertices. The region is further sub-

divided into four subregions I–IV that group the BH mass lines

with very similar ending frequencies f end min .

TABLE XIV. End-to-end matches and ending frequencies along the BH mass lines of Fig. 20. The first

three columns show the end-to-end matches and the corresponding number of templates ~for MM .0.98)

along the BH mass lines; the remaining columns show the minimum ending frequencies of PN waveforms

along the BH mass lines, the match between the two effective templates at the ends of the range, and the

number of templates needed to step along the range while always maintaining a match .0.98 between

neighboring templates. When computing these matches, we use a Newtonian amplitude function A( f )

5 f 27/6 ~we set a50), and we maximize over the parameters c0 and c3/2 ~which is equivalent to assuming

perfect phasing synchronization!.
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masses 5 –20 M( . The 26 models tested in Secs. III and IV

would be projected into 26 similar surfaces. In constructing

the detection template families, we shall first focus on 17 of
the 26 models, namely the adiabatic T and P models at 2PN

and 3PN, the E models at 2PN and at 3PN but with z̃1,2

50, and the H models at 3PN. We will comment on the E

models with z̃1,2Þ0, on the L models, and on the HT and
HP models at 2PN order at the end of this section.

It is hard to visualize all three parameters at once, so we
shall start with the phasing parameters c0 and c3/2 . In Fig.
20 we plot the (c0 ,c3/2) section of the PN-model projections
into the (c0 ,c3/2 , f cutoff) space, with solid diamonds showing
the projected points corresponding to BBHs with the same
set of ten mass pairs as in Table XIII. Each PN model is
projected to a curved-triangular region, with boundaries
given by the sequences of BBHs with masses (m1m) ~equal
mass!, (201m) and (m15). In Fig. 20 these boundaries are
plotted using thin dashed lines, for the models T(2,2.5) ~the

uppermost in the plot!, HT(3,3.5,û52) ~in the middle!, and
P(2,2.5) ~lowest!.

As we can see, different PN models can occupy regions
with very different areas, and thus require a very different
number of effective templates to match them with a given
MMT . Among these three models, T(2,2.5) requires the least
number of templates, P(2,2.5) requires a few times more,

and HT(3,3.5,û52) requires many more. This is consistent
with the result by Porter @66# who found that, for the same
range of physical parameters, T waveforms are more closely
spaced than P waveforms, so fewer are needed to achieve a
certain MM. In this plot we have also linked the points that
correspond to the same BBH parameters in different PN
models. In Fig. 20 these lines ~we shall call them BH mass

lines! lie all roughly along one direction.
A simple way to characterize the difference between the

PN target models is to evaluate the maxmax end-to-end

match between effective templates at the two ends of the BH
mass lines ~i.e., the match between the effective templates
with the largest and smallest c3/2 among the projections of
PN waveforms with the same mass parameters m1 , m2); we
wish to focus first on the effects of the phasing parameters,
so we do not cut the templates in the frequency domain and
we set a50. We compute also a naive end-to-end number of
templates, Nend to end , by counting the templates required
to step all along the BH mass line while maintaining at
each step a match .0.98 between neighboring templates.
A simple computation yields Nend to end5log(end-to-end
match!/log(0.98). The results of this procedure are listed in
Table XIV. Notice that, as opposed to the fitting factors be-
tween template families computed elsewhere in this paper
~which are maximized over the BBH mass parameters of one
of the families!, these matches give a measure of the dissimi-
larity between different PN models for the same values of the

BBH parameters; thus, they provide a crude estimate of how
much the effective template bank must be enlarged to embed
all the various PN models.

We expect that the projection of a true BBH waveform
onto the (c0 ,c3/2) plane will lie near the BH mass line with
the true BBH parameters, or perhaps near the extension of

the BH mass line in either direction. For this reason we shall

lay down our effective templates in the region traced out by

the thick dashed lines in Fig. 20, which was determined by

extending the BH mass lines in both directions by half of

their length.

We move on to specifying the required range of f cut for

each (c0 ,c3/2). For a given PN model and BBH mass pa-

rameters, we have defined the ending frequency f end as the

instantaneous GW frequency at which we stop the integra-

tion of the PN orbital equations. We find that usually the f cut

of the optimally matched projection of a PN template is

larger than the f end of the PN template. This is because the

abrupt termination of the PN waveforms in the time domain

creates a tail in the spectrum for frequencies higher than

f end . With f cut. f end and a.0, the effective templates can

mimic this tail and gain a higher match with the PN models.
In some cases, however, the optimal f cut can be smaller than
f end @for example, P(2,2.5) with (1015)M ( , (1515)M (

and (10110)M (] suggesting that the match of the phasing
in the entire frequency band up to f end is not very good and
we have to shorten the Fourier-domain template. Now, since
we do not know the details of the plunge for true BBH in-
spiral, it is hard to estimate where the optimal f cut might lie,
except perhaps imposing that it should be larger than
min(fend , f cut). A possibility is to set the range of f cut to be
above f cut min[min$fcut , f end%, with the minimum evaluated
among all the PN models.

In Table XIV we show the f cut min found across the PN
models for given BBH mass parameters. We have also
marked this minimum frequency in Fig. 20 under the corre-
sponding BH mass lines. In the table we also show the match
of the two detection templates h( f cut5 f cut min) and h( f cut5

1`), and the number N mass line
cut of intermediate templates

with different f cut needed to move from h( f cut min) to h

(1`) while maintaining at each step a match .0.98 be-
tween neighboring templates. It is easy to see that this num-

ber is N mass line
cut

5log^h(fcut min),h(1`)&/log(0.98). The match

was computed using a Newtonian amplitude function A( f )
5 f 27/6 ~we set a50), and maximized over the parameters
c0 and c3/2 . Under our previous hypothesis that the projec-
tion of a true BBH waveform would lie near the correspond-
ing BH mass line, we can use the numbers in Table XIV to
provide a rough estimate of the range of f cut that should be
taken at each point (c0 ,c3/2) within the dashed contour of
Fig. 20. We trace out four subregions I, II, III, IV, such that
the BH mass lines of each subregion have approximately the
same values of f cut min ; we then use these minimum ending
frequencies to set a lower limit for the values of f cut required
in each subregion: f cut min(I)5143, f cut min(II)5192,
f cut min(III)5232, f cut min(IV)5346. The maximum f cut is ef-
fectively set by the detector noise curve, which limits the
highest frequency at which signal to noise can be still accu-
mulated.

Moving on to the last parameter, a , we note that it is

probably only meaningful to have a f cut
2/3<1, so that Aeff( f )

cannot become negative for f , f cut . ~A negative amplitude
in the detection template will usually give a negative contri-
bution to the overlap, unless the phasing mismatch is larger
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than p/2, which does not seem plausible in our cases.! In-
deed, the optimized values found for a in Table XIII seem to
follow this rule, except for a few slight violations that are
probably due to numerical error ~since we had performed a
search to find the optimal value of a). For the 17 models
considered here, the optimal a is always positive ~Table
XIII! which means that, due to cutoff effects, the amplitude
at high frequencies becomes always lower than the f 27/6

power law. So for the 17 models considered in this section

0<a f cut
2/3<1. ~Note that this range will have to be extended

to include negative a’s if we want to incorporate the models
discussed in Sec. VI E.!

C. Construction of the effective template bank:

Parameter density

At this stage, we have completed the specification of the
region in the (c0 ,c3/2 , f cut ,a) parameter space where we
shall lay down our bank of templates. We expect that the FF
for the projection of the true physical signals ~emitted by
nonspinning BBHs with M510–40M () onto this template
bank should be very good. We now wish to evaluate the total
number of templates N needed to achieve a certain MM.

We shall find it convenient to separate the mismatch due
to the phasing from the mismatch due to the frequency cuts
by introducing two minimum match parameters MMc and
MMcut , with MM5MMc•MMcut.MMc1MMcut21. As
mentioned at the beginning of this section, the correction
coefficient a is essentially an extrinsic parameter ~see Sec.
II B!: we do not need to discretize the template bank with
respect to a , and there is no corresponding MM parameter.

We evaluate N in three refinement steps:
~1! We start by considering only the phasing parameters,

and we compute the parameter area S i @in the (c0 ,c3/2)
plane# for each of the subregions i5 I, II, III, IV of Fig. 20.

We then multiply by the determinant Ag of the constant met-
ric, and divide by 2(1 –MMc), according to Eq. ~25!, to get

N5(
i

S iAg

2~12MMc!
. ~127!

This expression is for the moment only formal, because we

cannot compute Ag without considering the amplitude pa-
rameters a and f cut .

~2! Next, we include the effect of f cut . In the preceding
section we have set f min cut for each of the subregions by
considering the range swept by f end along the mass lines.

Recalling our discussion of N mass line
cut , we approximate the

number of distinct values of f cut that we need to include for
each parameter pair (c0 ,c3/2) as

n i
cut~c0 ,c3/2 ,a !

.11

log^h~c0 ,c3/2 ,a , f min cut!,h~c0 ,c3/2 ,a ,no cut!&

logMMcut

.

~128!

For a in the physical range 0<a< f cut
22/3 this match is mini-

mized for a50, so this is the value that we use to evaluate

the n i
cut’s. Note that the choice of cutoff frequencies does not

depend on the values of the phasing parameters. This allows
us to have a single set of cutoff frequencies for all points in
one subregion. For subregion i, we denote this set by F i .

~3! The final step is to include the effect of a and f cut on

the computation of Ag . For simplicity, we shoot for an upper

limit by maximizing Ag with respect to a . ~Because a is
essentially an extrinsic parameter, we do not multiply N by
the number of its discrete values: the matches are automati-

cally maximized on the continuous range 0<a< f cut
22/3 .) Our

final estimate for the total number of templates is

N5

1

2~12MMc! (
i

S i (
f cutPF i

max
a

@Ag# . ~129!

We have evaluated this N numerically. We find that the

contributions to the total number of templates from the four

subregions, for MM 5 0.96 ~taking MMc5MMcut50.98),
are N(I).6,410, N(II).2,170, N(III).1,380, N(IV)
.1,230, for a total of N511,190. This number scales ap-

proximately as @0.04/(12MM)#2. Notice that subregion I,
which contains all the BBHs with total mass above 25M ( ,
requires by far the largest number of templates. This is
mostly because these waveforms end in the LIGO band, and
many values of f cut are needed to match different ending
frequencies. Remember that the optimal signal-to-noise ratio
r for filtering the true GW signals by a template bank is
approximately degraded ~in the worst case! by the factor
MMT5FF1MM21 @67#.

While MM depends on the geometry of the template
bank, we can only guess at the fitting factor FF for the pro-
jection of the true signal onto the template space. In this
section we have seen that all PN models can be projected
onto the effective frequency-domain templates with a good
FF: for a vast majority of the waveforms FF*0.96 ~and the
few exceptions can be explained!. It is therefore reasonable

to hope that the FF for the true GW signals is ;0.96, so the

total degradation from the optimal r will be MMT*0.92,
corresponding to a loss of &22% in event rate. This number
can be improved by scaling up the number of templates, but
of course the actual FF represents an upper limit for MMT .
For instance, about 47,600 templates should get us MMT

*0.94, corresponding to a loss of &17% in event rate.

D. Parameter estimation with the detection

template family

Although our family of effective templates was built for
the main purpose of detecting BBHs, we can still use it ~once
a detection is made! to extract partial information about the
BH masses. It is obvious from Fig. 20 that the masses cannot
in general be determined unambiguously from the best-
match parameters @i.e., the projection of the true waveform
onto the (c0 ,c3/2) plane#, because the images of different
PN models in the plane have overlaps. Therefore different
PN models will have different ideas, as it were, about the
true masses. Another way of saying this is that the BH mass
lines can cross.
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However, it still seems possible to extract at least one
mass parameter, the chirp mass M5Mh3/5, with some ac-
curacy. Since the phasing is dominated by the term c0 f 25/3

at low frequencies, we can use the leading Newtonian term
cN( f )5

3
128 (pMf )25/3 obtained for a PN expanded adia-

batic model in the stationary-phase approximation to infer

c0;
3

128
S 1

pM
D 5/3

⇒M approx
5

1

p
S 3

128 c0
D 3/5

. ~130!

If this correspondence was exact, the BH mass lines in Fig.
20 would all be vertical. They are not, so this estimation has
an error that gets larger for smaller c0 ~i.e., for binaries with
higher masses!. In Table XV we show the range of chirp-
mass estimates obtained from Eq. ~130! for the values of c0

at the projections of the PN models in Fig. 20, together with

their percentage error e[(M max
approx

2M min
approx)/M. In this

table, Mmax and Mmin correspond to the end points of the
BH mass lines. If we take into account the extension of the

BH mass lines by a factor of two in the effective template
bank, we should double the e of the table.

It seems quite possible that a more detailed investigation
of the geometry of the projections into the effective template
space ~and especially of the BH mass lines! could produce
better algorithms to estimate binary parameters. But again,
probably only one parameter can be estimated with certain
accuracy.

E. Extension of the two-dimensional Fourier-domain

detection template

In our construction of the effective template bank, we
have been focusing until now on a subset of 17 models. The

models we left out are E models at 3PN with z̃1,2 nonzero,
HT and HP models at 2PN, and L models.

As we can see from Fig. 21, E models with z̃1,2 nonzero
have a very similar behavior to the 17 models investigated
above. Indeed, ~i! the projection of the PN waveforms from
the same model occupy regions that are triangular, and ~ii!
the projections of PN waveforms of a given mass lies on the
BH mass line spanned by the previous 17 models. In addi-
tion, their projections lie roughly in the region we have al-
ready defined in Secs. VI B, VI C and VI D. However, the
ending frequencies of these models can be much lower than
the values we have set for the detection templates: the detec-
tion templates ~in all four subregions! should be extended to
lower cutoff frequencies if we decide to match these models,
up to FF;0.95. A rough estimate shows that this increases
the number of templates to about twice the original value.

In Fig. 22 we plot the projections of the L(2,0), L(2,1),
HT(2,2) and HP(2,2.5) waveforms into the (c0 ,c3/2)
plane. As we already know, these models are not matched by
the detection templates as well as the other 17 models. Here
we can see that their projections onto the (c0 ,c3/2) plane are
also quite dissimilar from those models. For L models, al-

FIG. 21. Projection of the E models with nonzero z̃1 into the

(c0 ,c3/2) plane ~shown in black dots!. The new points sit quite well

along the BH mass lines of the 17 models investigated in Secs.

VI B, VI C and VI D. We use the notation EP(3,3.5,û , z̃1 , z̃2) and

denote by EP(T3, . . . ) the two-body model in which the coeffi-

cient A(r) is PN expanded @see Eq. ~89!#.

FIG. 22. Projections of HT and HP models at 2PN and L mod-

els into the (c0 ,c3/2) plane ~shown in black dots.! The projections

of the previous 17 models are shown in gray dots.

TABLE XV. Estimation of the chirp masses M from the pro-

jections of the PN target models onto the Fourier-domain effective

template space. The numbers in the second column ~labeled ‘‘M’’!

give the values of the chirp mass corresponding to the BH masses to

their left; the numbers in the third and fourth columns give the

range of estimates obtained from Eq. ~130! for the values of c0 at

the projections of the target models shown in Fig. 20. The last

column shows the percentage error e[(M max
approx

2M min
approx)/M.

M M M min
approx

M max
approx e (%)

(515)M ( 4.35 4.16 4.27 2.6

(1015)M ( 6.08 5.75 6.00 4.2

(1515)M ( 7.33 6.85 7.28 5.9

(10110)M ( 8.71 8.10 8.72 7.1

(2015)M ( 8.33 7.55 8.31 9.1

(15110)M ( 10.62 9.76 10.96 11.3

(20110)M ( 12.17 10.92 12.50 13.0

(15115)M ( 13.06 11.69 14.88 24.4

(20115)M ( 15.05 13.15 17.74 30.6

(20120)M ( 17.41 14.91 21.52 38.0
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though different masses project into a triangular region, the
projection of each mass configuration does not align along
the corresponding BH mass line generated by the 17 models.
In order to cover the L models up to FF;0.93, we need to
expand the (c0 ,c3/2) region only slightly. However, as we
read from Table XIII, the cutoff frequencies need to be ex-
tended to even lower values than for the E models with non-

zero z̃1,2 . Luckily, this expansion will not cost much. In the
end the total number of templates needed should be about
three times the original value.

For HT and HP models at 2PN, the projections almost lie
along the BH mass lines, but the regions occupied by these
projections have weird shapes. We have to extend the
(c0 ,c3/2) region by a factor ;2 in order to cover the phas-
ings. ~The ending/cutoff frequencies for these models are
higher than for the previous two types of models.! An addi-
tional subtlety in this case is that, as we can read from Table
XIII, the optimal values of a are often negative, since the

amplitude becomes higher than the f 27/6 power law at higher
frequencies. This expansion of the range of a affects both
the choice of the discrete cutoff frequencies and the place-
ment of (c0 ,c3/2) lattices. This effect is yet to be estimated.
Finally, we notice that if these extensions are made, then the
estimation of the chirp mass from the coefficient c0 becomes
less accurate than the one given in Table XV.

F. Extension of the Fourier-domain detection template family

to more than two phasing parameters

It might seem an accident that by using only two phasing
parameters, c0 and c3/2 , we are able to match very precisely
the wide variety of PN waveforms that we have considered.
Indeed, since the waveforms predicted by each PN model
span a two-dimensional manifold ~generated by varying the
two BH masses m1 and m2 or equivalently the mass param-
eters M and h), we could naturally expect that a third pa-

rameter is required to incorporate all the PN models in a
more general family, and to add even more signal shapes that
extrapolate beyond the phasings and amplitudes seen in the
PN models.

In particular, because the accumulation of signal-to-noise
ratio is more sensitive to how well we can match the phasing

~rather than the amplitude! of PN templates, such a third
parameter should probably interpolate between phasings pre-
dicted by different PN models. As a consequence, the ampli-
tude parameters f cut and A do not generate a real dimen-
sional extension of our detection template family. In this
section we present a qualitative study of the extension of our

FIG. 23. Projection of the models P(2,2.5), ET(2,2.5),

ET(3,3.5,0), and SPA(1.5) onto the three-parameter Fourier-

domain detection template, for many BBH masses that lie within

the same ranges taken in Fig. 20. The variables (X ,Y ,Z) are related

to (c0 ,c1 ,c3/2) by a linear transformation, constructed so that the

mismatch metric is just d i j and that the (c0,0,c3/2) plane is mapped

to the (X ,Y ,0) plane. The dots show the value of the parameters

(X ,Y ,Z) where the match with one of the PN waveforms is maxi-

mum.

FIG. 24. (X ,Z) section of Fig. 23. Comparison with Fig. 23

shows that all the projections lie near the (X ,0,Z) plane.

FIG. 25. In this figure we compare the projection of the PN models onto the three-dimensional (c0 ,c1 ,c3/2) Fourier-domain detection

template family @shown by the dots as a two-dimensional section in the (c0 ,c3/2) submanifold# with the projection of the PN models in the

two-dimensional (c0 ,c3/2) template family ~shown by the lines!. In the left panel, we use A50 and f cut5400 Hz to maximize the matches;

in the right panel we use A50 and f cut5200 Hz.
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detection template family obtained by adding one phasing
parameter, the parameter c1 of Eq. ~110!.

We use the (c0 ,c1 ,c3/2) Fourier-domain detection tem-
plates to match the PN waveforms from the models
P(2,2.5), ET(2,2.5), and ET(3,3.5,0); these models were
chosen because their projections onto the (c0 ,c3/2) detection
templates were rather distant in the (c0 ,c3/2) parameter
space. Throughout this section ~and unlike the rest of this
paper!, we use an approximated search procedure whereby
we essentially replace the amplitude of the target models
with the Newtonian amplitude A( f )5 f 27/6 with a cutoff fre-
quency f cut ~we always assumed A50 and f cut5400 Hz).
As expected, the matches increase, and indeed they are al-
most perfect: always higher than 0.994 ~it should be remem-
bered, however, that these should be considered as matches
of the PN phasings rather than as matches of the PN wave-
forms; especially for high masses, the frequency dependence
of the amplitude is likely to change these values!.

If we plot the projections of the PN waveforms in the
(c0 ,c1 ,c3/2) space, we find that the clusters of points cor-
responding to each PN target model look quite different from
the projections @onto the (c0 ,c3/2) template space# shown in
Fig. 20; but this is just an artifact of the parametrization. We
can perform a linear transformation (c0 ,c1 ,c3/2)
→(X ,Y ,Z), defined in such a way that ~i! in the (X ,Y ,Z)
parameters, the mismatch metric is just d i j , and that ~ii! the
(c0,0,c3/2) plane is mapped to the (X ,Y ,0) plane. These con-
ditions define the linear transformation up to a translation
and a rotation along the Z axis; to specify the transformation
completely we require also that all the projections of the PN
models lie near the origin, and be concentrated around the X

axis. Figure 23 shows the projection of the PN models
P(2,2.5), ET(2,2.5), and ET(3,3.5,0) onto the
(c0 ,c1 ,c3/2) detection template family, as parametrized by
the (X ,Y ,Z) coordinate system, for many BBH masses that
lie within the same ranges of Fig. 20. Each dot marks the
parameters (X ,Y ,Z) that best match the phasing of one of the
PN waveforms. We include also the projection of a further
PN model, SPA(1.5), obtained by solving the frequency-
domain version of the balance equation, obtained in the
stationary-phase approximation from our T model. The ex-
pression of the SPA(1.5) phasing as a function of f coin-
cides with our Eq. ~110!, but the coefficients that correspond
to (c0 ,c1 ,c3/2) are functions of the two mass parameters M

and h .
By construction, the match between nearby detection tem-

plates is related to their Euclidian distance in the (X ,Y ,Z) by

12overlap5DX2
1DY 2

1DZ2. ~131!

We see immediately that all the PN models are not very
distant from the (X ,Y ,0) plane ~also shown in the figure!,
which coincides with the (c0 ,c3/2) plane. The farthest
model is P(2,2.5), with a maximum distance ;0.18. It is
important to notice that, since this number is obtained by
assuming f cut5400 Hz and A50, it tends to underestimate
the true overlaps for models that end below 400 Hz, such as
the P models at higher masses. See also Fig. 24 for an (X ,Z)
section of Fig. 23.

We can study the relation between this three-dimensional

family of templates and the two-dimensional family consid-

ered earlier by projecting the points of Fig. 23 onto the

(X ,Y ,0) plane @which corresponds to the (c0,0,c3/2) plane#.
The resulting images resemble closely the projections of the
PN models onto the (c0 ,c3/2) parameter space of the two-
dimensional family, as seen in the left panel of Fig. 25. How-
ever, the agreement is poor for P(2,2.5) because of the rela-
tively high cut frequency f cut5400 Hz. The right panel of
Fig. 25 was obtained by taking f cut5200 Hz. The agreement
is much better. This result goes some way toward explaining
why using only two phasing parameters was enough to
match most PN models in a satisfactory way.

As stated at the beginning of this section, the parameter Z

can indeed be used to expand the dimensionality of our de-
tection template family, because it appears to interpolate be-
tween different PN models. It is possible that the number of
Z values needed when laying down a discrete template fam-
ily might not be too large, because the PN models do not
seem to lie very far from the Z50 plane @remember that
distances in the (X ,Y ,Z) parameter space are approximately
mismatch distances#.

The good performance that we find for the two- and three-
dimensional Fourier-domain families confirms the results ob-
tained in Refs. @13,47# and @68#. In Ref. @13#, the authors
point out that the waveforms obtained from the stationary
phase approximation at 2PN and 2.5PN order are able to
approximate the E models, throughout most of the LIGO
band, by maximizing over the mass parameters ~see Ref.
@13#, in particular the discussion of their model ‘‘Tf2,’’ and
the discussion around their Fig. 2!.

In Ref. @47#, Chronopolous and Apostolatos show that
what would be in our notation the SPA(2) model ~where the
phasing is described by a fourth-order polynomial in the
variable f 1/3) can be approximated very well, at least for the
purpose of signal detection, by the SPA(1.5) model, with the
advantage of having a much lower number of templates. In
Ref. @68#, the authors go even further, investigating the pos-
sibility of approximating the SPA(2) phasing with a poly-
nomial of third, second and even first degree obtained using
Chebyshev approximants.

It is important to underline that in all of these analyses the
coefficients that appear in the expression of the phasing @cor-
responding to our c0 ,c1 , . . . in Eq. ~110!# depend on only
two BBH mass parameters, either directly @13,47#, or indi-
rectly @68# through specific PN relations at each PN order. As
a consequence, the phasings assumed in these references are
confined to a two-dimensional submanifold analog to the sur-
face labeled ‘‘SPA(1.5)’’ in Fig. 23.

In this paper we follow a more general approach, because
the phasing coefficients c i are initially left completely arbi-
trary. Only after studying systematically the projection of the
PN models onto the template bank we have determined the
region where a possible detection template bank would be
laid down. The high matches that we find between detection
templates and the various PN models depend crucially on
this assumption. As a consequence, our parameters c i do not
have a direct physical meaning, and they cannot easily be
traced back to specific functions of the BBH masses, except
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TABLE XVI. Fitting factors for the projection of the target models ~in the rows! onto the P(2,2.5) detection template family. For ten

choices of BBH masses, this table shows the maxmax ~mm! and minmax ~mn! matches between the target models and the P(2,2.5) search

model, maximized over the intrinsic parameters of the search model. For each intersection, the triples ~mm, M, h) and ~mn, M, h) denote

the maximized matches and the mass parameters M5m11m2 and h5m1m2 /M 2 at which the maxima are attained ~maxmax and minmax

matches give rise to slightly different optimal values of M and h). In computing these matches, the search parameter h was not restricted

to its physical range 0,h<1/4, but it was allowed to move in the range 0,h,1, for which the energy-balance equation ~31! is still

formally integrable. With few exceptions, this table shows that maxmax and minmax matches are very similar, so we generally use the more

conservative minmax matches.
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for the chirp mass, as seen in Sec. VI D. This is natural,
because our detection templates are built to interpolate be-
tween different PN models, each of which has, as it were, a
different idea of what the waveform for a BBH of given
masses should be.

VII. PERFORMANCE OF THE TIME-DOMAIN

DETECTION TEMPLATES AND CONSTRUCTION

OF THE DETECTION BANK IN TIME DOMAIN

Another possibility of building a detection-template fam-
ily is to adopt one or more of the physical models discussed
in Secs. IV as the effective template bank used for detection.
Under the general hypothesis that underlies this work ~that

is, that the target models span the region in signal space

where the true physical signals reside!, if we find that one of
the target models matches all the others very well, we can
use it as the effective model; and we can estimate its effec-
tualness in matching the true physical signal from its effec-
tualness in matching all the other models.

As shown in Tables V, VIII and discussed in Sec. V, the
fitting factors FF for the projection of the PN models onto
each other are low ~at least for PN order n<2.5 or for high
masses!; in other words, the models appear to be quite dis-
tant in signal space. This conclusion is overturned, however,
if we let the dimensionless mass ratio h move beyond its
physical range 0<h<1/4. For instance, the P(2,2.5) and
EP(3,3.5,0) models can be extended formally to the range

TABLE XVI. ~Continued!.
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TABLE XVII. Fitting factors for the projection of the target models ~in the rows! onto the EP(3,3.5,0) detection template family. For ten

choices of BBH masses, this table shows the maxmax matches between the target models and the EP(3,3.5,0) search model, with ~mmc! and

without ~mm! the time-domain cut discussed in Sec. VII. The matches are maximized over the intrinsic parameters of the search model ~over

M and h for the mm values; over M, h and f cut for the mmc values!. For each intersection, the triple ~mm, M , h) and the quadruple ~mm,

M , h , f cut) denote the maximized matches and the mass ~and cut! parameters at which the maxima are attained. In computing these matches,

the search parameter h was not restricted to its physical range 0,h<1/4, but it was allowed to move in the range 0,h,1 for which the

energy-balance equation ~31! is still formally integrable. This table shows that the addition of the time-domain cut can improve the fitting

factors considerably, especially for the higher M ’s in the in the left half of the table, and for the models whose orbital evolution is ended

within the range of good interferometer sensitivity.
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0<h<1. Beyond those ranges, either the equations ~of en-
ergy balance, or motion! become singular, or the determina-
tion of the MECO or light ring @the evolutionary end point of
the inspiral for the P(2,2.5) model and the EP(3,3.5,0)
model, respectively# fails.

When the models are extended to 0,h<1, they appear to
lie much closer to each other in signal space. In particular,
the P(2,2.5) and EP(3,3.5,0) models are able to match all

the other models, with minmax FF.0.95, for almost all the
masses in our range, and in any case with much improved FF
for most masses; see Tables XVI and XVII. Apparently, part
of the effect of the different resummation and approximation
schemes is just to modulate the strength of the PN effects in
a way that can be simulated by changing h to nonphysical
values in any one model. This fact can be appreciated by
looking at Figs. 26, 27 and 28, 29 which show the projection

TABLE XVII. ~Continued!.
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of several models onto the P(2,2.5) and EP(3,3.5,0) effec-
tive template spaces, respectively. For instance, in compari-
son with T(2,2.5), the model P(2,2.5) seems to underesti-
mate systematically the effect of h , so a satisfactory FF for
hT50.25 can be obtained only if we let hP.0.25 @quite
consistently, in the comparison of Tables V, VIII, where h
was confined to its physical range, T(2,2.5) could match
P(2,2.5) effectively, but the reverse was not true#.

The other ~and perhaps crucial! effect of raising h is to
change the location of the MECO for the P-approximant
model ~or the light ring, for the EP model!, where orbital
evolution ends. ~Remember that one of the differences be-
tween the Padé and the EOB models is that the latter in-
cludes a plunge part between the ISCO and the light ring.!
More specifically, for P(2,2.5) @EP(3,3.5,0)# the position of
the MECO ~light ring! is pushed to smaller radii as h is
increased. This effect can increase the FF for target models
that have very different ending frequencies from those of

P(2,2.5) and EP(3,3.5) at comparable h’s.
Because for the EP model the frequency at the light ring

is already quite high, we cannot simply operate on h to im-
prove the match between the EP model and other models
that end at much lower frequencies ~see the values of min-
max matches in Table XVII!. Thus, we shall enhance the
effectualness of EP by adding an arbitrary cut parameter that
modifies the radius r ~usually the light-ring radius! at which
we stop the integration of the Hamilton equations ~92!–~95!;
the effect is to modify the final instantaneous GW frequency
of the waveform. This is therefore a time-domain cut, as
opposed to the frequency-domain cuts of the frequency-
domain effective templates examined in the preceding sec-
tion.

We can then compute the FF by searching over f cut in
addition to M and h , and we shall correspondingly account

FIG. 26. Projection of 2PN waveforms onto the P(2,2.5) effec-

tive template space. Dots are shown for the same BBH masses of

Table III, and for PN models T(2,2.5), P(2,2.5), ET(2,2.5), and

EP(2,2.5). The thin solid lines show the BH mass lines ~introduced

in Sec. VI B!, while the dashed and dotted lines show the contours

of the projections of selected PN models.

FIG. 27. Projection of 3PN waveforms onto the P(2,2.5) effec-

tive template space. Dots are shown for the same BBH masses of

Table XV, and for PN models T(3,3.5,12), P(3,3.5,12),

ET(3,3.5,12), EP(3,3.5,12), HT(3,3.5,12), and HP(3,3.5,0).

The dots for û522 are only slightly displaced, and they are not

shown. The thin solid lines show the BH mass lines ~introduced in

Sec. VI B!, while the dashed and dotted lines show the contours of

the projections of selected PN models.

FIG. 28. Projection of 2PN waveforms onto the EP(3,3.5) ef-

fective template space. This projection includes the effect of the

frequency cut. Dots are shown for the same BBH masses of Table

III, and for PN models T(2,2.5), P(2,2.5), ET(2,2.5), and

EP(2,2.5). The thin solid lines show the BH mass lines ~introduced

in Sec. VI B!, while the dashed and dotted lines show the contours

of the projections of selected PN models.

FIG. 29. Projection of 3PN waveforms onto the EP(3,3.5) ef-

fective template space. This projection includes the effect of the

frequency cut. Dots are shown for the same BBH masses of Table

II, and for PN models T(3,3.5,12), P(3,3.5,12), ET(3,3.5,

12), EP(3,3.5,12), HT(3,3.5,12), and HP(3,3.5,12). The

dots for û522 are only slightly displaced, and they are not shown.

The thin solid lines show the BH mass lines ~introduced in Sec.

VI B!, while the dashed and dotted lines show the contours of the

projections of selected PN models.
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for the required number of distinct f cut when we estimate the
number of templates required to give a certain MMtot . Even
so, if we are unsure whether we can model successfully a
given source over a certain range of frequencies that falls
within the LIGO range ~as it is the case for the heavy BBHs
with MECOs at frequencies , 200 Hz!, the correct way to
estimate the optimal r ~and therefore the expected detection
rate! is to include only the signal power in the frequency
range that we know well.

The best matches shown in Tables XVI and XVII, and in
Figs. 26–29, were obtained by searching over the target
model parameter space with the simplicial AMOEBA algo-
rithm @65#. We found ~empirically! that it was expedient to
conduct the searches on the parameters b[Mh2/5 and h
rather than on M and h . This is because iso-match surfaces
tend to look like thin ellipses clustered around the best match
parameter pair, with principal axes along the b and h direc-
tions. As shown in Table XVI, the values of the maxmax and
minmax FFs are very close to each other for the P(2,2.5)
model; the same is true for the EP(3,3.5) model ~so in Table
XVII we do not show both!. For EP(3,3.5), the search over
the three parameters (b ,h , f cut) was performed as a refine-
ment step after a first search on (b ,h).

We have evaluated the mismatch metric @29# g i j ~see Sec.
II! with respect to the parameters (b ,h) for the models
P(2,2.5) and EP(3,3.5,0) ~while evaluating g i j , the EP

waveforms were not cut!. The metric components at the
point (b0 ,h0) were obtained by first determining the ranges
(bmin ,bmax), (hmin ,hmax) for which

^u~b0 ,h0!,u~bmin ,h0!&5^u~b0 ,h0!,u~bmax ,h0!&

5120.05 ~132!

^u~b0 ,h0!,u~b0 ,hmin!&5^u~b0 ,h0!,u~b0 ,hmax!&

5120.05; ~133!

then a quadratic form was least-squares fit to 16 values of the
match along the ellipse G1 with axes given by (bmin ,bmax)
and (hmin ,hmax). The first quadratic form was used only to
determine the principal axes of two further ellipses G2 and
G3 , at projected matches of 120.025 and 120.0125. An-
other quadratic form ~giving the final result for the metric!
was then fit at the same time to 16 points along G2 and to 16

points along G3 , but the two ellipses were given different
fitting weights to cancel the quartic correction terms in the
Taylor expansion of the match around (b0 ,h0) ~the cubic
terms were canceled automatically by taking symmetric
points along the ellipses!. The rms error of the fit was in all
cases very good, establishing that the quadratic approxima-
tion held in the close vicinity ~matches ;0.95) of each point.

We estimate that the numerical error ;20% is in any case
less than the error associated with using Eq. ~25! to evaluate
the required number of templates, instead of laying down a
lattice of templates more accurately.

The resulting Augu for P(2,2.5) and EP(3,3.5,0) is shown
in Fig. 30. It is evident that most of the mismatch volume is
concentrated near the smallest b’s and h’s in parameter
space. This is encouraging, because it means that the exten-
sion of the effective template family to high masses and high
h’s ~necessary, as we have seen, to match several target mod-
els with very high FF! will be relatively cheap with respect
to the size of the template bank ~this picture, however,
changes when we introduce frequency-domain cuts for the

EP models!. With the Augu’s we then computed the number
of P and EP templates necessary to cover the parameter
ranges b: ~4,24!, h: ~0.15,1.00!, and b: ~4,24!, h: (0.1,1.00)
which span comfortably all the projected images of the target
spaces onto the P and EP template spaces, respectively.
~Note the ranges include also BBHs where one of the BHs
has a mass less than 5M ( .) We obtained

NP.3260S 0.02

12MM
D , NE.6700S 0.02

12MM
D , ~134!

where MM is the required minimum match ~analog to the
parameter MMc of the preceding section!. By comparison,
these numbers are reduced to, respectively, 1230 and 3415 if
we restrict h to the physical range.

The number NE does not include the effect of multiple
ending frequencies ~cuts!. We estimate the number of distinct
f cut needed for each b by an argument similar to the one
used for the Fourier-domain effective templates ~see Sec.
VI!; it turns out that more cuts are required for higher
masses. The resulting number of templates is NEc.51,000
for MM50.98, which is comparable to the result for the
effective Fourier-domain templates.

FIG. 30. Determinant of the mismatch metric for the P(2,2.5) models ~left panel! and for the EP(3,3.5,0) models ~right panel!. The

determinant Augu is shown as a function of h and b5Mh2/5.
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If we assume that the distance between the time-domain
templates and the target models is representative of the dis-
tance to the true physical signal, we can guess that FF
*0.95 for P and FF*0.97 for EP with cuts. Under these
hypotheses, 6500 P templates can buy us a ~worst-case!
MMT.0.94, corresponding to a loss in event rate of ;17%.
For 51,000 EP templates, we get MMT.0.95, correspond-
ing to a loss in event rate of ;14%.

Before ending this section we would like to point out
another time-domain detection-template family which can be
consider kindred of the Fourier-domain detection-template
family introduced in Sec. VI, see Eq. ~108!. We can use, for
example, the following expression suggested by PN calcula-
tions ~see, e.g., Ref. @69#!:

heff~ t !5A eff
T ~ t ! e iceff

T
(t), ~135!

where

A eff
T ~ t !5~ tc2t !7/16@12aT ~ tc2t !21/4#u~ tcut2t !,

~136!

ceff~ t !5fc1~ tc2t !5/8@c0
T
1c1/2

T ~ tc2t !21/8
1c1

T ~ tc2t !21/4

1c3/2
T ~ tc2t !23/8

1c2
T ~ tc2t !21/2

1•••# , ~137!

where fc ,tc ,aT,c0
T ,c1

T ,c3/2
T and c2

T are arbitrary parameters

whose range of values are determined maximizing the
matches with the target two-body models.

VIII. SUMMARY

This paper deals with the problem of detecting GWs from
the most promising sources for ground-based GW interfer-
ometers: comparable-mass BBHs with total mass M

510–40M ( moving on quasicircular orbits. The detection
of these sources poses a delicate problem, because their tran-
sition from the adiabatic phase to the plunge, at least in the
nonspinning case, is expected to occur in the LIGO and
VIRGO frequency bands. Of course, the true GW signals
from these inspirals should be obtained from exact solutions
of the Einstein equations for two bodies of comparable mass.
However, the theoretical templates used to search for these
signals will be, at best, finite-order approximations to the
exact solutions, usually derived in the PN formalism. Be-
cause the perturbative PN approach begins to fail during the
final stages of the inspiral, when strong curvature and non-
linear effects can no longer be neglected, various PN resum-
mation methods have been introduced @15–17# to improve
the convergence of the PN series.

In the first part of this paper @see Secs. III, IV and V# we
studied and compared in detail all the PN models of the
relativistic two-body dynamics currently available, including
PN Taylor-expanded and resummed models both in the adia-
batic approximation and in the nonadiabatic case. We noticed
the following features ~see Tables IX, XI!. At least for PN
orders n<2.5, the target models T, P, and E have low cross
matches if the 2.5PN Taylor flux is used. For example, for
almost all the masses in our range, we found maxmax FF

<0.9; the matches were much better only for P against E

~and vice versa!. However, if the 2PN Taylor flux is used the

overlaps are rather high. At 3PN order we found much higher

matches between T, P, and E, and also with the nonadiabatic

model H, at least for masses M<30M ( , and restricting to

z̃1505 z̃2 . These results make sense because at 3PN order

the various approximations to the binding energy and the

flux seem to be much closer to each other than at lower

orders. This ‘‘closeness’’ of the different analytical ap-

proaches, which at 3PN order are also much closer to some

examples of numerical quasiequilibrium BBH models @26#,
was recently pointed out in Refs. @58,59#. On the other hand,

the extraction of BBH parameters from a true measured sig-

nal, if done using the 3PN models, would still give a range of

rather different estimates. However, we want to point out that

for quite high masses, e.g., M540M ( , the 3PN models can

have again lower overlaps, also from the point of view of

detection.

In addition, by studying the frequency-domain amplitude

of the GW signals that end inside the LIGO frequency band

~see Figs. 4, 7, 10, 14!, we understood that if high matches
are required it is crucial to reproduce their deviations from
the Newtonian amplitude evolution, f 27/6 ~on the contrary,
the Newtonian formula seems relatively adequate to model
the PN amplitude for GW frequencies below the instanta-
neous GW frequency at the end point of orbital evolution!.

Finally, the introduction of the HT , HP and L models in
Secs. IV A and IV B provided another example of two-body
nonadiabatic dynamics, quite different from the E models. In
the H models, the conservative dynamics does not have an
ISCO @see the discussion below Eq. ~74!# at 2PN and 3PN
orders. As a consequence, the transition to the plunge is due
to secular radiation-reaction effects, and it is pushed to much
higher frequencies. This means that, for the H models, the
GW signals for BBHs of total mass M510–40M ( end out-
side the LIGO frequency band, and the frequency-domain
amplitude does not deviate much from the Newtonian result,
at least until very high frequencies ~see Fig. 10!. The L mod-
els do not provide the waveforms during the late inspiral and
plunge. This is due to the fact that because of the appearance
of unphysical effects, e.g., the binding energy starts to in-
crease with time instead of continuing decreasing, we are
obliged to stop the evolution before the two BHs enter the
last stages of inspiral. It is important to point out that differ-
ently from the nonadiabatic E models, the nonadiabatic H

and L models give rather different predictions when used at
various PN orders. So, from these point of view they are less
reliable and robust than the E models.

In the second part of this paper ~Secs. VI and VII! we
pursued the following strategy. We assumed that the target
models spanned a region in signal space that ~almost! in-
cluded the true GW signal. We were then able to provide a
few detection template families ~either chosen among the
time-domain target models, or built directly from polynomial
amplitude and phasings in the frequency domain! that ap-
proximate quite well all the targets (FF>0.95 for almost all
the masses in our range, with much better FFs for most
masses!. We speculate that the effectualness of the detection

DETECTION TEMPLATE FAMILIES FOR . . . PHYSICAL REVIEW D 67, 024016 ~2003!

024016-47



model in approximating the targets is indicative of its effec-

tualness in approximating the true signals.

The Fourier-domain detection template family, discussed

in Sec. VI, is simple and versatile. It uses a PN polynomial

structure for the frequency-domain amplitude and phasing,

but it does not constrain the coefficients to the PN functional
dependencies on the physical parameters. In this sense this
bank follows the basic idea that underlies the fast chirp trans-
form @64#. However, because for the masses that we consider
the GW signal can end within the LIGO frequency band, we
were forced to modify the Newtonian-order formula for the
amplitude, introducing a cutoff frequency and a parameter to
modify the shape of the amplitude curve ~the parameter a).
As discussed at the end of Sec. VI F the good performance of
the two and three-dimensional families confirms also results
obtained in Refs. @13,47# and @68#.

We showed that our Fourier-domain detection template
space has a FF higher than 0.97 for the T, P and E models,
and *0.96 for most of the 3PN HT and HP models; we then
speculate that it will match true BBH waveforms with FF
;0.96. We have computed the number of templates required
to give MM .0.96 ~about 104). The total MMT should be
larger than FF•MM;0.92, which corresponds to a loss of

event rate of 12MMT
3'22%. This performance could be

improved at the price of introducing a larger number of tem-
plates, with the rough scaling law of N5104@0.04/(0.96
2MM)#2.

In Sec. VI E we investigated where the less reliable 2PN
H and L models, and the E models at 3PN order further

expanded considering z̃1Þ0, lie in the detection template
space. The Fourier-domain template family has FF in the
range @0.85,0.95# with the 2PN H models, and FF mostly
higher than 0.95, but with several exceptions which can be as

low as 0.93 with the L models. The E models with z̃1Þ0 are
matched by the detection template family with FF almost

always higher than 0.95. The E models with z̃1Þ0 and the L

models are ~almost! covered by the region delimiting the

adiabatic models and the E models with z̃150. However,
these models require lower cutoff frequencies, which will
increase the number of templates up to a factor of 3. The
2PN H models sit outside this region and if we want to
include them the number of templates should be doubled.

The time-domain detection template families, discussed in
Sec. VII, followed a slightly different philosophy. The idea in
this case was to provide a template bank that, for some
choices of the parameters, could coincide with one of the
approximate two-body models. Quite interestingly, this can
be achieved by relaxing the physical hypothesis that 0<h
<0.25. However, the good performances of these banks are
less systematic, and harder to generalize than the perfor-
mance of the Fourier-domain effective bank. As suggested at
the end of Sec. VII @see Eq. ~135!#, the time-domain bank
could be improved by using a parametrization of the time-
domain amplitude and phase similar to the one used for the
Fourier-domain templates. The detection template families
based on the extension of the P(2,2.5) and EP(3,3.5) to
nonphysical values of h were shown to have FF, respec-
tively, *0.95 and *0.97 for all the PN target models, and

considerably higher for most models and masses. We have
computed the number of P templates needed to obtain a
MM50.99 ~about 6,500! and of EP templates to obtain a
MM50.98 ~about 51,000!. The expected total MMT is then,
respectively, *0.94 and *0.95, corresponding to losses in
event rates of &17% and &14%. The MMs scale roughly as

@0.01/(12MM)# for P and @0.02/(12MM)#2 for EP ~be-
cause of the additional frequency-cut parameter!.

We notice that the number of templates that we estimate
for the Fourier- and time-domain detection template families
is higher than the number of templates we would obtain us-
ing only one PN model. However, the number of indepen-

dent shapes that enters the expression for the r
*

threshold
@see Eq. ~18!# does not coincide with the number of tem-
plates that are laid down within a discrete template bank to
achieve a given MM; indeed, if MM is close to one, these are
almost guaranteed to be to yield S/N statistics that are
strongly correlated. A rough estimate of the number of inde-
pendent shapes can be obtained taking a coarse-grained grid
in template space. For example, by setting MM50 in Eq.
~25!, the number of independent shapes would be given
roughly by the volume of the template space. As explained at
the end of Sec. II B, if we wish to keep the same false-alarm
probability, we have to increase the threshold by ;3% if we
increase the number of independent shapes by one order of
magnitude. This effect will cause a further loss in event rates
@70#.

Finally, in Sec. VI F we extended the detection template
family in the Fourier domain by requiring that it embeds the
targets in a signal space of higher dimension ~with more
parameters!. We investigated the three-dimensional case and
we found, as expected, the maxmax matches increase. In
particular, the match of the phasings are nearly perfect: al-
ways higher than 0.994 for the two-body models which are
farthest apart in the detection template space. Moreover, by
projecting the points in the three-dimensional space back to
the two-dimensional space, we can get nearly the same pro-
jections we would have got from matching directly the PN
waveforms with the two-parameter–phasing model. The
analysis done in Sec. VI F could suggest ways of systemati-
cally expand the Fourier-domain templates. Trying to guess
the functional directions in which the true signals might lie
with respect to the targets was the most delicate challenge of
our investigation. However, our suggestions are not guaran-
teed to produce templates that will capture the true signal,
and they should be considered as indications. When numeri-
cal relativity provides the first good examples of waveforms
emitted in the last stages of the binary inspiral and plunge, it
will be very interesting to investigate whether the
matcheswith our detection template families are high and in
which region of the detection template space do they sit.
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