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Detection template families for gravitational waves from the final stages
of binary—black-hole inspirals: Nonspinning case
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We investigate the problem of detecting gravitational waves from binaries of nonspinning black holes with
masses m=5-20M, moving on quasicircular orbits, which are arguably the most promising sources for
first-generation ground-based detectors. We analyze and compare all the currently available post-Newtonian
approximations for the relativistic two-body dynamics; for these binaries, different approximations predict
different waveforms. We then construct examples of detection template families that embed all the approximate
models and that could be used to detect the true gravitational-wave signal (but not to characterize accurately its
physical parameters). We estimate that the fitting factor for our detection families is =0.95 (corresponding to
an event rate loss <15%) and we estimate that the discretization of the template family, for ~ 10* templates,

increases the loss to <20%.
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I. INTRODUCTION

A network of broadband ground-based laser interferom-
eters, aimed at detecting gravitational waves (GWs) in the
frequency band 10—10% Hz, is currently beginning operation
and, hopefully, will start the first science runs within this
year (2002). This network consists of the British-German
GEO, the American Laser Interferometer Gravitational-Wave
Observatory (LIGO), the Japanese TAMA and the Italian-
French VIRGO (which will begin operating in 2004) [1].

The first detection of gravitational waves with LIGO and
VIRGO interferometers is likely to come from binary black-
hole systems where each black hole has a mass [2] of a few
M, and the total mass is roughly in the range 10-40M o
[3], and where the orbit is quasicircular (it is generally as-
sumed that gravitational radiation reaction will circularize
the orbit by the time the binary is close to the final coales-
cence [4]). It is easy to see why. Assuming for simplicity that
the GW signal comes from a quadrupole-governed, Newton-
ian inspiral that ends at a frequency outside the range of
good interferometer sensitivity, the signal-to-noise ratio
(S/N) is =« M%/d (see, e.g., Ref. [5]), where M=M 7" is
the chirp mass (with M=m,;+m, the total mass and 7
=m;m,/M?), and d is the distance between the binary and
the Earth. Therefore, for a given signal-to-noise detection
threshold (see Sec. II) and for equal-mass binaries (7
=1/4), the larger is the total mass, the larger is the distance
d that we are able to probe. (In Sec. V we shall see how this
result is modified when we relax the assumption that the
signal ends outside the range of good interferometer sensi-
tivity.)

For example, a black-hole—black-hole binary (BBH) of
total mass M =20M  at 100 Mpc gives (roughly) the same
S/N as a neutron-star—neutron-star binary (BNS) of total
mass M =2.8M at 20 Mpc. The expected measured-event

0556-2821/2003/67(2)/024016(50)/$20.00

67 024016-1

PACS number(s): 04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym

rate scales as the third power of the probed distance, al-
though of course it depends also on the system’s coalescence
rate per unit volume in the universe. To give some figures,
computed using LIGO-I’s sensitivity specifications, if we as-
sume that BBHs originate from main-sequence binaries [6],
the estimated detection rate per year is <4 X107 °-0.6 at
100 Mpc [7,8], while if globular clusters are considered as
incubators of BBHs [9] the estimated detection rate per year
is ~0.04-0.6 at 100 Mpc [7,8]; by contrast, the BNS detec-
tion rate per year is in the range 3 X 10™*-0.3 at 20 Mpc
[7,8]. The very large cited ranges for the measured-event
rates reflect the uncertainty implicit in using population-
synthesis techniques and extrapolations from the few known
galactic BNSs to evaluate the coalescence rates of binary
systems. [In a recent article [10], Miller and Hamilton sug-
gest that four-body effects in globular clusters might enhance
considerably the BBH coalescence rate, brightening the pros-
pects for detection with first-generation interferometers; the
BBHs involved might have relatively high BH masses
(~100M ) and eccentric orbits, and they will not be con-
sidered in this paper.]

The GW signals from standard comparable-mass BBHs
with M =10-40M  contain only a few (50-800) cycles in
the LIGO-VIRGO frequency band, so we might expect that
the task of modeling the signals for the purpose of data
analysis could be accomplished easily. However, the fre-
quencies of best interferometer sensitivity correspond to
GWs emitted during the final stages of the inspiral, where the
post—Newtonian (PN) expansion [11], which for compact
bodies is essentially an expansion in the characteristic orbital
velocity v/c, begins to fail. It follows that these sources
require a very careful analysis. As the two bodies draw
closer, and enter the nonlinear, strong-curvature phase, the
motion becomes relativistic, and it becomes harder and
harder to extract reliable information from the PN series. For
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example, using the Keplerian formula v=(7wMfgw)"
(where fgw is the GW frequency) and taking fgw= 153 Hz
(the LIGO-I peak-sensitivity frequency) we get v(M)
=0.14(M/M )'; hence, for BNSs v(2.8M )=0.2, but for
BBHSs v(20M )=0.38 and v (40M ) =0.48.

The final phase of the inspiral (at least when BH spins are
negligible) includes the transition from the adiabatic inspiral
to the plunge, beyond which the motion of the bodies is
driven (almost) only by the conservative part of the dynam-
ics. Beyond the plunge, the two BHs merge, forming a single
rotating BH in a very excited state; this BH then eases into
its final stationary Kerr state, as the oscillations of its quasi-
normal modes die out. In this phase the gravitational signal
will be a superposition of exponentially damped sinusoids
(ringdown waveform). For nonspinning BBHs, the plunge
starts roughly at the innermost stable circular orbit (ISCO) of
the BBH. At the ISCO, the GW frequency [evaluated in the
Schwarzschild test-mass limit as fog (M)=0.022/M] is

BiC(20M 5)=220 Hz and f54°(30M »)=167 Hz. These
frequencies are well inside the LIGO and VIRGO bands.

The data analysis of inspiral, merger (or plunge), and
ringdown of compact binaries was first investigated by
Flanagan and Hughes [12], and more recently by Damour,
Iyer and Sathyaprakash [13]. Flanagan and Hughes [12]
model the inspiral using the standard quadrupole prediction
(see, e.g., Ref. [5]), and assume an ending frequency of
0.02/M (the point where, they argue, PN and numerical-
relativity predictions start to deviate by ~5% [14]). They
then use a crude argument to estimate upper limits for the
total energy radiated in the merger phase (~0.1M) and in
the ringdown phase (~0.03M) of maximally spinning BBH
coalescences. Damour, Iyer and Sathyaprakash [13] study the
nonadiabatic PN-resummed model for nonspinning BBHs of
Refs. [15—17], where the plunge can be seen as a natural
continuation of the inspiral [16] rather than a separate phase;
the total radiated energy is 0.007M in the merger and
0.007M in the ringdown [18]. (All these values for the en-
ergy should be also compared with the value, 0.25-0.3M,
estimated recently in Ref. [19] for the plunge and ringdown
for nonspinning BBHs.) When we deal with nonadiabatic
models, we too shall choose not to separate the various
phases. Moreover, because the ringdown phase does not give
a significant contribution to the signal-to-noise ratio for M
<200M  [12,13], we shall not include it in our investiga-
tions.

BHs could have large spins: various studies [20,21] have
shown that when this is the case, the time evolution of the
GW phase and amplitude during the inspiral will be signifi-
cantly affected by spin-induced modulations and irregulari-
ties. These effects can become dramatic if the two BH spins
are large and are not aligned or antialigned with the orbital
angular momentum. There is a considerable chance that the
analysis of interferometer data, carried out without taking
into account spin effects, could miss the signals from spin-
ning BBHs altogether. We shall tackle the crucial issue of
spin in a separate paper [22].

The purpose of the present paper is to discuss the problem
of the failure of the PN expansion during the last stages of
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inspiral for nonspinning BHs, and the possible ways to deal
with this failure. This problem is known in the literature as
the intermediate binary black hole (IBBH) problem [23]. De-
spite the considerable progress made by the numerical-
relativity community in recent years [14,24-26], a reliable
estimate of the waveforms emitted by BBHs is still some
time away (some results for the plunge and ringdown wave-
forms were obtained very recently [19], but they are not very
useful for our purposes because they do not include the last
stages of the inspiral before the plunge, and their initial data
are endowed with large amounts of spurious GWs). To tackle
the delicate issue of the late orbital evolution of BBHs, vari-
ous nonperturbative analytical approaches to that evolution
(also known as PN resummation methods) have been pro-
posed [15-17,27].

The main features of PN resummation methods can be
summarized as follows: (i) they provide an analytic (gauge-
invariant) resummation of the orbital energy function and
gravitational flux function (which, as we shall see in Sec. III,
are the two crucial ingredients to compute the gravitational
waveforms in the adiabatic limit); (ii) they can describe the
motion of the bodies (and provide the gravitational wave-
form) beyond the adiabatic approximation; and (iii) in prin-
ciple they can be extended to higher PN orders. More impor-
tantly, they can provide initial dynamical data for the two
BHs at the beginning of the plunge (such as their positions
and momenta), which can be used (in principle) in numerical
relativity to help build the initial gravitational data (the met-
ric and its time derivative) and then to evolve the full Ein-
stein equations through the merger phase. However, these
resummation methods are based on some assumptions that,
although plausible, have not been proved: for example, when
the orbital energy and the gravitational flux functions are
derived in the comparable-mass case, it is assumed that they
are smooth deformations of the analogous quantities in the
test-mass limit. Moreover, in the absence of both exact solu-
tions and experimental data, we can test the robustness and
reliability of the resummation methods only by internal con-
vergence tests.

In this paper we follow a more conservative point of view.
We shall maintain skepticism about waveforms emitted by
BBH with M =10-40M and evaluated from PN calcula-
tions, as well as all other waveforms ever computed for the
late BBH inspiral and plunge, and we shall develop families
of search templates that incorporate this skepticism. More
specifically, we shall be concerned only with detecting BBH
GWs, and not with extracting physical parameters, such as
masses and spins, from the measured GWs. The rationale for
this choice is twofold. First, detection is the more urgent
problem at a time when GW interferometers are about to
start their science runs; second, a viable detection strategy
must be constrained by the computing power available to
process a very long stream of data, while the study of de-
tected signals to evaluate physical parameters can concen-
trate many resources on a small stretch of detector output. In
addition, as we shall see in Sec. VI, and briefly discuss in
Sec. VI D, the different PN methods will give different pa-
rameter estimations for the same waveform, making a full
parameter extraction fundamentally difficult.
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FIG. 1. Square root of the noise spectral density .S,(f) versus

frequency f, for LIGO-I [Eq. (28)], and VIRGO (from Table IV of
Ref. [13]).

This is the strategy that we propose: we guess (and hope)
that the conjunction of the waveforms from all the post-
Newtonian models computed to date spans a region in signal
space that includes (or almost includes) the true signal. We
then choose a detection (or effective) template family that
approximates very well all the PN expanded and resummed
models (henceforth denoted as target models). If our guess is
correct, the effectualness [27] of the effective model in ap-
proximating the targets (i.e., its capability of reproducing
their signal shapes) should be indicative of its effectualness
in approximating the true signals. Because our goal is the
detection of BBH GWs, we shall not require the detection
template family to be faithful [27] (i.e., to have a small bias
in the estimation of the masses).

As a backup strategy, we require the detection template
family to embed the targets in a signal space of higher di-
mension (i.e., with more parameters), trying to guess the
functional directions in which the true signals might lie with
respect to the targets (of course, this guess is rather delicate).
So, the detection template families constructed in this paper
cannot be guaranteed to capture the true signal, but they
should be considered as indications.

This paper is organized as follows. In Sec. II we briefly
review the theory of matched-filtering GW detections, which
underlies the searches for GWs from inspiraling binaries.
Then in Secs. III, IV, and V we present the target models and
give a detailed analysis of the differences between them,
both from the point of view of the orbital dynamics and of
the gravitational waveforms. More specifically, in Sec. III we
introduce the two-body adiabatic models, both PN expanded
and resummed; in Sec. IV we introduce nonadiabatic ap-
proximations to the two-body dynamics; and in Sec. V we
discuss the signal-to-noise ratios obtained for the various
two-body models. Our proposals for the detection template
families are discussed in the Fourier domain in Sec. VI, and
in the time domain in Sec. VII, where we also build the
mismatch metric [28,29] for the template banks and use it to
evaluate the number of templates needed for detection. Sec-
tion VIII summarizes our conclusions.

Throughout this paper we adopt the LIGO noise curve
given in Fig. 1 and Eq. (28), and used also in Ref. [13].
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Because the noise curve anticipated for VIRGO (see Fig. 1)
is quite different (both at low frequencies, and in the location
of its peak-sensitivity frequency) our results cannot be ap-
plied naively to VIRGO. We plan to repeat our study for
VIRGO in the near future.

II. THE THEORY OF MATCHED-FILTERING SIGNAL
DETECTION

The technique of matched-filtering detection for GW sig-
nals is based on the systematic comparison of the measured
detector output s with a bank of theoretical signal templates
{u;} that represent a good approximation to the class of
physical signals that we seek to measure. This theory was
developed by many authors over the years, who have pub-
lished excellent expositions [29-40,12,27]. In the following,
we summarize the main results and equations that are rel-
evant to our purposes, and we establish our notation.

A. The statistical theory of signal detection

The detector output s consists of noise n and possibly of a
true gravitational signal ; (part of a family {h;} of signals
generated by different sources for different source param-
eters, detector orientations, and so on). Although we may be
able to characterize the properties of the noise in several
ways, each separate realization of the noise is unpredictable,
and it might in principle fool us by hiding a physical signal
(hence the risk of a false dismissal) or by simulating one
(false alarm). Thus, the problem of signal detection is essen-
tially probabilistic. In principle, we could try to evaluate the
conditional probability P(%|s) that the measured signal s
actually contains one of the /;. In practice, this is inconve-
nient because the evaluation of P(h|s) requires the knowl-
edge of the a priori probability that a signal belonging to the
family {h;} is present in s.

What we can do, instead, is to work with a statistic (a
functional of s and of the &;) that (for different realizations
of the noise) will be distributed around low values if the
physical signal h; is absent, and around high value if the
signal is present. Thus, we shall establish a decision rule as
follows [33]: we will claim a detection if the value of a
statistic (for a given instance of s and for a specific &;) is
higher than a predefined threshold. We can then study the
probability distribution of the statistic to estimate the prob-
ability of false alarm and of false dismissal. The steps in-
volved in this statistical study are easily laid down for a
generic model of noise, but it is only in the much simplified
case of normal noise that it is possible to obtain manageable
formulas; while noise will definitely not be normal in a real
detector, the Gaussian formulas can still provide useful
guidelines for the detection problems. Eventually, the statis-
tical analysis of detector search runs will be carried out with
numerical Monte Carlo techniques that make use of the mea-
sured characteristics of the noise. So throughout this paper
we shall always assume Gaussian noise.

The statistic that is generally used is based on the sym-
metric inner product (g,h) between two real signals g and h,
which represents essentially the cross-correlation between g
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and h, weighted to emphasize the correlation at the frequen-
cies where the detector sensitivity is better. We follow Cutler
and Flanagan’s conventions [36] and define

L (teEFNOAS) +2 g% (£)i(f)
<g’h>_2f—w S.(fD df=4 fo S,.(f) df,
(1)

where S,(f), the one-sided noise power spectral density, is
given by

—— 1
n*(fl)n(fZ):za(fl_f2)Sn(fl) for f,>0, ()

and S,(f;)=0 for f;<0. We then define the signal-to-noise
ratio p (for the measured signal s after filtering by &;), as

h))= (s,hy)  (s,hy) 3)
p( i _rms<n,hi>_\/m’

where the equality follows because {h;,n)(n,h;)={h;,h;)
(see, e.g., [33]). In the case of Gaussian noise, it can be
proved that this filtering technique is optimal, in the sense
that it maximizes the probability of correct detection for a
given probability of false detection.

In the case when s =n, and when noise is Gaussian, it is
easy to prove that p is a normal variable with a mean of zero
and a variance of one. If instead s=h;+ n, then p is a normal
variable with mean {%;,h;) and unit variance. The thresh-
old p,, for detection is set as a tradeoff between the resulting
false-alarm probability,

1 [+e 1
F= Vﬁf efpzlzde Eerfc(p*/\/f) 4)
P

(where erfc is the complementary error function [41]), and
the probability of correct detection

1
D= Serfel (p, = V(. hi))/\2] %)
(the probability of false dismissal is just 1—D).

B. Template families and extrinsic parameters

We can now go back to the initial strategy of comparing
the measured signal against a bank of A templates {u;} that
represent a plurality of sources of different types and physi-
cal parameters. For each stretch s of detector output, we shall
compute the signal-to-noise ratio (s,u;)/\{u;,u;) for all the
u;, and then apply our rule to decide whether the physical
signal corresponding to any one of the u; is actually present
within s [5]. Of course, the threshold p,, needs to be adjusted
so that the probability F,, of false alarm over all the tem-
plates is still acceptable. Under the assumption that all the
inner products {n,u;) of the templates with noise alone are
statistically independent variables [this hypothesis entails
(uju)=01, Fy is just 1—(1—FNi~NF. If the tem-
plates are not statistically independent, this number is an
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upper limit on the false alarm rate. However, we first need to
note that, for any template u;, there are a few obvious ways
(parametrized by the so-called extrinsic parameters) of
changing the signal shape that do not warrant the inclusion
of the modified signals as separate templates [42].

The extrinsic parameters are the signal amplitude, phase
and time of arrival. Any true signal h can be written in all
generality as

h(t)=Ayay[t—t,]cos[ D ,(t—1,)+ ¢y ], (6)

where a,(t) =0 for <0, where ®,(0)=0, and where a,(t)
is normalized so that <h,h)=Aﬁ. While the template bank
{u;} must contain signal shapes that represent all the physi-
cally possible functional forms a(¢) and ®(7), it is possible
to modify our search strategy so that the variability in A,
¢, and ¢, is automatically taken into account without creat-
ing additional templates.

The signal amplitude is the simplest extrinsic parameter.
It is expedient to normalize the templates u; so that {u;,u;)
=1, and p(u;)={s,u;). Indeed, throughout the rest of this
paper we shall always assume normalized templates. If s
contains a scaled version ;= Au; of a template u; (here A is
known as the signal strength), then p(u;)=.A. However, the
statistical distribution of p is the same in the absence of the
signal. Then the problem of detection signals of known
shape and unknown amplitude is easily solved by using a
single normalized template and the same threshold p, as
used for the detection of completely known signals [33].
Quite simply, the stronger an actual signal, the easier it will
be to reach the threshold.

We now look at phase, and we try to match i with a
continuous one-parameter subfamily of templates u(¢,;t)
=a,(t)cos[D,(r)+ ¢,]. It turns out that for each time signal
shape {a(1),®(r)}, we need to keep in our template bank
only two copies of the corresponding u;, for ¢,=0 and ¢,
=1/2, and that the signal to noise of the detector output s

against u;, for the best possible value of ¢,, is automatically
found as [33]

p¢:max<s’ui(¢t)>: \/|<S’”i(0)>|2+ |<S’Mi(77/2)>|2’
&,

(7)
where u;(0) and u;(7/2) have been orthonormalized. The
statistical distribution of the phase-maximized statistic Po>

for the case of (normal) noise alone, is the Raleigh distribu-
tion [33]

2
Polpg)=pye P4, (®)
and the false-alarm probability for a threshold p,. is just
2
F=e Pos'?, 9)

Throughout this paper, we will find it useful to consider
inner products that are maximized (or minimized) with re-
spect to the phases of both templates and reference signals.

024016-4



DETECTION TEMPLATE FAMILIES FOR . ..

In particular, we shall follow Damour, Iyer and
Sathyaprakash in making a distinction between the best
match or maxmax match

maxmax{h,u;)=maxmax{h(¢,),u;(d,)), (10)
b P

which represents the most favorable combination of phases
between the signals % and u;, and the minmax match

minmax{h,u;)=minmax{h(py),u;,(d,)), (11)
‘rbh ¢t

which represents the safest estimate in the realistic situation,
where we cannot choose the phase of the physical measured
signal, but only of the template used to match the signal.
Damour, Iyer and Sathyaprakash (see Appendix B of Ref.
[27]) show that both quantities are easily computed as

(maxmax) A+B A—B\2 1/2) 172
. ={——= (— +C? } . (12)
minmax 2 2
where
A=(h(0),u;(0))2+(h(0),u;(7/2))?, (13)

B={h(m/2),u;(0))*+{(h(7/2),u;(7/2))?, (14)

C=(h(0),u,(0))(h(m12),u,(0))
+(h(0),u;(w/2) ) h(7/2),u;(w/2)). (15)

In these formulas we have assumed that the two bases
{h(0),h(7/2)} and {u;(0),u;(7/2)} have been orthonormal-
ized.

The time of arrival t; is an extrinsic parameter because
the signal to noise for the normalized, time-shifted template
u(t—ty) against the signal s is just

(s,u(ty))=4Re f;w%eizwﬂodﬂ (16)

where we have used a well-known property of the Fourier
transform of time-shifted signals. These integrals can be
computed at the same time for all the time of arrivals {z,},
using a fast Fourier transform technique that requires
~N,log N, operations (where N, is the number of the
samples that describe the signals) as opposed to ~N§ re-
quired to compute all the integrals separately [43]. Then we
can look for the optimal ¢, that yields the maximum signal to
noise.

We now go back to adjusting the threshold p,, for a search
over a vast template bank, using the estimate (9) for the
false-alarm probability. Assuming that the statistics p, for
each signal shape and starting time are independent, we re-
quire that

_,2 Frot
e Ponltm — 2L 17)
timesthapes

or

PHYSICAL REVIEW D 67, 024016 (2003)

Py= \/2(10g Niimest IOg Nshapes_ 1Og -ftot)- (18)

It is generally assumed that Ngpes~3 X 100 (equivalent to
templates displaced by 0.01 s over one year [44,12]) and that
the false-alarm probability F,,~ 10~ 3. Using these values,
we find that an increase of p, by about ~3% is needed each
time we increase N g,pes by one order of magnitude. So there
is a tradeoff between the improvement in signal-to-noise ra-
tio obtained by using more signal shapes and the correspond-
ing increase in the detection threshold for a fixed false-alarm
probability.

C. Imperfect detection and discrete families of templates

There are two distinct reasons why the detection of a
physical signal # by matched filtering with a template bank
{u,;} might result in signal-to-noise ratios lower than the op-
timal signal-to-noise ratio,

Pop= (B, h). (19)

First, the templates, understood as a continuous family
{u(A\*)} of functional shapes indexed by one or more intrin-
sic parameters N (such as the masses, spins, etc.), might
give an unfaithful representation of 4, introducing errors in
the representation of the phasing or the amplitude. The loss
of signal to noise due to unfaithful templates is quantified by
the fitting factor (FF), introduced by Apostolatos [45], and
defined by

maxya(h,u(\?))

V(h,h)

FF(h,u(\))= (20)

In general, we will be interested in the FF of the continuous
template bank in representing a family of physical signals
{h(6")}, dependent upon one or more physical parameters
#*: so we shall write FF(#')=FF(h(6"),u(\")). Although
it is convenient to index the template family by the same
physical parameters " that characterize 7( "), this is by no
means necessary; the template parameters \* might be a
different number than the physical parameters (indeed, this is
desirable when the #* get to be very many), and they might
not carry any direct physical meaning. Notice also that the
value of the FF will depend on the parameter range chosen to
maximize the \*.

The second reason why the signal-to-noise will be de-
graded with respect to its optimal value is that, even if our
templates are perfect representations of the physical signals,
in practice we will not adopt a continuous family of tem-
plates, but we will be limited to using a discrete bank {u;
= u()\?)}. This loss of signal to noise depends on how finely
templates are laid down over parameter space [37-39]; a
notion of metric in template space (the mismatch metric
[28,29,46]) can be used to guide the disposition of templates
so that the loss (in the perfect-template abstraction) is limited
to a fixed, predetermined value, the minimum match (MM),
introduced in Refs. [29,37], and defined by
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MM =min max(u(XA),u()\?»

A\

=min max(u(X*),u(X4+AND)), (21)
Mo

where ANY=\%—X4. The mismatch metric g zc(X*) for the
template space {u(\*)} is obtained by expanding the inner
product (or match) {(u(X*),u(X*+AN")) about its maxi-
mum of 1 at AN*=0:

(u(X*),u(X*+ANY)

= M(RA KA+ AN

1 M

T o EaaC
JANPIANC] .,

ANBANC+ .-, (22)

so the mismatch 1 —M between u(XA) and the nearby tem-

plate u(X*+AX?) can be seen as the square of the proper
distance in a differential manifold indexed by the coordinates
M [29],

1—M(RA XA+ AN =gz cANBANC, (23)
where

1 M

- . (24)
2 JANPOANC |,

8pCc= —

If, for simplicity, we lay down the n-dimensional discrete
template bank {u(\?)} along a hypercubical grid of cell-size
dl in the metric g45 (a grid in which all the templates on
nearby corners have a mismatch of dI with each other), the

minimum match occurs when X lies exactly at the center of
one of the hypercubes: then 1 —MM=n(d1/2)?. Conversely,
given MM, the volume of the corresponding hypercubes is
given by Vyy=[2V(1—MM)/n]". The number of tem-
plates required to achieve a certain MM is obtained by inte-
grating the proper volume of parameter space within the re-
gion of physical interest, and then dividing by Vi :

f V]gldnA
RNIETD S

In practice, if the metric is not constant over parameter space
it will not be possible to lay down the templates on an exact
hypercubical grid of cell-size dI, so A will be somewhat
higher than predicted by Eq. (25). However, we estimate that
this number should be correct within a factor of two, which
is adequate for our purposes.

In the worst possible case, the combined effect of unfaith-
ful modeling (FF<1) and discrete template family (MM
<1) will degrade the optimal signal to noise by a factor of
about FF+MM—1. This estimate for the total signal-to-
noise loss is exact when, in the space of signals, the two

Meg.MM] (25)
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segments that join h(6Y) to its projection u(X?) and u(X4)
to the nearest discrete template u(X?) can be considered or-
thogonal:

(h(0") = u(X"),u(X*) —u(X{))=0. (26)

This assumption is generally very accurate if FF and MM are
small enough, as in this paper; so we will adopt this estimate.
However, it is possible to be more precise, by defining an
external metric g5, [28,47] that characterizes directly the
mismatch between A (#') and a template u(X*+ AN?) that is
displaced with respect to the template u(X*) that is yields
the maximum match with ().

Since the strength of gravity-wave signals scales as the
inverse of the distance [48], the matched-filtering scheme,
with a chosen signal-to-noise threshold p,, , will allow the
reliable detection of a signal &, characterized by the signal
strength A, = \(/,h) at the distance d;, out to a maximum
distance

dy Py @)

If we assume that the measured GW events happen with a
homogeneous event rate throughout the accessible portion of
the universe, then the detection rate will scale as dfnax. It
follows that the use of unfaithful, discrete templates {u;} to
detect the signal /# will effectively reduce the signal strength,
and therefore d,,,, , by a factor FF+MM— 1. This loss in the
signal-to-noise ratio can also be seen as an increase in the
detection threshold p, necessary to achieve the required
false-alarm rate, because the imperfect templates introduce
an element of uncertainty. In either case, the detection rate
will be reduced by a factor (FF+ MM — 1)3.

D. Approximations for detector noise spectrum
and gravitational-wave signal

For LIGO-I we use the analytic fit to the noise power
spectral density given in Ref. [13], and plotted in Fig. 1:

Sn(f) B 46[( i —56 (i) —4.52
- =9.00X 10 4.49f0 +0.16 7o
f 2
+0.52+ 0.32( f_o) } (28)

where f,= 150 Hz. The first term in the square brackets rep-
resents seismic noise, the second and third, thermal noise,
and the fourth, photon shot noise.

Throughout this paper, we shall compute BBH waveforms
in the quadrupole approximation (we shall compute the
phase evolution of the GWs with the highest possible accu-
racy, but we shall omit all harmonics higher than the quad-
rupole, and we shall omit post-Newtonian corrections to the
amplitude; this is a standard approach in the field, see, e.g.,
[11]). The signal received at the interferometer can then be
written as [5,32]
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TABLE L. Post-Newtonian models of two-body dynamics defined in this paper. The notation X(nPN,mPN;#) denotes the model X, with
terms up to order nPN for the conservative dynamics, and with terms up to order mPN for radiation-reaction effects; for m=3 we also need

to specify the arbitrary flux parameter & (see Sec. III A); for n=3, the effective-one-body models need also two additional parameters z; and

2, (see Sec. IV Q).

Model Shorthand Evolution equation Section
Adiabatic model with Taylor-expanded T(nPN,mPN; 6) energy-balance equation Sec. Il A
energy &(v) and flux F(v)

Adiabatic model with Padé-expanded P(nPN,mPN; 6) energy-balance equation Sec. III B
energy &(v) and flux F(v)

Adiabatic model with Taylor-expanded energy &(v) SPA(nPN=mPN) energy-balance equation in Sec. VIF
and flux F(v) in the stationary-phase approximation the frequency domain

Nonadiabatic Hamiltonian model with HT(nPN,mPN; d) Hamilton equations Sec. IV A
Taylor-expanded GW flux

Nonadiabatic Hamiltonian model with HP(nPN,mPN; 6) Hamilton equations Sec. IV A
Padé-expanded GW flux

Nonadiabatic Lagrangian model L(nPN,mPN) F=ma Sec. IVB
Nonadiabatic effective-one-body model ET(nPN,mPN;0:2,,2,) effective Hamilton equations Sec. IV C
with Taylor-expanded GW flux

Nonadiabatic effective-one-body model EP(nPN,mPN;0:2,.2,) effective Hamilton equations Sec. IV C

with Padé-expanded GW flux

Q)
h(t)= EM 7( 77'MfGW)ZBCOS PGw > (29)

where f and @gyw are the instantaneous GW frequency and
phase at the time ¢, dy is the luminosity distance, M and 7
are, respectively, the BBH total mass m;+m, and the di-
mensionless mass ratio n,m,/M?, and where we have taken
G =c=1. The coefficient ® depends on the inclination of the
BBH orbit with respect to the plane of the sky, and on the
polarization and direction of propagation of the GWs with
respect to the orientation of the interferometer. Finn and
Chernoff [32] examine the distribution of @, and show that
O,.«=4, while rms ®=28/5. We shall use this last value
when we compute optimal signal-to-noise ratios. The wave-
form given by Eq. (29), after dropping the factor ® M n/d, ,
is known as restricted waveform.

III. ADIABATIC MODELS

We turn, now, to a discussion of the currently available
mathematical models for the inspiral of BBHs. Table I shows
a list of the models that we shall consider in this paper,
together with the shorthands that we shall use to denote
them. We begin in this section with adiabatic models. BBH
adiabatic models treat the orbital inspiral as a quasistationary
sequence of circular orbits, indexed by the invariantly de-
fined velocity

v=(Me)'"P=(mMfew)". (30)

The evolution of the inspiral (and in particular of the orbital
phase ¢) is completely determined by the energy-balance
equation

d&(v) 3
dr

—Fwv). (31)

This equation relates the time derivative of the energy func-
tion &(v) (which is given in terms of the total relativistic
energy & by £=E&—m—m,, and which is conserved in
absence of radiation reaction) to the gravitational flux (or
luminosity) function F(v). Both functions are known for
quasicircular orbits as a PN expansion in v. It is easily
shown that Eq. (31) is equivalent to the system (see, e.g.,
Ref. [27])

__ T 32)

quGW_ 21)3 dv
B M d&wv)ldv’

dt M’ dt

In accord with the discussion around Eq. (29), we shall only
consider the restricted waveform h(t)= v2cos ogw(t), where
the GW phase ¢gw is twice the orbital phase ¢.

A. Adiabatic PN expanded models

The equations of motion for two compact bodies at 2.5PN
order were first derived in Refs. [49]. The 3PN equations of
motion have been obtained by two separate groups of re-
searchers: Damour, Jaranowski and Schafer [50] used the
Arnowitt-Deser-Misner (ADM) canonical approach, while
Blanchet, Faye and de Andrade [51] worked with the PN
iteration of the Finstein equations in the harmonic gauge.
Recently Damour and colleagues [52], working in the ADM
formalism and applying dimensional regularization, deter-
mined uniquely the static parameter that enters the 3PN
equations of motion [50,51] and that was until then un-
known. In this paper we shall adopt their value for the static
parameter. Thus at present the energy function £ is known up
to 3PN order.

The gravitational flux emitted by compact binaries was
first computed at 1PN order in Ref. [53]. It was subsequently
determined at 2PN order with a formalism based on multi-
polar and post—Minkowskian approximations, and, indepen-

024016-7



BUONANNO, CHEN, AND VALLISNERI

dently, with the direct integration of the relaxed Einstein
equations [54]. Nonlinear effects of tails at 2.5PN and 3.5PN
orders were computed in Refs. [55]. More recently, Blanchet
and colleagues derived the gravitational-flux function for
quasicircular orbits up to 3.5PN order [56,57]. However, at
3PN order [56,57] the gravitational-flux function depends on

an arbitrary parameter @ that could not be fixed in the regu-
larization scheme used by these authors.

1. PN energy and flux

Denoting by €TN and }"TN the N"™-order Taylor approxi-

mants (7 approximants) to the energy and the flux functions,
we have

N

€1, (V)= Exena(v) 24 El ), (33)
N

Fr ()= Frenlv) 2 Felmv", (34)

where “Newt” stands for Newtonian order, and the sub-
scripts 2N and N stand for post’¥-Newtonian and
post"-Newtonian order. The quantities in these equations are

(c/' :_l 2 :§ 2..10 35
Newt(V) 5 Mm% Frew(V) S (35)

3 9 27 19 ?
Eo(m)=1, El(ﬂ)z—z—ﬁ, 52(7I)=—§+§77—ﬂ,
(36)
i 675 (34445 205 155 , 35
== 576 " 96 ™ |7 96 7 51847
(37)

1247 35

Folm)=1, Fi(n)=0, fz(ﬂ)z—%—ﬁﬂ,
Fi(np)=4m, (38)

44711 9271 65

- . .2
Fam== 5575 " 505 187

o [8191, 535 “
s(p)=— ot ™ (39)
£ 60879519 16 1712 8s6
o= "gogsaq00 "3 ™ 105 YE 10508160
13613 41 , 88| 9M03 |
T 272160 48" T 377 3004 7
775 0
~ 3547 (40)

16285

176419 19897

2
512 7T 38 7 )’T' “1)
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FIG. 2. Normalized flux function 7 /Fyey versus v, at differ-
ent PN orders for equal-mass binaries, 7=0.25. Note that the
1.5PN and 2PN flux, and the 3PN and 3.5PN flux, are so close that
they cannot be distinguished in these plots. The two long-dashed
vertical lines correspond to v=0.18 and v=0.53; they show the
velocity range that corresponds to the LIGO frequency band 40
< fow=240 Hz for BBHs with total mass in the range 10-40M .

Here p=mm,/(m,+m,)?, yg is Euler’s gamma, and & is
the arbitrary 3PN flux parameter [56,57]. From Table I of
Ref. [56] we read that the extra number of GW cycles accu-
mulated by the PN terms of a given order decreases
(roughly) by an order of magnitude when we increase the PN
order by one. Hence, we find it reasonable to expect that at

3PN order the parameter & should be of order unity, and we

choose as typical values §=0,*2.
In Fig. 2 we plot the normalized flux ]—'TN/&’-'I\Iewt as a

function of v at various PN orders for the equal mass case
1n=0.25. To convert v to a GW frequency we can use

20M

fow=32x10* —— v (42)

The two long-dashed vertical lines in Fig. 2 correspond to
v==0.18 and v=0.53; they show the velocity range that cor-
responds to the LIGO frequency band 40=< f5w=240 Hz for
BBHs with total mass in the range 10-40M . At the
LIGO-I peak-sensitivity frequency, which is 153 Hz accord-
ing to our noise curve, and for a (10+10)M o BBH, we have
v=0.362; and the percentage difference between subsequent
PN orders is Newt— 1PN:—58%; 1PN—1.5PN:+142%;
1.5PN—2PN: —0.2%; 2PN—2.5PN: —34%; 2.5PN
—3PN(#=0):+43%; 3PN—3.5PN(#=0):+0.04%. The
percentage difference between the 3PN fluxes with §= *+2 is
~7%. It is interesting to notice that while there is a big
difference between the 1PN and 1.5PN orders, and between
the 2PN and 2.5PN orders, the 3PN and 3.5PN fluxes are
rather close. Of course this observation is insufficient to con-
clude that the PN sequence is converging at 3.5PN order.
In the left panel of Fig. 3, we plot the T approximants for
the energy function versus v, at different PN orders, while in
the right panel we plot (as a function of the total mass M, and
at the LIGO-I peak-sensitivity GW frequency fpeax
=153 Hz) the percentage difference of the energy function
between T approximants to the energy function of successive

024016-8



DETECTION TEMPLATE FAMILIES FOR . ..

PHYSICAL REVIEW D 67, 024016 (2003)

000 1 T T T T H 16 T T T T T
h ! -~ T-model 1PN ! += T-model 1PN — 2PN i
" - T-model2PN ! — T-model2PN - 3PN -7
N T-model 3PN | 121 S A
0011 | % . o
I b 1 —~ _,‘
o E N 3 gh 8 7 1
| Nl B i
002F LS R i
I \\\ 1 4 F ’_’ =
I . i -t
I £ 1 -
I \\ I
| W ! — e ——— |
-0.03 Ll 1 I I AN | 0 I L
01 02 03 04 05 06 0 15 20 ﬁ 30 35 40

FIG. 3. In the left panel, we plot the energy function ETN versus v, at different PN orders, for 7=0.25. The two long-dashed vertical lines
in the left figure correspond to v=0.18 and v==0.53; they show the velocity range that corresponds to the LIGO frequency band 40
<fow=240 Hz, for BBHs with total mass in the range 10-40M . In the right panel, we plot the percentage difference 5€TN
= 100|(5TN+I_5TN)/ STN| versus the total mass M, for N=1,2, at the LIGO-I peak-sensitivity GW frequency, fye.= 153 Hz [note: U peak

=(TMfpear) 1.

PN orders. We note that the 1PN and 2PN energies are dis-
tant, but the 2PN and 3PN energies are quite close.

2. Definition of the models

The evolution equations (32) for the adiabatic inspiral
lose validity (the inspiral ceases to be adiabatic) a little be-

fore v reaches vl(/ll\l]ECO’ where MECO stands for maximum-
binding-energy circular orbit [58,59]. This Ul{/l[\llECO is com-
puted as the value of v at which dETN(v)/dv =0. In building

our adiabatic models we evolve Egs. (32) right up to vygco
and stop there. We shall refer to the frequency computed by
setting v =vypco in Eq. (42) as the ending frequency for
these waveforms, and in Table II we show this frequency for
some BH masses. However, for certain binaries, the 1PN and
2.5PN flux functions can go to zero before U:U;[A]/aco (see
Fig. 2). In those cases we choose as the ending frequency the
value of f:U3/(7TM) where F(v) becomes 10% of
Fnewt(V). (When using the 2.5PN flux, our choice of the
ending frequency differs from the one used in Ref. [13],
where the authors stopped the evolution at the GW frequency
corresponding to the Schwarzschild innermost stable circular
orbit. For this reason there are some differences between our
overlaps and theirs.)

We shall refer to the models discussed in this section as
T(nPN,mPN), where nPN (mPN) denotes the maximum

PN order of the terms included for the energy (the flux). We
shall consider (nPN,mPN)=(1,1.5),(2,2),(2,2.5) and

(3,3.5,9) (at 3PN order we need to indicate also a choice of
the arbitrary flux parameter 6).

3. Waveforms and matches

In Table III, for three typical choices of BBH masses, we
perform a convergence test using Cauchy’s criterion [27],
namely, the sequence T converges if and only if for each k
(Ty,Ty+r)—1 as N—o. One requirement of this criterion
is that (T ,Ty+1)—1 as N—o, and this is what we test in
Table III, setting Ty=T(N,N+0.5). The values quoted as-
sume maximization on the extrinsic parameters but not on
the intrinsic parameters. [For the case (10+10)Mq, we
show in parentheses the maxmax matches obtained by maxi-
mizing with respect to the intrinsic and extrinsic parameters,
together with the intrinsic parameters M and 7 of Ty,
where the maxima are attained.] These results suggest that
the PN expansion is far from converging. However, the very
low matches between N=1 and N=2, and between N=2
and N=3, are due to the fact that the 2.5PN flux goes to zero
before the MECO can be reached. If we redefine T, as
T(2,2) instead of 7(2,2.5), we obtain the higher values
shown in brackets is Table III.

In Fig. 4 we plot the frequency-domain amplitude of the
T-approximated waveforms, at different PN orders, for a

TABLE II. Location of the MECO/ISCO. The first six columns show the GW frequency at the maximum binding energy for circular
orbits (MECO), computed using the 7 and P approximants to the energy function; the remaining columns show the GW frequency at the
innermost stable circular orbit (ISCO), computed using the H approximant to the energy, and using the EOB improved Hamiltonian (91) with

Z1=2,=0. For the H approximant the ISCO exists only at 1PN order.

fow (Hz) at MECO fow (Hz) at ISCO
M T(PN) T@PN) T@PN) P(2PN) P@PN) | H(IPN) E(PN) E (2PN) E (3PN)
(5+5)Mg 3376 886 832 572 866 183 446 473 570
(10+100M 1688 442 416 286 433 92 223 236 285
(I5+15M 1125 295 277 191 289 61 149 158 190
(20+200M 844 221 208 143 216 46 112 118 143
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TABLE III. Test for the Cauchy convergence of the T approximants. The values quoted are maxmax
matches obtained by maximizing with respect to the extrinsic parameters, but not to the intrinsic parameters
(i.e., the matches are computed for 7 waveforms with the same masses, but different PN orders). Here we
define Ty=T7(0,0), T,=T(1,1.5) T,=T(22.5), T3=T(3,3.5,6). In the Newtonian case, T,=(0,0), the
MECO does not exist and we stop the integration of the balance equation at v = 1. The values in brackets,

“[---],” are obtained by setting T,=T(2,2) instead of 7(2,2.5); the values in parentheses, “(- -

-),” are

obtained by maximizing with respect to the extrinsic and intrinsic parameters, and they are shown together
with the T, ; parameters M and 7 where the maxima are achieved. In all cases the integration of the

equations is started at a GW frequency of 20 Hz.

<TN ) TN+ 1>
N (5+20)M (10+10)M (15+15)M ¢,
0 0.432 0.553 (0.861, 19.1, 0.241) 0.617
1 0.528 [0.638] 0.550 (0.884, 22.0, 0.237) 0.645 [0.712]
2(6=+2) 0.482 [0.952] 0.547 (0.841, 18.5, 0.25) 0.563 [0.917]

2(6=-2) 0.457 [0.975]

0.509 (0.821, 18.7, 0.241)

0.524 [0.986]

(15+15)Ms BBH. The Newtonian amplitude, Ayew(f)
= f77/6, is also shown for comparison. In the 7(1,1) and
T(2,2.5) cases, the flux function goes to zero before v
=v£["éco; this means that the radiation-reaction effects be-
come negligible during the last phase of evolution, so the
binary is able to spend many cycles at those final frequen-
cies, skewing the amplitude with respect to the Newtonian
result. For 7(2,2), T(3,3), and T(3,3.5), the evolution is
stopped at U:U;ﬁaco’ and, although M¥CO:27O—3OO Hz
(see Table II) the amplitude starts to deviate from f~ 7/
around 100 Hz. This is a consequence of the abrupt termi-
nation of the signal in the time domain.

The effect of the arbitrary parameter & on the T wave-
forms can be seen in Table IV in the intersection between the
rows and columns labeled 7(3,3.5,+2) and 7(3,3.5,—2).
For three choices of BBH masses, this table shows the max-
max matches between the search models at the top of the
columns and the target models at the left end of the rows,
maximized over the mass parameters of the search models in
the columns. These matches are rather high, suggesting that
for the range of BBH masses we are concerned with, the

effect of changing & is just a remapping of the BBH mass

107 .
-3
10" — Newtonian
g | —man
—-= T(1,15)
10%F - T2
o T(2,2.5)
) T(3, 3, 8=0)
10759 40 100 200 400
f(Hz)

FIG. 4. Frequency-domain amplitude versus frequency for the
T-approximated (restricted) waveforms at different PN orders for a

(15+15)M ¢ BBH. The T(3,3.5,0=0) curve, not plotted, is almost
identical to the T(3,3,§=0) curve.

parameters. Therefore, in the following we shall consider

only the case of #=0.

A quantitative measure of the difference between the
T(2,2), T(2,2.5) and T(3,3.5) waveforms can be seen in
Table V in the intersection between the rows and columns
labeled T'( .. .). For four choices of BBH masses, this table
shows the maxmax matches between the search models in
the columns and the target models in the rows, maximized
over the search-model parameters M and #; in the search, 7
is restricted to its physical range 0<<np=1/4, where O corre-
sponds to the test-mass limit, while 1/4 is obtained in the
equal-mass case. These matches can be interpreted as the
fitting factors [see Eq. (20)] for the projection of the target
models onto the search models. For the case 7(2,2.5) the
values are quite low: if the 7'(3,3.5) waveforms turned out to
give the true physical signals and if we used the 7'(2,2.5)
waveforms to detect them, we would lose ~32—-49 % of the
events. The model 7(2,2) would do match better, although it
would still not be very faithful. Once more, the difference
between 7(2,2) and T7(2,2.5) is due to the fact that the
2.5PN flux goes to zero before the BHs reach the MECO.

B. Adiabatic PN resummed methods: Padé approximants

The PN approximation outlined above can be used quite
generally to compute the shape of the GWs emitted by BNSs
or BBHSs, but it cannot be trusted in the case of binaries with
comparable masses in the range M =10-40M ¢, , because for
these sources LIGO and VIRGO will detect the GWs emitted
when the motion is strongly relativistic, and the convergence
of the PN series is very slow. To cope with this problem,
Damour, Iyer and Sathyaprakash [27] proposed a new class
of models based on the systematic application of Padé re-
summation to the PN expansions of &(v) and F(v). This is
a standard mathematical technique used to accelerate the
convergence of poorly converging or even divergent power
series.

If we know the function g(v) only through its Taylor
approximant  Gy(v)=go+gv+---+gyv =Ty[g(v)],
the central idea of Padé resummation [60] is the replacement
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TABLE 1V. Fitting factors between T and ET models, at 2PN and 3PN orders, and for different choices of the arbitrary flux parameter . For three choices of BBH masses, this table
shows the maxmax matches [see Eq. (10)] between the search models at the top of the columns and the target models at the left end of the rows, maximized over the mass parameters
of the models in the columns. For each intersection, the three numbers mm, M and 7 denote the maximized match and the search-model mass parameters at which the maximum is
attained. The matches can be interpreted as the fitting factors for the projection of the target models onto the search models. See the caption to Table VIII for further details.

I1-910¥20

T(2,2.5) ET(2,2.5) 7(3,3.5,+2) 7(3,3.5,—2) ET(3,3.5,+2) ET(3,3.5,—2)
mm M n mm M n mm M n mm M n mm M n mm M n
(15+15)M 0914 27.58 0.248
T(2,2.5) (15+5)M ¢ 0916 16.81 0.249
(5+5)Mg 0.900 10.13 0.241
(15+15)Ms 0922 3393 0.241
ET(225) (I5+5)Ms 0971 33.17 0.076
(5+5)Ms 0984 1357 0.147
(15+15)M ¢ 0.995 29.83 0.243 0963 30.52 0.240 0974 30.32 0.240
T(3,3.5,+2) (15+5)M o 1.000 19.06 0.204 0984 20.03 0.186 0.974 20.09 0.182
(5+5)Mg 0981 996 0250 0991 10.16 0.242 0972 994 0.250
(15+15)M 0.998 30.94 0.242 0.951 3127 0.239 0960 30.59 0.241
7(3,3.5,—2) (15+5)M ¢ 1.000 2093 0.173 0.985 20.89 0.173 0983 20.27 0.181
(5+5)Mg 0.999 10.61 0.226 0994 1026 0.240 0.993 10.19 0.241
(15+15)M ¢ 0.951 30.39 0.240 0931 29.76 0.241 0.994 30.06 0.241
ET(3,3.5,+2) (15+5)Mg 0981 20.16 0.186 0.985 1897 0.207 1.000 19.23 0.201
(5+5)Mg 0.996 10.22 0.240 0985 9.96 0.250 0979 995 0.250
(15+15)M ¢ 0.963 30.94 0.240 0953 3030 0.241 0999 31.07 0.238
ET(3,35,—2) (15+5)M¢ 0.983 20.65 0.179 0980 2032 0.182 1.000 20.83 0.175
(5+5)Mg 0.987 10.27 0.240 0996 10.21 0.241 1.000 10.51 0.230
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TABLE V. (Continued in Table VIII.) Fitting factors between several PN models, at 2PN and 3PN orders. For three choices of BBH
masses, this table shows the maxmax matches [see Eq. (10)] between the search models at the top of the columns and the farger models at
the left end of the rows, maximized over the intrinsic parameters of the search models in the columns. For each intersection, the three
numbers mm, M =m,+m, and 5=mm,/M? denote the maximized match and the search-model mass parameters at which the maximum
is attained. In computing these matches, the parameter 7 of the search models was restricted to its physical range 0 < = 1/4. The arbitrary
flux parameter & was always set equal to zero. These matches represent the fitting factors [see Eq. (20)] for the projection of the target
models onto the search models. The reader will notice that the values shown are not symmetric across the diagonal: for instance, the match
for the search model 7(2,2.5) against the target model P(2,2.5) is higher than the converse. This is because the matches represent the inner
product (1) between two different pairs of model parameters: in the first case, the target parameters (m;=15M g ,m,=15M ) p=(M
=30M ¢ ,n=0.25)p are mapped to the maximum-match search parameters (M =39.7M o ,7=0.24);; in the second case, the target param-
eters (m,=15M ¢ ,m,=15M 5)7=(M =30M o, 7=0.25); are mapped to the maximum-match parameters (M =25.37M o ,7=0.24)p [so
the symmetry of the inner product (1) is reflected by the fact that the search parameters (M =25.3M , , 7= 0.24) p are mapped into the target
parameters (M =30M ¢ ,7=0.25)].

7(2,2) T(2,2.5) 7(3,3.5,0) P(225) P(3,3.5,0)
mm M n mm M n mm M n mm M n mm M n

T(2,2) (20+20)M 0.924 5447 023 0999 4047 024 0977 39.13 025 0999 4193 0.24
(15+15)M ¢ 0.873 3946 0.24 0.999 30.35 0.24 0980 29.69 0.25 0.998 31.54 0.23

(15+5)M¢ 0.885 2945 0.10 0998 19.64 0.19 0.992 18.07 0.22 0.998 20.23 0.18

(5+5)Mg 0988 21.28 0.06 0.998 10.61 022 0994 10.54 022 0999 11.16 0.20

T(2,2.5) (20+20)M 0.882 31.44 0.25 0.870 31.54 0.25 0.824 30.25 0.25 0.893 33.09 0.25
(I5+15)Mo 0.845 2485 0.25 0.835 2521 0.25 0.796 2535 0.25 0.863 26.20 0.25

(15+5)Ms 0.848 1534 0.25 0.865 15.74 0.25 0.870 15.85 0.25 0.894 15.90 0.25

(5+5)My 0801 941 025 0.823 951 0.25 0.826 951 0.25 0.849 9.61 025

7(3,3.5,0) (20+200M o 0.999 39.57 0.24 0916 54.63 0.23 0.989 39.03 0.24 0.997 41.56 0.23
(15+15)M5 0999 29.71 0.24 0.855 39.46 0.24 0.992 2925 0.25 1.000 31.97 0.21

(15+5)Ms 0999 2098 0.16 0.877 29.20 0.10 0.997 18.82 0.20 1.000 20.81 0.17

(5+5)My 0991 9.67 025 0986 19.49 0.07 0.998 990 0.24 1.000 10.57 0.22

P(225) (20+20)Ms 0970 4047 0.24 0.879 56.77 0.23 0.991 41.80 0.22 0.999 46.01 0.18
(15+15)M5 0967 30.15 0.24 0.816 39.66 0.24 0.998 32.66 0.20 0.999 34.02 0.19

(I5+5)Ms 0989 2377 0.12 0.792 20.56 0.20 0.996 21.55 0.15 0.998 21.83 0.15

(5+5)My 0989 9.67 025 0882 13.04 0.15 0998 10.08 0.24 0.997 10.75 0.21

P(3,3.5,0) (20+20)M 5 0.999 3833 0.24 0923 51.51 0.24 0997 3897 0.24 0971 37.70 0.25
(15+15)M 5 0.997 2847 0.25 0979 51.01 0.10 0.997 28.96 0.25 0.961 28.88 0.25
(15+5)Ms 0997 19.53 0.18 0.825 20.89 0.19 1.000 19.12 0.19 0.998 1832 0.21
(5+5)My 0949 9.80 0.24 0988 17.70 0.09 0993 9.75 0.25 0991 9.75 0.25

EP(22)5) (20+20)M 5 0954 38.10 0.25 0.936 51.14 0.24 0.933 39.10 0.25 0.878 38.22 0.25 0.962 39.94 0.25
(15+15)M5 0965 2934 0.25 0.895 3745 0.25 0960 29.60 0.25 0.903 29.56 0.25 0.975 30.15 0.25

(15+5)M5 0988 20.79 0.16 0.769 2197 0.19 0983 20.22 0.18 0969 19.54 0.19 0980 20.85 0.17

(5+5)Mgy 099 9.70 0.25 0980 20.46 0.07 0997 1029 0.23 0995 1022 0.23 0.997 10.83 0.21

EP(3,3.5,0) (20+20)0Ms 0946 37.11 0.25 0949 4890 0.24 0930 37.84 0.25 0.867 36.72 0.25 0.954 3880 0.24
(15+15)M5 0955 28.78 0.24 0913 3538 0.24 0948 28.89 0.25 0.893 28.82 0.25 0.968 29.50 0.25

(I5+5)Ms 0992 1851 0.20 0.808 22.15 0.18 0985 18.92 0.20 0970 1834 0.21 0983 19.63 0.19

(5+5)My 0968 9.65 025 0985 1841 0.08 0994 9.76 0.25 0992 9.77 0.25 0.998 10.16 0.23

HT(22) (20+20)M 0.777 21.39 0.25 0.890 27.58 0.25 0.768 21.61 0.25 0.732 21.63 0.25 0.789 22.57 0.25
(15+15M5 0.674 20.20 0.24 0.780 21.83 0.25 0.673 21.02 0.25 0.657 21.03 0.25 0.687 21.07 0.25

(15+5)Ms 0.616 15.88 0.20 0.666 18.84 0.18 0.625 17.37 0.18 0.645 16.10 0.22 0.631 17.14 0.18

(5+5)My 0796 9.62 025 0935 10.00 0.25 0.833 9.73 025 0.834 9.74 025 0.856 9.75 0.25

HT(33.5,0) (20+20)Mo 0.812 3235 0.25 0925 4491 024 0.795 3476 0.25 0.737 3298 0.25 0.812 37.10 0.24
(15+15)M5 0.848 2797 0.25 0919 3330 0.25 0.835 28.70 0.25 0.788 28.78 0.25 0.875 29.07 0.25

(15+5)Ms 0998 23.08 0.13 0.788 21.15 020 0999 2125 0.16 0994 19.77 0.18 0.999 21.81 0.15

(5+5)Mgy 0952 9.65 025 0.828 1036 024 0984 9.76 025 0984 9.77 025 0.992 999 0.24

HP(22.5) (20+20)M, 0.756 18.71 0.25 0.853 23.74 0.24 0.752 18.96 0.25 0.725 19.09 0.25 0.769 19.70 0.25
(15+15)M5 0.631 17.87 0.24 0.714 18.06 0.25 0.634 17.86 0.25 0.630 18.46 0.25 0.642 18.53 0.25
(15+5)Ms 0582 1433 025 0.631 16.88 0.20 0.587 14.54 0.25 0.600 16.40 0.18 0.589 17.88 0.15
(5+5)My 0731 941 025 0869 9.75 025 0.755 9.51 025 0.755 9.54 0.25 0.765 9.54 0.25

HP(3,3.5,0) (20+20)M 0.748 3236 0.25 0.879 4253 0.25 0.733 3251 025 0.679 30.72 0.25 0.756 34.48 0.25
(15+15M5 0.789 27.41 0.24 0915 31.80 0.25 0.782 2743 0.25 0.741 2743 0.25 0.817 28.60 0.25

(15+5)Ms 0998 21.75 0.15 0.792 20.41 0.21 1.000 20.57 0.17 0995 1929 0.19 0999 21.17 0.16

(5+5)My 0912 9.62 025 099 1620 0.10 0959 9.73 025 0961 9.76 0.25 0982 9.76 0.25
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of the power series G y(v) by the sequence of rational func-
tions

M=
8
e\

~
I
(=)

Ay(v) _
By(v) B

PYlg(v)]= : (43)

M ~
=
c\

~
I
o

with M+ K=N and TM+K[PAK/I(U)] =Gpy(v) (without loss of
generality, we can set bp=1). We expect that for M,K—

PHYSICAL REVIEW D 67, 024016 (2003)

Padé-approximated (P-approximated) & PN( v) and F PN( V)
(for N=273):

gPN:\/1+277w/1+epN(v)—1—1, (44)

32 1
=znv ——fr(v,7), (45)
N5 1_U/U§£1]e Py

M . . where
+oo, Pylg(v)] will converge to g(v) more rapidly than
Tnlg(v)] converges to g(v) for N— +o0, 1 9 1
I+-n—|4—=n+< 2)112
1. PN energy and flux 2 3 K ( 4 7 9 g
ep,(v)=—v 7 35 ,  (40)
Damour, Iyer and Sathyaprakash [27], and then Damour, 14+ = e ( 3- 202
Schafer and Jaranowski [17], proposed the following 3 127
|
1 ) 35 1 A
L= T4 g tws() o™= | 3= 57| L+37|ws(n)|v
ep.(v)=—0> , 47)
" = ws(n)v?
_ 40 27+1 41 4309 N 103 5 1 3 48
¥3T3635,10 1614 " 15 )77 1207 2707 | “8)
-1
c1v
fr,(v)=[ 1+ (upto cs), (49)
1420
I+ ...
12 g 50
fP3(U)_ 105 Y Ogvp2 0 (upto ¢7). (50)
MECO 1+
1+ .
|
Here the dimensionless coefficients ¢; depend only on 7. Fe
The c;’s are explicit functions of the coefficients f, (k fi=Fi— 2N (54)
=1,....9), " pole

£ fifs=13
= — R = -, = P e— 51
C1 fi, 2=fy £ C3 fl(f%_fz) (51)
B A S A2 fif3t )]
Cy=— . (52)

(f1=f)(f1f3—f2)

AR B2 i fof s+ ifafs)

(Fifs= D+ +fifa=F22 f1f3+fa)] 5
53

C5=

where

Here F, is given by Egs. (38)—(41) [for k=6 and k=7,
the term —856/105log16v> should be replaced by

—856/105 log 16(U1\P/IZECO)2]' The coefficients c; and cg are

straightforward to compute, but we do not show them be-
cause they involve rather long expressions. The quantity
is the MECO of the energy function e P, [defined by
P

pozle

)
UMECO

depz(v)/dv=0]. The quantity v_- , given by

(55)
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FIG. 5. Normalized flux function F, Py / Frew: Versus v at differ-
ent PN orders. The two long-dashed vertical lines give v=0.18 and
v=0.53; they show the velocity range that corresponds to the LIGO
frequency band 40=< f5w=240 Hz for BBHs with total mass in the
range 10—40M s . Compare with Fig. 2.

is the pole of e Py which plays an important role in the

scheme proposed by Damour, Iyer and Sathyaprakash [27]. It
is used to augment the Padé resummation of the PN ex-
panded energy and flux with information taken from the test-
mass case, where the flux (known analytically up to 5.5PN
order) has a pole at the light ring. Under the hypothesis of
structural stability [27], the flux should have a pole at the
light ring also in the comparable-mass case. In the test-mass
limit, the light ring corresponds to the pole of the energy, so
the analytic structure of the flux is modified in the
comparable-mass case to include U:)Jozle( 7). At 3PN order,
where the energy has no pole, we choose (somewhat arbi-
trarily) to keep using the value v;zle( 7); the resulting 3PN
approximation to the test-mass flux is still very good.

In Fig. 5 we plot the P approximants for the flux function
F PN(U), at different PN orders. Note that at 1PN order the P

approximant has a pole. At the LIGO-I peak-sensitivity fre-
quency, 153 Hz, for a (10+10)M s BBH, the value of v is
=0.362, and the percentage difference in _7-'PN(0.362), be-
tween successive PN orders is 1.5PN—2PN:—8%; 2PN
—2.5PN:+2.2%; 2.5PN—3PN(#=—2):+3.6%; 3PN
—3.5PN(#=—2):40.58%. So the percentage difference
decreases as we increase the PN order. While in the test-mass
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limit it is known that the P-approximants converge quite well
to the known exact flux function (see Fig. 3 of Ref. [27]), in
the equal-mass case we cannot be sure that the same is hap-
pening, because the exact flux function is unknown. (If we
assume that the equal-mass flux function is a smooth defor-
mation of the test-mass flux function, with # the deformation
parameter, then we could expect that the P approximants are
converging.) In the left panel of Fig. 6, we plot the P ap-
proximants to the energy function as a function of v, at 2PN
and 3PN orders; in the right panel, we plot the percentage
difference between 2PN and 3PN P approximants to the en-
ergy function, as a function of the total mass M, evaluated at
the LIGO-I peak-sensitivity GW frequency f e = 153 Hz.

2. Definition of the models

When computing the waveforms for P-approximant adia-
batic models, the integration of Egs. (32) is stopped at v
:UICII;IECO’ which is the solution of the equation
dEPN(v)/dUZO. The corresponding GW frequency will be

the ending frequency for these waveforms, and in Table II we
show this frequency for typical BBH masses. Henceforth, we
shall refer to the P-approximant models as P(nPN,mPN),

and we shall consider (nPN,mPN)=(2,2.5),(3,3.5,0). [Re-
call that nPN and mPN are the maximum post-Newtonian
order of the terms included, respectively, in the energy and
flux functions £(v) and F(v); at 3PN order we need to in-

dicate also a choice of the arbitrary flux parameter 6.]

3. Waveforms and matches

In Table VI, for three typical choices of BBH masses, we
perform a convergence test using Cauchy’s criterion [27].
The values are quite high, especially if compared to the same
test for the 7 approximants when the 2.5PN flux is used; see
Table III. However, as we already remarked, we do not have
a way of testing whether they are converging to the true
limit. In Fig. 7 we plot the frequency-domain amplitude of
the P-approximated (restricted) waveform, at different PN
orders, for a (15+ 15)M o BBH. The Newtonian amplitude,
Axew ()=, is also shown for comparison. At 2.5PN

and 3.5PN orders, the evolution is stopped at v=v, .}

16 T T T T T

— P-model 2PN — 3PN

FIG. 6. In the left panel, we plot the energy function SPN versus v at different PN orders. In the right panel, we plot the percentage

difference between 2PN and 3PN P approximants, 6Ep(U pea) = 100|[SP3(vpeak) - Epz(vpeak)]/ sz(vpeak)| versus the total mass M, again
evaluated at the LIGO-I peak-sensitivity GW frequency fpe= 153 Hz [note: v o= (7M fpens) 137,
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TABLE VI. Test for the Cauchy convergence of the P approxi-
mants. The values quoted are maxmax matches obtained by maxi-
mizing with respect to the extrinsic parameters, but not to the in-
trinsic parameters (i.e., the matches are computed for P waveforms
with the same masses, but different PN orders). Here we define
P,=P(225), P;=P(3,3.5). The values in parentheses are the
maxmax matches obtained by maximizing with respect to the ex-
trinsic and intrinsic parameters, shown together with the Py, ; pa-
rameters M and n where the maxima are attained. In all cases the
integration of the equations is started at a GW frequency of 20 Hz.

<PN ’PN+1>
N (20+5)M ¢ (10+10)M ¢ (15+15)M
2 (0=+2) 0.902 0.915 (0.973, 20.5, 0.242) 0.868
2 (§=-2) 0.931 0.955 (0.982, 20.7, 0.236) 0.923

although funco=190—290 Hz (see Table II), the amplitude
starts to deviate from f =76 around 100 Hz, well inside the
LIGO frequency band. Again, this is a consequence of the
abrupt termination of the signal in the time domain.

A quantitative measure of the difference between the
P(2,2.5) and P(3,3.5) waveforms can be seen in Table V in
the intersection between the rows and columns labeled
P(...). For three choices of BBH masses, this table shows
the maxmax matches between the search models in the col-
umns and the target models in the rows, maximized over the
search-model parameters M and 7, with the restriction O
<m=1/4. These matches are quite high, but the models are
not very faithful to each other. The same table shows also the
maximized matches (i.e., fitting factors) between T and P
models. These matches are low between T7(2,2.5) and
P(2,2.5) (and vice versa), between 7(2,2.5) and P(3,3.5)
(and vice versa), but they are high between 7(2,2), T(3,3.5)
and 3PN P approximants (although the estimation of mass
parameters is imprecise). Why this happens can be under-

H(q,p) = Hxew(q.p) + H1pxn(q,p) + Hopn(q,P) + H3pn (4, D),

PHYSICAL REVIEW D 67, 024016 (2003)

10* - — Newtonian 1
cee P(2,2.5)
--- P(3,3.5, 6=0)
10—5 i 1 L
20 40 100 200 400
f(Hz)

FIG. 7. Frequency-domain amplitude versus frequency for the
P-approximated (restricted) waveform at different PN orders for a
(15+15)M BBH.

stood from Fig. 8 by noticing that at 3PN order the percent-
age difference between the T-approximated and
P-approximated binding energies is rather small (<0.5%),
and that the percentage difference between the
T-approximated and P-approximated fluxes at 3PN order (al-
though still ~10%) is much smaller than at 2PN order.

IV. NONADIABATIC MODELS

By contrast with the models discussed in Sec. III, in nona-
diabatic models we solve equations of motions that involve
(almost) all the degrees of freedom of the BBH systems.
Once again, all waveforms are computed in the restricted
approximation of Eq. (29), taking the GW phase ¢gw as
twice the orbital phase ¢.

A. Nonadiabatic PN expanded methods:
Hamiltonian formalism

Working in the ADM gauge, Damour, Jaranowski and G.
Schafer have derived a PN expanded Hamiltonian for the
general-relativistic two-body dynamics [17,50,52]:

(56)

where
T T T T T 50 ; : - ; |
12 | —— P-model vs. T-model 2PN A g
— P-model vs. T-model 3PN b 40 - /== Pvs.T,25PN o
7 / — Pus.T,35PN,8=0
€ 8} 4 g
E -~ E
% ”/ % 20
4 [~ ’If’ -
Pl 10
0 ==~ I L L L N 0
10 15 20 25 30 35 40

M

FIG. 8. In the left panel, we plot the percentage difference 6Ep7(v pear) = 100|[€PN(Upeak) - STN(vpeak)]/ EPN(vpeak)| versus the total mass
M, for N=23, at the LIGO-I peak-sensitivity GW frequency fe.= 153 Hz [note: v e = (M fpe) '] In the right panel, we plot the
percentage difference between 2PN and 3PN P approximants, 6Fp(V pear) = 100|[ F, (U peald) — F Pz(vpeak)]/ F Pz(vpeak)| versus the total mass
M, again evaluated at the LIGO-I peak-sensitivity GW frequency f,..«= 153 Hz.
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2

N p- 1
Hyew(Q,P)= 5 —5, (57)

) 1 1 11
Hypn(q.p)= (37— (p*)?- S LB+ P+ ,](n_p)z];+_ (58)

Zqz’

) 1 1 1
Hapen(q.p) = 1 (1 =57+ 57°)(p*) + g [(5=209=37*)(p*)* = 277*(n-p)’p’ ~ 37’ (n- p)“]g

1 1 1 1
#3158 PP 39 p)? 5 - (1437, (59)
q q

H (5435007243557 (P o [(— T+ 429— 5307 — 5 77) (p2)°
3pN(Q, D) 128( +357—="709"+ n)(p)+16[( +427—=53n"=57")(p")

1
+(2-37)7*(n-p)*(p*)*+3(1—n) »*(n-p)*p* -5 773(11-p)6]g

1 1 1 1
+ R(—27+1367]+1097]2)(p2)2+R(17+307])7](n-p)2p2+E(5+4377)77(n-p)4}—2 (60)
q
L[, 388y 23 L], (85 3, T , 1
sl w TR T P T g e ™ g7 rp pe
1 (109 21 ) ]1 o
sl mm ) 61)

Here the reduced nonrelativistic Hamiltonian in the center-

of-mass frame, A=H}/ M, 1s written as a function of the
reduced canonical variables p=p,/u=—p,/u, and q=(x,
—X,)/M, where x; and X, are the positions of the BH cen-
ters of mass in quasi-Cartesian ADM coordinates (see Refs.
[17,50,52]); the scalars g and p are the (coordinate) lengths
of the two vectors; and the vector n is just q/q.

1. Equations of motion

We now restrict the motion to a plane, and we introduce
radiation-reaction (RR) effects as in Ref. [16]. The equations
of motion then read (using polar coordinates r and ¢ ob-
tained from the q with the usual Cartesian-to-polar transfor-
mation)

dr alfl( ) de . aH( L 62)
= \r, ro l AEw:_r’ ro ’
ai_ap, PPy apg TP
dp, oH .
d; :_E(r’pr’pw)_FF (r’pr’pgo)’
dpe .o
d—;ZF“’[w(r,p,,p(P)], (63)

where 7=t/M, @o=wM; and where F =F¢u and F’
=F"/pu are the reduced angular and radial components of the
RR force. Assuming F"<F? [16], averaging over an orbit,
and using the balance equation (31), we can express the an-
gular component of the radiation-reaction force in terms of
the GW flux at infinity [16]. More explicitly, if we use the
P-approximated flux, we have

. 1
Fé=Fp [v,]=— W}—PN[%]

w

32 7 fPN(Uw§7]) (64)
R L Y Y.
5 l—vw/vpozle(n)

while if we use the T-approximated flux we have

. 1
Fe=Fr [v,]=— 7703fTN[uw], (65)

w

where v, = ®'*=(d¢/dt)"3. This v, is used in Eq. (29) to
compute the restricted waveform. Note that at each PN order,
say nPN, we define our Hamiltonian model by evolving the
Egs. (62) and (63) without truncating the partial derivatives
at the nPN order (differentiation with respect to the canoni-
cal variables can introduce terms of order higher than nPN).
Because of this choice, and because of the approximation
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used to incorporate radiation-reaction effects, these nonadia-
batic models are not, strictly speaking, purely post-
Newtonian.

2. Innermost stable circular orbit

Circular orbits are defined by setting r=const while ne-
glecting radiation-reaction effects. In our PN Hamiltonian
models, this implies JH/dp, =0 through Eq. (62); because at
all PN orders the Hamiltonian A [Eqgs. (56)—(61)] is qua-
dratic in p,, this condition is satisfied for p,=0; in turn, this
implies also dH/dr=0 [through Eq. (63)], which can be
solved for p,. The orbital frequency is then given by )
=0HIdp,.

The stability of circular orbits under radial perturbations
depends on the second derivative of the Hamiltonian:

H R ,
——> (< stable orbit; ——<<0<unstable orbit.
ar? ar?
(66)

For a test particle in Schwarzschild geometry (the 7—0 of a
BBH), an innermost stable circular orbit (ISCO) always ex-
ists, and it is defined by

gErSchw
ar

aZI:‘ISchw

ar?

=0, (67)

r,=0

r,=0

where H5™(r.p,.p o) is the (reduced) nonrelativistic test-
particle Hamiltonian in the Schwarzschild geometry. Simi-
larly, if such an ISCO exists for the (reduced) nonrelativistic

PN Hamiltonian A [Eq. (56)], it is defined by

0B

I*A
ar

- =0. (68)
.

=0

r

p,=0

Any inspiral built as an adiabatic sequence of quasicircular
orbits cannot be extended to orbital separations smaller than
the ISCO. In our model we integrate the Hamiltonian equa-
tions (62) and (63), including terms up to a given PN order,
without retruncating the equations to exclude terms of higher
order that have been generated by differentiation with respect
to the canonical variables. Consistently, the value of the
ISCO that is relevant to our model should be derived by
solving Eq. (68) without any further PN truncation.

How is the ISCO related to the maximum binding energy
for circular orbit (MECO), used above for nonadiabatic mod-
els such as 7? The PN expanded energy for circular orbits

é’Tn((I)) at order nPN can be recovered by solving the equa-
tions

dH(r,p,=0,p,) 0 oH(r,p,=0,p,)

PP \ o, =w, (69)

for r and p, as functions of , and by using the solutions to
define

PHYSICAL REVIEW D 67, 024016 (2003)

A(0)=H[r(®),p,=0,p,(@)]. (70)

Then H(o=0v">) =&r (v) as given by Eq. (33), if and only if
in this procedure we are careful to eliminate all terms of
order higher than nPN (see, e.g., Ref. [58]).

In the context of nonadiabatic models, the MECO is then
defined by

=0, (71)

and it also characterizes the end of adiabatic sequences of
circular orbits. Computing the variation of Eq. (70) between
nearby circular orbits, and setting p,=0, dp,=0, we get

i 9*H ; azﬁld ﬁzﬁd *H b —o
w= r+——dp,, —=dr+ P.=0,
drdp, api LA drdp, ¢
(72)

and combining these two equations we get

( PH )2 P*H azﬁll o)
| -
f7”(917<p 07p¢ ar

dp, *H

do ar?

So finally we can write

2\’

ardp

dd 0H dp, J¢*H oH
do P, do

apy Ir
(74)

aa A"
art pg ’

Not surprisingly, Egs. (74) and (70) together are formally
equivalent to the definition of the ISCO, Eq. (68) [note that
the second and third terms on the right-hand side of Eq. (74)

are never zero]. Therefore, if we knew the Hamiltonian H
exactly, we would find that the MECO defined by Eq. (71) is
numerically the same as the ISCO defined by Eq. (68). Un-
fortunately, we are working only up to a finite PN order (say
nPN); thus, to recover the MECO as given by Eq. (33), all
three terms on the right-hand side of Eq. (74) must be written

in terms of (:), truncated at nPN order, then combined and
truncated again at nPN order. This value of the MECO, how-
ever, will no longer be the same as the ISCO obtained by
solving Eq. (68) exactly without truncation.

If the PN expansion was converging rapidly, then the dif-
ference between the ISCO and the MECO would be mild;
but for the range of BH masses that we consider the PN
convergence is bad, and the discrepancy is rather important.
The ISCO is present only at 1PN order, with rjgco=9.907

and wysco=0.02833. The corresponding GW frequencies are
given in Table II for a few BBHs with equal masses. At 3PN
order we find the formal solution r’>“©=1.033 and pgco
=(0.355, but since we do not trust the PN expanded Hamil-
tonian when the radial coordinate gets so small, we conclude

that there is no ISCO at 3PN order.
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TABLE VII. Test for the Cauchy convergence of the HT and HP approximants. The values quoted are maxmax matches obtained by
maximizing with respect to the extrinsic parameters, but not to the intrinsic parameters (i.e., the matches are computed for H waveforms with
the same masses, but different PN orders). Here we define HTy=HT(0,0), HT,=HT(1,1.5), HT,=HT(2,2) [because the 2.5PN flux goes
to zero before the MECO is reached, so we use the 2PN flux], HT3=HT(3,3.5,9); we also define HP,=HP(0,0), HP,=HP(1,1.5),
HP,=HP(22.5), and HPy=HP(3,3.5,0). The values in parentheses are the maxmax matches obtained by maximizing with respect to the
extrinsic and intrinsic parameters, shown together with the Hy,, parameters M and 7z where the maxima are attained. In all cases the
integration of the equations is started at a GW frequency of 20 Hz.

N (HTy HTy 1) (HPy HP )
(5+200M¢ (10+10)Mo (15+15Mo | (5+200M o (10+10)M o (15+ 15 Mo
0 0.118 0.191 (0.553, 13.7, 0.243) 0.206 0.253 0.431 (0.586, 16.7, 0.242) 0.316
1 0.102 0.174 (0.643, 61.0, 0.240) 0.170 0.096 0.161 (0.623, 17.4, 0.239) 0.151
2 (h=+2) 0.292 0.476 (0.656, 18.6, 0.241) 0.377 0.266 0.369 (0.618, 17.6, 0.240) 0.325
2 (h=—2) 0.287 0.431 (0.671,19.0,0.241) 0.377 0.252 0.354 (0.622, 17.4, 0.239) 0.312

3. Definition of the models

In order to build a quasicircular orbit with initial GW
frequency f(, our initial conditions (7ini¢sPy init>P ¢ init) aT€
set by imposing @i =mfo. P,wi=0 and driy/di=
— FI(ndHIdr) .. as in Ref. [40]. The initial orbital phase
@iyt Temains a free parameter. For these models, the criterion
used to stop the integration of Egs. (62), (63) is rather arbi-
trary. We decided to push the integration of the dynamical
equations up to the time when we begin to observe unphysi-
cal effects due to the failure of the PN expansion, or when
the assumptions that underlie Eqs. (63) [such as F'<F¥],
cease to be valid. When the 2.5PN flux is used, we stop the
integration when ]—'TN equals 10% of Fyew:,» and we define
the ending frequency for these waveforms as the instanta-
neous GW frequency at that time. To be consistent with the
assumption of quasicircular motion, we require also that the
radial velocity be always much smaller than the orbital ve-
locity, and we stop the integration when |r|>0.3(r¢) if this
occurs before ‘7:TN equals 10% of Fyew- In some cases, dur-

ing the last stages of inspiral @ reaches a maximum and then
drops quickly to zero (see the discussion in Sec. V). When

this happens, we stop the evolution at 0=0.
We shall refer to these models as HT(nPN,mPN) (when
the T approximant is used for the flux) or HP(nPN,mPN)

(when the P approximant is used for the flux), where nPN
(mPN) denotes the maximum PN order of the terms included
in the Hamiltonian (the flux). We shall consider

(nPN,mPN)=(1,1.5),(2,2),(2,2.5), and (3,3.5,0) (at 3PN
order we need to indicate also a choice of the arbitrary flux

parameter ).

4. Waveforms and matches

In Table VII, for three typical choices of BBH masses, we
perform a convergence test using Cauchy’s criterion [27].
The values are very low. For N=0 and N=1, the low values
are explained by the fact that at 1PN order there is an ISCO
[see the discussion below Eq. (74)], while at Newtonian and
2PN, 3PN order there is not. Because of the ISCO, the stop-

ping criterion [|F|>0.3(r¢) or @=0] is satisfied at a much
lower frequency, hence at IPN order the evolution ends
much earlier than in the Newtonian and 2PN order cases. In
Fig. 9 we show the inspiraling orbits in the (x,y) plane for
equal-mass BBHs, computed using the HT(1,1.5) model (in
the left panel) and the HT(3,3.5,0) model (in the right
panel). For N=2, the low values are due mainly to differ-
ences in the conservative dynamics, that is, to differences
between the 2PN and 3PN Hamiltonians. Indeed, for a (10
+10)M g BBH we find (HT(2,2),HT(3,2))=0.396, still

FIG. 9. Inspiraling orbits in
the (x,y) plane when 7=0.25 for
HT(1,1.5) (in the left panel) and
HT(3,3.5,0) (in the right panel).
1 For a (15+15)M s BBH the evo-
lution starts at fgw=34 Hz and
ends at fgw=97Hz  for
1 HT(1,1.5) panel and at fgw
=447 Hz for the HT(3,3.5,0).
The dynamical evolution is rather
1 different because at 1PN order
there is an ISCO (rg5co=9.9M),

20 T T T T T T ¥ 20 E
10 . 10
T of T
-~ ~
-10 . -10
-20 ; I ; 1 . 1 . -20 .
20 -10 0 10 20 20 -10

while at 3PN order it does not ex-
ist.

x/M
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FIG. 10. Frequency-domain
amplitude versus frequency for
the HT and HP (restricted) wave-
forms at different PN orders for a
(15+15)M o BBH. The
HT(3,3.5,6=0) curve, not plot-
ted, is almost identical to the
HT(3,3,0=0) curve.

10?
3
10
S "
- — Newtonian
HT(1, 1.5)
10*F -+ HT2,2)
— HT(2,2.5)
-~ HT(3, 3=3.5, 6=0)
10—5 1 1 1 10—5 L
20 40 100 200 400 20 40
f(Hz)
low, while (HT(2,2),HT(2,3.5))=0.662, considerably

higher than the values in Table VII.
In Fig. 10 we plot the frequency-domain amplitude of the

HT-approximated (restricted) waveforms, at different PN or-
ders, for a (15+15)M s BBH. The Newtonian amplitude,
Anewd(f)=f""6, is also shown for comparison. For
HT(1,1.5), because the ISCO is at r=9.9M, the stopping

criterion |r|>0.3¢ r is reached at a very low frequency and
the amplitude deviates from the Newtonian prediction al-
ready at f~50 Hz. For HT(2,2.5), the integration of the
dynamical equation is stopped as the flux function goes to
zero; just before this happens, the RR effects become weaker
and weaker, and in the absence of an ISCO the two BHs do
not plunge, but continue on a quasicircular orbit until F(v)
equals 10% of Fyewi- So the binary spends many cycles at
high frequencies, skewing the amplitude with respect to the
Newtonian result, and producing the oscillations seen in Fig.
10. We consider this behavior rather unphysical, and in the
following we shall no longer take into account the H7'(2,2.5)
model, but at 2PN order we shall use H7(2,2).

The situation is similar for the H P models. Except at 1PN
order, the HT and HP models do not end their evolution
with a plunge. As a result, the frequency-domain amplitude
of the HT and HP waveforms does not decrease markedly at
high frequencies, as seen in Fig. 10, and in fact it does not
deviate much from the Newtonian result (especially at 3PN
order).

Quantitative measures of the difference between HT and
HP models at 2PN and 3PN orders, and of the difference
between the Hamiltonian models and the adiabatic models,
can be seen in Tables V, VIII. For some choices of BBH
masses, these tables show the maxmax matches between the
search models in the columns and the target models in the

MlA
apNT T S|
r2

2

= K 12429 M
ApNT r_z nz( 7) 7

— =7V

2

M.
—(2+2577+2772)7r2

M 3 .
(1+3pv*—202+ 77)7—57”2

100 200 400

rows, maximized over the search-model parameters M and
n, with the restriction 0 <7< 1/4. The matches between the
H(2,2) and the H(3,3.5) waveforms are surprisingly low.
More generally, the H(2,2) models have low matches with
all the other PN models. We consider these facts as an indi-
cation of the unreliability of the H models. In the following
we shall not give much credit to the H(2,2) models, and
when we discuss the construction of detection template fami-
lies we shall consider only the H(3,3.5) models. [We will,
however, comment on the projection of the H(2,2) models
onto the detection template space.]

As for the H(3,3.5) models, their matches with the 2PN
adiabatic models are low; but their matches with the 3PN
adiabatic models are high, at least for M<30M . For M
=40M ¢, (as shown in Tables V and VIII), the matches can
be quite low, as the differences in the late dynamical evolu-
tion become significant.

B. Nonadiabatic PN expanded methods:
Lagrangian formalism

1. Equations of motion

In the harmonic gauge, the equations of motion for the
general-relativistic two-body dynamics in the Lagrangian
formalism read [49,61,62]

x=an+apyt arpNt A 5rr T A3 5RR 5 (75)
where
M
ay=— —n, (76)

—2(2—77)I;V}, (77)

, 15 L3 o 1 M,
+ (3 —4nv+ (1 =3n)r' =593 —4nvri=39(13=49) v

M .
77(15+477)v2—(4+4177+8772)7—377(3+277)r2“, (78)
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TABLE VIII. (Continued from Table V.) Fitting factors between several PN models, at 2PN and 3PN orders. Please see the caption to Table V.

EP(2,2.5) EP(3,3.5,0) HT(22) HT(3,3.5,0) HP(22.5) HP(3,3.5,0)
mm M n mm M n mm M n mm M n mm M n mm M n
T(2,2) (20+20)Ms 0953 41.67 024 0952 43.00 024 0951 8034 024 0855 5669 024 0965 90.12 024 0859 7480 025
(15+15)M5 0962 3041 024 0991 3532 0.17 0.899 5893 024 0997 33.03 020 0922 6738 024 0998 33.67 0.20
(15+5)Ms 0988 19.11 020 0992 2093 0.17 0924 6996 0.05 0998 1938 0.19 0876 5794 0.07 0999 1981 0.18
(5+5)Mg 0.997 1033 023 0998 11.09 020 0.788 993 025 0998 1092 021 0.727 1019 025 0999 11.19 0.20
7(2,2.5) (20+200M 0908 3137 025 0929 3298 025 0959 5839 024 0928 3574 024 0955 67.85 024 0892 3687 023
(15+15)M, 0.861 2452 025 0.893 2558 025 0932 5346 0.17 0926 2682 025 0920 5138 024 0921 2799 024
(15+5)Ms  0.822 1540 025 0.867 15.81 0.25 0.790 1659 0.25 0903 1581 025 0.839 5191 0.07 0955 1603 0.25
(5+5)M¢ 0.814 952 025 0839 959 025 0941 963 025 0838 952 025 0872 980 025 0866 9.61 025
7(3,3.5,0) (20+20)M 0925 40.09 024 0918 4290 024 0940 80.76 024 0833 5771 024 0958 89.85 024 0840 73.84 025
(15+15)Ms 0955 2998 024 0937 30.78 024 0.887 5883 024 099% 3267 020 0914 6656 024 0.758 31.32 024
(15+5)Ms 0983 19.68 0.18 0985 2097 0.16 0926 6981 0.05 0999 1947 0.19 0.887 6002 0.07 1.000 19.79 0.18
(5+5)Mg 0992 999 024 0997 1040 022 0826 983 025 0993 1048 022 0749 1007 025 0995 1081 021
P(2.25) (20+20)Ms 0.866 4172 024 0.859 43.14 024 0912 83.09 024 0.795 6545 024 0934 9291 024 0805 8271 025
(15+15)M, 0.898 30.06 024 0963 3821 0.14 0857 6207 024 0992 3328 0.19 0890 6931 024 0.709 59.88 025
(15+5)Ms 0966 2048 0.17 0966 21.86 0.15 0907 7042 0.05 0993 20.08 0.17 0904 06471 0.06 0997 2029 0.17
(5+5)M¢ 0995 979 025 0994 1043 022 0825 981 025 090 1051 022 0.748 1005 025 0992 10.83 0.21
P(3,3.5,0) (20+20)Ms 0960 40.10 0.23 0953 41.06 024 0943 76.61 024 0835 5385 024 0961 8656 024 0842 70.76 025
(15+15)Ms 0965 2933 024 0966 30.14 024 0.893 5629 024 0993 3183 020 0920 6391 024 099 3241 0.20
(15+5)Ms 0982 1887 020 0983 2029 0.17 0926 6898 0.05 099 1915 0.19 0886 5897 0.07 0999 1945 0.19
(5+5)Mg 0973 974 025 0998 985 025 0849 981 025 0992 1002 024 0.761 10.04 025 0993 1046 022
EP(22)5) (20+20)M o 0996 4172 024 0953 7509 024 0929 4751 024 0948 84.61 024 0907 5972 0.24
(15+15)M ¢ 0.999 32,66 021 0908 56.68 024 0.889 3289 024 0915 6487 024 0997 33.00 0.20
(15+5)M ¢ 0999 2135 0.16 0909 7041 0.05 0992 1952 0.19 0858 6423 0.06 098 2000 0.18
(5+5)M¢ 0999 1075 021 0.807 9.84 025 0997 1069 021 0.733 1008 025 0998 1099 0.20
EP(3,35,0) (20+20)Ms 0995 3825 0.25 0958 7299 024 0918 4574 024 0956 81.66 024 0896 5930 0.25
(15+15)M5 0992 2877 0.25 0938 7037 0.14 0999 3141 021 0922 61.77 024 1.000 32.11 0.21
(15+5)Ms 0999 1853 0.20 0905 69.04 0.05 0998 1897 020 0.858 6143 0.06 0994 1926 0.19
(5+5)Mg 0982 974 0.25 0.832 10.00 0.24 0996 1024 023 0.748 10.06 025 0997 1061 0.22
HT(2,2) (20+200My 0.794 2134 025 0815 2235 0.25 0.840 2431 025 0968 46.75 025 0.835 2577 025
(15+15)Ms 0.651 1840 0.24 0.674 19.03 0.24 0.377 3758 025 0936 3699 024 0392 4722 025
(15+5)Ms  0.624 1496 025 0.632 15.15 0.25 0.608 17.70 0.17 0965 1785 022 0.612 1735 0.18
(5+5)M¢ 0.817 972 025 0845 974 0.25 0.845 974 025 0.841 997 025 0865 9.76 0.25
HT(33.5,0) (20+20)My 0904 3461 024 0920 3764 024 0903 6568 0.24 0.873 7444 025 0999 4141 0.23
(15+15)M5 0.891 2749 025 0926 2859 025 0883 4956 0.24 0.867 59.23 0.24 1.000 31.02 0.23
(15+5)Ms 0986 20.73 0.16 0986 2199 0.15 0919 71.02 0.05 0.886 6190 0.07 1.000 2034 0.17
(5+5)Mg 0964 975 025 0993 979 025 0834 983 025 0.749 10.07 0.25 1.000 1035 0.23
HP(2,.25) (20+20)Ms  0.762 1874 025 0.784 1944 025 0973 36.64 021 0.794 2075 0.24 0.801 2153 0.25
(15+15)Ms 0595 1637 024 0.617 1640 024 0931 2784 021 0329 4009 0.25 0.343  48.60 0.25
(15+5)Ms 0577 16.04 0.20 0599 1432 0.25 0957 2210 0.14 0589 1553 0.21 0.593 15,59 0.21
(5+5)M¢ 0.741 950 025 0.754 953 025 0975 1146 0.18 0.755 9.52 0.25 0.770  9.61  0.25
HP(3,35,0) (20+20)M, 0.832 3143 025 0840 3515 025 0850 6063 025 0974 3771 025 0806 72.61 025
(15+15)Ms5 0.831 2696 0.25 0.860 28.03 025 0.852 46.65 024 0975 2895 025 0842 5571 0.24
(15+5)Ms 0986 20.13 0.17 0986 2150 0.15 0922 7024 0.05 1.000 19.64 0.18 0.884 60.67 0.07
(5+5)Mg 0933 972 025 0971 975 025 0857 980 025 0991 975 025 0.758 10.03 0.25
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35 X . 160+55 M\? 27, 4861+58 21\4+3 .
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+ 2591+97 '2M 2 1-7 +l 76+55 M 80

For the sake of convenience, in this section we are using the
same symbols as Sec. IV A to denote different physical
quantities (such as coordinates in different gauges). Here the
vector X=X —X, is the difference, in pseudo—Cartesian har-
monic coordinates [49], between the positions of the BH
centers of mass; the vector v=dx/dt is the corresponding
velocity; the scalar r is the (coordinate) length of x; the

vector n=x/r; and overdots denote time derivatives with
respect to the post—Newtonian time. We have included nei-
ther the 3PN order corrections aspy derived in Ref. [51] nor
the 4.5PN order term a, spy for the radiation-reaction force
computed in Ref. [63]. Unlike the Hamiltonian models,
where the radiation-reaction effects were averaged over cir-
cular orbits but were present up to 3PN order, here radiation-
reaction effects are instantaneous, and can be used to com-
pute generic orbits, but are given only up to 1PN order
beyond the leading quadrupole term.

We compute waveforms in the quadrupole approximation
of Eq. (29), defining the orbital phase ¢ as the angle between
x and a fixed direction in the orbital plane, and the invari-

antly defined velocity v as (M @)

2. Definition of the models

For these models, just as for the HT and HP models, the
choice of the endpoint of evolution is rather arbitrary. We
decided to stop the integration of the dynamical equations
when we begin to observe unphysical effects due to the fail-
ure of the PN expansion. For many (if not all) configurations,
the PN-expanded center-of-mass binding energy [given by
Eqgs. (2.7a)—(2.7¢) of Ref. [20]] begins to increase during the
late inspiral, instead of continuing to decrease. When this
happens, we stop the integration. The instantaneous GW fre-
quency at that time will then be the ending frequency for
these waveforms. We shall refer to these models as
L(nPN,mPN), where nPN (nPN) denotes the maximum PN
order of the terms included in the Hamiltonian (the radiation-
reaction force). We shall consider (nPN,mPN)
=(2,0),(2,1).

3. Waveforms and matches

In Fig. 11 we plot the frequency-domain amplitude versus
frequency for the L-approximated (restricted) waveforms, at

different PN orders, for a (15+ 15)M o BBH. The amplitude
deviates from the Newtonian prediction slightly before
100 Hz. Indeed, the GW ending frequencies are 116 Hz and
107 Hz for the L(2,0) and L(2,1) models, respectively.
These frequencies are quite low, because the unphysical be-
havior of the PN-expanded center-of-mass binding energy
appears quite early [at ro,g=6.6 and r,q=7.0 for the L(2,0)
and L(2,1) models, respectively]. So the L models do not
provide waveforms for the last stage of inspirals and plunge.

Table IX shows the maxmax matches between the L ap-
proximants and a few other selected PN models. The over-
laps are quite high, except with the EP(2,2.5) and
EP(3,3.5,0) at high masses, but extremely unfaithful. More-
over, we could expect the L(2,0) and L(2,1) models to have
high fitting factors with the adiabatic models 7(2,0) and
T(2,1). However, this is not the case. As Table X shows, the
T models are neither effectual nor faithful in matching the L
models, and vice versa. This might be due to one of the
following factors: (i) the PN-expanded conservative dynam-
ics in the adiabatic limit (7 models) and in the nonadiabatic
case (L models) are rather different; (ii) there is an important
effect due to the different criteria used to end the evolution in
the two models, which make the ending frequencies rather
different. All in all, the L models do not seem very reliable,
so we shall not give them much credit when we discuss
detection template families. However, we shall investigate
where they lie in the detection template space.

C. Nonadiabatic PN resummed methods:
The effective-one-body approach

The basic idea of the effective-one-body (EOB) approach
[15] is to map the real two-body conservative dynamics,
generated by the Hamiltonian (56) and specified up to 3PN
order, onto an effective one-body problem where a test par-
ticle of mass w=m ;m,/M (with m and m, the BH masses,
and M =m;+m,) moves in an effective background metric

g‘;‘ff, given by

D(R
2dr* + LdR2

dseff—geffdx'“dx"——A(R) AR)

+R*(d&+sin’0d¢?), (81)
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For the sake of convenience, in this section we shall use the i £ .
same symbols of Secs. IV A and IV B 2 to denote different g, g pE = 2 X 891
physical quantities (such as coordinates in different gauges). g g o 788 =
The mapping between the real and the effective dynamics is -3 & o o 1 —
worked out within the Hamilton-Jacobi formalism, by im- o 2 é SRR
posing that the action variables of the real and effective de- j 5 ° e e
scription coincide (i.e., Jreq=Jeirs ZLreas= Lot Where J de- f g = 8 2 8 X
notes the total angular momentum, and Z the radial action °oll = e e <
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lalt\&d to the rel;ttivistic effective energy & by the equation 5’ E a < 225 %
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Damour, Jaranowski and Schafer [17] found that, at 3PN X z o+ + *
order, this matching procedure contains more equations to = -02 S
satisfy than free parameters to solve for (a,, a,, as, d;, d,, Mg
. < 2 =
dsy, and «;, a,, asz). These authors suggested the following = e ~
two solutions to this conundrum. At the price of modifying g 3
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TABLE X. Fitting factors [see Eq. (20)] for the projection of the L(2,1) and L(2,0) (target) waveforms

onto the 7(2,0) and T(2,1) (search) models. The values quoted are obtained by maximizing the maxmax

(mm) match over the search-model parameters M and 7.

L(2,0) T(2,0) L(2,1) T(2,1)
mm M n mm M n mm M n mm M n

(15+15)M ¢ 0.884 42.02 0.237
L(2,0) (15+5)Mo 0.769 24.71 0.201
(5+5)Mg 0.996 21.70 0.068

(15+15)M 0.834 23.44 0.247
T(2,0) (15+5)My 0.823 14.90 0.247
(5+5)My 0.745 9.11 0.250

(15+15)M ¢
L2, (15+5)Mg
(5+5)Mg

0.837 60.52 0.236
0.844 55.70 0.052
0.626 11.47 0.238

(15+15)M¢
T(2,1) (15+5)Mg
(5+5)Mg

0.663 19.38 0.250
0.672 13.56 0.250
0.631 9.22 0.243

the energy map and the coefficients of the effective metric at
the 1PN and 2PN levels, it is still possible at 3PN order to
map uniquely the real two-body dynamics onto the dynamics
of a test mass moving on a geodesic (for details, see Appen-
dix A of Ref. [17]). However, this solution appears very com-
plicated; more importantly, it seems awkward to have to
compute the 3PN Hamiltonian as a foundation for deriving
the matching at the 1PN and 2PN levels. The second solution
is to abandon the hypothesis that the effective test mass
moves along a geodesic, and to augment the Hamilton-Jacobi

equation with (arbitrary) higher-derivative terms that provide
enough coefficients to complete the matching. With this pro-
cedure, the Hamilton-Jacobi equation reads

0= >+ gkl (xX)p up y + AP TP7(X)P WP P P o+ - 56
86

Because of the quartic terms A*PY9 the effective 3PN rela-
tivistic Hamiltonian is not uniquely fixed by the matching
rules defined above; the general expression is [17]:

A(q)

Eet=Her(q,p)= \/A<q> 5

here we use the reduced relativistic effective Hamiltonian
H.4=H 4/, and q and p are the reduced canonical vari-
ables, obtained by rescaling the canonical variables by M and
wm, respectively. The coefficients z;, z, and z; are arbitrary,
subject to the constraint

8z, +4z,+323=6(4—37)7. (88)

Moreover, we slightly modify the EOB model at 3PN order
of Ref. [17] by requiring that in the test-mass limit the 3PN
EOB Hamiltonian equals the Schwarzschild Hamiltonian. In-
deed, one of the original rationales of the PN resummation
methods was to recover known exact results in the test-mass
limit. To achieve this, z;, z, and z3 must go to zero as 7

—0. A simple way to enforce this limit is to set z;= 7z,

7,= 1z, and z;= 775 . With this choice the coefficients A(r)
and D(r) in Eq. (87) read

1+p2+(——1

1
)(H'P)2+ ;[Zl(Pz)zJFZzPZ(n'p)2+23(n'P)4] , (87)
[
2 27y 94 41 ~|n
A(V):l—7+r—3+[(?—§772)—zl}r—4, (89)

6n - - 7
D(I")Zl_—2+[7Z1+Zz+(37]_26)]_3, (90)
r r

where we set r=|q|. The authors of Ref. [17] restricted
themselves to the case z;=2,=0 (z;=2,=0). Indeed, they
observed that for quasicircular orbits the terms proportional
to z, and z3 in Eq. (87) are very small, while for circular
orbits the term proportional to z; contributes to the coeffi-
cient A(r), as seen in Eq. (89). So, if the coefficient z;
=7z,#0, its value could be chosen such as to cancel the
3PN contribution in A(r). To avoid this fact, which can be
also thought as a gauge effect due to the choice of the coor-
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FIG. 12. In the left panel we plot the binding energy evaluated using the improved Hamiltonian (91) as a function of the velocity

parameter v for equal-mass BBHs, 7=0.25. We plot different PN orders for the E model varying also the parameter z, . In the right panel
we plot the GW frequency at the ISCO at 3PN order as a function of the parameter z, for (15+15)M o BBH.

dinate system in the effective description, the authors of Ref.
[17] decided to pose z;=0 (z;=0). By contrast, in this pa-
per we prefer to explore the effect of having z,,#0. So we
shall depart from the general philosophy followed by the
authors in Ref. [17], pushing (or expanding) the EOB ap-
proach to more extreme regimes.

Now, the reduction to the one-body dynamics fixes the
arbitrary coefficients in Eq. (85) uniquely to a;=7/2, a,
=0, and a3;=0, and provides the resummed (improved)
Hamiltonian [obtained by solving for ENy in Eq. (85) and
imposing HmProved= Nk |

©n

Jgimproved _ 5 ¢ \/1+277 Hef;_lu>.

Including radiation-reaction effects, we can then write the
Hamilton equations in terms of the reduced quantities

Iflimproved:Himproved/,u’ ;ZI/M, (;): oM [16],

dr J Hlmproved

where for the ¢ component of the radiation-reaction force we
use the T and P approximants to the flux function [see Egs.
(64), (65)]. Note that at each PN order, say nPN, we inte-
grate the Egs. (92)—(95) without further truncating the partial
derivatives of the Hamiltonian at nPN order (differentiation
with respect to the canonical variables can introduce terms of
order higher than nPN).

Following the discussion around Eq. (68), the ISCO of
these models is determined by setting JHI"Por
— aZHBmproved/arzz 0, where Hi)mproved(r’pr ,p(P)
=Himp“’ved(r,0,p¢). If we define

2 4

p - P

1+—;"+ nzl—:), (96)
r r

ﬂgff("?(),p(p)EWp‘p:A(r)

we extract the ISCO by imposing &W,,‘p(r)/&r:O
= aZWp‘P(r)/azr. Damour, Jaranowski and Schafer [17] no-

—= a—(r,p,,pw), (92)  ticed that at 3PN order, for z;=2,=0, and using the PN
dt Pr expanded form for A(r) given by Eq. (89), there is no ISCO.
To improve the behavior of the PN expansion of A(r) and
do gFyimproved introduce an ISCO, they proposed replacing A(r) with the
c=0=————(r.p,.Py): (93)  Padé approximants
dt (9p¢
dp a[flimproved
dt :_T(r3prvp¢)’ (94) A ( )_r(_4+2r+77) (97)
Pa 2r+2p+ry '
dpy, .. .
—=Fo(r.p,.pyl (95)
dt ¢ and
2
r(as(n.0)+87n—16)+r(8—-27)]
Ap(r)= (98)

r3(8=2n)+ 1 [ay(n,0)+4n]+r[2a4(7.0)+8 n]+4[ *+ay(7,0)]
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0.00 — . . TT] detection template families in Sec. VI, we shall investigate
g, ! ,-"I also EOB models with PN-expanded A(r).]

N i In Fig. 12 we plot the binding energy as evaluated using

0.01 - N LR the improved Hamiltonian (91), at different PN orders, for

& "/ equal-mass BBHs. At 3PN order, we use as typical values

j %m{gﬁ 71=0,%4. (For ;>4 the location of the ISCO is no longer

-0.02 - — P-model 2PN a monotonic function of z;. So we set z;=<4.) In the right

o E:mll';’l;g panel of Fig. 12, we show the variation in the GW frequency

E-model 3PN at the ISCO as a function of 7z, for a (154 15)M BBH.

-0.03 ' ' ' ; Finally, in Fig. 13, we compare the binding energy for a few

0.1 0.2 03 04 0.5 0.6

v

FIG. 13. Binding energy as a function of the velocity parameter
v for equal-mass BBHs. We plot different PN orders for selected

PN models. For the E model at 3PN order we fix 7, =0=2z,.

where

—r (99)

- 94 41 -
3 32

ay(n,z))= 2—11} 7.

In Table II, we show the GW frequency at the ISCO for some
typical choices of BBH masses, computed using the above
expressions for A(r) in the improved Hamiltonian (91) with
z 1= 2 2= 0.

We use the Padé resummation for A(r) of Ref. [17] also
for the general case z;#0, because for the PN expanded
form of A(r) the ISCO does not exist for a wide range of

values of z,. [However, when we discuss Fourier-domain

selected PN models, where for the E models we fix z;=2,
=0 (see the left panel of Fig. 12 for the dependence of the

binding energy on the coefficient z,). Notice in the left panel
that the 2PN and 3PN T energies are much closer to each
other than the 2PN and 3PN P energies are, and than the 2PN
and 3PN E energies are; notice also that the 3PN 7 and P
energies are very close. The closeness of the binding ener-
gies (and of the MECOs and ISCOs) predicted by PN ex-
panded and resummed models at 3PN order (with 7 1=0),
and of the binding energy predicted by the numerical quasi-
equilibrium BBH models of Ref. [26] was recently pointed
out in Refs. [58,59]. However, the EOB results are very close
to the numerical results of Ref. [26] only if the range of

variation of z, is restricted.

2. Definition of the models

For these models, we use the initial conditions laid down
in Ref. [40], and also adopted in this paper for the HT and
HP models (see Sec. IV A). At 2PN order, we stop the inte-

TABLE XI. Fitting factors for the projection of EP(3,3.5,0) templates onto themselves, for various choices of the parameters z; and z, .

The values quoted are obtained by maximizing the maxmax (mm) match over the mass parameters of the (search) models in the columns,
while keeping the mass parameters of the (target) models in the rows fixed to their quoted values, (15+15)Mq, (15+5)Mg (5
+5)M . The three numbers shown at each intersection are the maximized match and the search parameters at which the maximum was

attained. In labeling rows and columns we use the notation EP(3,3.5,0,z,,z,). See the caption to Table VIII for further details.

EP(3,352,—4,0)
mm M n

EP(3,3.5,2,0,—4)
mm M n

EP(3,3.5,2,0,0)
mm M n

EP(3,352,04)
mm M n

EP(3,3.5,24,0)
mm M n

0.995
0.998
0.999

30.93
20.61
10.22

0.238
0.177
0.240

0.994
0.999
0.999

30.85
20.71
10.22

0.240
0.176
0.240

0.995
0.999
0.999

30.87
20.60
10.22

0.239
0.177
0.240

0.952
0.993
0.996

31.17
21.59
10.46

0.242
0.162
0.231

(15+15)M ¢,
EP(33.52,-40) (15+5)M¢
(5+5)Mo

(15+15)M 0.983
EP(3,3520,—4) (15+5)Ms 0.999
(5+5)My 0993

30.12 0.241
19.28 0.201
10.01 0.249

0.999
1.000
0.996

30.47
20.06
10.19

0.240
0.186
0.241

0.999
1.000
0.996

30.43
20.03
10.19

0.241
0.187
0.241

0.987
0.999
0.998

30.88
20.70
10.22

0.240
0.175
0.240

(15+15)M 0.983
(15+5)Ms 0.999
(5+5)Ms  0.993

30.12 0.241
19.26 0.202
9.99 0.250

0.999
1.000
1.000

30.47
20.06
10.00

0.241
0.186
0.250

0.999
1.000
0.996

30.42
20.03
10.19

0.241
0.187
0.241

0.987
0.999
0.998

30.88
20.70
10.22

0.240
0.175
0.240

EP(3,3.5,2,0,0)

(15+15)M¢
(15+5)M¢
(5+5)Mg

0.982
0.999
0.993

30.12 0.241
19.35 0.200
10.01 0.249

0.999
1.000
1.000

30.54
20.05
10.00

0.240
0.187
0.250

0.999
1.000
0.996

30.54
19.98
10.19

0.240
0.188
0.241

0.987
0.998
0.998

30.88
20.73
10.22

0.240
0.175
0.240

EP(3,352,0,4)

(15+15)M ¢,
(15+5)M
(5+5)M¢

0.929
0.992
0.970

29.60 0.240 0.968
18.42 0.219 0.998
10.17 0.241 0.993

30.11 0.242
19.29 0.201
9.99 0.250

0.968
0.998
0.993

30.16
19.36
9.99

0.240
0.199
0.250

0.967
0.998
0.993

30.15 0.240
19.29 0.201
9.99 0.250

EP(3,3.5,2,4,0)
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TABLE XII. Test for the Cauchy convergence of the EP ap-
proximants. The values quoted assume optimization on the extrinsic
parameters but the same intrinsic parameters (i.e., they assume the
same masses). Here we define EPy=EP(0,0), EP,=EP(1,1.5),
EP,=EP(22.5), and EP;=EP(3,3.5,0,Z,=2,=0). The values
in parentheses are the maxmax matches obtained by maximizing
with respect to the extrinsic and intrinsic parameters, shown to-
gether with the EPy . parameters M and 7 where the maxima are
attained. In all cases the integration of the equations is started at a
GW frequency of 20 Hz.

N (EPy,EPy.y)

(5+20)M (10+10)M o, (15+15)M
0 0.677  0.584 (0.769, 17.4, 0.246)  0.811
1 0.766  0.771 (0.999, 21.8, 0.218)  0.871
2(d=+2) 0862  0.858(0.999,21.3,0222)  0.898
2(0=—2) 0912 0928 (0.999,21.9,0211)  0.949

gration of the Hamilton equations at the light ring given by
the solution of the equation r*—3r2+57=0 [16]. At 3PN
order, the light ring is defined by the solution of

d 2
T A (1)]=0, (100)

with = 1/r and Ap, is given by Eq. (98). For some configu-

rations, the orbital frequency and the binding energy start to
decrease before the binary can reach the 3PN light ring, so

we stop the evolution when 0=0 (see the discussion in Sec.
IV D). For other configurations, it happens that the radial
velocity becomes comparable to the angular velocity before
the binary reaches the light ring; in this case, the approxima-
tion used to introduce the RR effects into the conservative
dynamics is no longer valid, and we stop the integration of
the Hamilton equations when |r/(r¢)| reaches 0.3. For some
models, usually those with 7,70, the quantity |r/(r¢)]
reaches a maximum during the last stages of evolution, then
it starts decreasing, and r becomes positive. In such cases,
we choose to stop at the maximum of |r/(r¢)|. In any of
these cases, the instantaneous GW frequency at the time
when the integration is stopped defines the ending frequency
for these waveforms.

We shall refer to the EOB models (E approximants) as
ET(nPN,mPN) (when the T approximant is used for the
flux) or EP(nPN,mPN) (when the P approximant is used for
the flux), where nPN (mPN) denotes the maximum PN order
of the terms included in the Hamiltonian (flux). We shall
consider (nPN,mPN)=(1,1.5), (2,2.5), and (3,3.5,8) [at
3PN order we need to indicate also a choice of the arbitrary
flux parameter 4.

3. Waveforms and matches

In Table XI, we investigate the dependence of the E wave-

forms on the values of the unknown parameters z; and Z,
that appear in the EOB Hamiltonian at 3PN order. The coef-

PHYSICAL REVIEW D 67, 024016 (2003)

10*F — Newtonian )
-- EP(2,2.5)
-+ EP(3, 3.5, 8=0)
10—5 i 1 L
20 40 100 200 400
f(Hz)

FIG. 14. Frequency-domain amplitude versus frequency for the
E P-approximated (restricted) waveform, at different PN orders, for
a (15+15)M - BBH.

ficients z, and z, are, in principle, completely arbitrary.
When 7z, #0, the location of the ISCO changes, as shown in

Fig. 12. Moreover, because in Eq. (87) z; multiplies a term
that is not zero on circular orbits, the motion tends to become
noncircular much earlier, and the criteria for ending the in-
tegration of the Hamilton equations are satisfied earlier. (See
the discussion of the ending frequency in the preceding sec-
tion.) This effect is much stronger in equal-mass BBHs with

high M. For example, for (154 15)M BBHs and for 7,
=0, the fitting factor (the maxmax match, maximized over M

and 7) between an EP target waveform with 7, =0 and EP
search waveforms with —40 < z,<—4 can well be < 0.9.

However, if we restrict z | to the range [ —4,4], we get very
high fitting factors, as shown in Table XI.

In Eq. (87), the coefficients 7, and z; multiply terms that

are zero on circular orbits. [The coefficient z, appears also in
D(r), given by Eq. (90).] So their effect on the dynamics is
not very important, as confirmed by the very high matches

obtained in Table XI between E P waveforms with z,=0 and
EP waveforms with z,=*+4. It seems that the effect of

changing 7z, is nearly the same as a remapping of the BBH
mass parameters.

We investigated also the case in which we use the PN
expanded form for A(r) given by Eq. (89). For example, for

(15+15)M BBHs and z,=0, the fitting factors between
EP target waveforms with 7, = —40,—4,4,40 and EP search

waveforms with  z,=0 are (maxmax, M, 77)
=(0.767,39.55,0.240), (0.993,30.83,0.241), (0.970,30.03,
0.241), and (0.915,28.23,0.242), respectively. So the over-
laps can be quite low.

In Table XII, for three typical choices of BBH masses, we
perform a convergence test using Cauchy’s criterion. The
values are quite high. However, as for the P approximants,
we have no way to test whether the E approximants are con-
verging to the true limit. In Fig. 14 we plot the frequency-
domain amplitude of the EP-approximated (restricted)
waveforms, at different PN orders, for a (15+ 15)M o BBH.
The evolution of the EOB models contains a plunge charac-
terized by quasicircular motion [16]. This plunge causes the
amplitude to deviate from the Newtonian amplitude, Ayewt
=f~"% around 200 Hz, which is a higher frequency than we
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FIG. 15. Ending points of the H models at 3PN order for low values of 7. In the left panel, we plot as a function of r the Hamiltonian

H(r,p,= 0.p,) [given by Eq. (56)], evaluated at =0.16 for a (5 +20)M o BBH, for various values of the (reduced) angular momentum p,, .

The circular-orbit solutions are found at the values of r and A joined by the dashed line. At r;=4.524 there is a critical radius, below which

there is no circular orbit. In the right panel we plot as a function of 7 the orbital angular frequency @.;(7) corresponding to the critical
radius, for 0.1<%<0.21 (solid line). This curve agrees well with the ending frequencies of the HT and H P models at 3PN order, which are

shown as dotted and dashed lines in the figure.

found for the adiabatic models (see Figs. 4 and 7).

In Table IV, for some typical choices of the masses, we
evaluate the fitting factors between the E7(2,2.5) and
ET(3,3.5) waveforms (with z;,=2z,=0) and the 7(2,2.5) and
T(3,3.5) waveforms. This comparison should emphasize the
effect of moving from the adiabatic orbital evolution, ruled
by the energy-balance equation, to the (almost) full Hamil-
tonian dynamics, ruled by the Hamilton equations. More spe-
cifically, we see the effect of the differences in the conser-
vative dynamics between the PN expanded 7 model and the
PN resummed E model (the radiation-reaction effects are in-
troduced in the same way in both models). While the
matches are quite low at 2PN order, they are high (=0.95) at
3PN order, at least for M <30M ,, but the estimation of m
and m, is poor. This result suggests that, for the purpose of
signal detection as opposed to parameter estimation, the con-
servative dynamics predicted by the EOB resummation and
by the PN expansion are very close at 3PN order, at least for
M<30M . Moreover, the results of Table IV suggest also

that the effect of the unknown parameter 9 is rather small, at
least if 6 is of order unity, so in the following we shall

always set 6=0.

In Tables V and VIII we study the difference between the
EP(2.2.5) and EP(3,3.5) models (with 7,=2,=0), and all
the other adiabatic and nonadiabatic models. For some
choices of BBH masses, these tables show the maxmax
matches between the search models in the columns and the
target models in the rows, maximized over the search-model
parameters M and 7, with the restriction 0 < np=<1/4. At 2PN
order, the matches with the 7(2,2.5), HT(2,2) and
HP(2,2.5) models are low, while with the matches with the
7(2,2) and P(2,2.5) models are high, at least for M
<30M (but the estimation of the BH masses is poor). At
3PN order, the matches with 7(3,3.5,8), P(3,3.5,0),
HP(3,3.5,0) and HT(3,3.5,0) are quite high if M
<30M . However, for M=40M, the matches can be
quite low. We expect that this happens because in this latter
case the differences in the late dynamical evolution become
crucial.

D. Features of the late dynamical evolution
in nonadiabatic models

While studying the numerical evolution of nonadiabatic
models, we encounter two kinds of dynamical behavior that
are inconsistent with the assumption of quasicircular motion
used to include the radiation-reaction effects, so when one of
these two behaviors occurs, we immediately stop the integra-
tion of the equations of motion. First, in the late stage of

evolution  can reach a maximum, and then drop quickly to

zero; so we stop the integration if 0=0. Second, the radial
velocity r can become a significant portion of the total speed,

so we stop the integration if 7=0.3(r®).

The first behavior is found mainly in the H models at 3PN
order, when 7 is relatively small (=0.21). As we shall see
below, it is not characteristic of either the Schwarzschild
Hamiltonian or the EOB Hamiltonian. In the left panel of

Fig. 15, we plot the binding energy evaluated from H(r,p,
=0,p,) [given by Eq. (56)] as a function of r at 7=0.16, for
various values of the (reduced) angular momentum p,,. As
this plot shows, there exists a critical radius, r.;, below
which no circular orbits exist. This r.; can be derived as
follows. From Fig. 15 (left), we deduce that

A

dH
E — X, =Tt (101)
circ
Because circular orbits satisfy the conditions
o 102
pPr=Y ar - Y ( )
and
dp,| PR PET o
d circ_ (9’,2 0']}"(9[7@ , ( )
we get
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7 J ! ! ! ! 4 14 T T T T T
P — HT(2,2) _-

i P == 12 ... HT(@3, 3.5, 8=0) - FIG. 16. Signal-to-noise ratio
% sk _-:;;' ______ &10 | —— HP(2,2.5) at 100 Mpc versus total mass M
S — ; § -~ HP(@, 3.5, 6=0) : P for selected PN models. The S/N
e - T3, 3.5, 8=0) ~ 8 7 a is computed for equal-mass BBHs
2 3 ——P(2,2.5) = 6 - | using the LIGO-I noise curve (28)
7] -~ P(@3, 3.5, 6=0) % and the waveform expression (29)

2L -=-- EP(2, 2-5)A . 4 4 with the rms ®=8/5; for the E

. . | EPG,35,6=0) i . . . . model at 3PN we set 2;=2,=0.

110 15 20 25 30 35 40 210 15 20 25 30 35 40

M M
db oH  oH dp oH azﬁ( PH 1 cause the light ring is also a minimal radius for circular or-
— == = — bits [the conditions (101) are satisfied also in this case].
i 7 P dr circ Py or* \9rdp, However, the behavior of the energy is qualitatively different

(104)

Combining these equations we obtain two conditions that
define r;;:
oH *H

or ’

Terit

=0. (105)

crit

drdp

r

In the right panel of Fig. 15, we plot the critical orbital
frequency @, as a function of # in the range [0.1, 0.21]. In
the same figure, we show also the ending frequencies for the
HT(3,3.5,£2) and HP(3,3.5,£2) models. For 0.1<7@
<0.21, these ending frequencies are in good agreement with
the critical frequencies w.,; for 7>0.21, the ending condi-

tion r=0.3(rw) is satisfied before w=0. For 0.1<7
<0.21, this good agreement can be explained as follows: for
the H models at 3PN order with #=0.21, the orbital evolu-

tion is almost quasicircular (i.e., 7 remains small and o
keeps increasing) until the critical point is reached; beyond
this point, there is no way to keep the orbit quasicircular, as
the angular motion is converted significantly into radial mo-

tion, and ® begins to decrease. This behavior ((,:)H 0) is also
present in the £ model in the vicinity of the light ring, be-

8 T T T Y Y
L TR,2)

7— EP(2, 2.5) up to ISCO -
% ¢L-- EP.2.5) uptolightring __.~~"
g s
=
Z 4
7]

3

210 15 20 25 30 35 40
M

FIG. 17. Effect of the plunge on the signal-to-noise ratio. The
S/N is computed at 100 Mpc for equal-mass BBHs as a function of
the total mass for the 7(2,2) adiabatic model (for comparison), for
the EP(2,2.5) model with ending frequency at the ISCO, and at the
light ring (in this latter case the signal includes a plunge). Here we
use the LIGO-I noise curve (28) and the waveform expression (29)
with the rms © =8/5.

for the H and E models: in the E models (just as for a test
particle in Schwarzchild spacetime) the circular-orbit energy
goes to infinity, while this is not the case for the H models.

The second behavior is usually caused by radiation-
reaction effects, and accelerated by the presence of an ISCO
(and therefore of a plunge). However, it is worth mentioning

another interesting way in which the criterion 7=0.3(r@)
can be satisfied for some E evolutions at 3PN order. During

the late stages of evolution,  sometimes increases suddenly
and drastically, and the equations of motion become singular.
This behavior is quite different from a plunge due to the
presence of an ISCO (in that case the equations of motion do
not become singular). The cause of this behavior is that at
3PN order the coefficient D(r) [see Eq. (90)] can go to zero

and become negative for a sufficiently small r. For z,=2,
=0, this occurs at the radius rp given by

ry—6rp+2(37—26) n=0; (106)
rp can fall outside the light ring. For example, for »=0.25
we have rp=2.54, while the light rings sits at r=2.31. On
the transition from D(r)>0 to D(r)<0, the effective EOB
metric unphysical, and the E model then becomes invalid.
Using the Hamiltonian equation of motion (92), it is straight-
forward to prove that a negative D(r) causes the radial ve-
locity to become very large:

dH  p,
= — o0
"Tp, D)

(107)

as r—rp.

V. SIGNAL-TO-NOISE RATIO FOR THE TWO-BODY
MODELS

In Fig. 16 we plot the optimal signal-to-noise ratio p, for
a few selected PN models. The value of p is computed
using Egs. (1) and (19) with the waveform given by Eq. (29),
for a luminosity distance of 100 Mpc and the rms ® =8/5
[see the discussion around Eq. (29)]; for the EP model we
set 7;=2,=0. Notice that, because the E models have a
plunge, their signal-to-noise ratios are much higher (at least
for M=30M ) than those for the adiabatic models, which
we cut off at the MECO. See also Fig. 17, which compares
the S/N for EP(2,2.5) waveforms with and without the
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plunge; for M =20M ¢, excluding the plunge decreases the
S/N by ~ 4% (which corresponds to a decrease in the detec-
tion rate of 12% for a fixed detection threshold); while for
M =30M g, excluding the plunge decreases the S/N by ~
22% (which corresponds to a decrease in the detection rate of
54%). This result confirms the similar conclusion drawn in
Ref. [13].

Because at 2PN and 3PN order the H models do not have
a plunge, but the two BHs continue to move on quasicircular
orbits even at close separations, the number of total GW
cycles is increased, and so is the signal-to-noise ratio, as
shown in the right panel of Fig. 16. However, we do not trust
the H models much, because they show a very different be-
havior at different PN orders, as already emphasized in Sec.
IV A.

VI. PERFORMANCE OF FOURIER-DOMAIN
DETECTION TEMPLATES, AND CONSTRUCTION
OF A FOURIER-DOMAIN DETECTION-TEMPLATE BANK

In the previous sections we have seen (for instance, in
Table V) that the overlaps between the various PN wave-
forms are not very high, and that there could be an important
loss in the event rate if, for the purpose of detection, we
restricted ourselves to only one of the two-body models (see
Figs. 16 and 17). To cope with this problem we propose the
following strategy. We guess that the conjunction of the
waveforms from all the PN models spans a region in signal
space that includes (or almost includes) the true signals, and
we build a detection template family that embeds all the PN
models in a higher-dimensional space. The PN models that
we have considered (expanded and resummed, adiabatic and
nonadiabatic) rely on a wide variety of very different dy-
namical equations, so the task of consolidating them under a
single set of generic equations seems arduous. On the other
hand, we have reason to suspect, from the values of the
matches, and from direct investigations, that the frequency-
domain amplitude and phasing (the very ingredients that en-
ter the determination of the matches) are, qualitatively, rather
similar functions for all the PN models. We shall therefore
create a family of templates that model directly the Fourier
transform of the GW signals, by writing the amplitude and
phasing as simple polynomials in the GW frequency fgw -
We shall build these polynomials with the specific powers of
fow that appear in the Fourier transform of PN expanded
adiabatic waveforms, as computed in the stationary-phase
approximation. However, we shall not constrain the coeffi-
cients of these powers to have the same functional depen-
dence on the physical parameters that they have in that
scheme. More specifically, we define our generic family of
Fourier-domain effective templates as

heii(f) = Ace( ) e Ve, (108)

where

Al H)=F "= a ) 0(feu— 1), (109)
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e ) =2mfto+ o+ (ot hinf P+ PP+ dan f
+i [P, (110)

where 7, and ¢, are the time of arrival and the frequency-
domain phase offset, and where 6( . . .) is the Heaviside step
function. This detection template family is similar in some
respects to the template banks implicitly used in fast chirp
transform techniques [64]. However, because we consider
BBHs with masses 10—40M , the physical GW signal can
end within the LIGO frequency band; and the predictions for
the ending frequency given by different PN models can be
quite different. Thus, we modify also the Newtonian formula
for the amplitude, by introducing the cutoff frequency f,
and the shape parameter «.

The significance of f, with respect to true physical sig-
nals deserves some discussion. If the best match for the
physical signal g is the template & ot which ends at the

instantaneous GW frequency f., [so that & fcut( f)=g(f) for
f<fouandh fcut( f)=0 for f>f_.J, then we can be certain to

lose a fraction of the optimal p that is given approximately
by

ffcutlg(f)|2d 1 fw 127

f d
pcul - 0 Sn(f) . fcut Sn(f)
b [ oz 2 (P
f 1g(f)] o J if
o S,(f) 0 S,(f)

(111)

On the other hand, if we try to match g with the same tem-
plate family without cuts (and if indeed the h’s are com-
pletely inadequate at modeling the amplitude and phasing of
g above f,), then even the best-match template &, ., [de-
fined by /., () =g(f) for f<f.., and by zero correlation,
Noo el ) EF(f)=0 for f>f,] will yield an additional loss
in p caused by the fact that we are spreading the power of the
template beyond the range where it can successfully match g.
Mathematically, this loss comes from the different normal-
ization factor for the templates hfcut and h,g oy, and it is

given by
Gk = ()P
d d
pno cut fo Sn(f) f~ 1 J\x:ut Sn(f) f

= =

Peu /FWMZ" 2 jwlﬁ(f)lzdf'
0 S,(f) ! 0 S,(f)

(112)

If we assume that g and 4, ., have roughly the same ampli-
tude distribution, the two losses are similar.

In the end, we might be better off cutting templates if we
cannot be sure that their amplitude and phasing, beyond a
certain frequency, are faithful representations of the true sig-
nal. Doing so, we approximately halve the worst-case loss of
p, because instead of losing a factor
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TABLE XIII. Fitting factors for the projection of the target models (in the rows) onto the (¢, ¥3,@,f ) Fourier-domain detection
template family. For ten choices of BBH masses, this table shows the minmax matches between the target (adiabatic) models and the
Fourier-domain search model, maximized over the intrinsic parameters i, 3, and a,f,, and over the extrinsic parameter «. For each
intersection, the six numbers shown report the ending frequency f,q (defined in Sec. VI B) of the PN model for the BBH masses quoted, the
minmax FF mn, and the search parameters at which the maximum is attained.

PN model f end mn % ¢3/2 (,Yf 3{1% f cut f end mn lﬂo ¢3/2 (,Yf 3{1? f cut

(20+20)M 221.4 0.983 23891. —554.63 0.949 240.7 | (20+5)M o 341.2 0992 77508. —1041.30 0.897 347.0
(20+15)M o 252.4 0.987 30200. —606.41 0.975 272.5((10+10)M 5 442.8 0.992 72639. —768.78 0.632 331.4
T(2,2) (15+15)M o 2952 0.989 38126. —653.61 0.968 313.5| (15+5)Me 431.3 0993 96191. —1030.20 0.831 440.8
(20+10)M 5 291.7 0.989 41735. —677.51 1.002 3142 (10+5)Ms 583.4 0.993 130600. —1019.10 1.001 805.3
(15+10)M 5 352.7 0.991 52565. —713.54 0.968 387.1| (5+5)M, 885.6 0.989 225060. —1056.80 0.531 894.4

(20+20)M 5 161.2 0.970 19807. 6232 0.691 2244 (20+5)M 281.6 0987 71552. —188.92 0.227 312.7
(20+15)M 5 1859 0.975 25398. 57.59 0.347 2203 ((10+10)M s 3224 0983 66783. —37.92 0490 630.9
T(22.5) (15+15)M 5 2149 0979 32787. 40.11 0.210 2450 (15+5)Mo 345.6 0988 89296. —166.70 0.107 373.8
(20+10)M o 2223 0.980 36540. 2823 0.160 2555 (10+5)Mo 443.3 0.989 123100. —159.28 0.379 746.0
(15+10)M 5 261.2 0.983 47008. 224 0.107 293.7| (5+5)Mo 6439 0.994 217090. —194.81 0.253 1033.1

(20+20)M 5 2079 0.983 25219. —575.44 1.002 265.8 | (20+5)M o 276.1 0.986 79630. —1095.00 0.743 238.3
(20+15)M o 234.5 0.984 31622. —623.54 1.005 268.5 [(10+10)M 5 4159 0988 73738. —701.48 0.923 437.8
T(3,35,+2) (15+15My 277.2 0987 38891. —612.96 0.990 306.3| (15+5)M 362.3 0990 97371. —988.17 0.617 277.0
(20+10)M 5 259.3 0.986 43944. —729.80 0.979 301.6( (10+5)Ms 518.5 0.990 131210. —899.96 0.642 392.3
(15+10)M 5 324.3 0.987 53869. —688.38 0.865 315.6| (5+5)Mo 831.7 0.985 224370. —826.19 0.563 886.2

(20+20)M 5 2079 0.981 24857. —603.44 0.983 2464 | (20+5)Mo 276.1 0.987 80359. —1188.90 0.825 257.0
(20+15)M 5 234.5 0.985 31773. —681.75 0.983 252.8((10+10)M 415.8 0988 74637. —810.89 0.750 350.3
T(3,35,—2) (15+15Ms 277.2 0.986 39565. —707.26 0.933 277.9| (15+5)M 362.3 0989 97861. —1070.50 0.661 267.7
(20+10)M 5 259.3 0.985 44027. —787.96 0.900 2519 (10+5)M, 518.5 0.988 131840. —992.35 0.901 553.3
(15+10)M 5 324.3 0.988 54194. —761.61 0984 341.1| (5+5)Mo 831.7 0.982 225550. —943.65 0.577 916.3

(20+20)M o 1429 0.972 27006. —743.88 0.991 208.5| (20+5)Me 207.8 0978 81397. —1244.40 0.698 192.4
(20+15)M o 1625 0.977 33307. —778.72 0.987 206.7 [(10+10)M 5 2859 0.985 73970. —743.09 0.681 245.7
P(225) (15+15)M 5 190.6 0.980 40486. —752.07 0.991 237.0| (15+5)Mo 267.5 0984 98390. —1074.60 0.709 231.8
(20+10)M 5 185.0 0.977 45403. —864.50 1.116 288.3 | (10+5)M s 370.0 0.985 131920. —961.15 0.758 346.4
(15+10)M 5 2263 0.981 54709. —771.73 0.867 2329 (5+5)Mo 571.8 0.983 224810. —867.58 0.813 764.5

(20+20)M 5 2164 0.984 24922. —523.74 0.995 2652 (20+5)M o 265.0 0.985 79624. —1070.20 0.830 258.4
(20+15)M 5 243.6 0.985 31204. —564.86 1.007 299.3 [(10+10)M 432.8 0.990 72663. —617.31 0.896 488.2
P(3,35,+2) (15+15My 288.5 0.987 38194. —541.27 0971 328.2| (15+5)Mo 359.2 0.990 96933. —935.65 0.619 279.6
(20+10)M 5 265.7 0.986 43280. —660.41 1.001 328.8| (10+5)Ms 531.3 0.991 130310. —827.00 0.843 588.6
(15+10)M 5 3362 0.987 52941. —605.52 0.902 356.7| (5+5)Mo 865.6 0.988 223830. —780.35 0.537 896.7

(20+20)M o 2164 0.984 24830. —545.66 1.062 2914 (20+5)Me 265.0 0.986 79956. —1114.80 0.831 259.7
(20+15)M 5 243.6 0.984 31086. —583.34 0.988 269.5(10+10)M 432.8 0.990 73167. —674.59 0.760 390.9
P(3,35,—2) (15+15Ms 288.5 0.988 38426. —581.05 0.994 326.6| (15+5)Mo 359.2 0.990 96850. —958.04 0.662 277.7
(20+10)M o 265.7 0.986 43464. —696.77 1.006 311.2| (10+5)Mo 531.3 0.990 130780. —881.70 0.810 539.0
(15+10)M 5 336.2 0.987 53475. —663.65 0.882 3334 (5+5)Ms 865.6 0.987 224210. —828.64 0.538 896.0

(20+20)M 5 231.0 0.991 22372. —258.47 0.935 477.8| (20+5)M o 359.4 0.995 79070. —857.02 0.748 519.2
(20+15)M o 263.5 0.992 28710. —302.99 0.770 425.5((10+10)M s 462.0 0.995 71411. —420.76 0.668 722.3
ET(2,2.5) (15+15)M 5 308.0 0.993 36351. —321.50 0.717 5123 (15+5)M o 452.7 0994 96788. —755.70 0.718 706.8
(20+10)M 5 305.1 0.993 41308. —423.25 0.756 473.1| (10+5)M5 610.1 0.993 129130. —607.98 0.665 910.1
(15+10)M o 368.3 0.995 51338. —393.70 0.769 764.8| (5+5)Ms 924.0 0.991 221910. —534.76 0424 920.4

(20+20)M o 212.1 0.990 22048. —356.02 0.997 367.7| (20+5)Mo 351.3 0.992 78355. —1057.40 0.763 402.3
(20+15)M 5 245.1 0.992 28516. —423.30 0.971 415.7 [(10+10)M 428.8 0.994 72187. —631.44 0.707 616.2
ET(3,3.5,+2) (15+15Mo 285.8 0.992 36119. —450.40 0.775 408.3| (15+5)Mo 433.7 0994 96772. —982.67 0.757 5724
(20+10)M 5 286.6 0.993 40717. —545.11 0.790 376.5| (10+5)Ms 573.1 0.995 130830. —899.77 0.686 856.6
(15+10)M 5 344.5 0.993 51507. —563.26 0.785 5152 (5+5)Mo 8479 0.986 225490. —892.59 0.552 914.8
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TABLE XIII. (Continued).

2/3 2/3
PN model f end mn % ¢3/2 (,Yf C{]t f cut f end mn lﬂo ¢3/2 (64 c{n f cut

(20+20)M 5 207.1 0990 21818. —386.23 0.848 3004 | (20+5)M 3459 0991 78349. —1103.70 0.692 379.0
(20+15)M 5 2382 0992 28247. —451.93 0.884 347.0 |(10+10)M o 411.0 0.994 72645. —709.64 0.685 499.9
ET(3,3.5, (15+15My 274.0 0992 36218. —502.72 0.903 4524 | (15+5)My 4248 0993 97086. —1052.50 0.846 600.5
—-2) (20+10)M 5 277.0 0992 41148. —613.88 0.786 364.2 | (10+5)M5 5569 0.995 131730. —1003.30 0.699 821.5
(15+10)M 5 330.6 0992 51702. —623.17 0.822 5012 | (5+5)Mo 816.8 0.983 226430. —999.02 0.539 9004

(20+20)M, 218.1 0991 21315. —353.42 0.773 376.1 | (20+5)M 3458 0990 79526. —1167.70 0.709 366.2
(20+15)M 5 249.1 0.991 28013. —437.59 0.746 380.6 |(10+10)M 4362 0994 73183. —729.74 0.714 645.1
EP(225) (15+15Mg 290.8 0991 35947. —486.80 0.672 4322 (15+5)My 433.1 0.994 98170. —1099.60 0.630 460.4
(20+10)M 289.8 0.990 40730. —593.65 0.656 391.0|(10+5)M5 579.6 0.993 132250. —1014.20 0.691 868.7
(15+10)M 5 348.5 0991 51920. —632.99 0.637 451.6| (5+5)Mo 8725 0979 226910. —997.82 0.571 833.0

(20+20)M o 219.7 0990 22025. —329.13 0967 3983 | (20+5)Mo 354.0 0993 78344. —1027.30 0.668 376.6
(20+15)M 5 251.9 0991 27970. —368.53 0.888 386.4 |(10+10)M o 439.6 0994 71704. —579.45 0.719 658.8
EP(3,35, (15+15M; 293.1 0991 35861. —409.25 0.813 452.7 | (15+5)My 4449 0995 96416. —934.82 0.773 608.4
+2) (20+10)M 5 291.4 0.993 40598. —512.88 0.820 429.6 | (10+5)M 582.5 0.995 130480. —855.36 0.685 879.7
(15+10)M o 353.7 0993 51343. —527.79 0.731 4955| (5+5)Mo 8747 0989 224370. —820.10 0.488 916.2

(20+20)M o 214.4 0.990 22029. —349.92 0986 384.7|(20+5)Mo 353.0 0.992 78099. —1035.10 0.692 400.3
(20+15)M 5 248.3 0.992 28185. —400.30 0.849 3612 |(10+10)M 430.5 0994 71820. —613.97 0.718 642.1
EP(3,35, (15+15M; 287.0 0992 35793. —429.31 0.880 510.6 | (15+5)Ms 439.1 0994 96411. —960.71 0.770 591.0
—2) (20+10)M 289.1 0.993 40653. —537.88 0.869 4529 | (10+5)M, 5757 0995 130760. —899.02 0.696 877.1
(15+10)M 5 347.3 0993 51423. —558.41 0.779 4947 | (5+5)Ms 8649 0.988 225110. —886.01 0.501 909.7

(20+20)M 318.1 0.989 20061. —192.06 0.509 379.7|(20+5)Mo 4574 0987 76939. —936.06 0.683 450.0
(20+15)M 5 364.6 0.988 26379. —249.89 0437 385.7 |(10+10)M o 647.2 0990 70495. —502.74 0.585 666.7
EP(3,3.5, (15+15My 432.0 0987 34134. —293.98 0.321 4228 | (15+5)Mo 600.6 0.992 95378. —866.93 0.651 601.3
0,4,0) (20+10)M, 4204 0987 38610. —385.18 0455 446.0|(10+5)M 831.6 0.995 129410. —792.01 0.680 798.8
(15+10)M 5 510.8 0.988 49757. —426.26 0.515 4934 (5+5)Mo 12922 0992 223410. —772.85 0.339 1003.8

(20+20)M 1189 0.970 26410. —787.54 0.964 189.8|(20+5)Mo 215.1 0989 83591. —1452.50 1.087 364.1
(20+15)M 5 1369 0.983 33451. —868.80 1.010 2389 |(10+10)M 237.8 0983 76684. —970.56 1.074 373.8
EP(3,35, (15+15M; 158.5 0983 41909. —921.14 1.045 285.0|(15+5)M 258.0 0.984 101440. —1323.20 1.158 486.7
0,—20,0) (20+10)Mo 164.2 0985 46550. —1016.40 1.138 321.2 | (10+5)Mo 3279 0977 134130. —1142.10 1.157 589.3
(15+10)M 5 1924 0.985 56925. —986.07 1.096 339.8| (5+5)Ms 476.1 0.969 226450. —992.89 1.167 8442

(20+20)M 5 94.0 0947 29400. —1174.60 1.097 184.5]|(20+5)M 174.0 0972 88302. —1874.90 1.073 337.6
(20+15)M 5 108.2 0.962 36837. —1268.40 0.960 169.2 |(10+10)M 188.0 0.959 82469. —1437.30 1.059 411.8
EP(3,35, (15+15Mg 125.3 0969 45552. —1324.90 1.010 2284 | (15+5)My 206.7 0.967 105660. —1681.70 1.357 468.5
0,—40,0) (20+10)M 1304 0970 50375. —1423.70 1.048 252.8 | (10+5)Ms 260.8 0.957 137720. —1431.90 1.111 537.6
(15+10)M 5 152.5 0964 61789. —1428.90 1.077 3384 | (5+5)Ms 376.1 0.955 228960. —1185.20 1.122 8744

(20+20)M 5 349.5 0986 19559. —43.77 0483 374.1|(20+5)M, 5615 0981 72281. —54292 0.533 549.7
(20+15)M 5 399.4 0.989 25098. —58.70 0.387 384.9|(10+10)Ms 699.0 0988 67699. —246.28 0.166 463.5
EP(T3,3.5, (15+15)My 465.3 0987 32573. —86.76 0.155 341.5|(15+5)My 7049 0963 92003. —570.09 1.128 5223
0,+40,0) (20+10)M 468.3 0989 36812. —153.63 0.243 4302 | (10+5)Ms 9352 0.989 124940. —469.29 0458 787.7
(15+10)M 5 558.6 0.989 47015. —159.41 0316 6523 | (5+5)Ms 1398.0 0.989 219670. —517.04 0986 928.5

(20+20)M 5 95.0 0953 28875. —1038.40 0998 168.8|(20+5)M, 1752 0973 87007. —1721.30 1.072 348.7
(20+15)M 5 109.5 0.968 37319. —1203.50 1.186 244.7 |(10+10)M 190.3 0.975 77432. —1045.60 0.648 192.8
EP(T3,3.5, (15+15Mg 1269 0949 44601. —1160.40 1.069 3223 | (15+5)M 2084 0.975 102210. —1406.10 0.805 214.6
0,—40,0) (20+10)M 131.9 0978 49188. —1252.90 0.999 207.7 | (10+5)Ms 263.3 0.969 135110. —1218.00 1.231 548.3
(15+10)M 5 154.1 0.952 60648. —1255.90 1.017 4043 | (5+5)Ms 380.3 0.965 226990. —1027.60 0.960 883.4

(20+20)M, 87.0 0937 18859. —726.78 0997 175.1|(20+5)M, 1489 0987 72221. —1938.50 0.970 209.6
(20+15)M 5 99.7 0.953 26088. —939.25 1.005 175.0|(10+10)M o 174.0 0990 67126. —1420.30 0.986 252.5
L(2,0) (15+15)M 5 116.0 0972 34155. —1087.60 0.999 189.8 | (15+5)M, 181.6 0.991 89333. —1908.10 0.996 259.5
(20+10)M 5 118.0 0.974 38075. —1201.00 0.990 191.1 | (10+5)M 5 2359 0.991 120130. —1869.90 0.830 274.6
(15+10)M 5 140.0 0.985 48463. —1295.00 0.996 219.6| (5+5)Ms 348.0 0.994 207730. —2077.90 0.709 379.0
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PN model Sena MR tho ap af 3(3 feu fena MmN tho ap af 3(3 feu
(20+20)M 80.3 0.935 33179. —1379.20 0.998 136.5 | (20+5)M s 140.1 0.968 99046. —2345.10 0.996 191.6
(20+15)Me 92.1 0.960 41065. —1465.70 0.997 152.3 [(10+10)M o 160.5 0.969 85317. —1293.90 0.707 167.5

L(2,1) (15+15)M 5 107.0 0.969 50159. —1486.50 1.003 164.3| (15+5)M5 169.6 0.966 114410. —1835.70 0.673 165.1
(20+10)M 5 1094 0.970 55990. —1663.30 0.994 166.4| (10+5)M, 218.8 0.964 146040. —1373.00 0402 194.6
(15+10)M 5 1294 0.969 66431. —1519.40 0998 187.9| (5+5)Mo 321.0 0.932 244970. —1159.90 0.743 404.3
(20+20)M 389.2 0.964 6138. 109140 —0.539 242.5| (20+5)M 5 733.9 0928 31397. 197790 —0.634 981.8
(20+15)M s 451.2 0.937 10015. 1120.00 0.583 693.5[(10+10)M 758.8 0.868 34673. 1301.30 0.951 783.1

HT(2,2) (15+15Mg 507.1 0.961 12166. 1236.10 —1.842 322.1| (15+5)M 849.2 0.905 41087. 1898.60 —2.966 1192.5
(20+10)M 5 536.2 0.960 13624. 1378.00 —0.711 334.7| (10+5)M 5 1057.3 0.870 109640. 351.04 0939 899.7
(15+10)M 5 632.6 0.950 16662. 1468.50 —1.780 378.9| (5+5)My 1525.5 0.937 214890. —317.77 0.967 9694
(20+20)M 5 403.9 0.923 2544. 1511.00 0.547 459.7| (20+5)M 5 611.2 0918 22867. 2595.60 —1.053 1200.0
(20+15)M 5 459.0 0.961 1774. 1747.20 —1.790 279.7|(10+100M 5 816.6 0.901 10216. 2343.10 —1.861 509.6

HP(2, (15+15)M 5 536.6 0.921 3321. 1853.80 0.063 11559 (15+5)M o 771.6 0.892 27498. 2640.30 —2.977 1200.0

25) (20+10)M 5 530.3 0.958 6259. 1961.60 —1.844 331.6| (10+5)M 5 1050.2 0.850 107210. 707.41 0.893 918.8
(15+10)M s 638.8 0914 7474. 2079.90 —1.449 1193.8| (5+5)M o 1601.2 0.921 212810. 3393 0.694 916.8
(20+20)M 358.4 0.977 16787. 81.92 0.187 3464 (20+5)M5 196.3 0.983 83529. —1429.20 0.856 232.3
(20+15)M 5 420.3 0.975 22751. 13.30 0414 728.7[(10+10)M 726.0 0.964 67085. —285.69 0.594 9222

HT(3, (15+15)M 484.0 0.971 29634. 843 0.016 417.1| (15+5)M5 303.3 0.992 98845. —1096.60 0.782 395.9

35,4+2) (20+10)Mo 495.8 0.983 37522. —309.28 0.693 731.8| (10+5)M5 970.3 0.992 128810. —755.33 0.526 909.7
(15+10)M 586.9 0.967 46435. —210.60 0.586 916.7| (5+5)My 1433.6 0.992 221940. —679.22 0400 907.7
(20+20)M 3164 0.981 17922. —37.78 0.640 498.6| (20+5)M 5 196.1 0.984 83861. —1489.90 0.869 232.7
(20+15)M 5 375.2 0.980 23737. —95.75 0.603 6182[|(10+100M 5 6394 0.972 68270. —408.04 0.640 917.6

HT(3, (15+15)M 5 426.3 0.975 31166. —123.77 0506 587.6| (15+5)M o 303.1 0.993 98715. —1142.80 0.802 389.2

35,-2) (20+ 100M g 436.0 0.986 38125. —390.93 0.538 434.1| (10+5)M 868.1 0.992 129460. —848.59 0.675 852.1
(15+10)M e 514.5 0974 47366. —316.76 0.654 8064| (5+5)My 1273.2 0.993 223420. —812.58 0425 883.0
(20+20)M 5 474.6 0.968 14652. 236.51 0215 8634 (20+5)M 1964 0982 83872. —1421.20 0928 2614
(20+15)M 5 539.6 0.966 20205. 181.76  0.071 1076 9[(10+10)M 5 9522 0.948 66050. —202.66 0.548 898.9

HP(3, (15+15)M 5 634.8 0.955 27087. 170.17  0.009 1200.0| (15+5)M s 304.1 0.990 98220. —1035.20 0.796 4054

35,+2) (20+ 100M o 5989 0.975 36238. —213.15 0438 900.5| (10+5)M 1212.8 0.991 127870. —682.01 0.555 621.0
(15+10)M 5 752.5 0.948 45078. —109.24 0539 911.2| (5+5)M5 1921.0 0.989 220910. —608.88 0.313 925.7
(20+20)M 5 363.2 0.973 16421. 11338  0.384 5259 (20+5)M o 196.3 0.983 83747. —1435.60 0.996 289.7
(20+15)M 5 421.8 0.972 21952. 62.83 0337 6909|(10+100M 5 734.7 0958 66819. —271.94 0.680 893.8

HP(3, (15+15)M 489.8 0.968 28632. 62.71 0.000 422.7| (15+5)M o 303.7 0992 98202. —1060.60 0.749 368.8

35,-2) (20+ 100M 5 510.0 0.982 36893. —272.30 0.263 4632 (10+5)Ms 998.3 0.991 128060. —722.63 0491 887.7
(15+10)M 5 591.3 0.959 45653. —168.47 0469 924.6| (5+5)My 14459 0.991 221850. —685.53 0.390 930.8

= |R(f)[? = |g(f)|? we lose only the factgr Peu! Popt - On t.he 0th<?r hand, we do
j y J' —df not want to lose the signal-to-noise ratio that is accumulated
Pnocut Peur - i Feu Snlf) l Feut Sn(f) at high frequencies if our templates have a fighting chance of
Peut Popt 2 ‘ E( f)|2 2 e | g( f)|2 matching Fhe true signal there; so it make§ sense to inc.lude in
f d J df the detection bank the same template with several different
0 S,(f) 0 S,(f) values of ..
~ 1o It turns out that using only the two parameters ¢, and 3,
J' = |g(f) d in the phasing (and setting all other ¢ coefficients to zero)
Feu Sn(f) f and the two amplitude parameters, f., and «, we obtain a
=l (113)  family that can already match all the PN models of Secs. III
J’C|g(f) df and IV with high fitting factors FF. This is possible largely
o S.(f) because we restrict our focus to BBHs with relatively high
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masses, where the number of GW cycles in the LIGO range
[and thus the total range of the phasing (f) that we need to
consider] is small.

In Table XIII we list the minmax (see Sec. II) fitting fac-
tor for the projection of the PN models onto our frequency-
domain effective templates, for a set of BBH masses ranging
from (5+5)My to (20+20)M . In computing the fitting
factors, we used the simplicial search algorithm AMOEBA
[65] to search for the optimal set of parameters
(o, W3 s feur» @) (as always, the time of arrival and initial
phase of the templates were automatically optimized as de-
scribed in Sec. II). From Table XIII we draw the following
conclusions:

(1) All the adiabatic models (T and P) are matched with
fitting factors FF>0.97. Lower-mass BBHs are matched bet-
ter than higher-mass BBHs, presumably because for the lat-
ter the inspiral ends at lower frequencies within the LIGO
band, producing stronger edge effects, which the effective
templates cannot capture fully. 3PN models are matched bet-
ter than 2PN models.

(2) The effective-one-body models (ET and EP) are
matched even better than the adiabatic models, presumably
because they have longer inspirals and less severe edge ef-
fects at the end of inspiral. Unlike the adiabatic models,
however, ET and EP are matched better for higher-mass
BBHs. In fact, all the FFs are >0.99 except for (5+5)Mg
BBHs, where FF=0.979. The reason for this is probably that
this low-mass BBH has more GW cycles in the LIGO fre-
quency band than any other one, and the two phasing param-
eters of our effective templates cannot quite model the evo-
lution of the phasing. (In the adiabatic models, these effects
may be overshadowed by the loss in signal to noise ratio due
to the edge effects at high frequencies.) When the parameters

7 1 are allowed to be nonzero, the matches get worse, but not
by much. For all the plausible values of z,, the worst situa-

tion seems to happen at z7,=—40, where the overlaps are
still higher than ~0.95 (with minimum 0.947).

(3) The Hamiltonian models (HT and HP) at 3PN order
are not matched as precisely, but the detection template fam-

(o, P3) h (o + A hap+ M) =1— >

PHYSICAL REVIEW D 67, 024016 (2003)

ily still works reasonably well. We usually have FF>0.96,
but there are several exceptions, with FF as low as 0.948. For
these models, the overlaps are lower in the equal-mass cases,
where the ending frequencies of the waveforms are much
higher than for the other models; it seems that the effective
templates are not able to reproduce this late portion of the
waveforms (this might not be so bad, because it does not
seem likely that this part of the signal reflects the true be-
havior of BBH waveforms).

(4) The Lagrangian models (L) are matched a bit worse
than the Hamiltonian models (HT and HP) at 3PN, but they
still have FF higher than 0.95 in most cases, with several
exceptions [at either (20+20)M or (5+5)M ], which
can be as low as 0.93.

(5) HT and HP models at 2PN are matched the worst,
with typical values lower than 0.95 and higher than 0.85.

Finally, we note that our amplitude function A.(f) is a
linear combination of two terms, so we can search automati-
cally over the correction coefficient «, in essentially the
same way as discussed in Sec. II for the orbital phase. In
other words, « is an extrinsic parameter. (Although we do
search over «, it is only to show the required range, which
will be a useful piece of information when one is deciding
how to lay down a mesh of discrete templates on the con-
tinuous detection-template space.)

A. Internal match and metric

To understand the matches between the Fourier-domain
templates and the PN models, and to prepare to compute the
number of templates needed to achieve a given (internal)
MM, we need to derive an expression for the match between
two Fourier-domain effective templates.

We shall first restrict our consideration to effective tem-
plates with the same amplitude function (i.e., the same « and
feuor)-  The overlap  (A(thy,¢hs3p) h(ho+ Ay, s
+A3,)) between templates with close values of #, and
3, can be described (to second order in A ¢, and A rs,) by
the mismatch metric g;; [29]:

i,j=0,3/2

The metric coefficients g;; can be evaluated analytically from the overlap

<h(w’O’¢3/2)’h(¢0+A¢0,¢3/2+A¢3/2)>2|: max

Ay, Aty

| e [ ars
=1—-= max
2 Ay Aty

LA
f”sm

Sh(f)

A
(E #+A¢O+zwfmo)

i f i

A 2
1[5t s

Mmq
/Uﬁ&m’

(116)

L

2
(2 f—n+A¢0+2WfAlo>

where no=5/3 and n;,=2/3. Comparison with Eq. (114) then gives
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FIG. 18. In the left panel, we plot the iso-match contours for the function (h(¢, r3n).h(Po+ Ay, ¥3n+ Aihsp)); contours are given at
matches of 0.99, 0.975 and 0.95. Solid lines give the indications of the mismatch metric; dashed lines give actual values. Here we use a
Newtonian amplitude function A(f)=f""° (we set =0 and we do not cut the template in the frequency domain. In fact, fey
=400 Hz). In the right panel we plot the values of Af ., (versus f,) required to obtain matches (A (f o)+ A(feu™ Af cur)) of 0.95 (uppermost
curve), 0.975 and 0.99 (lowermost). In the region below each contour the match is larger than the value quoted for the contour. Again, here
we use a Newtonian amplitude function A(f)=/""° (we set a=0).

. Ay Ay
Z gijAl/’iA‘//j:E min | (Ao Airspn) My A +2(A ¢y 2mAL)) M) A (117)
ij Ay, Aty 3n ¥3n
Ay
+(Ado2mALy) M3, 2mAt) | (118)
[
where the My, (3, are the matrices the left panel of Fig. 18 we plot the iso-match contours (at

matches of 0.99, 0.975 and 0.95) in the (A, A ¢3,) plane,

as given by the metric (124) (solid ellipses), compared with

the actual values obtained from the numerical computation

of the matches (dashed lines). For our purposes, the second-

J(ng) J(n3p) order approximation given by the metric is quite acceptable.

(2)={ B B }, (120) In this computation we use a Newtonian amplitude function

J(ng=1) J(nzp=1) A(H)=71""° (ie., we set =0 and we set our cutoff fre-
quency at 400 Hz).

_ J0) J(=1) (121) We move now to the mismatch induced by different cutoff

D=1 J(=2) frequencies f,. Unlike the case of the ¢, i3, parameters,

this mismatch is first order in Af,,, so it cannot be de-

and where scribed by a metric. Suppose that we have two effective tem-

plates A(f,) and h(fou+Afe,) with the same phasing and

f d f|A(f ) 1 ] / [ j |A(f )q (122) amplitude A f>0, but different cutoff frequencies. The match

Sp(f) Su(f) is then given by

J(2ng)  J(ngtnsp)
J(ng+nzp)  J(2ns3,)

M), : (119)

J(n)=

Since M3, describes the mismatch caused by (A ¢ ,At), it
must be positive definite; because the right-hand side of Eq.
(117) reaches its minimum with respect to variations of A ¢,
and Az, when

Ay A g,
oM +2M 0, 123 fou/10°
(2)< Ay (3)(27TA10 (123)
we obtain
1 T ag-1
gij_E[M(l)_M(Z)M(3)M(2)]ij' (124)

FIG. 19. Projection of the ET(2,2.5) waveforms onto the
We note also that the mismatch (h(4y,130).h(0 frequency-domain effective template space. For @ we choose the
+ Ao, h3p+ Aisp)) s translationally invariant in the optimal value found by the search. The (i, 3, ) surface is
(o, 3) plane, so the metric g; j is constant everywhere. In interpolated from the then mass pairs shown in Table III.
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<h(fcut)’h(fcut+ Afcut)>

[

IA(f)lz}
Su(f)

[ (fa JADPT (feat e AP
_fo e Sh<f>} Uo < Sh(f)}
(125)
e |AHI? 2
) J, 56
| (St M AP
i fo AT
[ Y /{ oo IA(f)IT’Z
= { 2 Se) fo AT
(126)

This result depends strongly on f_,. In the right panel of
Fig. 18 we plot the values of Af, that correspond to
matches of 0.95, 0.975 and 0.99, according to the first order
approximation (solid lines), and to the exact numerical cal-
culations (dashed lines), both of which are given in the sec-
ond line of Eq. (126). In the region below each contour the
match is larger than the value that characterizes the contour.
As we can see from the graph, the linear approximation is
not very accurate, thus in the following we shall use the
exact formula.

B. Construction of the effective template bank:
Parameter range

All the PN target models are parametrized by two inde-
pendent numbers (e.g., the two masses or the total mass and
the mass ratio); if we select a range of interest for these
parameters, the resulting set of PN signals can be seen as a

PHYSICAL REVIEW D 67, 024016 (2003)

1_{)- 0, 800y i
e ——— i I:\-Zit 00, 400)
: = - (130000, 400) (250000, 400)
emEsEyreTeEREsEEEREERERm - :
0.0t i
N]o :
: 1
g 1
< 10 i
Lm v
3|‘ !' (150000, —1500) {250000, —1 500y
—20t "‘-.\\\ 120000, -1500)
&
5000, ~1200
0.0 5.0 1.0 1.5 2.0 2.5
Yo/10°

FIG. 20. Projection of the PN waveforms onto the (¢, 3,)
plane, for BBHs with masses (5+5)M¢y, (10+5)Mg, ...,(20
+20)M o (see Table III). The projection was computed by maxi-
mizing the maxmax match over the parameters ¢, 3, and fo;
the correction coefficient a@ was set to zero. The thin dotted and
dashed lines show the boundaries of the projected images for the
models (from the top) 7(2,2.5), HT(3,3.5,§=2) and P(2.2.5).
Solid lines (the BH mass lines) link the images of the same BBH for
different PN models. The ends of the BH mass lines are marked
with the BBH masses and with the minimum value min{f,,q,/cu}
across all the PN models. The thick dashed lines delimit the region
that will be covered by the effective template bank; the (¥ ,3,)
coordinates are marked on the vertices. The region is further sub-
divided into four subregions I-IV that group the BH mass lines
with very similar ending frequencies f.,q min -

two-dimensional region in the (m,m,) or (M, n) plane. Un-
der the mapping that takes each PN signal into the Fourier-
domain effective template that matches it best, this two-
dimensional region is projected into a two-dimensional
surface in the (iy,¥3n.f ) parameter space (with the
fourth parameter «=0). As an example, we show in Fig. 19
the projection of the ET(2,2.5) waveforms with (single-BH)

TABLE XIV. End-to-end matches and ending frequencies along the BH mass lines of Fig. 20. The first
three columns show the end-to-end matches and the corresponding number of templates (for MM =0.98)
along the BH mass lines; the remaining columns show the minimum ending frequencies of PN waveforms
along the BH mass lines, the match between the two effective templates at the ends of the range, and the
number of templates needed to step along the range while always maintaining a match =0.98 between
neighboring templates. When computing these matches, we use a Newtonian amplitude function A(f)
=f"7% (we set «=0), and we maximize over the parameters i, and 5, (which is equivalent to assuming

perfect phasing synchronization).

M End-to-end match /\/’end to end f cut min <h (f cut mj11)7h(+°o)> [Eztlss line
(5+5)Mg 0.478 37 572 1.00 0.2
(10+5)M ¢ 0.434 41 346 0.98 0.9
(I15+5)M¢ 0.398 46 232 0.94 3.1
(10+100M ¢ 0.449 40 246 0.95 2.6
(20+5)M 0.347 52 192 0.90 53
(15+10)M o 0.443 40 226 0.94 33
(20+100M 0.428 42 185 0.89 5.9
(15+15M o 0.482 36 191 0.90 5.4
(20+15M o 0.464 38 162 0.84 85
(20+200M ¢ 0.438 41 143 0.79 11.9
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masses 5—20 Mg . The 26 models tested in Secs. III and IV
would be projected into 26 similar surfaces. In constructing
the detection template families, we shall first focus on 17 of
the 26 models, namely the adiabatic 7 and P models at 2PN

and 3PN, the E models at 2PN and at 3PN but with z~1’2
=0, and the H models at 3PN. We will comment on the E

models with 7 1270, on the L models, and on the HT and
HP models at 2PN order at the end of this section.

It is hard to visualize all three parameters at once, so we
shall start with the phasing parameters ¢, and i3, . In Fig.
20 we plot the (¢, ¥,) section of the PN-model projections
into the (g, Y3 . f cuorr) Space, with solid diamonds showing
the projected points corresponding to BBHs with the same
set of ten mass pairs as in Table XIII. Each PN model is
projected to a curved-triangular region, with boundaries
given by the sequences of BBHs with masses (m+m) (equal
mass), (20+m) and (m+5). In Fig. 20 these boundaries are
plotted using thin dashed lines, for the models 7(2,2.5) (the

uppermost in the plot), HT(3,3.5,6=2) (in the middle), and
P(2,2.5) (lowest).

As we can see, different PN models can occupy regions
with very different areas, and thus require a very different
number of effective templates to match them with a given
MM;. Among these three models, 7(2,2.5) requires the least
number of templates, P(2,2.5) requires a few times more,

and HT(3,3.5,0=2) requires many more. This is consistent
with the result by Porter [66] who found that, for the same
range of physical parameters, 7 waveforms are more closely
spaced than P waveforms, so fewer are needed to achieve a
certain MM. In this plot we have also linked the points that
correspond to the same BBH parameters in different PN
models. In Fig. 20 these lines (we shall call them BH mass
lines) lie all roughly along one direction.

A simple way to characterize the difference between the
PN target models is to evaluate the maxmax end-to-end
match between effective templates at the two ends of the BH
mass lines (i.e., the match between the effective templates
with the largest and smallest 3, among the projections of
PN waveforms with the same mass parameters m,, m,); we
wish to focus first on the effects of the phasing parameters,
so we do not cut the templates in the frequency domain and
we set =0. We compute also a naive end-to-end number of
templates, N.qwend» Dy counting the templates required
to step all along the BH mass line while maintaining at
each step a match =0.98 between neighboring templates.
A simple computation yields MN.pg o ena= l0g(end-to-end
match)/1og(0.98). The results of this procedure are listed in
Table XIV. Notice that, as opposed to the fitting factors be-
tween template families computed elsewhere in this paper
(which are maximized over the BBH mass parameters of one
of the families), these matches give a measure of the dissimi-
larity between different PN models for the same values of the
BBH parameters; thus, they provide a crude estimate of how
much the effective template bank must be enlarged to embed
all the various PN models.

We expect that the projection of a true BBH waveform
onto the (¢, 3,) plane will lie near the BH mass line with
the true BBH parameters, or perhaps near the extension of

PHYSICAL REVIEW D 67, 024016 (2003)

the BH mass line in either direction. For this reason we shall
lay down our effective templates in the region traced out by
the thick dashed lines in Fig. 20, which was determined by
extending the BH mass lines in both directions by half of
their length.

We move on to specifying the required range of f, for
each (¢, s,). For a given PN model and BBH mass pa-
rameters, we have defined the ending frequency f.,q as the
instantaneous GW frequency at which we stop the integra-
tion of the PN orbital equations. We find that usually the f_
of the optimally matched projection of a PN template is
larger than the f.,q of the PN template. This is because the
abrupt termination of the PN waveforms in the time domain
creates a tail in the spectrum for frequencies higher than
Sfend. With fo > fenqa and a>0, the effective templates can
mimic this tail and gain a higher match with the PN models.
In some cases, however, the optimal f_, can be smaller than
Sena [for example, P(2,2.5) with (10+5)Mq, (15+5)Mg
and (10+10)M ] suggesting that the match of the phasing
in the entire frequency band up to f.,4 is not very good and
we have to shorten the Fourier-domain template. Now, since
we do not know the details of the plunge for true BBH in-
spiral, it is hard to estimate where the optimal f_, might lie,
except perhaps imposing that it should be larger than
min(fo,q,fcu)- A possibility is to set the range of f, to be
above fou min=min{fcy(>fena}> With the minimum evaluated
among all the PN models.

In Table XIV we show the f_, min found across the PN
models for given BBH mass parameters. We have also
marked this minimum frequency in Fig. 20 under the corre-
sponding BH mass lines. In the table we also show the match
of the two detection templates 2 (f.ui=Ff cut min) a0d 2 (feui=
+00), and the number Nyu .. Of intermediate templates
with different f., needed to move from A(f.y min) to &
(+0o0) while maintaining at each step a match =0.98 be-
tween neighboring templates. It is easy to see that this num-
ber is N tine = 10Z(A(f eyt min)-h(+))/10g(0.98). The match
was computed using a Newtonian amplitude function A(f)
=f"7% (we set =0), and maximized over the parameters
Y and ¢3,. Under our previous hypothesis that the projec-
tion of a true BBH waveform would lie near the correspond-
ing BH mass line, we can use the numbers in Table XIV to
provide a rough estimate of the range of f_, that should be
taken at each point (¢ ,13,) within the dashed contour of
Fig. 20. We trace out four subregions I, II, III, IV, such that
the BH mass lines of each subregion have approximately the
same values of f .y min; We then use these minimum ending
frequencies to set a lower limit for the values of f, required
in each subregion: fiumin(D=143, feutmin(ID=192,
Seut minID) =232, fiu minV)=346. The maximum f,, is ef-
fectively set by the detector noise curve, which limits the
highest frequency at which signal to noise can be still accu-
mulated.

Moving on to the last parameter, o, we note that it is
probably only meaningful to have « fgﬁ$ 1, so that A.u(f)
cannot become negative for f<f.,. (A negative amplitude
in the detection template will usually give a negative contri-
bution to the overlap, unless the phasing mismatch is larger
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than 77/2, which does not seem plausible in our cases.) In-
deed, the optimized values found for « in Table XIII seem to
follow this rule, except for a few slight violations that are
probably due to numerical error (since we had performed a
search to find the optimal value of «). For the 17 models
considered here, the optimal « is always positive (Table
XIIT) which means that, due to cutoff effects, the amplitude
at high frequencies becomes always lower than the f~/°
power law. So for the 17 models considered in this section
s« §Q$ 1. (Note that this range will have to be extended
to include negative «’s if we want to incorporate the models
discussed in Sec. VIE.)

C. Construction of the effective template bank:
Parameter density

At this stage, we have completed the specification of the
region in the (4,3, ,f,) parameter space where we
shall lay down our bank of templates. We expect that the FF
for the projection of the true physical signals (emitted by
nonspinning BBHs with M =10-40M ) onto this template
bank should be very good. We now wish to evaluate the total
number of templates N needed to achieve a certain MM.

We shall find it convenient to separate the mismatch due
to the phasing from the mismatch due to the frequency cuts
by introducing two minimum match parameters MM,, and
MM, with MM=MM,- MM, =MM,+MM,—1. As
mentioned at the beginning of this section, the correction
coefficient « is essentially an extrinsic parameter (see Sec.
11 B): we do not need to discretize the template bank with
respect to «, and there is no corresponding MM parameter.

We evaluate A in three refinement steps:

(1) We start by considering only the phasing parameters,
and we compute the parameter area S; [in the (i, r3)
plane] for each of the subregions i= I, II, III, IV of Fig. 20.
We then multiply by the determinant Jg of the constant met-
ric, and divide by 2(1-MM,), according to Eq. (25), to get

\/_
N= E FRESYIVRE (127)
This expression is for the moment only formal, because we
cannot compute \/§ without considering the amplitude pa-
rameters « and f, .

(2) Next, we include the effect of f.,. In the preceding
section we have set f;, . for each of the subregions by
considering the range swept by fend along the mass lines.
Recalling our discussion of NSh . ., we approximate the

number of distinct values of f, that we need to include for
each parameter pair (¢, ¥3,) as

”fm( o3, a)

log(h (o, 3. frnin cud) -1 (P> 30, at,n0 CUt)>

=1+ logMM_¢

(128)

For « in the physical range 0<sa< fcuf/ 3 this match is mini-

mized for =0, so this is the value that we use to evaluate
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the n{""s. Note that the choice of cutoff frequencies does not
depend on the values of the phasing parameters. This allows
us to have a single set of cutoff frequencies for all points in
one subregion. For subregion i, we denote this set by F;.
(3) The final step is to include the effect of a and f, on
the computation of Jg. For simplicity, we shoot for an upper
limit by maximizing Jg with respect to a. (Because « is
essentially an extrinsic parameter, we do not multiply N by
the number of its discrete values: the matches are automati-
cally maximized on the continuous range 0< a<f_, 23 ) Our

cut
final estimate for the total number of templates is

(129)

N= vy > s 2 max[f]

MMlﬂ) SeweF

We have evaluated this A numerically. We find that the
contributions to the total number of templates from the four
subregions, for MM = 0.96 (taking MM ,=MM_,=0.98),
are N(1)=6,410, N(I)=2,170, MN(II)=1,380, N(IV)
=1,230, for a total of N=11,190. This number scales ap-
proximately as [0.04/(1—MM)]?. Notice that subregion I,
which contains all the BBHs with total mass above 25M &,
requires by far the largest number of templates. This is
mostly because these waveforms end in the LIGO band, and
many values of f_, are needed to match different ending
frequencies. Remember that the optimal signal-to-noise ratio
p for filtering the true GW signals by a template bank is
approximately degraded (in the worst case) by the factor
MM;=FF+MM-—1 [67].

While MM depends on the geometry of the template
bank, we can only guess at the fitting factor FF for the pro-
jection of the true signal onto the template space. In this
section we have seen that all PN models can be projected
onto the effective frequency-domain templates with a good
FF: for a vast majority of the waveforms FF=0.96 (and the
few exceptions can be explained). It is therefore reasonable
to hope that the FF for the true GW signals is ~0.96, so the
total degradation from the optimal p will be MM7=0.92,
corresponding to a loss of =22% in event rate. This number
can be improved by scaling up the number of templates, but
of course the actual FF represents an upper limit for MMr.
For instance, about 47,600 templates should get us MMy
=0.94, corresponding to a loss of =17% in event rate.

D. Parameter estimation with the detection
template family

Although our family of effective templates was built for
the main purpose of detecting BBHs, we can still use it (once
a detection is made) to extract partial information about the
BH masses. It is obvious from Fig. 20 that the masses cannot
in general be determined unambiguously from the best-
match parameters [i.e., the projection of the true waveform
onto the (i,13,) plane], because the images of different
PN models in the plane have overlaps. Therefore different
PN models will have different ideas, as it were, about the
true masses. Another way of saying this is that the BH mass
lines can cross.
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FIG. 21. Projection of the E models with nonzero z; into the
(¥, ¥3p) plane (shown in black dots). The new points sit quite well
along the BH mass lines of the 17 models investigated in Secs.
VI B, VIC and VI D. We use the notation EP(3,3.5,9,21 ,22) and
denote by EP(T3,...) the two-body model in which the coeffi-
cient A(r) is PN expanded [see Eq. (89)].

However, it still seems possible to extract at least one
mass parameter, the chirp mass M=M 7]3/5, with some ac-
curacy. Since the phasing is dominated by the term s, >
at low frequencies, we can use the leading Newtonian term
In(f) =z (mMf) 33 obtained for a PN expanded adia-
batic model in the stationary-phase approximation to infer

3 1 5/3 1 3/5
1//0~ﬁ( ) :/\/lappr‘”‘:—( ) - (130)

TM \ 128 i

If this correspondence was exact, the BH mass lines in Fig.
20 would all be vertical. They are not, so this estimation has
an error that gets larger for smaller ¢ (i.e., for binaries with
higher masses). In Table XV we show the range of chirp-
mass estimates obtained from Eq. (130) for the values of i,
at the projections of the PN models in Fig. 20, together with
their percentage error €= (M PP~ MIPPON/ AL In this
table, M,,,, and M, correspond to the end points of the
BH mass lines. If we take into account the extension of the

3.0
2.0
1.0
0.0
-1.0
-2.0

00 50 10 15 20 25
Y,/10°

¥32/103

FIG. 22. Projections of HT and HP models at 2PN and L mod-
els into the (¢, 3,,) plane (shown in black dots.) The projections
of the previous 17 models are shown in gray dots.
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TABLE XV. Estimation of the chirp masses M from the pro-
jections of the PN target models onto the Fourier-domain effective
template space. The numbers in the second column (labeled “M™)
give the values of the chirp mass corresponding to the BH masses to
their left; the numbers in the third and fourth columns give the
range of estimates obtained from Eq. (130) for the values of i at
the projections of the target models shown in Fig. 20. The last
column shows the percentage error €= (M PP — M PO/ AL

max min

M Mo M@ MBS e
(5+5)M¢ 4.35 4.16 4.27 2.6
(10+5)M 6.08 5.75 6.00 42
(I5+5)M o 7.33 6.85 7.28 5.9
(10+10)M 8.71 8.10 8.72 7.1
(20+5)M 8.33 7.55 8.31 9.1
(I5+10)M 10.62 9.76 10.96 11.3
(20+10)M o 12.17 10.92 12.50 13.0
(I5+15)M o 13.06 11.69 14.88 24.4
(20+15)M 15.05 13.15 17.74 30.6
(20+20)M 17.41 14.91 21.52 38.0

BH mass lines by a factor of two in the effective template
bank, we should double the € of the table.

It seems quite possible that a more detailed investigation
of the geometry of the projections into the effective template
space (and especially of the BH mass lines) could produce
better algorithms to estimate binary parameters. But again,
probably only one parameter can be estimated with certain
accuracy.

E. Extension of the two-dimensional Fourier-domain
detection template

In our construction of the effective template bank, we
have been focusing until now on a subset of 17 models. The

models we left out are E models at 3PN with 7. 12 honzero,
HT and HP models at 2PN, and L models.

As we can see from Fig. 21, E models with z, , nonzero
have a very similar behavior to the 17 models investigated
above. Indeed, (i) the projection of the PN waveforms from
the same model occupy regions that are triangular, and (ii)
the projections of PN waveforms of a given mass lies on the
BH mass line spanned by the previous 17 models. In addi-
tion, their projections lie roughly in the region we have al-
ready defined in Secs. VI B, VI C and VI D. However, the
ending frequencies of these models can be much lower than
the values we have set for the detection templates: the detec-
tion templates (in all four subregions) should be extended to
lower cutoff frequencies if we decide to match these models,
up to FF~0.95. A rough estimate shows that this increases
the number of templates to about twice the original value.

In Fig. 22 we plot the projections of the L(2,0), L(2,1),
HT(2,2) and HP(2,2.5) waveforms into the (¢, ¢s))
plane. As we already know, these models are not matched by
the detection templates as well as the other 17 models. Here
we can see that their projections onto the (¢, #3,) plane are
also quite dissimilar from those models. For L models, al-

024016-38



DETECTION TEMPLATE FAMILIES FOR . ..

z
e Ty | |
-0.1 I '}f;h‘?{--‘_'.'- e [
M:g.s: T
~02 L ,//
. -
05 o /
A e

FIG. 23. Projection of the models P(2,2.5), ET(2,2.5),
ET(3,3.5,0), and SPA(1.5) onto the three-parameter Fourier-
domain detection template, for many BBH masses that lie within
the same ranges taken in Fig. 20. The variables (X,Y,Z) are related
to (o, ¥, ¢¥sp) by a linear transformation, constructed so that the
mismatch metric is just ;; and that the (t,0,¢3,) plane is mapped
to the (X,Y,0) plane. The dots show the value of the parameters
(X,Y,Z) where the match with one of the PN waveforms is maxi-
mum.

though different masses project into a triangular region, the
projection of each mass configuration does not align along
the corresponding BH mass line generated by the 17 models.
In order to cover the L models up to FF~0.93, we need to
expand the (g, 3,) region only slightly. However, as we
read from Table XIII, the cutoff frequencies need to be ex-
tended to even lower values than for the £ models with non-

zero 7 12 - Luckily, this expansion will not cost much. In the
end the total number of templates needed should be about
three times the original value.

For HT and HP models at 2PN, the projections almost lie
along the BH mass lines, but the regions occupied by these
projections have weird shapes. We have to extend the
(o, 3pp) region by a factor ~2 in order to cover the phas-
ings. (The ending/cutoff frequencies for these models are
higher than for the previous two types of models.) An addi-
tional subtlety in this case is that, as we can read from Table
XIII, the optimal values of « are often negative, since the
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FIG. 24. (X,Z) section of Fig. 23. Comparison with Fig. 23
shows that all the projections lie near the (X,0,Z) plane.

amplitude becomes higher than the £~ /¢ power law at higher
frequencies. This expansion of the range of « affects both
the choice of the discrete cutoff frequencies and the place-
ment of (¢, ) lattices. This effect is yet to be estimated.
Finally, we notice that if these extensions are made, then the
estimation of the chirp mass from the coefficient ¢, becomes
less accurate than the one given in Table XV.

F. Extension of the Fourier-domain detection template family
to more than two phasing parameters

It might seem an accident that by using only two phasing
parameters, ¢, and ¢, , we are able to match very precisely
the wide variety of PN waveforms that we have considered.
Indeed, since the waveforms predicted by each PN model
span a two-dimensional manifold (generated by varying the
two BH masses m | and m, or equivalently the mass param-
eters M and 7), we could naturally expect that a third pa-
rameter is required to incorporate all the PN models in a
more general family, and to add even more signal shapes that
extrapolate beyond the phasings and amplitudes seen in the
PN models.

In particular, because the accumulation of signal-to-noise
ratio is more sensitive to how well we can match the phasing
(rather than the amplitude) of PN templates, such a third
parameter should probably interpolate between phasings pre-
dicted by different PN models. As a consequence, the ampli-
tude parameters f, and A do not generate a real dimen-
sional extension of our detection template family. In this
section we present a qualitative study of the extension of our

0.00
-0.25 &,
-0.50
-0.75
-1.00
-1.25
-1.50
- 1.750

ET(2.2.5)

2
g

0 0.5 1.0 L5 2.0

FIG. 25. In this figure we compare the projection of the PN models onto the three-dimensional (¢, ¥, ,3,) Fourier-domain detection
template family [shown by the dots as a two-dimensional section in the (i ,#s,) submanifold] with the projection of the PN models in the
two-dimensional (, /3,,) template family (shown by the lines). In the left panel, we use A=0 and f,,=400 Hz to maximize the matches;

in the right panel we use A=0 and f_,,=200 Hz.
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detection template family obtained by adding one phasing
parameter, the parameter ¢, of Eq. (110).

We use the (¢y,¥,,3,) Fourier-domain detection tem-
plates to match the PN waveforms from the models
P(2,2.5), ET(2,2.5), and ET(3,3.5,0); these models were
chosen because their projections onto the (¢, ¢3,,) detection
templates were rather distant in the (¢y,43,) parameter
space. Throughout this section (and unlike the rest of this
paper), we use an approximated search procedure whereby
we essentially replace the amplitude of the target models
with the Newtonian amplitude A(f) =f~"° with a cutoff fre-
quency fo (we always assumed A4=0 and f,=400 Hz).
As expected, the matches increase, and indeed they are al-
most perfect: always higher than 0.994 (it should be remem-
bered, however, that these should be considered as matches
of the PN phasings rather than as matches of the PN wave-
forms; especially for high masses, the frequency dependence
of the amplitude is likely to change these values).

If we plot the projections of the PN waveforms in the
(o, , ) space, we find that the clusters of points cor-
responding to each PN target model look quite different from
the projections [onto the (i, ,) template space] shown in
Fig. 20; but this is just an artifact of the parametrization. We
can perform a linear transformation (¥, ¢, ¥3p)
—(X,Y,Z), defined in such a way that (i) in the (X,Y,Z)
parameters, the mismatch metric is just J;;, and that (ii) the
(10,0,¢3)5) plane is mapped to the (X,Y,0) plane. These con-
ditions define the linear transformation up to a translation
and a rotation along the Z axis; to specify the transformation
completely we require also that all the projections of the PN
models lie near the origin, and be concentrated around the X
axis. Figure 23 shows the projection of the PN models
P(225), ET(22.5), and FET(3,35,0) onto the
(9,41, ) detection template family, as parametrized by
the (X,Y,Z) coordinate system, for many BBH masses that
lie within the same ranges of Fig. 20. Each dot marks the
parameters (X,Y,Z) that best match the phasing of one of the
PN waveforms. We include also the projection of a further
PN model, SPA(1.5), obtained by solving the frequency-
domain version of the balance equation, obtained in the
stationary-phase approximation from our 7 model. The ex-
pression of the SPA(1.5) phasing as a function of f coin-
cides with our Eq. (110), but the coefficients that correspond
to (o, ,¥sp) are functions of the two mass parameters M
and 7.

By construction, the match between nearby detection tem-
plates is related to their Euclidian distance in the (X,Y,Z) by

1 —overlap=AX>+AY>+AZ>. (131)
We see immediately that all the PN models are not very
distant from the (X,Y,0) plane (also shown in the figure),
which coincides with the (ig,3,) plane. The farthest
model is P(2,2.5), with a maximum distance ~0.18. It is
important to notice that, since this number is obtained by
assuming f.,,=400 Hz and A=0, it tends to underestimate
the true overlaps for models that end below 400 Hz, such as
the P models at higher masses. See also Fig. 24 for an (X,Z)
section of Fig. 23.
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We can study the relation between this three-dimensional
family of templates and the two-dimensional family consid-
ered earlier by projecting the points of Fig. 23 onto the
(X,Y,0) plane [which corresponds to the (1,0,43,) plane].
The resulting images resemble closely the projections of the
PN models onto the (¥, 13,) parameter space of the two-
dimensional family, as seen in the left panel of Fig. 25. How-
ever, the agreement is poor for P(2,2.5) because of the rela-
tively high cut frequency f.,,=400 Hz. The right panel of
Fig. 25 was obtained by taking f.,,=200 Hz. The agreement
is much better. This result goes some way toward explaining
why using only two phasing parameters was enough to
match most PN models in a satisfactory way.

As stated at the beginning of this section, the parameter Z
can indeed be used to expand the dimensionality of our de-
tection template family, because it appears to interpolate be-
tween different PN models. It is possible that the number of
Z values needed when laying down a discrete template fam-
ily might not be too large, because the PN models do not
seem to lie very far from the Z=0 plane [remember that
distances in the (X,Y,Z) parameter space are approximately
mismatch distances].

The good performance that we find for the two- and three-
dimensional Fourier-domain families confirms the results ob-
tained in Refs. [13,47] and [68]. In Ref. [13], the authors
point out that the waveforms obtained from the stationary
phase approximation at 2PN and 2.5PN order are able to
approximate the £ models, throughout most of the LIGO
band, by maximizing over the mass parameters (see Ref.
[13], in particular the discussion of their model “Tf2,” and
the discussion around their Fig. 2).

In Ref. [47], Chronopolous and Apostolatos show that
what would be in our notation the SPA(2) model (where the
phasing is described by a fourth-order polynomial in the
variable %) can be approximated very well, at least for the
purpose of signal detection, by the SPA(1.5) model, with the
advantage of having a much lower number of templates. In
Ref. [68], the authors go even further, investigating the pos-
sibility of approximating the SPA(2) phasing with a poly-
nomial of third, second and even first degree obtained using
Chebyshev approximants.

It is important to underline that in all of these analyses the
coefficients that appear in the expression of the phasing [cor-
responding to our ¢, , ... in Eq. (110)] depend on only
two BBH mass parameters, either directly [13,47], or indi-
rectly [68] through specific PN relations at each PN order. As
a consequence, the phasings assumed in these references are
confined to a two-dimensional submanifold analog to the sur-
face labeled “SPA(1.5)” in Fig. 23.

In this paper we follow a more general approach, because
the phasing coefficients ; are initially left completely arbi-
trary. Only after studying systematically the projection of the
PN models onto the template bank we have determined the
region where a possible detection template bank would be
laid down. The high matches that we find between detection
templates and the various PN models depend crucially on
this assumption. As a consequence, our parameters ¢; do not
have a direct physical meaning, and they cannot easily be
traced back to specific functions of the BBH masses, except
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TABLE XVI. Fitting factors for the projection of the target models (in the rows) onto the P(2,2.5) detection template family. For ten
choices of BBH masses, this table shows the maxmax (mm) and minmax (mn) matches between the target models and the P(2,2.5) search
model, maximized over the intrinsic parameters of the search model. For each intersection, the triples (mm, M, %) and (mn, M, 7) denote
the maximized matches and the mass parameters M =m, +m, and p=mm,/M? at which the maxima are attained (maxmax and minmax
matches give rise to slightly different optimal values of M and 7). In computing these matches, the search parameter » was not restricted
to its physical range 0<7=<1/4, but it was allowed to move in the range 0< %<1, for which the energy-balance equation (31) is still
formally integrable. With few exceptions, this table shows that maxmax and minmax matches are very similar, so we generally use the more
conservative minmax matches.

mm M n mn M n mm M n mn M n

(20+20)M 0997 3553 035 0994 3555 035 | (20+5)M, 0988 2204 021 0979 2251 0.20
(20+15M5 0997 3243 031 0994 31.69 0.32 | (10+10)My 0996 1929 0.28 0990 1874 0.30
T(2,2) (15+15M5 0997 2845 029 0993 2754 032 | (15+5)Ms 0993 1831 0.23 0985 1794 0.24
(20+10)M5 0996 27.72 027 0992 2683 030 | (10+5M, 0992 1455 024 0989 14.86 0.23
(15+10)M5 0995 23.68 028 0988 2295 030 | (5+5My 0994 1060 0.23 0992 1073 0.22

(20+20)M, 0.821 1877 094 0962 2259 0.65 | (20+5)M, 0958 11.66 0.63 0987 12.81 0.53
(20+15M5 0862 16.60 094 0966 1940 0.68 | (10+10)M 0948 996 0.89 0984 1071 0.77
T(22.5) (15+15M5 0.891 1426 097 0969 16.61 0.71 | (15+5)M5 0965 9.72 0.69 0989 1026 0.62
(20+10)M 0905 13.67 094 0974 1595 0.69 | (10+5)M, 0971 858 0.60 0987 8.67 0.59
(15+100M, 0929 11.89 093 0978 1343 073 | (5+5)Ms 0981 655 052 0985 652 0.53

(20+20)M 0997 37.04 031 0994 3696 031 | (20+5)M5 0996 23.66 0.18 0990 2328 0.19
(20+15M5 0997 3262 029 0995 32.69 029 | (10+10)Ms 0998 19.70 0.26 0993 19.24 0.27
7(3,3.5,0) (I15+15Ms 0998 2889 028 0994 28.07 030 | (15+5M5 0997 19.18 021 0993 18.82 0.21
(20+10)M, 0997 2869 025 0995 28.00 026 | (10+5Ms 0997 1489 0.23 0993 14.67 0.23
(I15+10)M5 0998 2435 026 0994 2372 027 | (5+5Ms 0999 10.16 024 0997 1027 0.24

(20+20)M 5 0999 3620 031 0995 3537 033 | (20+5)Mg 0997 2295 0.19 0993 2253 0.20
(20+15M5 0999 3140 031 0997 3122 0.31 |(10+10)Ms 0999 18.67 0.29 0995 1820 0.30
7(3,3.5,0) (I5+15M5 0999 27.63 029 0997 2696 031 | (15+5)M, 0997 1861 0.22 0995 18.15 0.23
(20+10)M5 0999 2742 027 099 2684 028 | (10+5)Ms 0998 14.13 0.25 0994 13.87 0.26
(I15+10)Me 0998 2320 028 0996 2260 029 | (5+5Mc 0998 957 027 099 9.71 0.26

(20+20)M 0998 3530 033 099 34.73 034 | (20+5)Me 0998 23.03 0.19 0995 2262 0.20
(20+15Me 0999 3084 032 0996 30.65 032 | (10+10)Me 0998 18.11 031 0994 17.86 0.31
P(3,35,-2) (I5+15M¢e 0999 27.01 031 0996 2638 033 | (15+5)Ms 0997 1843 022 0994 1796 0.23
(20+10)Me 0999 2690 028 0996 2648 029 | (10+5)Ms 0998 1399 0.25 0993 1375 0.26
(I15+10)Me 0998 2276 029 0995 2218 031 | (5+5Me 0997 950 027 0996 9.63 0.27

(20+20)M 0999 3358 036 0996 3342 037 | (20+5)Mp 0998 2271 0.19 0996 2242 0.20
(20+15M5 0999 30.03 033 0997 29.70 0.34 | (10+10)Mo 0999 17.87 031 0995 17.36 0.33
P(3,35,+2) (I15+15M5 0998 26.12 033 0997 2559 034 | (15+5)M5 0998 18.15 0.23 0996 17.77 0.24
(20+10)M5 0999 2638 029 0997 2584 030 | (10+5)Ms 0998 1359 0.27 0994 1331 0.28
(I5+100Ms 0997 21.62 032 0995 2153 032 | (5+5Mg 0998 925 029 099 934 0.28

(20+20)M 0994 2675 056 0989 2510 0.65 | (20+5)Ms 0979 19.87 0.24 0970 19.27 0.26
(20+15Mo 0993 2377 052 0962 2526 045 [ (10+10)Mo 0989 1475 043 0983 1493 043
ET(2,2.5) (15+15M5 0991 2087 0.50 0970 21.86 045 | (15+5)M, 0987 1581 0.28 0982 1542 0.30
(20+10)M, 0988 2135 042 0973 2026 047 | (10+5)Ms5 0994 1198 0.33 0990 11.70 0.34
(15+10)M, 0987 1799 044 0969 1728 048 | (5+5Ms 0997 8.04 036 0995 8.18 0.35

(20+20)M 0991 3138 046 0986 2996 0.53 | (20+5)M, 0952 2275 0.20 0941 2333 0.19
(20+15M; 0989 2848 040 0978 2683 047 |(10+10)M, 0977 18.69 0.29 0971 18.03 0.32
ET(3,3.5,—2) (15+15M, 0985 2524 038 0970 23.83 043 | (15+5)My 0972 1853 022 0964 19.03 0.21
(20+10)M 0977 25.09 034 0955 23.62 039 | (10+5M; 0983 1504 022 0979 1479 0.23
(I15+100M5 0974 21.65 033 0963 2239 031 | (5+5Ms 0994 1038 0.23 0992 1039 0.23

(20+20)M 0993 30.84 046 0989 2951 051 | (20+5)Ms 0957 2228 0.20 0946 2287 0.19
(20+15M5 0991 2738 043 0981 2594 048 | (10+10)Mo 0983 1695 035 0976 17.42 0.33
ET(3,3.5,+2) (15+15My 0986 24.02 041 0973 22.67 047 | (15+5M 0974 1792 024 0967 1849 022
(20+10)M, 0981 24.19 036 0963 22.66 042 | (10+5)Ms5 0984 1443 0.24 0982 1428 0.24
(15+100Mo5 0977 2084 035 0966 2146 033 | (5+5Ms 0995 980 026 0993 9.89 0.25
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TABLE XVI.

(Continued).
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mm

M

7

mn

M

7

mm

M

7

mn

M

7

EP(225)

(20+20)M ¢,
(20+15)M,
(15+15M,
(20+10)Mo
(15+10)M,

0.988
0.980
0972
0.965
0.963

30.91
27.79
24.47
24.97
23.00

048
043
0.40
0.34
0.29

0977
0.963
0.947
0.938
0.951

28.86
25.85
22.77
22.29
21.93

0.58
0.52
0.49
0.47
0.32

(20+5)M,
(10+10)M o,
(15+5)M,
(10+5)M¢
(5+5Me

0.947
0.975
0.970
0.984
0.995

24.15
18.50
18.73
15.15
10.24

0.17
0.30
0.22
0.22
0.24

0.940
0.964
0.963
0.980
0.993

23.60
17.90
19.16
14.80
10.29

0.18
0.32
0.21
0.23
0.24

EP(335,-2)

(20+20)M ¢,
(20+15)M,
(15+15M,
(20+10)M ¢,
(15+10)M,

0.993
0.990
0.986
0.982
0.977

30.25
26.86
23.98
23.79
20.49

048
045
041
0.37
0.36

0.990
0.981
0.974
0.964
0.966

29.04
25.54
22.36
22.56
21.21

0.53
0.50
048
042
0.34

(20+5)M,
(10+10)M o,
(15+5)M,
(10+5)M,
(5+5Me

0.958
0.983
0.975
0.984
0.994

21.90
16.74
17.83
14.34
9.74

021
0.36
0.24
0.24
0.26

0.947
0.976
0.967
0.982
0.993

22.61
17.26
18.24
14.12
9.84

0.20
0.34
0.23
0.25
0.26

EP(335,+2)

(20+20)M ¢,
(20+15)M,
(15+15Mo
(20+10)Mo
(15+10)M,

0.994
0.991
0.986
0.982
0.978

29.47
26.46
22.97
23.18
19.94

0.50
045
0.44
0.39
0.38

0.991
0.983
0.975
0.966
0.968

28.39
24.97
21.73
22.14
20.58

0.55
0.52
0.50
043
0.36

(20+5)M,
(10+10)M o,
(15+5)Mo
(10+5)M¢
(5+5Me

0.960
0.983
0977
0.985
0.994

21.84
16.14
17.52
13.53
9.54

021
0.39
0.24
0.27
0.27

0.948
0.976
0.968
0.983
0.993

22.30
16.75
18.08
13.79
9.55

0.20
0.36
0.23
0.26
0.27

HT(3,3.5,—2)

(20+20)M ¢,
(20+15)M,
(15+15M,
(20+10)M ¢,
(15+10)M,

0.993
0.986
0.978
0.965
0.952

21.45
19.86
17.27
20.87
17.74

0.98
0.84
0.81
0.49
0.49

0.991
0.982
0972
0.949
0.944

21.03
18.48
16.19
18.74
16.36

1.00
1.00
0.94
0.66
0.59

(20+5)M,
(10+10)M o,
(15+5)M,
(10+5)M,
(5+5Me

0.995
0.964
0.988
0.978
0.987

26.36
15.24
19.17
14.07
9.61

0.15
043
021
0.25
0.27

0.986
0.958
0.980
0.975
0.986

25.79
14.57
19.60
13.93
9.55

0.15
0.48
0.20
0.26
0.27

HT(3,3.5,42)

(20+20)M ¢,
(20+15)M,
(15+15Mo
(20+10)M ¢,
(15+10)M,

0.982
0.984
0.977
0.964
0.954

20.21
17.81
15.20
19.18
15.66

1.00
0.98
1.00
0.57
0.61

0.960
0.967
0.962
0.950
0.943

20.04
17.53
16.06
17.04
16.70

1.00
1.00
0.89
0.77
0.54

(20+5)M,
(10+10)M o,
(15+5)Mo
(10+5)M,
(5+5Me

0.997
0.965
0.991
0.980
0.986

25.94
13.39
18.63
13.23
9.03

0.15
0.55
0.22
0.28
0.30

0.990
0.959
0.984
0.975
0.985

2548
13.95
19.08
13.51
8.93

0.16
0.51
0.21
0.27
0.31

HP(335,-2)

(20+20)M ¢,
(20+15)M,
(15+15M,
(20+10)M ¢,
(15+10)M,

0.962
0.971
0.963
0.961
0.947

19.87
17.46
15.66
17.81
16.31

1.00
1.00
0.93
0.69
0.56

0.946
0.960
0.960
0.950
0.941

20.16
17.69
15.14
19.45
15.77

1.00
1.00
1.00
0.55
0.60

(20+5)M,
(10+10)M o,
(15+5)M,
(10+5)M,
(5+5Me

0.997
0.962
0.992
0.978
0.984

25.87
12.92
18.51
13.04
8.97

0.15
0.59
0.22
0.29
0.30

0.990
0.957
0.982
0.975
0.982

25.26
13.34
17.98
13.27
9.02

0.16
0.55
0.23
0.28
0.30

HP(335,+2)

(20+20)M ¢,
(20+15)Mo
(15+15Mo
(20+10)M ¢,
(15+10)M,

0915
0.942
0.938
0.959
0.949

19.33
17.26
15.03
16.40
12.43

1.00
1.00
0.99
0.81
0.99

0.887
0921
0.933
0.947
0.937

20.18
17.71
14.89
17.94
13.30

0.94
0.96
1.00
0.65
0.86

(20+5)M,
(10+10)M o
(15+5)Mo
(10+5)M,
(5+5Me

0.998
0.957
0.993
0.978
0.982

25.69
12.04
18.25
12.90
8.62

0.15
0.67
0.23
0.29
0.33

0.992
0.953
0.985
0.976
0.982

2521
11.32
18.61
12.65

8.70

0.16
0.76
0.22
0.31
0.32

for the chirp mass, as seen in Sec. VID. This is natural,
because our detection templates are built to interpolate be-
tween different PN models, each of which has, as it were, a
different idea of what the waveform for a BBH of given
masses should be.

VII. PERFORMANCE OF THE TIME-DOMAIN
DETECTION TEMPLATES AND CONSTRUCTION
OF THE DETECTION BANK IN TIME DOMAIN

Another possibility of building a detection-template fam-
ily is to adopt one or more of the physical models discussed
in Secs. IV as the effective template bank used for detection.
Under the general hypothesis that underlies this work (that

is, that the farget models span the region in signal space
where the true physical signals reside), if we find that one of
the target models matches all the others very well, we can
use it as the effective model; and we can estimate its effec-
tualness in matching the true physical signal from its effec-
tualness in matching all the other models.

As shown in Tables V, VIII and discussed in Sec. V, the
fitting factors FF for the projection of the PN models onto
each other are low (at least for PN order n<2.5 or for high
masses); in other words, the models appear to be quite dis-
tant in signal space. This conclusion is overturned, however,
if we let the dimensionless mass ratio » move beyond its
physical range 0<#n=<1/4. For instance, the P(2,2.5) and
EP(3,3.5,0) models can be extended formally to the range
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TABLE XVII. Fitting factors for the projection of the target models (in the rows) onto the EP(3,3.5,0) detection template family. For ten
choices of BBH masses, this table shows the maxmax matches between the target models and the EP(3,3.5,0) search model, with (mmc) and
without (mm) the time-domain cut discussed in Sec. VII. The matches are maximized over the intrinsic parameters of the search model (over
M and 7 for the mm values; over M, 7 and f, for the mmc values). For each intersection, the triple (mm, M, 7) and the quadruple (mm,
M, 1, f.u) denote the maximized matches and the mass (and cut) parameters at which the maxima are attained. In computing these matches,
the search parameter 7 was not restricted to its physical range 0<<n=1/4, but it was allowed to move in the range 0<<7<1 for which the
energy-balance equation (31) is still formally integrable. This table shows that the addition of the time-domain cut can improve the fitting
factors considerably, especially for the higher M’s in the in the left half of the table, and for the models whose orbital evolution is ended
within the range of good interferometer sensitivity.

mm M n mmc M 7 feu mm M n mmc M 7 feu

(20+20)M, 0984 51.05 0.14 0984 51.38 0.14 171.7| (20+5)M 0981 2534 0.16 0981 2532 0.16 347.1
(20+15)M5 0981 44.12 0.14 0.981 44.11 0.15 199.7|(10+10)M 0984 22.16 0.21 0.985 22.15 0.21 395.5
T(2,2) (15+15M5 0977 37.15 0.16 0.978 37.16 0.16 236.7| (15+5)Ms 0986 20.90 0.18 0.987 20.89 0.18 424.3
(20+10)M5 0974 3585 0.15 0974 35.62 0.16 246.7| (10+5)Mo 0992 16.17 020 0.999 16.20 0.20 368.4
(15+10)Mo 0976 2795 0.20 0.976 27.82 0.20 316.6| (5+5)Me 0996 11.05 0.21 0.999 11.12 021 553.1

(20+20)M 5 0.948 2494 0.57 0985 24.09 0.60 202.5| (20+5)Ms 0975 14.60 0.41 0975 14.52 042 567.2
(20+15)M5 0956 21.50 0.58 0.990 20.77 0.62 2419 |(10+10)Ms 0983 11.72 0.65 0.995 11.48 0.69 415.0
T(22.5) (15+15)M5 0.965 18.08 0.62 0.986 18.76 0.57 279.0| (15+5)M 0983 11.38 0.51 0.994 11.50 0.50 448.1
(20+10)Mo 0965 17.57 0.58 0.992 17.00 0.62 285.7| (10+5)Me 0986 9.44 0.50 0.993 923 053 629.2
(15+10)M5 0974 14.85 0.61 0.994 1428 0.66 329.9| (5+5)My 0989 6.89 048 0.990 693 047 787.5

(20+20)M 5 0979 53.09 0.12 0.979 52.83 0.12 166.4| (20+5)M 0965 27.22 0.13 0.966 27.27 0.13 322.7
(20+15)M5 0971 4536 0.13 0.972 4528 0.13 194.2|(10+100M5 0979 2277 0.19 0979 22.79 0.19 384.8
7(3,3.5,0) (15+15Ms 0969 37.79 0.15 0.969 37.79 0.15 232.8| (15+5)Ms 0976 21.94 0.16 0.978 22.09 0.15 398.7
(20+10)M 5 0961 3457 0.17 0.963 34.57 0.16 254.3| (10+5)Mo 0985 16.47 0.19 0985 16.47 0.19 533.1
(15+10)M5 0971 28.74 0.18 0.971 28.63 0.18 306.5| (5+5)Mg 0994 10.69 022 0.999 10.66 0.22 474.6

(20+20)M 5 0948 5247 0.11 0979 5043 0.13 1743 | (20+5)Mo 0956 25.06 0.16 0.963 26.47 0.14 3324
(20+15)M 5 0.967 43.35 0.14 0.968 4341 0.14 202.7 |(10+10)M 0977 21.88 0.21 0.980 21.59 0.21 408.5
7(3,3.5,0) (15+15)M5 0.963 3341 0.20 0.966 36.09 0.16 243.5| (15+5)Ms 0973 1998 0.19 0976 21.32 0.16 411.8
(20+10)M5 0.963 33.33 0.17 0.964 33.17 0.18 267.0| (10+5)M 0985 1521 022 0.998 15.38 0.21 346.9
(15+10)M5 0971 27.25 020 0.972 2725 020 3214| (5+5)Mg 0994 10.14 024 0.999 10.13 0.24 522.3

(20+20)M 5 0941 5520 0.11 0.956 56.36 0.10 152.1| (20+5)Mo 0937 2797 0.13 0.938 27.93 0.13 315.3
(20+15)M5 0940 44.34 0.14 0.940 4434 0.14 198.2|(10+10)M 0958 2226 0.20 0.958 22.20 0.20 395.3
P(225) (15+15)M5 0946 37.08 0.16 0.948 37.27 0.15 236.2| (15+5)Mo 0959 22.06 0.15 0961 22.26 0.15 395.1
(20+10)Mp 0943 37.06 0.14 0.943 37.13 0.14 236.9| (10+5)Me 0977 1553 0.21 0.998 15.83 0.20 284.1
(15+10)M5 0945 30.16 0.16 0.948 3040 0.16 289.2| (5+5)Mo 0992 10.42 0.23 0.999 10.37 0.23 408.0

(20+20)M 5 0979 49.53 0.14 0.979 49.58 0.14 179.2| (20+5)M 0955 2530 0.16 0.959 26.63 0.14 330.9
(20+15)M5 0972 4249 0.15 0972 4249 0.15 206.8 |(10+10)M5 0982 21.04 022 0982 21.04 022 416.3
P(335,—2) (15+15Ms 0962 33.09 0.20 0.970 35.17 0.17 250.1| (15+5)Mo 0977 21.04 0.17 0978 21.07 0.17 416.6
(20+10)M5 0965 3249 0.18 0.964 32.67 0.18 273.4| (10+5)Mo 0987 1539 0.21 0.998 15.27 021 356.4
(15+10)M5 0974 26.67 021 0.974 26.65 0.21 3284 | (5+5)Mg 0996 10.10 025 0.996 10.11 0.25 795.8

(20+20)M 5 0976 49.06 0.14 0.980 48.36 0.15 181.7| (20+5)Mo 0956 26.37 0.14 0.957 26.37 0.14 333.4
(20+15Mo 0972 41.31 0.16 0974 4127 0.16 213.0|(10+10)Ms 0983 20.41 0.24 0.983 20.41 024 4292
P(335,+2) (15+15Ms 0971 33.77 0.19 0971 33.77 0.19 259.5| (15+5)Mo 0976 20.81 0.17 0976 20.72 0.17 423.6
(20+10)M5 0966 31.61 0.19 0.966 31.66 0.19 277.0| (10+5)M, 0988 15.07 0.22 0.988 15.07 0.22 580.0
(15+10)M5 0975 25.80 0.22 0.975 25.81 0.22 3384 | (5+5)Mg 0996 9.84 026 1.000 9.81 026 566.3

(20+20)M 5 0.998 3541 0.31 0.999 35.10 031 244.8| (20+5)Mo 0995 2257 0.19 0.995 22.62 0.18 392.5
(20+15)M5 0.999 30.78 0.30 0.999 30.78 0.30 280.3 |(10+10)Ms 0999 17.42 032 0999 17.42 032 4924
ET(2,2.5) (15+15)M5 0.998 26.43 0.31 0.998 26.53 030 324.7| (15+5)Mo 0996 17.89 0.22 0.996 17.93 0.22 488.0
(20+10)M5 0998 27.01 0.26 0.998 27.04 0.26 324.1| (10+5)Ms 0997 13.19 027 0.997 13.09 0.28 658.5
(15+10)M5 0.998 22.16 0.29 0.998 22.17 0.29 393.8| (5+5)Mgy 0999 8.61 032 0.999 8.60 0.32 996.6

(20+20)M 5 0.999 43.15 0.22 0.999 43.17 0.22 2032 | (20+5)Mo 0999 26.22 0.15 1.000 26.22 0.15 341.0
(20+15)M5 0999 38.02 0.21 1.000 38.04 0.21 230.5|(10+10)Ms 1.000 21.64 0.22 1.000 21.76 022 407.4
ET(3,3.5,—2) (15+15Ms 0999 3270 0.21 0.999 32.65 0.22 269.6 | (15+5)Me 1.000 21.23 0.17 1.000 21.22 0.17 419.1
(20+10)M5 1.000 32.17 0.20 1.000 32.17 0.20 276.3| (10+5)Ms 0999 16.14 020 1.000 16.08 0.20 544.9
(15+10)M5 0999 2696 0.21 0.999 27.00 0.21 327.5| (5+5)Ms 0999 10.81 022 0.999 10.72 0.22 819.3
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TABLE XVII. (Continued).

mm M mmc M

7

Sew mm M 7 mmc M 7 feu

41.85
36.32
31.11
31.06
25.95

(20+20)M ,
(20+15)M ¢,
(15+15M ¢
(20+10)M o
(15+10)M

0.999
0.999
0.999
0.998
0.999

0.23
0.23
0.23
021
0.22

0.999
1.000
1.000
0.999
0.999

41.69
36.11
31.01
30.98
25.85

ET(3,3.5,42)

0.23
0.23
0.24
021
0.23

2548
20.75
20.51
15.40
10.25

0.15
0.23
0.18
021
0.24

2545
20.69
20.50
15.38
10.25

0.16
0.23
0.18
021
0.24

345.7
4219
435.4
572.7
853.6

2111
2442
284.6
286.8
339.7

(20+5)M,
(10+10)M,
(15+5)M,
(10+5)Mo
(5+5)M

0.999
0.999
1.000
0.999
0.999

1.000
0.999
1.000
0.999
0.999

(20+20)M ,
(20+15)M ¢,
(15+15M ¢
(20+10)M ¢,
(15+10)M

0.993
0.994
0.992
0.996
0.996

41.79
37.13
31.60
32.19
27.04

0.24
0.23
0.23
0.20
021

0.993
0.994
0.994
0.996
0.996

41.77
37.60
32.01
32.14
27.04

EP(225)

0.24
0.22
0.23
0.20
021

0.15
0.22
0.17
0.20
0.22

26.57
21.65
2142
16.10
10.76

335.7
409.6
417.6
545.1
817.3

211.0
236.5
276.9
276.8
327.8

(20+5)M,
(10+10)M,
(15+5)M,
(10+5)M,
(5+5)M

0.997
0.997
0.998
0.998
0.998

26.39
21.68
21.37
16.06
10.75

0.998
0.998
0.999
0.998
0.998

0.14
0.22
0.17
0.20
0.22

(20+20)M ,
(20+15)M ¢,
(15+15Mo
(20+10)M o
(15+10)M

0.997
0.997
1.000
1.000
1.000

41.49
35.06
30.73
30.64
25.58

0.23
0.25
0.24
021
0.23

1.000
1.000
1.000
1.000
1.000

40.88
35.64
30.70
30.63
25.58

EP(335,-2)

0.24
0.24
0.24
021
0.23

2155
245.9
286.9
287.1
344.9

25.25
20.56
20.33
15.28
10.21

0.16
0.24
0.18
0.22
0.24

25.26
20.51
20.30
15.32
10.22

0.16
0.24
0.18
021
0.24

352.1
4249
433.1
572.9
854.4

(20+5)M,
(10+10)M,
(15+5)M¢
(10+5)Mo
(5+5)M

1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000

40.05
3491
29.87
29.99
24.83

0.25
0.24
0.25
0.22
0.24

(20+20)M ,
(20+15)M ¢,
(15+15M ¢
(20+10)M ¢,
(15+10)M

0.998
0.998
1.000
0.999
1.000

1.000
1.000
1.000
1.000
1.000

39.87
34.92
29.87
29.86
24.83

EP(335,+2)

0.25
0.25
0.25
0.22
0.24

0.16
0.25
0.19
0.22
0.25

0.16
0.25
0.19
0.22
0.25

353.0
441.6
444 4
584.0
871.17

219.8
252.7
290.6
292.5
3554

(20+5)M,
(10+10)M,
(15+5)M,
(10+5)M,
(5+5)M

0.999
1.000
1.000
1.000
0.999

24.98
19.92
19.98
14.98
9.99

1.000
1.000
1.000
0.999
1.000

2493
19.85
19.91
14.96
9.98

0.62
0.59
0.56
0.29
0.31

(20+20)M ,
(20+15)M ¢,
(15+15Mo
(20+10)M ¢,
(15+10)M

0.988
0.982
0.976
0.985
0.978

26.79
23.90
20.86
27.05
22.28

0.990
0.982
0.979
0.986
0.978

24.74
2391
21.27
27.08
22.32

HT(3,3.5,—2)

0.76
0.59
0.54
0.28
0.31

30.26
17.25
21.56
15.02
9.83

290.7
3227
3722
321.0
389.3

(20+5)M,
(10+10)M,
(15+5)M¢
(10+5)M,
(5+5)M

0.941
0.980
0.988
0.991
0.991

31.21
17.14
21.56
15.05
9.81

0.10
0.35
0.16
0.22
0.26

0.962
0.982
0.988
0.993
0.992

0.11
0.34
0.16
0.22
0.26

287.2
493.8
407.3
582.1
798.6

(20+20)M ,
(20+15)M ¢,
(15+15M ¢
(20+10)M ¢,
(15+10)M

0.987
0.979
0.970
0.977
0.973

20.90
18.72
16.93
25.19
19.43

1.00
0.96
0.83
0.32
0.40

0.988
0.979
0.970
0.977
0.973

20.93
18.72
16.93
24.51
19.46

HT(3,3.5,42)

1.00
0.96
0.83
0.35
0.40

3194
360.2
4149
349.6
428.2

(20+5)M,
(10+10)M,
(15+5)M,
(10+5)M,
(5+5)M

0.932
0.973
0.987
0.992
0.989

30.88
14.84
21.20
14.15
9.23

0.10
045
0.17
0.25
0.29

0.955
0.974
0.987
0.992
0.989

29.95
14.74
21.15
14.15
9.28

0.11
0.46
0.17
0.25
0.29

292.5
5532
416.8
615.7
754.7

20.64
21.55
19.64
26.00
17.92

20.64
21.79
18.72
26.27
18.16

(20+20)M ,
(20+15)Mo
(15+15Mo
(20+10)M ¢,
(15+10)M

0.973
0.965
0.963
0.974
0.963

1.00
0.69
0.59
0.30
048

0.973
0.966
0.966
0.975
0.964

HP(335,-2)

1.00
0.67
0.66
0.29
0.46

323.2
340.8
398.9
331.0
451.5

(20+5)M,
(10+10)Mo
(15+5)M¢
(10+5)M,
(5+5)M

0.930
0.970
0.986
0.991
0.987

30.83
15.51
21.04
13.83
9.20

0.10
041
0.17
0.26
0.29

0.953
0.970
0.987
0.991
0.987

29.87
15.54
20.98
13.85
9.23

0.11
041
0.17
0.26
0.29

294.6
531.0
420.3
633.8
640.9

0.938
0.957
0.950
0972
0.954

19.98
17.71
15.18
24.34
18.03

1.00
1.00
1.00
0.34
0.46

0.938
0.957
0.950
0.973
0.955

19.98
17.71
15.18
24.52
17.83

(20+20)M ,
(20+15)M ¢,
(15+15M ¢
(20+10)M ¢,
(15+10)M

HP(335,+2)

1.00
1.00
1.00
0.34
0.47

335.0
377.3
4394
348.3
452.8

0.951
0.964
0.986
0.988
0.985

29.72
14.15
20.84 0.17
13.44 0.27
8.86 0.31

0.11
0.49

0.951
0.964
0.987
0.988
0.986

29.70
14.28
20.76
13.65
8.99

0.11
048
0.17
0.26
0.30

296.4
559.8
423.1
634.4
724.4

(20+5)M,
(10+10)M,
(15+5)M,
(10+5)M,
(5+5)M

0=<7=1. Beyond those ranges, either the equations (of en-
ergy balance, or motion) become singular, or the determina-
tion of the MECO or light ring [the evolutionary end point of
the inspiral for the P(2,2.5) model and the EP(3,3.5,0)
model, respectively] fails.

When the models are extended to 0 < =<1, they appear to
lie much closer to each other in signal space. In particular,
the P(2,2.5) and EP(3,3.5,0) models are able to match all

the other models, with minmax FF>0.95, for almost all the
masses in our range, and in any case with much improved FF
for most masses; see Tables XVI and XVII. Apparently, part
of the effect of the different resummation and approximation
schemes is just to modulate the strength of the PN effects in
a way that can be simulated by changing # to nonphysical
values in any one model. This fact can be appreciated by
looking at Figs. 26, 27 and 28, 29 which show the projection
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0.7

=== T(2,2)

=== P(2,2.5)

061 — . EP22.5)

0.5
= 04
0.3

0.2

0.1

5 75 10 125 15 175 20
M = Mp3/®

FIG. 26. Projection of 2PN waveforms onto the P(2,2.5) effec-
tive template space. Dots are shown for the same BBH masses of
Table III, and for PN models 7(2,2.5), P(2,2.5), ET(2,2.5), and
EP(2,2.5). The thin solid lines show the BH mass lines (introduced
in Sec. VI B), while the dashed and dotted lines show the contours
of the projections of selected PN models.

of several models onto the P(2,2.5) and EP(3,3.5,0) effec-
tive template spaces, respectively. For instance, in compari-
son with 7(2,2.5), the model P(2,2.5) seems to underesti-
mate systematically the effect of 7, so a satisfactory FF for
77=0.25 can be obtained only if we let 7,>0.25 [quite
consistently, in the comparison of Tables V, VIII, where #
was confined to its physical range, 7(2,2.5) could match
P(2,2.5) effectively, but the reverse was not true].

The other (and perhaps crucial) effect of raising # is to
change the location of the MECO for the P-approximant
model (or the light ring, for the EP model), where orbital
evolution ends. (Remember that one of the differences be-
tween the Padé and the EOB models is that the latter in-
cludes a plunge part between the ISCO and the light ring.)
More specifically, for P(2,2.5) [ EP(3,3.5,0)] the position of
the MECO (light ring) is pushed to smaller radii as # is
increased. This effect can increase the FF for target models
that have very different ending frequencies from those of

g} ===BE.35) (15,15) (20,20)
- = EP(3350) g
0.8 (10,19) (20,009
= 06
0.4 >
(10,29 = #—
Sb‘ 5) &
0.2 5] m
(205)
5 75 10 125 15 175 20
M = Mp3/®

FIG. 27. Projection of 3PN waveforms onto the P(2,2.5) effec-
tive template space. Dots are shown for the same BBH masses of
Table XV, and for PN models 7(3,3.5,+2), P(3,3.5,+2),
ET(3,3.5,+2), EP(3,3.5,+2), HT(3,3.5,+2), and HP(3,3.5,0).
The dots for #=—2 are only slightly displaced, and they are not
shown. The thin solid lines show the BH mass lines (introduced in
Sec. VI B), while the dashed and dotted lines show the contours of
the projections of selected PN models.
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045F L LT T2
e P
0.35 (10 10)

0.3
= 0.25 us 5)
02 i
(5,5)(105 }
0.15
(15,10

0.1 (20,5}

{15.15) (20,20)

(20 107

FIG. 28. Projection of 2PN waveforms onto the EP(3,3.5) ef-
fective template space. This projection includes the effect of the
frequency cut. Dots are shown for the same BBH masses of Table
III, and for PN models 7(2,2.5), P(2,2.5), ET(2,2.5), and
EP(2,2.5). The thin solid lines show the BH mass lines (introduced
in Sec. VI B), while the dashed and dotted lines show the contours
of the projections of selected PN models.

P(2,2.5) and EP(3,3.5) at comparable #7’s.

Because for the EP model the frequency at the light ring
is already quite high, we cannot simply operate on 7 to im-
prove the match between the EP model and other models
that end at much lower frequencies (see the values of min-
max matches in Table XVII). Thus, we shall enhance the
effectualness of EP by adding an arbitrary cut parameter that
modifies the radius r (usually the light-ring radius) at which
we stop the integration of the Hamilton equations (92)—(95);
the effect is to modify the final instantaneous GW frequency
of the waveform. This is therefore a time-domain cut, as
opposed to the frequency-domain cuts of the frequency-
domain effective templates examined in the preceding sec-
tion.

We can then compute the FF by searching over f, in
addition to M and 7, and we shall correspondingly account

=== T(3350)
= = EP(3,350)

0.8

06
& (100)
0.4 j
0.2} O] P ¥t

)
10 125 15 175 20
M = Mp3/®

FIG. 29. Projection of 3PN waveforms onto the £P(3,3.5) ef-
fective template space. This projection includes the effect of the
frequency cut. Dots are shown for the same BBH masses of Table
II, and for PN models 7(3,3.5,+2), P(3,3.5,+2), ET(3,3.5,
+2), EP(3,3.5,+2), HT(3,3.5,+2), and HP(3,3.5,+2). The
dots for §= —2 are only slightly displaced, and they are not shown.
The thin solid lines show the BH mass lines (introduced in Sec.
VI B), while the dashed and dotted lines show the contours of the
projections of selected PN models.
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FIG. 30. Determinant of the mismatch metric for the P(2,2.5)

determinant +/|g| is shown as a function of 7 and 8= M 7*°.

for the required number of distinct f,, when we estimate the
number of templates required to give a certain MM,,,. Even
so, if we are unsure whether we can model successfully a
given source over a certain range of frequencies that falls
within the LIGO range (as it is the case for the heavy BBHs
with MECOs at frequencies < 200 Hz), the correct way to
estimate the optimal p (and therefore the expected detection
rate) is to include only the signal power in the frequency
range that we know well.

The best matches shown in Tables XVI and XVII, and in
Figs. 26-29, were obtained by searching over the target
model parameter space with the simplicial AMOEBA algo-
rithm [65]. We found (empirically) that it was expedient to
conduct the searches on the parameters S=M 7*> and 7
rather than on M and #. This is because iso-match surfaces
tend to look like thin ellipses clustered around the best match
parameter pair, with principal axes along the 8 and # direc-
tions. As shown in Table XVI, the values of the maxmax and
minmax FFs are very close to each other for the P(2,2.5)
model; the same is true for the EP(3,3.5) model (so in Table
XVII we do not show both). For EP(3,3.5), the search over
the three parameters (3, 7,f.) Was performed as a refine-
ment step after a first search on (3, 7).

We have evaluated the mismatch metric [29] gij (see Sec.
IT) with respect to the parameters (3,7) for the models
P(2,2.5) and EP(3,3.5,0) (while evaluating g,;, the EP
waveforms were not cut). The metric components at the
point (Bg, 79) were obtained by first determining the ranges

(Bmin ’ﬂmax)’ (nmin’nmax) f()l' Wthh
<M(B0’ nO)’u(Bmin’ 770)>:<M(ﬁ0, nO)’u(Bmax’ 770)>

=1-0.05 (132)
<M(BO» 770)#(/30, 77min)>:<u(ﬁ0’ 770)’”([309 77max)>
=1-0.05; (133)

then a quadratic form was least-squares fit to 16 values of the
match along the ellipse I'; with axes given by (Bmin »Bmax)
and ( 9pin > Pmax)- The first quadratic form was used only to
determine the principal axes of two further ellipses I', and
I'5, at projected matches of 1—0.025 and 1—0.0125. An-
other quadratic form (giving the final result for the metric)
was then fit at the same time to 16 points along I", and to 16

models (left panel) and for the EP(3,3.5,0) models (right panel). The

points along I';, but the two ellipses were given different
fitting weights to cancel the quartic correction terms in the
Taylor expansion of the match around (B, 7,) (the cubic
terms were canceled automatically by taking symmetric
points along the ellipses). The rms error of the fit was in all
cases very good, establishing that the quadratic approxima-
tion held in the close vicinity (matches ~0.95) of each point.

We estimate that the numerical error ~20% is in any case
less than the error associated with using Eq. (25) to evaluate
the required number of templates, instead of laying down a
lattice of templates more accurately.

The resulting \/E for P(2,2.5) and EP(3,3.5,0) is shown
in Fig. 30. It is evident that most of the mismatch volume is
concentrated near the smallest 8’s and #’s in parameter
space. This is encouraging, because it means that the exten-
sion of the effective template family to high masses and high
7’s (necessary, as we have seen, to match several target mod-
els with very high FF) will be relatively cheap with respect
to the size of the template bank (this picture, however,
changes when we introduce frequency-domain cuts for the
EP models). With the \/m ’s we then computed the number
of P and EP templates necessary to cover the parameter
ranges B: (4,24), 5: (0.15,1.00), and B: (4,24), n: (0.1,1.00)
which span comfortably all the projected images of the target
spaces onto the P and EP template spaces, respectively.
(Note the ranges include also BBHs where one of the BHs
has a mass less than SM .) We obtained

1-MM

Np23260( ), ./\/'526700(%), (134)

where MM is the required minimum match (analog to the
parameter MM, of the preceding section). By comparison,
these numbers are reduced to, respectively, 1230 and 3415 if
we restrict 7 to the physical range.

The number N does not include the effect of multiple
ending frequencies (cuts). We estimate the number of distinct
feur needed for each B by an argument similar to the one
used for the Fourier-domain effective templates (see Sec.
VI); it turns out that more cuts are required for higher
masses. The resulting number of templates is Np.=51,000
for MM=0.98, which is comparable to the result for the
effective Fourier-domain templates.
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If we assume that the distance between the time-domain
templates and the target models is representative of the dis-
tance to the true physical signal, we can guess that FF
=0.95 for P and FF=0.97 for EP with cuts. Under these
hypotheses, 6500 P templates can buy us a (worst-case)
MM=0.94, corresponding to a loss in event rate of ~17%.
For 51,000 EP templates, we get MM1=0.95, correspond-
ing to a loss in event rate of ~14%.

Before ending this section we would like to point out
another time-domain detection-template family which can be
consider kindred of the Fourier-domain detection-template
family introduced in Sec. VI, see Eq. (108). We can use, for
example, the following expression suggested by PN calcula-
tions (see, e.g., Ref. [69]):

., T
he(1)= A l(1) e'Ver®, (135)

where

AL =t =" 1= a" (t.—1) "™ O(t—1),
(136)

'peff(t): ¢c+(tc_t)5/8[(//g+ '7011“/2(%_[)71/8—’_ (yl”{(tc_t)71/4

+ iy (=) B+ y) (1,—0) 7P+ ], (137)

where ¢, ,1.,a”, wg, 1,01T, 1//§,2 and ¢§ are arbitrary parameters
whose range of values are determined maximizing the
matches with the target two-body models.

VIII. SUMMARY

This paper deals with the problem of detecting GWs from
the most promising sources for ground-based GW interfer-
ometers: comparable-mass BBHs with total mass M
=10-40M o, moving on quasicircular orbits. The detection
of these sources poses a delicate problem, because their tran-
sition from the adiabatic phase to the plunge, at least in the
nonspinning case, is expected to occur in the LIGO and
VIRGO frequency bands. Of course, the true GW signals
from these inspirals should be obtained from exact solutions
of the Einstein equations for two bodies of comparable mass.
However, the theoretical templates used to search for these
signals will be, at best, finite-order approximations to the
exact solutions, usually derived in the PN formalism. Be-
cause the perturbative PN approach begins to fail during the
final stages of the inspiral, when strong curvature and non-
linear effects can no longer be neglected, various PN resum-
mation methods have been introduced [15-17] to improve
the convergence of the PN series.

In the first part of this paper [see Secs. III, IV and V] we
studied and compared in detail all the PN models of the
relativistic two-body dynamics currently available, including
PN Taylor-expanded and resummed models both in the adia-
batic approximation and in the nonadiabatic case. We noticed
the following features (see Tables IX, XI). At least for PN
orders n<2.5, the rarget models T, P, and E have low cross
matches if the 2.5PN Taylor flux is used. For example, for
almost all the masses in our range, we found maxmax FF
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=<0.9; the matches were much better only for P against E
(and vice versa). However, if the 2PN Taylor flux is used the
overlaps are rather high. At 3PN order we found much higher
matches between T, P, and E, and also with the nonadiabatic
model H, at least for masses M <30M , and restricting to

z;=0=2,. These results make sense because at 3PN order
the various approximations to the binding energy and the
flux seem to be much closer to each other than at lower
orders. This ‘“‘closeness” of the different analytical ap-
proaches, which at 3PN order are also much closer to some
examples of numerical quasiequilibrium BBH models [26],
was recently pointed out in Refs. [58,59]. On the other hand,
the extraction of BBH parameters from a true measured sig-
nal, if done using the 3PN models, would still give a range of
rather different estimates. However, we want to point out that
for quite high masses, e.g., M =40M ¢, the 3PN models can
have again lower overlaps, also from the point of view of
detection.

In addition, by studying the frequency-domain amplitude
of the GW signals that end inside the LIGO frequency band
(see Figs. 4, 7, 10, 14), we understood that if high matches
are required it is crucial to reproduce their deviations from
the Newtonian amplitude evolution, f~”¢ (on the contrary,
the Newtonian formula seems relatively adequate to model
the PN amplitude for GW frequencies below the instanta-
neous GW frequency at the end point of orbital evolution).

Finally, the introduction of the HT, HP and L models in
Secs. IV A and IV B provided another example of two-body
nonadiabatic dynamics, quite different from the £ models. In
the H models, the conservative dynamics does not have an
ISCO [see the discussion below Eq. (74)] at 2PN and 3PN
orders. As a consequence, the transition to the plunge is due
to secular radiation-reaction effects, and it is pushed to much
higher frequencies. This means that, for the H models, the
GW signals for BBHs of total mass M =10-40M  end out-
side the LIGO frequency band, and the frequency-domain
amplitude does not deviate much from the Newtonian result,
at least until very high frequencies (see Fig. 10). The L mod-
els do not provide the waveforms during the late inspiral and
plunge. This is due to the fact that because of the appearance
of unphysical effects, e.g., the binding energy starts to in-
crease with time instead of continuing decreasing, we are
obliged to stop the evolution before the two BHs enter the
last stages of inspiral. It is important to point out that differ-
ently from the nonadiabatic £ models, the nonadiabatic H
and L models give rather different predictions when used at
various PN orders. So, from these point of view they are less
reliable and robust than the £ models.

In the second part of this paper (Secs. VI and VII) we
pursued the following strategy. We assumed that the target
models spanned a region in signal space that (almost) in-
cluded the true GW signal. We were then able to provide a
few detection template families (either chosen among the
time-domain target models, or built directly from polynomial
amplitude and phasings in the frequency domain) that ap-
proximate quite well all the targets (FF=0.95 for almost all
the masses in our range, with much better FFs for most
masses). We speculate that the effectualness of the detection
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model in approximating the targets is indicative of its effec-
tualness in approximating the true signals.

The Fourier-domain detection template family, discussed
in Sec. VI, is simple and versatile. It uses a PN polynomial
structure for the frequency-domain amplitude and phasing,
but it does not constrain the coefficients to the PN functional
dependencies on the physical parameters. In this sense this
bank follows the basic idea that underlies the fast chirp trans-
form [64]. However, because for the masses that we consider
the GW signal can end within the LIGO frequency band, we
were forced to modify the Newtonian-order formula for the
amplitude, introducing a cutoff frequency and a parameter to
modify the shape of the amplitude curve (the parameter «).
As discussed at the end of Sec. VI F the good performance of
the two and three-dimensional families confirms also results
obtained in Refs. [13,47] and [68].

We showed that our Fourier-domain detection template
space has a FF higher than 0.97 for the 7, P and E models,
and =0.96 for most of the 3PN HT and HP models; we then
speculate that it will match true BBH waveforms with FF
~0.96. We have computed the number of templates required
to give MM =0.96 (about 10*). The total MMy should be
larger than FF-MM~0.92, which corresponds to a loss of
event rate of l—MM%% 22%. This performance could be
improved at the price of introducing a larger number of tem-
plates, with the rough scaling law of N=10*0.04/(0.96
—MM)]>.

In Sec. VI E we investigated where the less reliable 2PN
H and L models, and the E models at 3PN order further

expanded considering z,#0, lie in the detection template
space. The Fourier-domain template family has FF in the
range [0.85,0.95] with the 2PN H models, and FF mostly
higher than 0.95, but with several exceptions which can be as

low as 0.93 with the L models. The E models with 7, #0 are
matched by the detection template family with FF almost

always higher than 0.95. The E models with z,#0 and the L
models are (almost) covered by the region delimiting the

adiabatic models and the E models with z;,=0. However,
these models require lower cutoff frequencies, which will
increase the number of templates up to a factor of 3. The
2PN H models sit outside this region and if we want to
include them the number of templates should be doubled.
The time-domain detection template families, discussed in
Sec. VII, followed a slightly different philosophy. The idea in
this case was to provide a template bank that, for some
choices of the parameters, could coincide with one of the
approximate two-body models. Quite interestingly, this can
be achieved by relaxing the physical hypothesis that 0< 7%
=0.25. However, the good performances of these banks are
less systematic, and harder to generalize than the perfor-
mance of the Fourier-domain effective bank. As suggested at
the end of Sec. VII [see Eq. (135)], the time-domain bank
could be improved by using a parametrization of the time-
domain amplitude and phase similar to the one used for the
Fourier-domain templates. The detection template families
based on the extension of the P(2,2.5) and EP(3,3.5) to
nonphysical values of # were shown to have FF, respec-
tively, =0.95 and =0.97 for all the PN target models, and
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considerably higher for most models and masses. We have
computed the number of P templates needed to obtain a
MM=0.99 (about 6,500) and of EP templates to obtain a
MM=0.98 (about 51,000). The expected total MM is then,
respectively, =0.94 and =0.95, corresponding to losses in
event rates of =17% and < 14%. The MMs scale roughly as
[0.01/(1—=MM)] for P and [0.02/(1 —MM)]? for EP (be-
cause of the additional frequency-cut parameter).

We notice that the number of templates that we estimate
for the Fourier- and time-domain detection template families
is higher than the number of templates we would obtain us-
ing only one PN model. However, the number of indepen-
dent shapes that enters the expression for the p,, threshold
[see Eq. (18)] does not coincide with the number of tem-
plates that are laid down within a discrete template bank to
achieve a given MM indeed, if MM is close to one, these are
almost guaranteed to be to yield S/N statistics that are
strongly correlated. A rough estimate of the number of inde-
pendent shapes can be obtained taking a coarse-grained grid
in template space. For example, by setting MM=0 in Eq.
(25), the number of independent shapes would be given
roughly by the volume of the template space. As explained at
the end of Sec. II B, if we wish to keep the same false-alarm
probability, we have to increase the threshold by ~3% if we
increase the number of independent shapes by one order of
magnitude. This effect will cause a further loss in event rates
[70].

Finally, in Sec. VIF we extended the detection template
family in the Fourier domain by requiring that it embeds the
targets in a signal space of higher dimension (with more
parameters). We investigated the three-dimensional case and
we found, as expected, the maxmax matches increase. In
particular, the match of the phasings are nearly perfect: al-
ways higher than 0.994 for the two-body models which are
farthest apart in the detection template space. Moreover, by
projecting the points in the three-dimensional space back to
the two-dimensional space, we can get nearly the same pro-
jections we would have got from matching directly the PN
waveforms with the two-parameter—phasing model. The
analysis done in Sec. VI F could suggest ways of systemati-
cally expand the Fourier-domain templates. Trying to guess
the functional directions in which the true signals might lie
with respect to the targets was the most delicate challenge of
our investigation. However, our suggestions are not guaran-
teed to produce templates that will capture the true signal,
and they should be considered as indications. When numeri-
cal relativity provides the first good examples of waveforms
emitted in the last stages of the binary inspiral and plunge, it
will be very interesting to investigate whether the
matcheswith our detection template families are high and in
which region of the detection template space do they sit.
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