
Received December 6, 2020, accepted December 31, 2020, date of publication January 8, 2021, date of current version January 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3049819

Detection, Traceability, and Propagation
of Mobile Malware Threats

LONG CHEN 1,2,3, CHUNHE XIA 1,4, SHENGWEI LEI 1, (Graduate Student Member, IEEE),

AND TIANBO WANG 1,5, (Member, IEEE)
1Beijing Key Laboratory of Network Technology, Beihang University, Beijing 100191, China
2Innovation Technology Research Institute, Beijing Topsec Network Security Technology Company Ltd., Beijing 100085, China
3Home Internet Operation Center, China United Network Communications Ltd., Beijing 100032, China
4School of Computer Science and Information Technology, Guangxi Normal University, Guilin 541004, China
5School of Cyber Science and Technology, Beihang University, Beijing 100191, China

Corresponding author: Tianbo Wang (wangtb@buaa.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61862008, Grant U1636208, and Grant
61902013; in part by the Shijiazhuang Science and Technology Research and Development Plan under Grant 201130351A; and in part by
the Beihang Youth Top Talent Support Program under Grant YWF-20-BJ-J-1038.

ABSTRACT In recent years, the application of smartphones, Android operating systems and mobile
applications have become more prevalent worldwide. To study the traceability, propagation, and detection
of the threats, we perform research on all aspects of the end-to-end environment. With machine learning
based on the mobile malware detection algorithms that integrate the dynamic and static research of the
identification algorithm, application software samples are collected to study sentences. Through knowledge
labeling and knowledge construction, the association relationship of knowledge is extracted to realize the
research of knowledge map construction. Flooding is closely correlated with the complexity of the Android
mobile version of the kernel and malicious programs. A static dynamic analysis of the mobile malicious
program is carried out, and the social network social diagram is constructed to model the propagation of the
mobile malicious program. We extended the approach of deriving common malware behavior through graph
clustering. On this basis, Android behavior analysis is performed through our virtual machine execution
engine. We extend the family characteristics to the concept of DNA race genes. By studying SMS/MMS,
Bluetooth, 5G base station networks, metropolitan area networks, social networks, homogeneous communi-
ties, telecommunication networks, and application market ecosystem propagation scenarios, we discovered
the law of propagation. In addition, we studied the construction of the mobile Internet big data knowledge
graph. Quantitative data for the main family chronology of mobile malware are obtained. We conducted
detailed research and comprehensive analysis of Android application package (APK) details and behavior,
relationship, resource-centric, and syntactic aspects. Furthermore, we summarized the architecture of mobile
malware security analysis. We also discuss encryption of malware traffic discrimination. These precise
modeling and quantified research results constitute the architecture of mobile malware analysis.

INDEX TERMS Android mobile malware, threat traceability, family chronology, propagation models,
detection analysis, infected system environment, knowledge map construction, architecture of mobile
malware security analysis.

I. INTRODUCTION

In recent years, with the popularity of smartphones and
the rapid development of mobile applications around the
world [1], mobile programs have become the main entrance
to the Internet, becoming an important part of the storage
and end-to-end transmission of massive data. Android-based

The associate editor coordinating the review of this manuscript and

approving it for publication was Debashis De .

mobile terminals have quickly occupied the mainstream mar-
ket because of their openness, completeness, creativity and
hardware compatibility. According to the Operating System
Market Share Worldwide, the Android operating system has
occupied first place in the mobile operating system share in
recent years [2].

With the popularity of 4G technology and the develop-
ment of 5G worldwide, the mobile Internet has been greatly
developed [3]. Particularly with the popularity of smartphone

14576 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 9, 2021

https://orcid.org/0000-0002-2535-4978
https://orcid.org/0000-0003-4424-8449
https://orcid.org/0000-0002-9252-4551
https://orcid.org/0000-0002-0227-9557
https://orcid.org/0000-0002-9688-9806

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

terminals and the improvement of their performance [4],
various mobile Internet services and applications have been
widely accepted by Internet users. However, since mobile
smart devices carry a large amount of user information,
the applications of mobile smart devices, while convenient
for users, are easily abused by malicious programs [5].
Android allows applications from other, unofficial markets to
be downloaded and installed. This gives malware developers
the opportunity to place repackaged malicious applications in
third-party app stores or sites and attack Android devices [1].
There are great security risks [6]–[10]. Due to the open nature
of Android devices, mobile device manufacturers are rapidly
producing various Android versions worldwide. Android
mobile malware is enriched in the cumbersome app store
download and installation authorization scenarios [11].
On the other hand, the rapid deployment of cloud-based

mobile app stores and websites and the real-time iterative
updating of complex versions of mobile malware seem to pro-
mote a complex situation in which mobile malware spreads.
Mobile malware threats and their manner of spreading

are different from other traditional viruses, zombies, Tro-
jans, worms, and infections, and the forms of spreading, dis-
tributing, transmitting, and controlling of massive terminals
for malicious conduct activities in the mobile Internet-based
mobile malware continue iterating in cloud data centers.
The Android system is not only a mobile phone but is

also widely used in Internet of Things (IoT) devices. With
the rapid development of the mobile Internet, the iteration
speed of mobile application updates is extremely fast, and it
is extremely important to study the security of the Android
system.
1. The number of Android-based terminals is massive. The

total installed base of IoT-connected devices is projected to
amount to 75.44 billion worldwide by 2025 [12].
2. The mobile Internet is widely distributed and has been

extended to IoT device networks, including infrastructure,
automobiles, and smart watches.
3. Compared with the Internet, the mobile Internet has

stronger ability to interact with people and computing envi-
ronments, devices and cyberspace.
4. Even the latest Android security solutions cannot funda-

mentally solve the security problems of the Android system,
and mobile operating system security issues are increasing
day by day, posing a threat.
5. Mobile application iteration is fast, and it continues to

accelerate iterations according to business needs, forming
a complex and dynamic mobile Internet big data network
space.
Application software supply chain attack [13] have

occurred frequently. These mobile Internet malicious pro-
grams can cause serious harm to users, operators, society, and
the economy [14]–[17].
Hazards to users: it will hijack a large of user mobile

phones, send a large number of advertising short messages
or multimedia messages, dial a large number of calls, mali-
ciously order services and illegally connect to the Internet to

generate a large amount of network traffic, etc., which causes
economic losses to users. Additionally, it will steal user infor-
mation, such as address books, call records, message content,
location information, and account information, resulting in
the leakage of user privacy information [11]. In addition,
it will destroy all or part of the user’s mobile phone system
function, maliciously delete user software and completely
drain the battery, which interferes with the normal function
of mobile phones.

Hazards to operators: it can force infected mobile phones
to continuously send spam to the network or dial a spe-
cific phone, blocking mobile communication services [18].
In addition, it can give users a feeling of an ‘‘accounting
error’’, promote users’ distrust in operators, affect business
development, result in poor user network perception and
affect corporate network brand images.

Harm to the economy and society: it can cause property
loss of global users. Moreover, the formation and embarrass-
ment of the black interest chain brings potential instability
factors on a global scale and causes leakage of important
information and trade secrets held by various countries.

The rapid iteration and spread of mobile malware in vari-
ous application stores and third-party markets have enriched
the global mobile Internet ecosystem with a large number
of threats and risks [5]. By protecting the source of threats
and means by which threats may occur, studies developed a
complete set of mobile Internet application security detection
and prevention system. We need to conduct research in all
links of the source of the threat, the route of transmission,
and the environment of the infection.

In order to explore the theory of mobile malware
on detection, traceability, and propagation, the scenarios
include SMS/MMS, Bluetooth, 5G base station networks,
metropolitan area networks, social networks, homogeneous
communities, telecommunication networks, terminal, kernel
environments and application market ecosystem scenarios.

II. RESEARCH FRAMEWORK ON MALWARE SECURITY

A. MOBILE APPLICATION SECURITY RESEARCH

FRAMEWORK

Application security research includes application source
security, application propagation security, application ter-
minal security, and application content security as shown
in Fig. 1.

FIGURE 1. Research framework for mobile application security.

VOLUME 9, 2021 14577

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

B. DEFINITION AND CLASSIFICATION OF MALWARE

A malicious program is usually a piece of a program written
with an intent to attack. These threats can be divided into
two categories: threats that require host programs and threats
that are independent of each other. The former is basically
a program fragment that cannot be independent of an actual
application, utility, or system program, and the latter is a
self-contained program that can be scheduled and run by
the operating system. Fig. 2 shows that malware consists of
system architecture of android [19].
In this article, 178,155 real mobile malicious program

data were detected under the environment of China Uni-
com large network, and the mobile Android program data
files were decompiled by using a traffic probe. We col-
lected the information about a malicious program and cat-

FIGURE 2. Android architecture.

FIGURE 3. Malicious application classification.

egorized the malicious applications into 14 categories of
48 malicious behavior attributes as shown in Fig. 3. Its classi-
fication and definitionmainly include the following: informa-
tion theft, system tampering, system destruction, information
destruction, function blocking, malicious deduction, tariff
consumption, deception fraud, malicious resource consump-
tion, plug-in bundles, malicious virus/Trojan bundles, mali-
cious promotion, malicious monitoring and remote control.
Moreover, according to the behavioral attributes of malicious
applications, a fundamental requirement for all behaviors to
be determined to be malicious is that the behavior exists
without the user’s authorization or knowledge.

The purpose of this link is to identify and classify network
attack data. The main models are a classification model based
on the K-nearest neighbor algorithm (KNN), a classification
model based on a decision tree algorithm, a classification
model based on a neural network, and a classification model
based on the support vector machine (SVM).

III. DETECTION OF MOBILE MALICIOUS PROGRAMS

The detection mechanisms are comprehensive methods to
comprehensively detect the increasingly rampant mobile
malicious programs based on multiple mechanisms.

A. ANDROID KIT

The APK file is an archive file and usually contains the
following files and directories:

Assets: Contains application assets that can be retrieved by
the AssetManager. It is also called the original resource file
(it will not be compiled and no id will be generated). It can

14578 VOLUME 9, 2021

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

be used to store some large resource files of projects, such as
pictures, music, fonts, etc.
Lib directory: Contains the compiled code specific to the

processor software layer, where almost all shared library (.so)
files are stored.
META-INF directory: Contains information about signa-

tures, manifest files, application certificates and resource
lists.
Res directory: Contains resources that have not been com-

piled as .arsc (this resource will not be compiled, but an id
will be generated). The main resource files in projects can be
stored, such as pictures (*.png, *.jpg), text, etc.
AndroidManifest.xml: Consists of the entry file of the

Android application. It describes the components (activi-
ties, services, etc.) exposed in the package, their respective
implementation classes, various data that can be processed,
access permissions, and referenced library files. In addition to
declaring Activities, Content Providers, Services, and Intent
Receivers in the program, permissions and instrumentation
(security control and testing) can also be specified.
class.dex: Android on Dalvik virtual machines running

.dex. Thus, the dex file contains all the app code, and the
decompiler tool to can be used to obtain the java code.
Resources.arsc: Compiled Android-generated application

resource. For a precompiled binary translation resource file,
it stores value types of resources as well as other nonasset
types of resource-related information.

B. STATIC AND DYNAMIC ANALYSIS

1) STATIC ANALYSIS

Static analysis consists of analyzing the source code or check-
ing the file permissions of the application [20]. Static analysis
is aimed at program samples. Without actual program execu-
tion, the characteristics, behaviors or defects of the samples
are analyzed. The object of static analysis is generally the
program source code or object code, such as assembly code
or bytecode, etc. [21]. The most useful and commonly used
components of APK static analysis contain applications and
classes.dex from AndroidManifest.xml, which reports the
compiled classes executed by the Dalvik virtual machine.

a: ANDROID STATIC ANALYSIS BASED ON API CALL

The constant update of the Android platform enables the API
to call a large number of system hardware and services to
interact with the bottom layer of the system. The API includes
a wealth of useful semantic values. Decompiled source code
can be used to study Android API calls through Natural
Language Processing (NLP) and compare them with the sys-
tem permission list [22]. Static data analysis is performed to
extract features from the APK. This entails extracting API
calls and their parameters from bytecode, filtering API calls
based on their relative frequency of use between benign and
malicious applications, and comparing them with permission
characteristics [23].

With the development of deep learning, API calls for
mobile malware detection and family classification are mod-
eled. Each API method call model [24] can resist the evo-
lution of API calls and orders over time. The high-level
semantics of API call graphs require attackers to make more
efforts to avoid detection [25]. The API call graph can also
represent all possible execution paths that a mobile malicious
program can execute at runtime [26].

The main categories of features obtained by static analysis
are as follow: binary files, API calls, permissions, commands,
resource calls, URLs, regional geographic origin, code size,
and rule combinations [27]. Other features are presented
through the use of static and dynamic analysis features (such
as API calls, permissions, system calls, function calls, pri-
vacy usage and leak information graphs). Permission and
intent have static characteristics, and API calls have dynamic
characteristics. Binary classification of mobile malicious pro-
grams based on static features, category classification and
family classification of mobile malicious programs based on
dynamic features can be realized [28]. Analysis of semantic
value, resource characteristics and source code through Nat-
ural Language Processing (NLP) can also be used to discover
malicious programs in programs [29].

Android is composed of the most basic packages, classes,
and functions. Therefore, mobile malicious programs can be
classified as API calls from the source code [22]. Sentence
scanning can be performed for package-level and class-level
features and for function-level tokens in source files. Sen-
tences can be further scanned by a neural network [24].

b: ANDROID STATIC ANALYSIS BASED ON PERMISSIONS

Android applications need certain permissions when calling
system APIs for data services and information interaction.
The Android system controls the API calls that affect system
privacy and security through the permission grant mecha-
nism during installation. However, due to the open source
nature of the Android system, the lack of mechanism control,
and the blindness and excessiveness of programmers when
applying for permissions, applications often overuse permis-
sions, increasing the impact of program vulnerabilities [30].
According to the application permissions in theAndroidman-
ifest file, malicious applications are more likely to require
only one permission, whereas benign applications usually
require two to three permissions [31]. Distinguishing between
critical permissions and less critical permissions [32] can
assess the risk of Android mobile malicious programs [33].
Like API calls, Natural Language Processing(NLP) can iden-
tify the need for a given permission [34].

Currently, most popular applications are overprivileged,
and with overauthorization of Android applications [35],
the growth of the Android platform permission set provides
access to new permissions [36]. The required Android per-
missions are centrally defined in the AndroidManifest.xml
file of the Android platform. There are nearly hundreds of
valid Android permissions, such as writing text messages,
obtaining accounts, reading logs, etc. [29].

VOLUME 9, 2021 14579

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

The permissions required by the application are used as
a common function for APK malicious code detection [31],
[32], [37]. The required Android permission set is defined in
the AndroidManifest.xml file of the Android platform. Cur-
rently there are nearly a thousand valid Android permissions,
such as writing short messaging service (SMS), obtaining
account, reading log, etc. The static analysis tool is used for
Android feature extraction. Permission can be represented by
a Boolean vector, which is represented in the AndroidMan-
ifest.xml file. Boolean vector, which is represented in the
AndroidManifest.xml file.

2) DYNAMIC ANALYSIS

Dynamic analysis is an analysis method based on the actual
execution of the program. It is a process of verifying or
discovering the nature of the software by running a specific
program and obtaining information such as the output or
internal state of the program [38]. This technology studies the
behavior of apps installed on smartphones, and then checks
whether these apps are benign or mobile malicious. Dynamic
analysis includes anomaly-based or behavior-based detection
technologies that can check the behavior of smartphones after
installing the application [20]. After analyzing the behav-
ior of smartphones, these technologies evaluate the status
of installed applications as malicious or benign. Together
with other mechanisms, behavior analysis has been used in
the literature to develop mobile malware detection schemes,
including sandboxes [39], behavior detection of abnormal
mobile malware based on Internet communication character-
istics [40] and analysis of network traffic patterns through
machine learning methods [17].
Malicious code dynamic analysis is usually performed in a

real/virtual test environment using various conditions to run
and activate the malicious code sample. By monitoring all
behavior patterns generated by the sample during the running
process, the changes are observed in its execution process
and data. When all the data in the process of running the
program are obtained to make a judgment on whether its
behavior is legal [41]–[43], the analysis environment is called
a sandbox environment [44]. The sandbox environment is
sometimes simply called a sandbox. It is an environment for
testing programs whose sources are code that is untrustwor-
thy, destructive, or whose intent cannot be determined. All
changes in the sandbox will not cause any loss to the oper-
ating system. This technology is widely used by computer
technicians. The sandbox is an important environment for
observing the running characteristics of samples. Dynamic
analysis based on a sandbox environment is usually also used
as part of host intrusion detection.

3) HYBRID ANALYSIS

Several authors have combined static and dynamic technolo-
gies to overcome the weaknesses of these technologies and
design reliable technologies for mobile malware detection
on smartphones. Articles using this technique only cover a
few topics, such as enhancing the performance of traditional

detection software [45], analyzing Android applications, and
focusing on automatic static and dynamic mobile malware
analysis [46] machine learning technology is used in applica-
tion classification and helps to assess the maliciousness of
previously unknown Android applications [47] and behav-
ioral signature classification technology is also used [48].

C. MALWARE RESEARCH SENTENCED MECHANISM

1) MALWARE SAMPLE COLLECTION RESEARCH

By controlling the spread of the malware network, sample
collection, research and plugging sentences, a malware pre-
vention system and key scientific issues are researched in
order to protect the safety of the mobile Internet. The down-
load source, download channels and terminal runtime envi-
ronment of an application are monitored through the network
side mobile technology, and the network traffic is monitored
to analyze and identify the malware with the propagation
network. Through the flow control algorithm and the domain
name service (DNS) intercept parsing, our research blocks
the spread of malware, as shown in Fig. 4.

FIGURE 4. Malware research sentenced mechanism approach overview.

System call extractions, anomaly detection [4], control
flow graph structure, static taint analysis [49], static code
analysis, anomaly detection [50] and other analytical tech-
niques are used to classify the mobile malware program.

The program will report suspicious samples, monitor log
management, and monitor and dispose of the strategy by the
malicious program feature library, such that suspected mali-
cious programs and features are identified by filtering using
rule-based maintenance and management. Malware analysis
research of sentences, the CNCERT subsystem interfaces,
region interfaces, the overall system management and other
architectures are included, as shown in Fig. 5.

We deployed monitoring programs on the gateway to mon-
itor the download and transmission behavior of the Android
platform applications transmitted on the network. Manage-
ment and control platform malware were deployed in the
network side and centralized to collect, judge and block the
malicious software samples on the Internet as shown in Fig. 6.
The malware was decompiled by static analysis tools, and

the malicious behavior points were output according to sen-
sitive APIs and sensitive strings. The dynamic analysis tool
can dynamically load and run suspected program software
through the sandbox and monitor its operation. Static and
dynamic analyses are combined withmanual analysis to com-
pare and determine the suspected malicious program and the
known malicious program samples.

By splitting the gateway network traffic monitoring, client
reporting and user application store applications, we obtained

14580 VOLUME 9, 2021

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

FIGURE 5. Network topology design.

FIGURE 6. Code excerpts from a fake inst malware sample: the complex
and Heavy use of reflection can thwart static code- based feature
extraction.

software samples and use static and dynamic detection tech-
nology to research sentences. Through the centralized control
system, the main control URL, the domain name and the IP
address of the malicious program are blocked on the gateway
and the DNS, and the download channel of the malicious
program is blocked.
By analyzing the user’s online logs, complaint informa-

tion, and network traffic [51], the malware network behavior
rules, the whole network malware download, the master URL
and the malware MD5 signature were obtained. The feature
library is used to scan the terminal to detect maliciousness
on mobile phones. The malware network centralized control
platform utilizes the users’ access logs for accurate judgment.

2) RESEARCH JUDGMENT

Through the integration of dynamic and static research
identification algorithm, application software samples were
collected to study sentences. By scanning behaviors of appli-
cations, such as license application, system monitor API
or short/multimedia messaging service (MMS) messaging,
remote connection URL and other acts, the results of the
research sentence are given. The network logs are combined
to determine whether the user’s mobile phone has accessed
the malware download URL or the main control URL and
whether there is any keyword information that is given away,

such as the IMSI/IMEI/terminal model of the user to deter-
mine whether the mobile terminal is poisoned.

Data analysis is performed by feature extraction, analysis
and large-depth data associated with the mobile machine
learning to detect malware malicious content detection, risk
detection, piracy detection, detection shell, and reduction of
the shortcode that detects a malicious URL.

3) BLOCKING RESEARCH

The malware’s blocking flow control system and DNS pre-
vent users from accessing the malware download URL and
the master URL to protect the network.

The malicious URL is sent to the front end of the flow
control system to form a blacklist. After the deep packet
inspection (DPI) device resolves the intranet and Internet
traffic and obtains the URL or domain name request from the
user, if the blacklist is hit, the preserver sends a reset packet
or a DNS reset page packet to the user. Returning results
or normal DNS resolution results are slower [51] and will
be discarded by the user host, blocking access to malicious
URLs [52]. The malware IP address blacklist is sent to the
firewall for blocking.

D. FAMILY CHRONOLOGY AND ARCHITECTURE OF

MOBILE MALWARE

1) FAMILY CHRONOLOGY OF MOBILE MALWARE

According to the research sentence, we obtained the main
Family Chronology of mobile malware (Fig. 7). Floatgame,
Backstage and GenericBludger are active (Table 1) and can
provide guidance for the study of the species and the number
of active mobile malicious programs.

FIGURE 7. The main family chronology for mobile malware.

2) ARCHITECTURE OF MOBILE MALWARE SECURITY

ANALYSIS

Through long-term research on our real mobile malware data
of 178,155 instances, we have conducted detailed research
and comprehensive analysis fromAPKdetails, behavior, rela-
tionship, resource centric, and syntactic aspects.

The summary of the architecture of mobile malware secu-
rity analysis is shown in Fig. 8. The contents of malware
were decomposed one by one, and the results obtained were
as comprehensive as possible, achieving independent and

VOLUME 9, 2021 14581

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

TABLE 1. Malware family chronology.

FIGURE 8. Architecture of mobile malware security analysis.

complete subitems that complemented each other. These pre-
cise modeling and quantified research results constitute the
architecture of mobile malware security analysis.

E. ANDROID MALWARE BEHAVIOR DETECTION THROUGH

DERIVING COMMON GRAPH CLUSTERING

Younghee Park proposed deriving common malware behav-
ior through graph clustering [53]. We expanded this to the
area of Android mobile malware detection in the Linux ker-
nel. To realize the detection of mobile malicious programs,
a mobile malicious program data set is first selected to
obtain a kernel Android behavioral object diagram represent-
ing its behavior. Then, the same mobile malware family is
clustered into a graph (weighted universal Android behav-
ior GRAPH). This shows the behavior of all members of
the family. For a particular classification family of mobile
malware, this approach reliably generates single graphics.

Finally, the cluster single plot is achieved at low expense to
detect the movement of the malicious programs’ unknown
sample. Through the construction of a ‘‘virtual sandbox’’ and
Android behavior analysis, we conducted research on the
feature detection of mobile malware families.

1) KERNEL OBJECT ANDROID BEHAVIORAL GRAPH

GENERATION

The graphic representing the behavior of the Android mali-
cious program instance is the kernel object Android behavior
graphic. The Android kernel object is a memory block in the
Android kernel. The storage block is a data structure whose
members maintain information about the object. Android’s
Linux kernel control includes hardware management, process
management, a driver model, a network stack, security and so
on.

The kernel object Android behavioral graph is constructed
based on the information collected from the running mobile
malware. The mobile malware is executed in a virtual envi-
ronment. The virtual environment is used to capture the
parameters of each system call executed. Based on the inter-
cepted system call trace, this method identifies the relation-
ship between Android kernel objects.

The kernel object Android behavioral graph (KOABG) is
a weighted directed graph described by g = (V , E, µ, λ).
V is a set of vertices (vertices v), and different vertices

represent correspondingAndroid kernel objects. The attribute
of the vertex indicates the specific name of the Android kernel
object.
E ⊆ V×V is a set of edges e, which represents the depen-

dency between two Android kernel objects. The dependency
is represented by the handle type and the handle value.
The object handle indicates an identifier to indicate system
resources inside the Android kernel, and the identifier is
allocated by the application.

µ: E→N+ is a function that assigns positive weights to
edges (initially, µ(e) = 1 ∀e ∈ E)).

14582 VOLUME 9, 2021

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

λ: V→N+ is a function that assigns positive weights to
vertices(initially, λ(v) = 1 ∀v ∈ V).

Android kernel objects are data structures that represent
system resources (such as files or threads).
Regarding the Android program initialization time,

Android will start running a supported component Linux
process and a main thread. The main thread is responsible
mainly for processing UI related events and distributing
related events to corresponding components for processing.
Therefore, the main thread is usually called the UI thread.
The permissions on the Linux file system represent the

access permissions of the corresponding users or user groups
and others to this file and are completely irrelevant to the
permissions that this file has when it runs. For example,
the system user has the read, write and execute permissions
for this file, the system group users have the read and execute
permissions for this file, and others have only the execute
permission for this file. The Android default application does
not have any permissions to operate other applications or
system-related features, and applications need to explicitly
apply for corresponding permissions when performing cer-
tain operations. Ordinary .apk programs are run at the non-
root, nonsystem level.
When accessing an Android kernel object through a system

call, the handle and object attributes of the object are the
parameters of the call. The object name is identified by the
structattributes parameter in the intercepted system call.
Every Android kernel object has a creator function and a

destructor. For example, CreateNewFile creates a new file
or directory, or opens an existing file, directory, device,
or volume, and CloseHandle terminates the Android kernel
object with the handle created byCreateNewFile. In addition,
Process.start will create a new process and its main thread.
The object name is extracted by reading the structattributes
parameter value. When CloseHandle or Process.kill is called
with this handle, the Android kernel object can no longer be
accessed.
After the Android kernel object is created through the sys-

tem call, its handle parameter is passed to other system calls.
Other Android kernel objects associated with the system
call will access the Android kernel object. The dependency
between the process and thread objects is represented by
the edges between corresponding vertices in KOABG. The
weight of all edges in KOABG is 1.
System call tracks kernel objects in Android behavior dia-

grams. KOABG starts with an Android kernel object Pro-
cess. Each vertex in the figure represents an Android kernel
object created during program execution. The object name
is displayed in the vertex. The generated object is implicitly
related to the initial process. For example, the Section_D
object is created from the File_B object by calling the Creat-
eNewFile system call, thereby adding the side from File_B to
Section_D. Since multiple Android kernel handle values can
indicate the sameAndroid kernel object at runtime, the handle
value is not used to identify vertices (Fig. 9).

FIGURE 9. The obtained system call tracks the kernel object Android
behavior graph.(Numbers represent handle values, and letters represent
Android kernel object names.).

2) ‘‘VIRTUAL SANDBOX’’ CONSTRUCTION

By constructing a ‘‘virtual sandbox’’ to simulate the real
system environment, real-time monitoring and dynamic anal-
ysis, malicious program behavior can be implemented to
accurately detect and kill unknown deformed viruses.

Through the virtual sandbox design system environment
simulation, a large number of API calls and executions are
simulated, coveringmost of the quantitative coremechanisms
of kernel object behavior, including but not limited to:

(1) File system: Core system files are stored and files
created and modified during the execution of processes in the
virtual sandbox can be tracked. When the antivirus engine
scans concurrently, different virtual processes have isolated
file systems.

(2) Process, thread, synchronization object, scheduling,
clock: The virtual sandbox simulates complete kernel object
behavior, and schedules threads according to the virtual clock
or scheduling logic.

(3) Control system: The virtual sandbox also implements
a complex and massive control system as well as a variety
of controls. The family obfuscator uses the kernel object
behavior and various messages and window characteristics
of the control as a means of an antivirtual machine.

(4) High virtual execution efficiency: The antivirus engine
can complete the scan of the object to be scanned in a rela-
tively short time (millisecond level).

(5) We have designed a complete operating system envi-
ronment simulation, including the file system, process,
thread, scheduling logic, clock, and synchronization object.

(6) Capturing and recording the behavior of the program
during virtual execution: The virtual sandbox can capture and
record the kernel object behavior generatedwhen the program
is virtually executed in the sandbox. Such recording can be at
the system call level or at a higher abstraction.

We perform research to achieve precise detection and
killing of unknown viruses, deformed viruses and other
viruses through the leading ‘‘virtual sandbox’’ and behav-
ior analysis, real-time monitoring and dynamic analysis of
viruses by simulating the real system environment. Even
when the network is not connected to achieve virus detection
and killing capabilities, its deployment can achieve rapid,
lightweight, and accurate killing.

VOLUME 9, 2021 14583

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

3) ANDROID BEHAVIOR ANALYSIS

Examples of the mobile malware cluster group operation of
KOABG aggregated into a single behavioral GRAPH achieve
mobile malware identification. Thus, G = {g1, . . . , gm} is a
set of mth Android collection kernel objects of the Android
behavior GRAPH according to the mth construction GRAPH
call tracking system behavior collected during execution of
binary files, where binary files are those classified as the same
mobile malware family.

Definition of G = {g1, g2, . . . , gm} is a set of weighted
directed graphs, and the G weighted common supergraph
is the G weighted directed graph g = (V ,E, α, β, λ, ω).
Therefore, there is a subgraph isomorphism from gi to
g∀i ∈ {1, . . . ,m}.

Assuming that any other weighted common mother graph
G has fewer nodes than g, g is the weighted lowest com-
mon mother graph G of a set of graphs, and represents
WMinCS (G).

Let fi : Vi → V be a subgraph G of the isomorphism
between g i and g. Let (u, v) be a pair of vertices of V. Then
each side right weight e = (u, v) is k / m, assuming accurate
presence of the k-th different isomorphic fj(eil) = (fj(ui),
fj(vl)), Make fj(eil) = e. The weight of the vertex only needs
to be set to 1.

Behavior graphs can be clustered [54]. A Graph isomor-

phism is the bijective mapping f between the vertices G and
H of the two graphs so that the G of the vertices u and v are
adjacent to G if and only if f(u) and f(v) are adjacent to H,
the subgraph isomorphism between two graphs G and H is an
isomorphism between the G and a subgraph H [55].
The weighted lowest common mother map (WMinCS) is

based on the clustering method [56]. Two graphs G and H
of the maximum common subgraph (mcs) are expressed as
mcs(G, H), a G sub GRAPH. The weighted largest common
subgraph(wmcs) of a group of graphs G is a subgraph of
the largest size, and there is an isomorphic subgraph in all
graphs.

The minimum nominal superscript (MinCS) of G and H is
defined as Equation (1).

MCS(G,H)

= msc(G,H) ∪ (G− msc(G,H)) ∪ (H − msc(G,H)) (1)

Both G-mcs(G,H)and H-mcs(G,H) are graphs obtained by
removing the mcs of G and H from G and H respectively.
The weighted smallest common subgraph can cluster a

group of kernel android behavioral object graphs denoted
as G. Assume that g = WMinCS(G) has been constructed
for a group of mobile malware instances. According to the
parameter 2, a weighted general behavior graph (WCABG)
of G is constructed. WCABG2(G) is a subgraph g that con-
tains all edges g that have a weight greater than 2, and the
vertices connected by these edges. WCABG2(G) is simply
calledWCABG.
WCABG summarizes the important behavioral attributes

of all mobile malware instances in the same family.

A weighted general behavior graph (WCABG) can be
constructed from a set of KOABGs. WMinCS computing
is an NP-complete problem due to the complexity of the
problem. Thus, an algorithm to approximate a set of graphical
G of WMinCS can be used; WCABG generates an approx-
imation algorithm (an Approximate algorithm for WCABG
Generation).
The weighted maximum common subgraph(wmcs) of a

pair of weighted graphs can be derived to approximate the
WMinCS algorithm [57], [58]. GRAPH behavior between
two weighting WMinCS by Equation (2) is generated.

WMinCS
(

gi, gj
)

=
(

gi − wmcs
(

gi, gj
))

∪
(

gj − wmcs
(

gi, gj
))

∪ wmcs
(

gi, gj
)

(2)

The approximate WMinCS equation between two graphs
is extended to a set of graphs G = {g1, g2, . . . , gm}.
In generating a set of random behavior GRAPH ’s rear,
WMinCS(g,gi)(2 ≤ i ≤ m) is iterated m-1 times for calculat-
ing approximation WMinCS(G). The weights of WMinCS(g,
gj) are calculated repeatedly for the edges defined in the
Equation (2). After clustering all graphs, G’s wmcs is shared
by all important behavior graphs, and the subgraph is called
HotPath (inWCABG there is one calledHotPath critical path,
which appears in all members of the family. The path has a
maximum weight of 1, the edge composition).
Finally, the approximation derived WMinCS for the

set is simplified into a weighted general behavior graph
(WCABG2(G)), at a predefined threshold (2). The
result is that the weighted common Android behavioral
graph (WCABG) is generated as a representative graph
of each mobile malware family. WCABG summarizes all
the attributes shared by most mobile malicious program
instances and the edges or dependencies that appear in
specific parts of the mobile malicious program binary files,
and only summarizes the HotPath that represents the behav-
ior displayed by the execution of all mobile malicious
programs.

The kernel object Android behavior is a research result
based on the malware family. The data set used is a wide
range of binary files, even malicious samples that cannot
be classified. At the same time these graphs are derived
using different methods such as system calls, user input
and pollution analysis. Behavior graphs can be widely used
in various malware research to overcome the limitations of
signature-based malware detection.

On this basis, Android behavior analysis is performed.
The virtual sandbox behavior analysis is realized through
the virtual machine execution engine, which can track and
record the behavior of the program running in it. The antivirus
engine records the object behavior through the object behav-
ior and can evaluate themaliciousness of the program through
the heuristic analysis algorithm.

The virtualized execution engine is responsible for imple-
menting the instruction set simulation, and the virtual sand-
box implements two execution engines.

14584 VOLUME 9, 2021

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

a: VIRTUALIZATION EXECUTION ENGINE

Through virtualization technology, an independent address
space is divided for the target code, and private time slices
are allocated to the object behavior by taking over interrupts
and exceptions, so that the target code can be executed in a
controlled manner. The execution efficiency can be almost
equal to that of the real machine, and only the execution
environment switching brings a small amount of overhead.

b: DYNAMIC TRANSLATION EXECUTION ENGINE

The technology that analyzes the target code and controllably
translates the execution of the local object behavior is
called dynamic translation. The virtual sandbox realizes
fine-grained control of the object behavior through the
dynamic translation execution engine.
Preliminary evaluation of object behavior functions and

library files is performed through heuristic analysis algo-
rithms. For functions and libraries that are not harmful to the
system, shallow execution is performed through the virtual-
ized execution engine, which is fast and efficient. Dynamic
translation the object behavior function and library files,
fine-grained analysis, and tracking the sequence of behaviors
determine whether it is malicious to the system.

4) MOBILE MALWARE FAMILY BEHAVIOR DETECTION

Based on building the kernel objects Android behavior dia-
gram (or KOABG), a suspicious program can be intercepted
in the virtual environment mobile malware in the system
call parameters and execution. Then, the KOABG of the
suspicious program is compared with the WCABG of the
previously identified mobile malware family.
Let the KOABG of the suspicious program instance be

denoted as gnew. Suppose this KOABG is compared with
WCABG for a family of mobile malware. Equation (3) in
δ(gnew, WCABG), is calculated as gnew and the WCABG
similarity between, where | g | represented in GRAPH g is
the number of sides. W(ej, Ei) means that the WCABG of
the edge Ei and the gnew of the edge ej are matched by the
weight w.

δ (gnew,WCBG) =

∑

<ej,Ei>∈w
W(ej,Ei)

min(|gnew|,|WCBG|)

(3)

The weights of all these matching edges add up. Then, divide
the sum by the minimum value of the edges in the WCABG
or KOABG.
As shown in Equation (4), make a judgment D about

mobile malicious programs.

D = (δ (gnew,WCBG) ≥ γ) ∧ (HotPath ⊆ gnew) (4)

To determine that the suspicious instance is mobile malware,
the similarity between KOABG and WCABG must exceed
the predefined threshold γ , and KOABG must include the
HotPath of the generated WCABG [53]. In summary, given
the modular design of the Android program, the calls of the
API authority rules are relatively close, so that the behavior

of the method is determined based on GRAPH. It can be
effectively used in the determination of the family of mobile
malware.

Based on the idea of deriving common Android malware
behavior through graph clustering, we have extended the
study of common behaviors (also known as ‘‘genes’’) of virus
families.

In summary, the modular design of the Android program,
call the API authority rules and of relatively closed, so that
the behavior of the method is determined based on GRAPH.
It can be effectively used in the determination of the family
of mobile malware.

Based on the idea of Deriving common Android malware
behavior through graph clustering, we have extended the
study of common behaviors (also known as ‘‘genes’’) of virus
families.

At the same time, through KOABG, the essential charac-
teristics of malicious code can be deeply analyzed, and the
threat information of the static code and the kernel object
Android behavioral graph generation of dynamic code can
be perceived in real time. Through technologies such as
WCABG, high feature multiplexing, malicious code DNA
identification, andmalicious code DNA fragment recombina-
tion, it has strong application value for family malware of the
same behavior type. The above method can reduce redundant
data in the feature library, greatly reduce the occupation
of terminal resources, effectively save terminal performance
consumption, and does not affect the normal process.

We extend the family characteristics to the concept of DNA
race genes.

Traditionally, the detailed feature information of viruses is
recorded. One feature corresponds to one virus, and there is
a one-to-one relationship. Viruses that are not in the feature
database cannot be checked and killed. Virus races have com-
mon behavioral information.We can extract core behaviors as
race genes to form a gene recognition library. First, the feature
library is smaller, which reduces terminal resource usage.
At the same time, because of the behavior of racial genes,
new types of variants can be identified and killed to solve the
problem of variants.

The antimalware technology we developed adopts the con-
cept of family gene recognition to reduce redundant data
in the signature database and accurately identifies and kills
various viruses such as Trojan horses and worms. It identifies
different threats by optimizing the signature database and
accurately identifies and kills all known virus variants. As a
behavior-driven engine, it is based on the core gene behav-
ior of the virus race, which is different from the behavior
matching method of traditional engines, through the system
call parameters and execution of core gene behavior informa-
tion, high multiplexing, malicious code DNA identification,
and malicious code DNA fragment reorganization and other
technologies to efficiently detect malicious threats.

In summary, the developed the gene recognition technol-
ogy occupies less terminal resources and solves the problem
of variants. Through the construction of a ‘‘virtual sandbox’’

VOLUME 9, 2021 14585

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

FIGURE 10. Geographic breakdown of malware source: CHIUNICOM.

and Android behavior analysis, we conducted the research on
the behavior detection of mobile malware families.

F. MACHINE LEARNING BASED ON MOBILE MALWARE

DETECTION ALGORITHM

Malicious programs in the sample space of the Bayesian
classification may be classified:

P (Cm|a1, a2, . . . , an) =
P (Cm) ∗ P (a1, a2, . . . , an|Cm)

P (a1, a2, . . . , an)

(5)

Cm represents target attribute m. The value of the molecule,
which is the largest, according to the maximal posterior
hypothesis.

Cmap = arg max
Cm∈C

P (Cm | a1, a2, . . . , an)

= arg max
Cm∈C

P(a1, a2, . . . , an |Cm) ∗ P(Cm) (6)

P(Cm) is the frequency of each category in the target sample.
When the value of n is large, it needs to be implemented

in a very large sample space. We make a simple hypoth-
esis in Naïve Bayes, which is independent of each other.
Naive Bayes assumes conditional independence of condi-
tional probability distribution, that is, it ignores the rela-
tionship between features and makes each feature a separate
assumption.

CNB = arg max
Cm∈C

P (a1, a2, . . . , an|Cm)

= arg max
Cm∈C

∏n

i=1
P

(

ai|Cj
)

(7)

Estimate the related P
(

ai|Cj
)

attribute probabilities, using
this method to calculate probabilistic detection of mobile
malicious programs.
Herein, by China Unicom core router and an outlet port

optical device deployment points, by con verging the shunt
flow probe detects the movement program.

IV. TRACEABILITY OF MOBILE MALICIOUS PROGRAMS

This study detected 178,155 real mobile malicious programs
in China Unicom large network environment. Through the
flow probe, we decompiled Android data files of China

TABLE 2. Top Android malware related to the distribution.

Mobile and obtained detailed Guiyang (China ‘‘Data Cen-
ter Capital’’) infected mobile malware data. Along with the
IDC (Internet Data Center) for rapid deployment on a global
scale and comprehensive coverage of triple play, mobile mal-
ware sources (Fig. 10) are located in the cloud based IDC
data centers and emerging wide network server (Table 2).
In particular, the new radio and television networks are low
cost and grant approval of the record mechanism so that the
mobilemalware is concentrated in them and frequently down-
loaded on the large number of terminals. The star-shaped
topology network of the massive users is the propagation
network of mobile malicious programs, and it has the char-
acteristics of real-time rapid iterative changes with factors
such as usage habits, product contact push and program
popularity.

We deployed the probe to decompile the traffic through
the metropolitan area network exit aggregation device. It was
detected through the static, dynamic and machine learning
mechanisms, and then we traced the source according to the
traffic detailed list, DNS detailed list, big data analysis and
knowledge map.

Flooding is closely correlated with the complexity of the
Android mobile version of the kernel and malicious pro-
grams. Through our research, 49.21% (87,674/178,155) of
mobile devices are running suspected infections in older
versions of Android (Android 7.0 or less) in its applica-
tion ecosystem of widespread vulnerabilities. From Table 3,
we found that the Redmi base band version of Android
6.0 and 7.0 is infected the most with mobile malicious pro-
grams.

Global malware threats traceability, process, and pipeline
models are given through our research as shown in Fig. 11
and explained below:

14586 VOLUME 9, 2021

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

TABLE 3. Mobile malware and android version and kernel relevance.

FIGURE 11. Global malware threats traceability, process, and pipeline model.

1. First-level stage:
The global malware network first distinguishes small net-

works through geopolitics, language and cultural regions, and
the mobile Internet ecosystem (mobile Internet ecological
stores, applications, global networks, and terminal computing
environments).
2. Second-level stage:
The mobile Internet exits are detected through our mobile

malicious program system, as well as DNS service systems,

detailed large data flow bills, and terminal application ecosys-
tems, to identify threat network entities and to identify node
entities (IP address or domain name) of similar entities to
conduct systematic research. We perform data mining for
massive heterogeneous data on data services such as data
cleaning, transformation, formatting, and deduplication of
structured, semistructured, and unstructured big data as well
as computing services such as retrieval, association, classifi-
cation, and statistics.

VOLUME 9, 2021 14587

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

3. The third stage:
The end-to-end research of mobile malicious program

propagation is carried out to define threat networks.
Data and calculations are processed through big data anal-

ysis. Develop a data engine to store and manage various
types of data resources related to cyberspace, including com-
munication relationships, communication logs metadata, raw
stream data, disposal information management, and sample
data management. Computational analysis mining provides
calculations such as element correlation, back analysis, com-
munication analysis, feature retrieval, and statistical analysis
to carry out threat analysis. In the end, the IP threat network,
domain threat network, and network information threat net-
work are clearly defined and defined.
4. Fourth level stage:
Trace the source, process and traffic channel model of the

mobile malicious prestige network for data modeling and
study its model characteristics and propagation rules.
Collision analysis and correlation analysis is performed

between heterogeneous systems of the global mobile Internet,
and an audit-based model is devised to iteratively mine the
mining results. At the same time, it conducts deep mining
of data based on business scenarios, automated association
analysis, and traceability analysis.

V. PROPAGATION MODEL

Mobile malicious programs are mainly spread between stores
and store users, and the propagation models are mostly
described by partial differential equations, similar to the gen-
eral epidemic mathematical propagation model.
In all kinds of networks and environments, we summarize

the complex network theory, social network theory, machine
learning, artificial intelligence, stochastic processes, graph
theory and other disciplines and make a summary based on
the propagation model, as shown in Fig. 12.

FIGURE 12. Networks and environments propagation model.

A. NETWORK-LEVEL PROPAGATION

1) SMS/MMS, BLUETOOTH MODEL

Earlier, Cheng’s model (analysis model of hybrid mal-
ware) [59] proposed an analysis model to analyze the speed

and severity of the propagation of hybrid malware, such
as the Commwarrior. The model by Mickens is for MMS
and Bluetooth (probabilistic queuing framework [60]) via
propagation on short-range wireless interfaces. With regard
to the SEIR model, (Ramachandran) Ramachandran and Sik-
dar [61] proposed an analysis model to explore the impact
of various propagation mechanisms, such as downloading
from the Internet or P2P networks, via Bluetooth, WLAN
and infrared interfaces and via MMS or SMS messages The
impact of transmission on the dynamics of malware propaga-
tion was studied.

a: SMS/MMS

The probabilistic queuing framework [60] models the propa-
gation of mobile viruses over short-range wireless interfaces.
The pseudo-base station SMS car is a typical representative
of this model.

Thus, the standard homogeneous infection dynamics in
each queue are simulated by:

In the epidemic model, the assumption is that infected
individuals can recover and will become susceptible again
after recovering [62]. Therefore, the differential equations
describing the dynamics of an epidemic model are described
as follows:

Inclusion of 3 statuses: susceptible (S), infectious (I),
or recovered (R).

λ represents the ratio of the number of infections through
the number of deaths within a certain period due to infection.
N represents the total number of individuals susceptible to

infection and recovery. We assume that the birth rate is equal

to the death rate, and the total population is a constant. Thus

S(t)+I(t)+R(t)=N.

S(t) represents the number of individuals infected by mal-
ware at time t, that is, the number of individuals susceptible
to malware infection.
I(t) represents the number of individuals who have been

infected with malware, and indicates the ability to spread
malware to vulnerable individuals.
R(t) represents those individuals who are infected and

then recover from the malware. Such terminals must not be
infected or infect others.

α represents the average recovery rate.
β represents that average amount of exposure to infected

individuals is sufficient. This is called the exposure
rate.(infection rate).

δ represents the rate at which the average immunity is
lost and the rate at which the individual becomes sensitive
again.

dS(t)

dt
= −

βS(t)I (t)

N
+ λ(I (t) + R(t)) + δR(t) (8)

dI (t)

dt
=

βS(t)I (t)

N
− (α + λ)I (t) (9)

dR(t)

dt
= αI (t) − λR(t) − δR(t) (10)

N = S(t) + I (t) + R(t) (11)

14588 VOLUME 9, 2021

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

b: BLUETOOTH

Bluetooth spreads mobile malicious programs [59]. Through
the terminal-centered geometric self-diffusion model, RC is
the distance radius between the terminals. Unlike the infec-
tious disease model, the BT model has no intermediate
host/immune isolation model [62]. We assume that a single
infection circle is generated from a point source infected by
BT at time r, and s is the unit of duration. Then the spatial
infection increment at r + s is

G′(r, s) ,
dG(r, s)

ds

= βBT
S(r + s) · 1

2ρπR2c

N
c
√

G(r, s) (12)

If the terminals are evenly distributed, c is a proportional con-
stant, and the incremental space at time t infects all infection
circles as

dIBT (t)

dt
=

∫ t

0
I ′MMS (τ)G

′(τ, t − τ)dτ (13)

c = 2RC
√

ρπ (14)

The growing number of short-range device identification
and interaction scenarios provides a scenario for Bluetooth
security. For example, the inquiry, identification, interaction,
and operation of extensive bicycle sharing all require the
participation of Bluetooth. The short-distance transmission
of data and instructions between different terminals through
Bluetooth constitutes a new security scenario for the IoT.

2) 5G NETWORK BASE STATION GEOGRAPHIC NETWORK

PROPAGATION(TWO-LAYER PROPAGATION MODEL)

Gao and Liu [63] [64] once proposed a two-layer model to
simulate the propagation process of viruses based on Blue-
tooth and SMS in a geographic network composed of cellular
towers and a logical connection network composed of mobile
phones [62]. The lower layer is a cellular tower network based
on geographic information.
Our research shows that, based on cloudized and virtual-

ized 5G networks, mobile malware detection and interception
are deployed at the core network level to cope with low
latency and high concurrency IoT networks, and new appli-
cation security forms based on artificial intelligence, Internet
of Things and cloud computing, such as self-driving cars,
industrial Internet, etc.

3) METROPOLITAN AREA NETWORK

Szongott et al. [65] proposed a model to show how mobile
malware is prevalent among infectious media between
devices and infect almost the entire metropolitan area within
a few hours. This architecture differs between two different
infection environments: road and location. The probability of
infection of devices located in these locations is defined as
follows:

Ai = β × l×a
i

(15)

In the metropolitan area network, Internet mobile applica-
tions (which constitute the second space of human life)
for urban geospatial information, a wide range of physical
‘‘scanning applications, location-based applications, travel,
electronic wallets, smart home’’ and other applications and
metropolitan area network infrastructure constitute an end-to-
end mobile Internet ecological environment. It poses a threat
to the protection and security of personal information within
the metropolitan area.

B. TELECOM NETWORK SECURITY

The core network and access network of telecom operators
have become important infrastructures in the Internet era.
The rapid deployment and high-cost maintenance of the
world’s new generation of 5G telecommunications equipment
requires cost-effective solutions to protect the telecommu-
nications core network, access network and terminals from
mobile malicious programs. It is necessary to protect smart
phone devices or telecom operators from mobile malicious
programs by using certain functions (such as wireless inter-
faces in communication (SMS/MMS/IMS, Bluetooth, 4G
and 5G)).

SMS/MMS/IMS can seamlessly spread malicious code
to a large number of users across the network, relying on
methods including zombies, Trojan horses and worms to
attack [66], [67].

In view of the vulnerabilities of the mobile phone, mali-
cious injection of the operator’s network traffic caused the
smartphone to be hijacked and injectedwithmobilemalicious
programs. Amalicious detection mechanism can be deployed
to the core of the mobile Internet to detect and prevent
signaling-based attacks. These attacks may be related to the
hijacking of mobile phones (mobile botnets). Hijacking of
mobile phones (mobile botnets) will then generate signaling
traffic, which is sent to the mobile core network by the
mobile phone before performing denial of service attacks.
The root and root directories under the user control author-
ity of the smart phone disable the protection mechanism of
the operating system, and then allow the user to install any
application that can change the structure and function of the
system environment on the smart phone. These applications
extend access rights and use them formalicious purposes with
harmful effects [68].

In terms of terminal protection, the development of numer-
ous antivirus software programs has improved the defense
mechanism against the spread of malicious mobile programs
on smartphones. However, for the rapidly iterating mobile
terminal hardware and operating system, these antivirus
software programs have not been widely downloaded.
Moreover, because part of the operating system has a back-to-
sleep mechanism, it has large resource consumption, cannot
discover unknown threats and is generally poor and unable
to meet the full protection of each customized smartphone.
Moreover, this solution only provides terminal protection and
cannot guarantee the security of the network link, and the
success rate of catching viruses is very low.

VOLUME 9, 2021 14589

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

Therefore, the security solutions used to build the core
network must be reconsidered. Although based on this base
station, a detective and protective antivirus software system
for smartphones has been implemented to cut off the spread of
smartphone viruses, the low flexibility and portability of the
base station still have great limitations [67]. Moreover, most
of the existing mobile malicious program countermeasures,
such as those developed in response to SMS/MMS mobile
malicious programs, use centralized methods implemented
in the operator’s network. However, these centralized defense
mechanisms are only effective for mobilemalicious programs
spread through a centralized infrastructure [69]. At the same
time, there are also the high cost and complex deployment of
network resource equipment related to the core network.
The spread of mobile malicious programs in a new gen-

eration of the mobile Internet environment dominated by
high-speed 5G networks poses a major risk. The deploy-
ment of future 6G, content center networks and SDN net-
works, and new networks of popular core applications may all
become the main targets of new mobile malicious programs.
Unknown types of mobile malicious programs spread and
harm terminals in a distributed manner without the operator’s
network prevention and control mechanism. Many types of
mobile malicious programs use the proximity of devices to
replicate themselves in a distributed manner, making them
difficult to detect. Due to the lack of a suitable network
provider and highly dynamic prevention and control topol-
ogy (hindering possible defense lines), it is also challeng-
ing to protect terminals and core nodes from these mobile
malicious programs [69]. Most existing mobile malicious
program detection applications rely on mobile malicious pro-
gram databases. In addition, mobile terminals, including their
limited processing power, storage space and battery power, all
of these attributes constitute an obstacle to the timely distri-
bution of mobile malicious program signature files between
mobile devices [20], [70].
This article combines the deployment of the cyber threat

situational awareness system to carry out a core network with
deployment of a mobile malicious program protection system
for convergent devices, and due to the low egress bandwidth
of the mobile network, it can be monitored almost 100% by
themobile core network flow, so proceeding to the large-scale
deployment has achieved remarkable results.

C. SOCIAL NETWORK COMMUNICATION

Social networking is the basis for malware transmission.
Combining complex interpersonal relationships with the
ever-changing personal behaviors results in a complex social
network. Therefore, the formation mechanism and evolution
of social networks are the core issues of malware propagation
dynamics.
A country, a language region, an urban area, industry dis-

tribution, and regional distribution all constitute elements of
social network communication.
Based on the inference relationship between user portraits

and user acquisition, mobile malicious programs and user

behaviors in social graphs, a user recognition model was
constructed to characterize the user’s cognitive process, and
mobile malicious programs and user behaviors based on user
portraits and accesses were studied. The user’s cognitive
model of the dependency graph (the structure of the belief
network), and the convex inference function are approxi-
mated by convex optimization, and then the breakthrough is
to learn the dependency graph and the conditional probability
table from the original large-scale heterogeneous data set (the
strength of dependence in the belief network).

Let G = (V , E , X , Y) for social networks, V for user
nodes, E for connections between users, X for user attributes,
and Y for connection attributes. At the same time, there are
multiple mobile malicious programs spreading together on
the network, and there is competition or promotion between
each other. The existing propagation model cannot determine
the correlation of the propagation. Therefore, the introduction
of the content correlation matrix ICRL×Lrepresents the corre-
lation between multiple programs. The contextual export of
ICRL×L by the program in the knowledge graph. The effect of
program propagation is affected by the network topology at
the current moment, and the network topology changes due
to the propagation of the program, which in turn affects the
propagation of the program at the next moment.

Models for spreading changes: Social contact networks
are the basis of malware spreading. Combining complex
interpersonal relationships with changing personal behaviors
leads to complex social networks. Therefore, the formation
mechanism and evolution of social networks are the core
issues of malware propagation dynamics.

Gt = finfo−topo
(

Gt−1, ICRL×L
)

(16)

Suppose the network topology at time t isGt , with a total ofM
users, then the expected spread of the program whose content
at time t is l ex(t) is:

ex(t) =
M

∑

i=1

P
{

ftopo−info
[

Gt ,N
]

,N
}

(17)

N = ICRL×L (18)

where P represents a single user’s acceptance model of the
program, accumulating the influence exerted by the neigh-
bors of the user in Equation (17).
ftopo_info is a function that represents the influence of the

network topology on the propagation of the program at the
current moment, and the final output is the range of guided
text propagation. In addition, the finfo_topo function can
acquire the network topology state diagram during the pro-
cess of program propagation. According to the topology map
combined with the propagation scale expectation, the impact
range of the current program propagation and the main target
community impact degree can be fully understood.

1) CONSTRUCTION OF SOCIAL RELATIONSHIP GRAPH

Based on the SMS, MMS, the IMS (the instant messaging
service) malicious behavior continues to spread and danger

14590 VOLUME 9, 2021

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

gradually increase [71], such that the SMS, MMS and the
IMS and other forms of the distribution and dissemination for
the entire network have become an attack vector for mobile
smart terminals. For example, the SMS, the MMS and the
IMS may be used to deliver content and maintain a commu-
nication with the malicious attacker. For SMS, the attacker
uses SMS to send a URL link and then tricks the user
into using this URL to open a browser window. For MMS,
the message itself it may be a malicious file. The victim
will most likely open and download the message. Moreover,
with several years of rapid development of the IMS and the
spread of social software based on the IMS, it has become
a new model based on instant messaging, groups, and social
circles of friends to complete the transmission and spread of
malicious samples of many types. Therefore, taking worms
as an example, an effective SMS/MMS/IMS-based malicious
propagation method should take into account the social rela-
tionship graph betweenmobile devices in the mobile Internet.
The mobile number arrangement based on major countries

has strong regularity and regional division, and the informa-
tion based on the country-based authentication system as the
identification of mobile phones in the Internet ecosystem has
become relatively public key information, and has formed
an end-to-end network communication channel. If Alice and
Bob have a social connection, Alice is more likely to open
a message from Bob. However, if Alice ’s smartphone has
been infected by an SMS/MMS/IMS- based worm and this
malicious message is sent to Bob, Bob ’s smartphone is likely
to be infected by the worm. The fact is that if two smart-
phone users have never sent messages to each other, even
though Alice ’s smartphone has been infected, Bob ’s phone
will not be infected. The detailed list of SMS / MMS/IMS
communication information between two smartphones can
predict whether they will participate in the propagation path
of mobile malicious programs.
Telecom operators of details of a single large data (includ-

ing SMS, telephone, traffic and large portraits of data) can
build social graph. The data for big data character portraits
also provides a foundation and verification environment for
our research. The social relationship graph is represented
by an undirected weighted graph G = (V ,E), where the
vertex of V corresponds to the smartphone in the mobile
Internet network, and the number of E edges corresponds to
the communication exchanged between any two smartphones
detailed order quantity, i and j. Vertex degree i, expressed as
di, is, the number of smartphones (the number of links on
behalf or on behalf of smartphone owners di friends). The
number of message records initiated from i to j is represented
by Cij.
f (i) maps each vertex i∈ v and f (i,j) maps each edge

(i, j) ∈ E. Therefore, f (i) and f (i, j) can be used to determine
the weights of vertices and edges, respectively. The mapping
function of the weights of vertices and edges is described as
follows.

f (i) = di (19)

f (i, j) = Cij + Cji (20)

Right vertices and edges of weights as important indica-
tors represent the possibility of being infected with mobile
malicious programs. From Equation (19) it can be seen,
depending on the vertex weights di. Since Android and other
open source mechanisms and systems do not support contin-
uous updates for the first time, the vulnerability cannot be
completely avoided. For mobile malicious programs based
on SMS/MMS/IMS, a smartphone with a higher degree of
intrusion means that it is more likely to be infected and more
likely to infect other smartphones. Therefore, smartphones
with high degrees should be assigned higher vertex weights.

Any two smartphones can be interacted by Equation (20).
If the two-smartphone machine has passed the SMS, MMS
or IMS communicates, and they are more likely to open
a message and activate each other’s worm infections. This
social relationship diagram shows how smartphones connect
to each other and how worms use this relationship to spread.

Table 4 shows an example of a social relationship graph.
We use the number of exchanges between two smartphone
messages, recording i and j as the weights Cji. The number of
mobile phone communications per unit time can measure the
social relationship between any two smart phones [72].

TABLE 4. Messages between two smartphones record traffic.

In Table 4, each vertex is abstracted as a smartphone,
and by dividing the maximum within one week, WAT is
normalized between any two smartphone WATs and can be
obtained as the relationship shown in Fig. 13.
An accurate social relationship graph can be built by

analyzing the message records. The graph may reflect the
propagation path of the worm, and the worm by using the host
terminal infected the communication book for social network
communication.

2) USE SOCIAL NETWORK GRAPHS TO MODEL MOBILE

MALWARE PROPAGATION

An accurate social relationship graph can be built by analyz-
ing the message records. The graph may reflect the propa-

VOLUME 9, 2021 14591

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

FIGURE 13. SMS/MMS social relationship diagram.

gation path of the worm, and the worm by using the host
terminal infected the communication book for social network
communication.

a: STATE TRANSITION RELATIONSHIP

According to the propagation characteristics of SMS/MMS/
IMS- based worms, three types of epidemic status are con-
sidered: susceptible (S), infected (I) and recovered (R).
We assume that susceptible occurs at t, and the infected
and recovered nodes are represented by S(t), I(t) and R(t)
respectively.The conversion process of the worm propagation
state is shown in Fig. 14.

FIGURE 14. Smartphone based on SMS / MMS state transition worm
propagation of the relationship.

Some terms of the model are explained as follows:
p1 represents the probability that node state S becomes the

node status I.
p2 represents the probability that node state S becomes the

node state R.

p3 represents the probability that node state I becomes the
node status R.

b: STATE TRANSITION ALGORITHM

To reasonably describe the infection ability of mobile mali-
cious programs in smartphones based on social network
graphs, we introduce the node’s infection degree i, expressed
as IDi , which is used to measure the danger degree from
infected smartphones to vulnerable smartphones.

Two important factors to characterize individual differ-
ences that are based on SMS /MMS / IMS affect transmission
dynamics of worms.

One is the infection factor. IF ji is used to indicate the
degree of infection from node j to node i (0 ≤ IF ji ≤ 1).
If IFji is equal to 0, it means that node j is not infected with
node i. If RFij is equal to 1, it means that node j has a strong
infection i on the node.

The other is the resistance factor. RFij to is used to indicate
that node i is infected by some kind of worm (0< RFij ≤ 1).
IfRFij is equal to 1, it means that the node i has a strong ability
to resist nodule infection j. Let T represents a state transition
from a wireless node transmitted with an elapsed threshold to
its state. Let Ni denote the number of infectious friends of the
node I, and IDi, RFij, and IFji can be described as follows.

IDi =
1

Ni

j=Ni
∑

j=1

[(

ω1
Cji

Cmax
+ ω2

Cji
′

Cmax

)

×
IFji

RFij

]

(21)

RFij = ω3
1 − λ2e

−βt

1 + λ2e−βt
+ ω4

1 − λ2e
−βCji

1 + λ2e
−βCji

(22)

IFji = ω5
λ1e

αt − 1

λ1eαt + 1
+ ω6

λ1e
αCji − 1

λ1e
αCji + 1

(23)

Here Cji from j to i transmitted within a week S the MS
number, Cji’ is from j to i transmitted within a week MMS
number of messages. Cmax is the maximum number of mes-
sages sent between any two smartphones in a week. λ1 and
λ2are constants to be determined according to actual needs. α
and β are the adjusted factors IFji and RFij respectively. ω1,
ω2,ω3,ω4,ω5 andω6 represent weighting factors,ω1+ω2 =
1, ω3 + ω4 = 1, ω5 + ω6 = 1.

The formula for the state transition process is as follows.
1. The network initialization. All nodes use SMS/MMS/

IMS to communicate with each other.
2. The node initialize the state. Randomly select a node and

set its state to the State I, and the status of the other nodes is
set to State S.
3. It can be used to collect information by analyzing their

friends’ message records.
4. Node I can access T. When node I has communicated

with his / her friends 1t through SMS / MMS in a certain
period of time.
Case 1: Regarding node i, if its status is I, it can visit its

friend node. If his friend’s node J state is, whereas if the ID
section Node J is not less than T, Node J its state from to I
is likely top1 th. Otherwise, node j keeps its previous state. If

14592 VOLUME 9, 2021

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

IFij is equal to 0 or RFji is equal to 1, node j changes its state
from to R corresponding to probabilityp2. Meanwhile, node
I to its state from I to R useful corresponds probability p3.

Case 2: Repeat the beginning of step 4 until all nodes in the
network are visited.
5. T is equal to t plus 1t. This completes the algorithm.

D. HOMOGENEOUS COMMUNITY COMMUNICATION

A homogeneous community is a community composed of
network groups with common cultural structure, life and
ideology. The commonality in a homogenous community
is called a homogenous attribute. According to social psy-
chology theory, individuals have many aspects of education,
occupation, wealth, etc. The homogeneous nature is the basis
for reaching consensus and forming group behavior con-
vergence. The behavior-driven time series model of social
network structure studies the impact of information sharing
and information interaction on the network structure, ana-
lyzes the network evolution rules under the influence of user
behavior factors and information dissemination factors, and
is a dynamic discovery of homogeneous communities.
We propose that there is an enrichment of mobile malicious

programs in homogeneous communities, which has a social-
ized propagation mechanism for common network groups.
A homogenous community of malware has resulted in a large
number of organized malicious applications.
The top-30 firmware version community mobile malware

coversmore than 67.2% of all malware samples, whichmeans
that a small number of communities will contribute a large
number of malware samples. The concentration of its com-
munity also provides a basis for the probability distribution
for the monitoring of the mobile malware distribution.

E. APPLICATION OF MARKET-LEVEL ECOSYSTEM

COMMUNICATION

The rapid global popularity of smartphones has promoted
the rapid growth of the application market and has increased
the interest of mobile malicious programs to exponential
growth. Some cracking methods can be modified to crack
paid applications and spread as free downloads and are sep-
arated from the operating mechanism of the mobile appli-
cation store and is not subject to official and third-party
management. Android’s multiple heterogeneous markets and
the open source development and direct installation mecha-
nism of APK programs make it easy for malicious programs
to penetrate the market [73]–[76]. Malicious applications in
the Android market are constantly increasing and iterating.
Driven by the ecological interest chain of the application
market, malicious users or hackers can easily submit infected
applications to the Android market without any mechanism
restrictions. However, the Android market does not check,
test, or filter out [77].
Since third-party application developers are benefiting the

ecological chain, they hope to increase the download volume,
stickiness, and activity of applications. The smartphone plat-
form provides a friendly environment for developers, such

as program libraries, interfaces, and various emulators. They
can also be used to develop or secondary develop applica-
tions that can effectively endanger the privacy and security
of smartphone users. Malicious code also It can be repack-
aged into normal applications and rooting modules, thereby
making a security hole into the smartphone operating system
[76], [78], [79]. The heterogeneity, security mechanism and
management mode of the application store enable mobile
malicious programs to survive. Therefore, mobile malicious
programs can leak private information, abuse smartphone
functions and even gain ROOT privileges [15], [80], [81].

The profit-driven mobile Internet ecology makes the
mobile phone market (such as the Google Play store) increas-
ingly drive the download and dissemination of mobile pro-
grams through program ratings, without adequate security
mechanisms. Android program of review, credibility and
assessment should be a reasonable distribution of statistics
users and security research personnel written release. How-
ever, plug-ins, order- swiping and agency models and even
official agreements have caused the proliferation of false
reviews, affecting the ranking and dissemination of apps
[82], [83]. The security model of the Android platform
through the use of signature-based scanning does not require
a trusted security agency to sign developer certificates,
thereby allowing the use of self-signed digital certificates to
sign many applications. In this case, the certificate has not
been verified by a trusted third party to allow anonymous
developers to publish a large number of programs on the
market, resulting in poor source origin and integrity protec-
tion [81], [83].

Once an application is installed on the system, the user
will lose some control over the operation of the application.
Usually without user authorization, the installed application
can control several smart phone permissions, including call,
SMS, camera, GPS, Bluetooth, WLAN wireless network and
4G/5G access [83], [84]. Different smart phone platforms
implement mandatory access control to restrict arbitrary
access to system resources (including the Internet, location or
cellular services). The permission list authorization module
is forcibly implanted in the installation process. The system
will display the required permission list to the user, but cannot
selectively accept or reject the access permission. Therefore,
many users accept these license requests without consider-
ing their over-authorization and software vulnerabilities [68].
The application can also upload information to a remote
server without notifying the user. In this case, the data will
be transmitted to the attacker via a remote server without the
user’s knowledge [20], [81].

We found that publishers often submit multiple malware
samples to the market in a short time. According to our
research data on mobile malware, Android malware spreads
through the mobile store market [85].

Malware authors write/rewrite mobile malicious programs,
upload them to websites and application stores, wait for
downloads, install them onmobile phones, communicatewith
remote servers, and obtain information and profit.

VOLUME 9, 2021 14593

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

According to our research data, malicious program
providers are more inclined to deploy malicious program
download sources in the hosted cloud storage host. The pri-
vacy of the cloud platform and the high cost of money per
unit of time provide convenience for the spread of mobile
malicious programs.
Many popular applications with high download numbers

are still malicious, and the popularity of the applications is
not an effective indicator of their quality.
The spatial and temporal distribution is based on

third-party markets and websites, and its performance is
highly iterative.
Through our 178,155 server traces of real mobile mal-

ware data detected in the China Unicom network environ-
ment, mobile malware is found to be enriched in certain
third-party store ecosystems (such as Redmi, MI and other
mobile phones). The secondary development Android system
of the producer and its supporting third-party application
store constitute an end-to-end communication environment.

F. CONSTRUCTION OF MOBILE INTERNET BIG DATA

KNOWLEDGE MAP

Through knowledge labeling and knowledge construction,
the association relationship of knowledge is extracted to
realize the research of knowledge map construction. The
relationship types that can be extracted are shown in Fig. 15.

FIGURE 15. Graph relation extraction type.

From a technical perspective, relationship extraction can
be divided into the following three forms:
Static extraction. That is, for some static features, such as

whois information, the registration information correspond-
ing to the domain name can be extracted.
The advanced big data storage architecture was selected

to realize the complete data collection framework and nor-
malization process, which could provide a variety of differ-
ent data analysis methods, support real-time analysis, post
analysis and other analysis modes, Comprehensive analysis
and mining are mainly for all kinds of data resources stored
in the file system or database, realizing statistics, retrieval,
association, collision, and efficient processing of specific
mining models and supporting the mining and analysis of
unknown threats.

TABLE 5. Dynamic extraction.

Dynamic extraction in Table 5 is the extraction of relation-
ships that change dynamically over time, such as the attack
relationship between the attack source IP and the attacked IP,
the malicious domain name and IP resolution and antiresolu-
tion relationship, the IP and domain name access relationship,
the domain name and the server login of the linked sample
IP correspondence, the correspondence between the domain
name and the server mail exchange (MX) record, the cor-
respondence between the domain name and its subdomain
names, the correspondence between the certificate and the
IP, the similarity relations relationship between the certificate
and the certificate server certificate, and so on.

In-depth analysis extraction, that is, the relationship that
needs to be mined through in-depth analysis, such as the
co-occurrence relationship, is to use the adjunct relation-
ship of the attack to extract whether the control-end IP has
launched an attack at the same time. There are also relation-
ships generated by connecting information through similarity
through model matching.

We used big datawith connecting information through sim-
ilarity model matching. Comprehensive analysis mining is
mainly used for all kinds of data resources stored in a file sys-
tem or database, realizing statistics, retrieval, association, col-
lision, and efficient processing of specificminingmodels, and
supporting the mining analysis of unknown threats. Through
model matching, the relationship is generated through the
similarity connection.

The extracted entities and relationships are used to connect
all the entities that have relationships and build a fully con-
nected relationship graph, which is a directed graph, as shown
in Fig. 16.

The knowledge graph provides an intuitive display of all
resource attributes and relationships in the secure resource
pool in an interactive manner. Based on the knowledge graph,
it supports rapid expansion analysis and investigation analysis
capabilities and provides security analysis capabilities for
graphs: All entities and relationships in all events of a query

14594 VOLUME 9, 2021

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

FIGURE 16. Fully connected relationship directed graph.

should be extracted to build a comprehensive relationship
graph and automatically optimize the layout.
It can quickly perform line expansion analysis for an entity

or relationship and supports rapid event drilling and one-click
analysis of related security objects in an interactive form.
It can intuitively distinguish between the physical object

and the strength of the relationship and the criticality of the
entity in certain types of relationships.
A certain entity can be used as the center point to expand

its related entities and relationships. It defaults to N degrees,
and N can be set as: interaction (study entity attributes or rela-
tionships entity search analysis, locates the search entity) and
relation search analysis(locate entities that match the relation-
ship). Research on security analysis algorithms for knowl-
edge graphs, including graph search, traversal, the shortest
path, large-scale change of domain names, orphan pages,
brute force cracking, port anomalies, abnormal logins, abnor-
mal traffic and other security analysis algorithms.
Providing interactive analysis based on the knowledgemap

is the core research of knowledge generation and service.
Through the relevant analysis of the facts and relationships of
security incidents, combined with interactive analysis algo-
rithms, fast and effective expansion analysis is performed.

VI. MACHINE LEARNING FOR ENCRYPTED MALWARE

TRAFFIC PACKET ON SSL(HTTPS)

Nowadays, most of (mobile) web sites communicate with
their users on SSL(HTTPS). There are two problems in the
encrypted malware traffic packet. One is that it’s difficult to
detect the encrypted threat traffic resulting in the ineffective
analysis and detection of attack characteristics of complex
network such as botnet traffic. The other is that machine
learning is featured by high false alarm rate, long training

period and demanding data accuracy. For that, data packet
was deeply analyzed through the data packet analysis method
including the analysis of its header and content so as to realize
the analysis of network traffic’s characteristics. By using
XGBoost, SVM, Random Forest and Logistic Regression and
other machine learning algorithms to detect the encrypted
malware traffic packet, we divided the identify characteris-
tics. Finally, we found that XGBoost and Random Forest
were are better for threatening dense flows. We obtained the
SHAP evaluation [86] data of all important features on the
classification of malware dense flow. In addition, we carried
out the impact verification of the importance characteristics.
The research we have carried out to help encrypt the traffic
discrimination of malware is the improvement of our pro-
posed model system.

VII. CONCLUSION

To study the traceability, propagation, and detection of the
threats, we perform research on all aspects of the end-to-
end environment. By controlling the spread of the malware
network, sample collection, research and plugging sentences,
the malware prevention system and key scientific issues are
controlled in order to protect the safety of the mobile Internet.
The network side technology monitors the download source,
download channel and terminal running environment of the
mobile application, while network traffic analysis identifies
the malware transmitted in the network. With machine learn-
ing based on the mobile malware detection algorithms that
integrate the dynamic and static research of the identifica-
tion algorithm, application software samples are collected
to study sentences. Through research, we obtained global
malware threat detection, traceability, and propagation mod-
els. Through knowledge labeling and knowledge construc-
tion, the association relationship of knowledge is extracted
to realize the research of knowledge map construction. This
study aimed to perform detection on a large network in China
Unicom mobile environment regarding 178,155 real mali-
cious program data by using the data flow probe of Android
mobile program data files to obtain detailed Guiyang (China
‘‘Data Center Capital’’) mobile malware infected program
data. Flooding is closely correlated with the complexity of
the Android mobile version of the kernel and malicious pro-
grams. A static dynamic analysis of themobile malicious pro-
gram is carried out, and the social network social diagram is
constructed to model the propagation of the mobile malicious
program. We extended the approach of deriving common
malware behavior through graph clustering to the field of
Android mobile malicious program detection in the Linux
kernel. On this basis, Android behavior analysis is performed
through our virtual machine execution engine to evaluate the
maliciousness of the program through the heuristic analysis
algorithm.We extend the family characteristics to the concept
of DNA race genes. By studying SMS/MMS, Bluetooth, 5G
base station networks, metropolitan area networks, social
networks, homogeneous communities, telecommunication
networks, and application market ecosystem propagation

VOLUME 9, 2021 14595

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

scenarios, we discovered the law of propagation. In addi-
tion, we studied the construction of the mobile Internet big
data knowledge graph. Quantitative data for the main family
chronology of mobile malware are obtained. We conducted
detailed research and comprehensive analysis of Android
application package (APK) details and behavior, relation-
ship, resource-centric, and syntactic aspects. Furthermore,
we summarized the architecture of mobile malware security
analysis. We also discuss encryption of malware traffic dis-
crimination. These precise modeling and quantified research
results constitute the architecture of mobile malware analysis.

ACKNOWLEDGMENT

The authors would like to thank the two reviewers and editors
for their professional advice, which has been of great help to
our article adjustment and further research.

REFERENCES

[1] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu,
‘‘SAMADroid: A novel 3-Level hybrid malware detection model for
Android operating system,’’ IEEE Access, vol. 6, pp. 4321–4339, 2018.

[2] Statcounter. (2019). Mobile Operating System Market Share Worldwide.
Mobile Operating System Market Share Worldwide. [Online]. Available:
https://gs.statcounter.com/os-market-share/mobile/worldwide/2019

[3] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda, ‘‘Evo-
lution, detection and analysis of malware for smart devices,’’ IEEE Com-
mun. Surveys Tuts., vol. 16, no. 2, pp. 961–987, 2nd Quart., 2014.

[4] A.-D. Schmidt, H.-G. Schmidt, L. Batyuk, J. H. Clausen, S. A. Camtepe,
S. Albayrak, and C. Yildizli, ‘‘Smartphone malware evolution revisited:
Android next target?’’ in Proc. 4th Int. Conf. Malicious Unwanted Softw.
(MALWARE), Oct. 2009, pp. 1–7.

[5] N. K. Gyamfi and E. Owusu, ‘‘Survey of mobile malware analysis, detec-
tion techniques and tool,’’ in Proc. IEEE 9th Annu. Inf. Technol., Electron.
Mobile Commun. Conf. (IEMCON), Nov. 2018, pp. 1101–1107.

[6] A. I. Ali-Gombe, B. Saltaformaggio, J. Ramanujam, D. Xu, and
G. G. Richard, ‘‘Toward a more dependable hybrid analysis of Android
malware using aspect-oriented programming,’’ Comput. Secur., vol. 73,
pp. 235–248, Mar. 2018.

[7] H. Cai, N. Meng, B. Ryder, and D. Yao, ‘‘DroidCat: Effective Android
malware detection and categorization via app-level profiling,’’ IEEE Trans.
Inf. Forensics Security, vol. 14, no. 6, pp. 1455–1470, Jun. 2019.

[8] Z. Luoshi, N. Yan, W. Xiao, W. Zhaoguo, and X. Yibo, ‘‘A3: Automatic
analysis of Android malware,’’ in Proc. 1st Int. Workshop Cloud Comput.
Inf. Secur., 2013, pp. 1–5.

[9] Z. Ning and F. Zhang, ‘‘Hardware-assisted transparent tracing and debug-
ging on ARM,’’ IEEE Trans. Inf. Forensics Security, vol. 14, no. 6,
pp. 1595–1609, Jun. 2019, doi: 10.1109/TIFS.2018.2883027.

[10] L. Onwuzurike, M. Almeida, E. Mariconti, J. Blackburn, G. Stringh-
ini, and E. De Cristofaro, ‘‘A family of droids—Android malware
detection via Behavioral modeling: Static vs dynamic analysis,’’ 2018,
arXiv:1803.03448. [Online]. Available: http://arxiv.org/abs/1803.03448

[11] P. Bhat and K. Dutta, ‘‘A survey on various threats and current state of
security in Android platform,’’ ACM Comput. Surveys, vol. 52, no. 1,
pp. 1–35, Feb. 2019, doi: 10.1145/3301285.

[12] S. R. Department. (Nov. 2019). Internet of Things (IoT). Number of con-
nected devices worldwide from 2012 to 2020 (in billions). [Online]. Avail-
able: https://www.statista.com/statistics/471264/iot-numberof-connected-
devices-worldwide

[13] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, ‘‘DroidMat:
Android malware detection through manifest and API calls tracing,’’ in
Proc. 7th Asia Joint Conf. Inf. Secur., Aug. 2012, pp. 62–69.

[14] L. Onwuzurike, M. Almeida, E. Mariconti, J. Blackburn, G. Stringhini,
and E. De Cristofaro, ‘‘A family of droids-Android malware detection via
behavioral modeling: Static vs dynamic analysis,’’ in Proc. 16th Annu.

Conf. Privacy, Secur. Trust (PST), Aug. 2018, pp. 1–10.
[15] T. Isohara, K. Takemori, and A. Kubota, ‘‘Kernel-based behavior analysis

for Android malware detection,’’ in Proc. 7th Int. Conf. Comput. Intell.
Secur., Dec. 2011, pp. 1011–1015.

[16] V. Rastogi, Y. Chen, and W. Enck, ‘‘AppsPlayground: Automatic security
analysis of smartphone applications,’’ in Proc. 3rd ACM Conf. Data Appl.

Secur. Privacy - CODASPY, 2013, pp. 209–220.
[17] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira,

and Y. Elovici, ‘‘Mobile malware detection through analysis of devia-
tions in application network behavior,’’ Comput. Secur., vol. 43, pp. 1–18,
Jun. 2014.

[18] A. Firdaus, N. B. Anuar, A. Karim, and M. F. A. Razak, ‘‘Discovering
optimal features using static analysis and a genetic search based method
for Android malware detection,’’ Frontiers Inf. Technol. Electron. Eng.,
vol. 19, no. 6, pp. 712–736, Jun. 2018.

[19] Z. Wang, ‘‘Research on Android malware detection,’’ Ph.D. dissertation,
Harbin Inst. Technol., Harbin, China, 2017.

[20] M. Talal, A. A. Zaidan, B. B. Zaidan, O. S. Albahri, M. A. Alsalem,
A. S. Albahri, A. H. Alamoodi, M. L. M. Kiah, F. M. Jumaah, and
M. Alaa, ‘‘Comprehensive review and analysis of anti-malware apps for
smartphones,’’ Telecommun. Syst., vol. 72, no. 2, pp. 285–337, Oct. 2019.

[21] H. Dong, ‘‘Research on the detection and protection technology of mobile
applications,’’ Ph.D. dissertation, Beijing Univ. Posts Telecommun.,
Beijing, China, 2014.

[22] L. Cen, C. S. Gates, L. Si, and N. Li, ‘‘A probabilistic discriminative model
for Androidmalware detectionwith decompiled source code,’’ IEEETrans.
Depend. Sec. Comput., vol. 12, no. 4, pp. 400–412, Jul. 2015.

[23] Y. Aafer, W. Du, and H. Yin, ‘‘DroidAPIMiner: Mining API-level features
for robust malware detection inAndroid,’’ inProc. Int. Conf. Secur. Privacy
Commun. Syst., 2013, pp. 86–103.

[24] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, ‘‘MalDozer: Auto-
matic framework for Android malware detection using deep learning,’’
Digit. Invest., vol. 24, pp. S48–S59, Mar. 2018.

[25] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, ‘‘HinDroid: An intelligent
Android malware detection system based on structured heterogeneous
information network,’’ in Proc. 23rd ACM SIGKDD Int. Conf. Knowl.

Discovery Data Mining, Aug. 2017, pp. 1507–1515.
[26] A. Pekta and T. Acarman, ‘‘Deep learning for effective Android malware

detection using API call graph embeddings,’’ Soft Comput., vol. 24, no. 2,
pp. 1027–1043, Jan. 2020, doi: 10.1007/s00500-019-03940-5.

[27] A. Apvrille and T. Strazzere, ‘‘Reducing the window of opportunity
for Android malware gotta catch ’em all,’’ J. Comput. Virology, vol. 8,
nos. 1–2, pp. 61–71, May 2012, doi: 10.1007/s11416-012-0162-3.

[28] L. Taheri, A. F. A. Kadir, and A. H. Lashkari, ‘‘Extensible Android
malware detection and family classification using network-flows and API-
calls,’’ in Proc. Int. Carnahan Conf. Secur. Technol. (ICCST), Oct. 2019,
pp. 1–8.

[29] R. Mateless, D. Rejabek, O. Margalit, and R. Moskovitch, ‘‘Decompiled
APK based malicious code classification,’’ Future Gener. Comput. Syst.,
vol. 110, pp. 135–147, Sep. 2020, doi: 10.1016/j.future.2020.03.052.

[30] B. Yang, Z.-S. Tang, H.-J. Zhu, and J.-C. Lin, ‘‘Method of Android appli-
cations permission detection based on static dataflow analysis,’’ Comput.
Sci., vol. 39, pp. 16–20, 2012.

[31] B. Sanz, I. Santos, C. Laorden, X. Ugartepedrero, P. G. Bringas, and
G. Á. Marañón, PUMA: Permission Usage to Detect Malware in Android.
Berlin, Germany: Springer, 2013.

[32] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy,
‘‘Android permissions: A perspective combining risks and benefits,’’ in
Proc. 17th ACM Symp. Access Control Models Technol., 2012, pp. 13–22,
doi: 10.1145/2295136.2295141.

[33] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy, ‘‘Using probabilistic generative models for ranking risks of
Android apps,’’ in Proc. ACM Conf. Comput. Commun. Secur. CCS, 2012,
pp. 241–252.

[34] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, ‘‘WHYPER:
Towards automating risk assessment ofmobile applications,’’ inProc. 22nd
USENIX Conf. Secur., 2013, pp. 527–542.

[35] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, ‘‘Android permis-
sions demystified,’’ in Proc. 18th ACM Conf. Comput. Commun. Secur.

CCS, 2011, pp. 627–638.
[36] X.Wei, L. Gomez, I. Neamtiu, andM. Faloutsos, ‘‘Permission evolution in

the Android ecosystem,’’ in Proc. 28th Annu. Comput. Secur. Appl. Conf.,
2012, pp. 31–40, doi: 10.1145/2420950.2420956.

[37] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, ‘‘Pscout: Analyzing the
Android permission specification,’’ in Proc. 2012 ACM Conf. Comput.

Commun. Secur., 2012, pp. 217–228, doi: 10.1145/2382196.2382222.
[38] H. Mei, Q. Wang, L. Zhang, and J. Wang, ‘‘Software analysis: A road

map,’’ Chin. J. Comput., vol. 32, no. 9, pp. 1697–1710, 2009.

14596 VOLUME 9, 2021

http://dx.doi.org/10.1109/TIFS.2018.2883027
http://dx.doi.org/10.1145/3301285
http://dx.doi.org/10.1007/s00500-019-03940-5
http://dx.doi.org/10.1007/s11416-012-0162-3
http://dx.doi.org/10.1016/j.future.2020.03.052
http://dx.doi.org/10.1145/2295136.2295141
http://dx.doi.org/10.1145/2420950.2420956
http://dx.doi.org/10.1145/2382196.2382222

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

[39] T.-E. Wei, C.-H. Mao, A. B. Jeng, H.-M. Lee, H.-T. Wang, and D.-J. Wu,
‘‘Android malware detection via a latent network Behavior analysis,’’
in Proc. IEEE 11th Int. Conf. Trust, Secur. Privacy Comput. Commun.,
Jun. 2012, pp. 1251–1258.

[40] P. S. Chen, S.-C. Lin, and C.-H. Sun, ‘‘Simple and effective method
for detecting abnormal Internet Behaviors of mobile devices,’’ Inf. Sci.,
vol. 321, pp. 193–204, Nov. 2015.

[41] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. X. Song, ‘‘Dynamic
spyware analysis,’’ in Proc. USENIX Annu. Tech. Conf., Santa Clara, CA,
USA, Jun. 2007, pp. 1–14.

[42] A. Vasudevan, ‘‘Wildcat: An integrated stealth environment for
dynamic malware analysis,’’ Ph.D. dissertation, Univ. Texas Arlington,
Arlington,TX, USA, 2007.

[43] C.Willems, T. Holz, and F. Freiling, ‘‘Toward automated dynamicmalware
analysis using CWSandbox,’’ IEEE Secur. Privacy Mag., vol. 5, no. 2,
pp. 32–39, Mar. 2007.

[44] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, ‘‘A secure environ-
ment for untrusted helper applications confining the wily hacker,’’ in Proc.
Conf. Usenix Secur. Symp., 1996, p. 1.

[45] X. Wang, Y. Yang, and Y. Zeng, ‘‘Accurate mobile malware detection and
classification in the cloud,’’ SpringerPlus, vol. 4, no. 1, p. 583, Dec. 2015.

[46] T. Eder, M. Rodler, D. Vymazal, and M. Zeilinger, ‘‘ANANAS—A frame-
work for analyzing Android applications,’’ in Proc. Int. Conf. Availability,
Rel. Secur., Sep. 2013, pp. 711–719.

[47] M. Lindorfer, M. Neugschwandtner, and C. Platzer, ‘‘MARVIN: Efficient
and comprehensive mobile app classification through static and dynamic
analysis,’’ in Proc. IEEE 39th Annu. Comput. Softw. Appl. Conf., Jul. 2015,
pp. 422–433.

[48] P. Wang and Y.-S. Wang, ‘‘Malware behavioural detection and vaccine
development by using a support vector model classifier,’’ J. Comput. Syst.
Sci., vol. 81, no. 6, pp. 1012–1026, Sep. 2015.

[49] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, ‘‘PiOS: Detecting privacy
leaks in iOS applications,’’ in Proc. NDSS, 2011, pp. 177–183.

[50] W. Enck, D. Octeau, P. D. McDaniel, and S. Chaudhuri, ‘‘A study of
Android application security,’’ in Proc. USENIX Secur. Symp., Aug. 2011,
p. 2.

[51] N. Moustafa, J. Hu, and J. Slay, ‘‘A holistic review of network anomaly
detection systems: A comprehensive survey,’’ J. Netw. Comput. Appl.,
vol. 128, pp. 33–55, Feb. 2019.

[52] L. Invernizzi, S. Miskovic, R. Torres, S. Saha, S.-J. Lee, M. Mellia,
C. Kruegel, and G. Vigna, ‘‘Nazca: Detecting malware distribution in
large-scale networks,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2014,
pp. 23–26.

[53] Y. Park, D. S. Reeves, and M. Stamp, ‘‘Deriving common malware
Behavior through graph clustering,’’ Comput. Secur., vol. 39, pp. 419–430,
Nov. 2013, doi: 10.1016/j.cose.2013.09.006.

[54] D. J. Cook and L. B. Holder, Mining Graph Data. Hoboken, NJ, USA:
Wiley, 2006.

[55] J. R. Ullmann, ‘‘An algorithm for subgraph isomorphism,’’ J. ACM, vol. 23,
no. 1, pp. 31–42, Jan. 1976, doi: 10.1145/321921.321925.

[56] H. Bunke, P. Foggia, C. Guidobaldi, and M. Vento, ‘‘Graph clustering
using the weightedminimum common supergraph,’’ inProc. Int. Workshop
Graph-Based Represent. Pattern Recognit. Springer, 2003, pp. 235–246,
doi: 10.1007/3-540-45028-9_21.

[57] F. N. Abu-Khzam, N. F. Samatova, M. A. Rizk, and M. A. Langston, ‘‘The
maximum common subgraph problem: Faster solutions via vertex cover,’’
inProc. IEEE/ACS Int. Conf. Comput. Syst. Appl., May 2007, pp. 367–373.

[58] D. Conte, P. Foggia, and M. Vento, ‘‘Challenging complexity of maximum
common subgraph detection algorithms: A performance analysis of three
algorithms on a wide database of graphs,’’ J. Graph Algorithms Appl.,
vol. 11, no. 1, pp. 99–143, 2007, doi: 10.7155/jgaa.00139.

[59] S.-M. Cheng, W. C. Ao, P.-Y. Chen, and K.-C. Chen, ‘‘On modeling
malware propagation in generalized social networks,’’ IEEE Commun.

Lett., vol. 15, no. 1, pp. 25–27, Jan. 2011, doi: 10.1109/LCOMM.2010.
01.100830.

[60] J. W. Mickens and B. D. Noble, ‘‘Modeling epidemic spreading in mobile
environments,’’ in Proc. 4th ACM Workshop Wireless Secur. WiSe, 2005,
pp. 77–86.

[61] K. Ramachandran and B. Sikdar, ‘‘Modeling malware propagation in net-
works of smart cell phones with spatial dynamics,’’ in Proc. IEEE INFO-
COM - 26th Int. Conf. Comput. Commun., May 2007, pp. 2516–2520.

[62] S. Peng, S. Yu, and A. Yang, ‘‘Smartphone malware and its propaga-
tion modeling: A survey,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 2,
pp. 925–941, 2nd Quart., 2014.

[63] C. Gao and J. Liu, ‘‘Modeling and predicting the dynamics of mobile
virus spread affected by human behavior,’’ in Proc. IEEE Int. Symp. World
Wireless, Mobile Multimedia Netw., Jun. 2011, pp. 20–24.

[64] C. Gao and J. Liu, ‘‘Modeling and restraining mobile virus propagation,’’
IEEE Trans. Mobile Comput., vol. 12, no. 3, pp. 529–541, Mar. 2013.

[65] C. Szongott, B. Henne, and M. Smith, ‘‘Evaluating the threat of epidemic
mobile malware,’’ in Proc. IEEE 8th Int. Conf. Wireless Mobile Comput.,
Netw. Commun. (WiMob), Oct. 2012, pp. 443–450.

[66] M. Ghallali and B. E. Ouahidi, ‘‘Security of mobile phones: Prevention
methods for the spread of malware,’’ in Proc. 6th Int. Conf. Sci. Electron.,
Technol. Inf. Telecommun. (SETIT), Mar. 2012, pp. 648–651.

[67] Y. Song, X. Zhu, Y. Hong, H. Zhang, and H. Tan, ‘‘A mobile communica-
tion honeypot observing system,’’ in Proc. 4th Int. Conf. Multimedia Inf.
Netw. Secur., Nov. 2012, pp. 861–865.

[68] C. Mulliner, S. Liebergeld, M. Lange, and J.-P. Seifert, ‘‘Taming mr hayes:
Mitigating signaling based attacks on smartphones,’’ in Proc. IEEE/IFIP
Int. Conf. Dependable Syst. Netw. (DSN), Jun. 2012, pp. 1–12.

[69] F. Li, Y. Yang, and J. Wu, ‘‘CPMC: An efficient proximity malware coping
scheme in smartphone-basedmobile networks,’’ inProc. IEEE INFOCOM,
Mar. 2010, pp. 1–9.

[70] H. S. Chiang and W. J. Tsaur, ‘‘Mobile malware Behavioral analysis and
preventive strategy using ontology,’’ in Proc. IEEE 2nd Int. Conf. Social

Comput., Aug. 2010, pp. 1080–1085, doi: 10.1109/SocialCom.2010.160.
[71] S. Peng, G. Wang, and S. Yu, ‘‘Modeling malware propagation in smart-

phone social networks,’’ in Proc. 12th IEEE Int. Conf. Trust, Secur. Privacy
Comput. Commun., Jul. 2013, pp. 196–201.

[72] A. G. Miklas, K. K. Gollu, K. K. Chan, S. Saroiu, K. P. Gummadi, and
E. De Lara, ‘‘Exploiting social interactions in mobile systems,’’ in
Proc. Int. Conf. Ubiquitous Comput. Springer, 2007, pp. 409–428, doi:
10.1007/978-3-540-74853-3_24.

[73] H. Qian and Q. Wen, ‘‘A cloud-based system for enhancing security of
Android devices,’’ inProc. IEEE 2nd Int. Conf. Cloud Comput. Intell. Syst.,
Oct. 2012, pp. 245–249.

[74] S.-H. Seo, D.-G. Lee, and K. Yim, ‘‘Analysis on maliciousness for mobile
applications,’’ in Proc. 6th Int. Conf. Innov. Mobile Internet Services

Ubiquitous Comput., Jul. 2012, pp. 126–129.
[75] L. Xueming, ‘‘Access control research based on trusted computingAndroid

smartphone,’’ in Proc. 3rd Int. Conf. Intell. Syst. Design Eng. Appl.,
Jan. 2013, pp. 213–215.

[76] Z. Qin, Q. Zhang, X. Zhang, and Z. Yang, ‘‘An efficient method of detect-
ing repackaged Android applications,’’ in Proc. Int. Conf. Cyberspace

Technol. (CCT), 2014, pp. 1–4.
[77] M. Omar and M. Dawson, ‘‘Research in progress–defending Android

smartphones from malware attacks,’’ in Proc. 3rd Int. Conf. Adv. Comput.
Commun. Technol. (ACCT), Apr. 2013, pp. 288–292.

[78] Y.-J. Ham, W.-B. Choi, H.-W. Lee, J. Lim, and J. N. Kim, ‘‘Vulnerability
monitoring mechanism in Android based smartphone with correlation
analysis on event-driven activities,’’ in Proc. 2nd Int. Conf. Comput. Sci.
Netw. Technol., Dec. 2012, pp. 371–375.

[79] B. Markelj and I. Bernik, ‘‘Safe use of mobile devices arises from know-
ing the threats,’’ J. Inf. Secur. Appl., vol. 20, pp. 84–89, Feb. 2015, doi:
10.1016/j.jisa.2014.11.001.

[80] P. D. Meshram and R. C. Thool, ‘‘A survey paper on vulnerabilities in
Android OS and security of Android devices,’’ in Proc. IEEE Global Conf.
Wireless Comput. Netw. (GCWCN), Dec. 2014, pp. 174–178.

[81] A.Mylonas, S. Dritsas, B. Tsoumas, andD. Gritzalis, ‘‘On the feasibility of
malware attacks in smartphone platforms,’’ in Commun. Comput. Inf. Sci.,
vol. 314, pp. 217–232, Jul. 2012, doi: 10.1007/978-3-642-35755-8_16.

[82] M. Kuehnhausen and V. S. Frost, ‘‘Trusting smartphone apps? To install or
not to install, that is the question,’’ in Proc. IEEE Int. Multi-Disciplinary
Conf. Cognit. Methods Situation Awareness Decis. Support (CogSIMA),
Feb. 2013, pp. 30–37.

[83] W. Te-En, A. B. Jeng, L. Hahn-Ming, C. Chih-How, and T. Chin-Wei,
‘‘Android privacy,’’ in Proc. Int. Conf. Mach. Learn. Cybern., Jul. 2012,
pp. 1830–1837.

[84] G. Delac, M. Silic, and J. Krolo, ‘‘Emerging security threats for mobile
platforms,’’ in Proc. MIPRO 34th Int. Conv. Inf. Commun. Technol., Elec-

tron. Microelectron., May 2011, pp. 1468–1473.
[85] C. Yang, J. Zhang, and G. Gu, ‘‘Understanding the market-level and

network-level Behaviors of the Android malware ecosystem,’’ in Proc.

IEEE 37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017,
pp. 2452–2457.

[86] S. M. Lundberg and S.-I. Lee, ‘‘A unified approach to interpreting model
predictions,’’ in Proc. 31st Conf. Neural Inf. Process. Syst. (NIPS), Red
Hook, NY, USA: Curran Associates, Dec. 2017, pp. 4768–4777.

VOLUME 9, 2021 14597

http://dx.doi.org/10.1016/j.cose.2013.09.006
http://dx.doi.org/10.1145/321921.321925
http://dx.doi.org/10.1007/3-540-45028-9_21
http://dx.doi.org/10.7155/jgaa.00139
http://dx.doi.org/10.1109/LCOMM.2010.01.100830
http://dx.doi.org/10.1109/LCOMM.2010.01.100830
http://dx.doi.org/10.1109/SocialCom.2010.160
http://dx.doi.org/10.1007/978-3-540-74853-3_24
http://dx.doi.org/10.1016/j.jisa.2014.11.001
http://dx.doi.org/10.1007/978-3-642-35755-8_16

L. Chen et al.: Detection, Traceability, and Propagation of Mobile Malware Threats

LONG CHEN is currently pursuing the Ph.D.
degree with Beihang University under the supervi-
sion of Prof. C. Xia. He is currently the Researcher
Fellow with Beijing Topsec Network Security
Technology Company Ltd. His previous positions
are the Director, the Deputy General Manager,
the small CEO, and the Director of Innovation
Studio in China Unicom. He has participated in
several National Natural Science Foundations and
other research projects as the Director and a Con-

tributor. His research interests include network and information security, and
intrusion detection technology.

CHUNHE XIA received the Ph.D. degree in
computer application from Beihang University,
Beijing, China, in 2003. He is currently a Super-
visor and a Professor with Beihang University
and the Director of the Beijing Key Laboratory of
Network Technology. He has participated in differ-
ent national major research projects and has pub-
lished more than 70 research papers in important
international conferences and journals. His cur-
rent research interests include network and infor-

mation security, information countermeasure, cloud security, and network
measurement.

SHENGWEI LEI (Graduate Student Member,
IEEE) is currently pursuing the Ph.D. degree with
the School of Computer Science and Engineering,
Beihang University, Beijing, China.
His research interests include network threat

characterization and data mining.

TIANBO WANG (Member, IEEE) received the
Ph.D. degree from Beihang University. He is cur-
rently a Lecturer with the School of Cyber Sci-
ence and Technology, Beihang University. He has
participated in several National Natural Science
Foundations and other research projects as a Con-
tributor. His research interests include network and
information security, intrusion detection technol-
ogy, and information countermeasure.

14598 VOLUME 9, 2021

