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Abstract 

Once hardware becomes "intelligent", it is vulnerable to threats. Therefore, IoT ecosystems are susceptible to a variety of 

attacks and are considered challenging due to heterogeneity and dynamic ecosystem. In this study, we proposed a method 

for detecting IoT attacks that are based on ML-based approaches that release the final decision to detect IoT attacks. 

However, we have implemented three attacks as a sample in the IoT via Contiki OS to generate a real dataset of IoT-based 

features containing a mix of data from malicious nodes and normal nodes in the IoT network to be utilized in the ML-based 

models. As a result, the multiclass random decision forest ML-based model achieved 98.9% overall accuracy in detecting 

IoT attacks for the real novel dataset compared to the decision tree jungle, decision forest tree regression, and boosted 

decision tree regression, which achieved 87.7%, 93.2%, and 87.1%, respectively. Thus, the decision tree-based approach 

efficiently manipulates and analyzes the KoÜ-6LoWPAN-IoT dataset, generated via the Cooja simulator, to detect 

inconsistent behavior and classify malicious activities. 
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1. Introduction

An Internet of Things (IoT) is a network of physical objects 

containing sensors, actuators, microcontrollers, and smart 

appliances that gather and transfer information and interact 

with their surroundings [1], [2], allowing these devices to 

generate and exchange data with minimal human 

intervention. It is one of the most promising technologies and 

the world is already beginning to utilize various IoT 

technologies. It communicates with each other via various 

protocols [3] as well as interacts with a wide range of 

applications, including smart cities, building automation, 

safety, surveillance systems, logistics, healthcare, economy, 

calamity and agriculture [4], [5], [3]. Therefore, it offers a 

large number of attractive qualities that have made us rely on 

it in our daily applications with best-effort and real-time [6], 

[7].   

*Corresponding author. Email: 195112025@kocaeli.edu.tr 

The IoT cloud provides capabilities for collecting, 

processing, managing, and storing massive amounts of data 

in real-time [8], [9]. This data may be easily accessed 

remotely via industries, governments, monitoring tools, and 

related services, allowing them to make decisions as needed 

[10], [11]. It is essentially a powerful, high-performance 

network of servers designed to do high-speed data processing 

for billions of connected devices [12]. 

IoT technologies have certain properties in common that 

are described as heterogeneity, auto-configuring, dynamic 

ecosystem, smart, large scale, and connectivity [4], [13], [14], 

[15]. For example, the IoT ecosystem includes extremely 

different technologies and protocols, adaptive protocols, a 

variety of factors that may be influenced in order to adapt to 

environmental changes, etc. These components (large scale) 

work together in a cooperative and smart way to share their 

collected data and services [16]. In many cases, the connected 

devices are required to offer secure and reliable services to an 

applicant [17]. 
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The development of technologies day by day increases the 

various characteristics and techniques of the IoT ecosystem, 

therefore, raising new security concerns [18], [19] as well as 

vulnerabilities that cannot be fully addressed by using 

traditional security solution formulation. 

Nowadays, the IoT is facing an increase in threats and 

security vulnerabilities. Current security techniques may be 

used to defend against specific IoT attacks. However, the 

traditional approaches may be inefficient in the face of 

technological advancements, as well as a variety of attack 

kinds and severity levels. Thus, it is basic and important to 

connect IoT and Machine Learning (ML) technologies in 

order to enhance their cooperation in many aspects. 
Therefore, enabling ML in IoT for learning and analyzing the 

behaviors of IoT devices/objects, and systems based on prior 

information and experiences may allow the IoT ecosystem to 

effectively manage the unexpected deterioration that is 

frequently caused by anomalous conditions. Therefore, ML 

methods have seen significant technical development, 

opening up numerous new research directions to solve current 

and future problems in various sciences [20], [21]. 

The IoT is a master plan that intends to interconnect things 

to the Internet in order to increase their usefulness [19]. It was 

necessary to discover a way to integrate the IEEE 802.15.4 

protocol for Low Power Wireless Personal Area Networks 

(LoWPANs) with the IPv6 network protocol, which has a 

huge address space and will allow a billion devices to connect 

to the internet. The invention of 6LoWPAN technology was 

a suitable answer to this problem [19], [18], allowing the IoT 

concept to become a reality. However, this was merely the 

beginning of a series of problems and issues, such as security 

[18]. 6LoWPAN is susceptible to a range of attacks that 

exhaust node resources and damage the network due to its 

inability to provide security measures [18], [22].  

For the next-generation IoT systems, a powerful, 

dynamically improved, and up-to-date security solution is 

necessary. In this paper, we utilized smart technologies (ML) 

to find security solutions for smart environments (IoT) that 

make them more secure and reliable. The rapid growth of IoT 

exposes them to many issues and threats. ML approaches are 

being used as a strong technique to detect and classify 

inconsistent, abnormal, and harmful actions and detect 

incorrect IoT devices that may be due to errors.  

The main contribution of this study is summarized as follows: 

• Proposing a method to detect IoT attacks that relies on

ML-based approaches.

• Implementing three different IoT attacks, Cooja

simulator-based. The attacks are denial-of-service

attacks (DoS), black hole attacks (BHA), and ON-OFF

attacks (OOA).

• Generating a novel dataset based on IoT features.

• Applying the IoT novel dataset to decision tree-based

models and displaying the results.

This paper is structured as follows: Section 2 shows a 

preview of three IoT attacks that were implemented as 

samples during the simulation phase. In addition to related 

works. Section 3 explains an overview of the 6LoWPAN 

protocol stack for IoT networks. Section 4 explains the 

methodology for detecting attacks in the IoT, the proposed 

method, and its implementation. Section 5 describes the tools 

we use to carry out our work. Section 6 discusses the decision 

tree-based model and results. Section 7 summarizes the 

conclusion of this work. 

2. Related work

6LoWPAN protocol stack is vulnerable to attack due to the 

IoT devices are connected to an unsecured internet, therefore 

providing security in the IoT is critical [23]. An attacker can 

capture, clone, tamper with, or even destroy LoWPAN nodes 

[24]. Therefore, 6LoWPAN channels are generally 

vulnerable to a variety of security risks. The characteristics of 

6LoWPAN technologies may provide attractive services 

compared to their peers [25]. However, they may be more 

vulnerable to attacks due to heterogeneity, dynamic 

ecosystems, etc. Although the link-layer offers encryption 

[24], it may not be sufficient to guarantee security to both data 

and signaling packets. It may be encrypted harmful packages 

without detecting them. The data may be encrypted to 

maintain confidentiality between the endpoints [26]. But it is 

difficult to detect and know whether the data sent is reliable, 

has not been tampered with, dropped, or has been breached 

via malicious action. Attacks may occur in different layers 

with different severity.  

In this study, we will preview three attacks DoS, BHA, and 

OOA. which may be exposed to the IoT ecosystem and makes 

IoT devices at a critical point. DoS is an attempt to prevent 

the targeted user from accessing resources. This attack may 

occur in RPL via UDP packet flooding [27], [29]. Therefore, 

the attacker node sends too many requests to the root(sink), 

preventing normal users from accessing it in their usual way 

[28], [29]. BHA, which is one of the most dangerous attacks 

in RPL in which the malicious node drops the packets that are 

received from its neighbors to forward to their destination 

[30], [32] may drop all the packets, which is called a complete 

black hole, or drop some packets, called a selective 

forwarding attack, and this is cleverer because it is not 

observed and the network topology is not affected [31], [32]. 

Trustworthiness in IoT devices is critical. OOA is one type of 

attack that affects trust in the IoT and the devices and objects 

don't trust each other [33], [34], [35]. OOA is a kind of 

selective attack (inconsistent behavior) in which the 

malicious node switches from malicious to normal and back 

again to avoid being classified as a low-trust node, allowing 

it to remain undiscovered while inflicting harm and making 

the nodes suspicious to their neighbors [34], [ 35]. 

On the topic of IoT security, there have been a variety of 

related studies. Researchers are still working in this field. 

Existing research in the literature for IoT security areas offers 

numerous security approaches. Many approaches have been 

developed for detecting IoT attacks depending on solutions 

using traditional methods to detect specific attacks. The 

authors in [29] proposed an Intrusion detection system (IDS) 
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mechanism to detect DoS attacks, as well as the authors in 

[31] proposed an IDS mechanism to detect BHA in the IoT.

Also, the authors in [35] proposed IDS mechanisms to detect

on-off attacks. The authors [29], [31], [35] use different

methods and features to detect specific attacks. This may be

effective to detect a special attack, but implementing an IDS

mechanism for each attack, especially with advances in

technology and increasing attack types, may be inefficient. It

may consume device resources as well as prevent it from

being extended to detect new attacks. Currently, many

researchers try to employ ML-based approaches to solve

security issues, this technique becomes an ingenious solution.

The authors in [36], [37], [38] are utilization the ML methods

to detect attacks. A dataset may be used by other contributors

such as DS2OS dataset [39], NSL-KDD dataset [40], UNSW-

NB15 [41] and Bot-IoT-2018 [42] to employ in ML models.

So, according to the previous reviews, various attack datasets

are employed in ML-based activities, However, using the

dataset may lead to its employment in more than one research

and use of the same ML techniques, which leads to similar

results as well as being may unrelated to the characteristics

and features of the IoT. Thus, using the features related to IoT

security is better for evaluations.

Our method is different from the existing works related to 

IoT security in many aspects in: Implementation, simulation, 

attacks type, dataset generation, parameter/features, used 

protocols and ML techniques. In this paper, we have 

implemented three attacks on the IoT, and we have generated 

a novel dataset based on IoT features (6LoWPAN) produced 

via Contiki OS. This dataset is called the KoÜ-6LoWPAN-

IoT dataset. Then we employed this dataset on the algorithms 

ML-based that depend on their decisions on the tree.

3. 6LoWPAN protocol stack

IPv6 over low power wireless personal area network 

(6LoWPAN) is a particular instance of a low power lossy 

network (LLN) that allows tiny devices with restricted 

resources to connect to IPv6 networks, and these devices 

comply with the IEEE 802.15.4 standard [18]. It supports 

end-to-end IPv6 connectivity, allowing it to have a direct 

connection to the Internet with a wide range of networks 

(heterogeneous devices), including tiny devices [19], [18]. 

Interoperability is an important consideration when selecting 

a wireless protocol. Interoperability implies that apps do not 

need to know the limits of the physical connections that 

transport their packets. 6LoWPAN devices can communicate 

with any wireless 802.15.4 devices over any other IP network 

connection (e.g., Ethernet or Wi-Fi), in contrast to other 

technologies such as ZigBee devices, which can only 

communicate with other ZigBee devices [43]. 

 In the network layer, the Internet Engineering Task Force 

(IETF) proposed routing protocol for low-power lossy 

networks (RPL) is the most popular routing protocol for 

6LoWPAN [44] as well as used in academia and industry. 

Therefore, Contiki-OS provides work on the IoT and wireless 

sensor networks that are constrained and operate on a 

6LoWPAN protocol stack [45]. 

In comparison to the normal Internet stack, the 6LoWPAN 

stack contains an extra layer, which is known as the 

LoWPAN adaption layer. The adaption layer rests above the 

IEEE 802.15.4 layer, immediately below the network layer. 

The adaption layer offers header compression, fragmentation, 

and reassembly, as well as packet forwarding services, 

allowing IPv6 connections to be provided to extremely tiny 

devices linked to the internet [46]. Therefore, the IPv6 

packets are encapsulated to be sent to the underlying link-

layer via the adaption layer. 

Figure 1 illustrates the structure of the 6LoWPAN stack 

and the used protocols. The application layer in the 

6LoWPAN Stack contains lightweight protocols such as 

Constraint Application Protocol (CoAP) that were created for 

the IoT and were inspired by HTTP, assuming that UDP may 

be used without impedance in security (RFC 8323). CoAP 

over UDP's message layer supports reliable delivery, basic 

congestion control, and flow control. It was designed with 

simplicity in mind, with a minimal code footprint and a small, 

lightweight message size [46] As a recommendation from the 

developers (IETF), due to the 802.15.4 MAC/PHY frame size 

limits, UDP is a better fit for the 6LoWPAN stack than 

standard TCP at the transport layer with a large size header 

up to 60 bytes (RFC 8323). 

Application Layer 
Ex. CoAP 

Transport Layer 
UDP/TCP 

Network Layer 
IPV6/ICMP6/RPL 

6LoWPAN Adaptation 
6LoWPAN 

Data Link Layer 
IEEE 802.15.4 MAC 

Physical Layer 
IEEE 802.15.4 PHY 

Figure 1. 6LoWPAN protocol stack 

3.1. Network- IPV6 layer / Routing protocol 

RPL is a routing protocol designed for low-power and lossy 

networks, and it has become the preferred routing protocol for 

IoT. It is a distance-vector routing protocol that routes the 

data to a destination (sink) with a short path (Optimal Path). 

RPL was designed to be highly adaptive to network 

conditions and to provide alternate routes [47] One of the 

main goals of RPL is to construct topologies of the network 

[48]. The resulting routes from a Directed Acyclic Graph 

(DAG) are the network topology. There is only one 

Destination Oriented Directed Acyclic Graph (DODAG) per 

root (sink) and it is the data to a root [47].  

The RPL consists of four control messages that are used in 

the formation and maintenance of the network topology. 

Which are as follows: DIS, DIO, DAO, and DAO-ACK are 
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acronyms for DODAG Information Solicitation, DODAG 

Information Object, Destination Advertisement Object, and 

Destination Advertisement Object Acknowledgement, 

respectively. A node can utilize DIS to explore for DODAGs 

in its general vicinity. The DIO contains data that enables a 

node to find an RPL instance, understand its configuration 

parameters, choose a DODAG parent set, and keep the 

DODAG up to date [47]. The DODAG in the node uses the 

DAO to communicate destination information upward. The 

DAO message is unicast by the child to the specified parent. 

DAO-ACK is a message sent back to the DAO sender [48]. 

Figure 2 shows the diagram of control messages in the RPL. 

Figure 2. RPL mechanism 

3.2. Internet Control Message Protocol 
(ICMP6) 

Every IPv6 node must successfully implement ICMPv6 since 

it is an integral part of IPv6. The IPv6 nodes utilize ICMPv6 

to report packet processing errors and conduct additional 

internet-layer operations, including diagnostics, such as 

ICMPv6 "pinging" and multicast member reporting (RFC 

1885). 

4. Methodology

This study depends entirely on simulation to detect attacks in 

IoT in all its stages to obtain the results starting from the 

simulation stage to reaching the stage of results.  In this study, 

we divided our method into phases thus, our model consists 

of the Simulation phase, Dataset collection, and 

manipulation, Pre-processing phase, the decision tree-based 

phase, and the results phase. Figure 3 illustrates the proposed 

model for detecting the IoT attacks and implementation 

phases. It starts from the simulation phase until getting results 

in the evaluation. 

Figure 3. Proposed model for detecting the IoT attacks 
and implementation phases 

4.1. Simulation phase: 

Table 1 shows the general configuration in the Cooja network 

area. 

Table 1. Network Configuration. 
Simulator Cooja simulator 

Network area distance 190 m2 

Type of node Sky mote 

Number of nodes 7 senders and 1 root 

Transport layer UDP 

Network layer IPv6 -ICMP-RPL 

Adaptation layer 6LoWPAN 

Link and Physical layer IEEE 802.15.4 

In this phase, we implemented three attacks on the IoT, 

based on the degree of difficulty in implementation and 

detection. These attacks are arranged as follows: DoS, BHA, 

and OOA attacks. In this paper, all scenarios are configured 

on 6LoWPAN stacks for the IoT. Each scenario consists of 

eight nodes. Node 1 is the root (server/sink). Nodes 2–7 are 

normal nodes, while node 8 is malicious. The color for a 

malicious node is red. Normal and malicious nodes either 

request service from the root (server) or the root (sink), which 
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collects their data. The attacker node might be implemented 

on various layers. Thus, the malicious code is implemented in 

the transport layer as DoS, while the malicious code in BHA 

is implemented in the network layer and some functions are 

controlled in the mac layer like duty cycle to implement the 

OOA in addition to the transport layer. While the simulation 

is running in each scenario, the radio messages and the power 

parameters are captured. The reason is as the malicious node 

directly affects the power consumption, as well as the features 

of radio messages, change from one attack to another during 

the test of attacks.  
As we trace the behaviors of attacks, the malicious nodes 

experience the most power consumption compared to normal 

nodes. In addition to that, the radio messages include all the 

matrix of 6LoWPAN protocols that we knew parameters/ 

features, which affect the features and parameters directly via 

any malicious activities. Therefore, the 6LoWPAN protocol 

stacks (radio messages) and the power properties are 

considered as criteria and inputs (dataset) to our models. 

4.1.1. DoS Attacks 
Denial-of-service attacks are a critical point in IoT devices 

due to constrained devices. So, DoS attacks are designed to 

make a machine or network resource unavailable to their 

users (clients, senders, etc.). In IoT, A DoS occurs when the 

attacker sends too many requests to the main server/host, 

making the real users of the server unable to use it. The 

attacker node is used to flood either traffic or requests, which 

causes the network traffic to overflow, preventing normal 

requests and traffic from entering the network. Also, the 

malicious node indirectly prevents other nodes from gaining 

access to the server. The malicious node will try to deny any 

normal node access to the node that is attacked. This causes 

the node that has been attacked to work improperly. 

Figure 4. DoS scenario 

To implement the DoS scenario, in the network area, we 

set up eight nodes distributed circularly as shown in Figure 4. 

Node 1 is a server, and nodes 2–7 are normal nodes, while 

node 8 is the malicious node colored in red. All the normal 

and malicious nodes (clients) send their requests to the server, 

and the server responds to them as in Figure 4. As mentioned 

in the first remark, the blue line between the server (node 1) 

and the malicious node (node 8) represents the radio traffic. 

The flooding of radio traffic between the server and the 

malicious node is obvious due to the many requests from the 

malicious node. In other words, the number of UDP packages 

produced by the malicious node is extremely high when 

compared to the normal nodes. 

In this scenario, two periods of time are defined to send 

requests to the server, one for the normal nodes and another 

for malicious nodes. The normal nodes send requests (UDP 

packets) to the server every minute (normal case), while the 

malicious nodes send their requests to the server every 

second. In normal nodes, the timer sends the requests within 

a predefined 1-minute period to their target (server), while in 

the malicious node, the timer is set to send the requests within 

a predefined 1 second period.  

Figure 5 illustrates the node's output and the requests made 

between clients and servers. In the output node window, it 

consists of three tabs: time, ID, and message. The time 

represents the node time events and the ID is referred to as 

the Node ID, whereas the message carries the request with the 

destination ID and the number of requests that have been 

requested.  

Figure 5. DoS nodes output 

Where we notice that malicious node 8 sends too many 

requests to the server (node 1), the server may respond to it. 

We could observe in the second line that the DoS attacks are 

active and the malicious node sends a request to the server at 
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44 minutes and 48 seconds (44:48) and the server may receive 

it. Also, the malicious node sends a request to the server at 

the time of 44:49. The number of malicious node requests 

reached 2587 requests at the time 44:48, compared to normal 

node 4 which reached 47 requests at the time 44:58. This 

means the requests from malicious nodes are sent every 1 

second and the process is continuous to send flooding of 

requests compared to the normal node. For example, node 4 

sends a request to the server at 44:58 and sends it again at 

45:03, which means normal nodes send their requests to the 

server every 1 minute, and this is normal case if there is no 

delay in the buffer. 

4.1.2. Blackhole attacks 
In a special case of black hole attacks, the malicious node 

drops some data packets while others are forwarded 

successfully. This is called selective forwarding. In another 

case, the malicious node does not forward any data packets. 

This is called a "complete black hole attack." When 

implementing the special case of black hole attacks, the 

topology of the network remained un-isolated because the 

malicious node is still forwarding some packets to other 

nodes, whereas the malicious node in complete black hole 

attacks must be isolated explicitly as in our scenario. In this 

scenario, we have implemented a complete black hole attack 

that isolates several nodes on the topology. 

The main target in this scenario is the sink node collects 

data from senders whereas the senders send their packets to 

the sink node. In the scenario of a black hole, we set up eight 

nodes. Node 1 is a sink node, where node 8 is a malicious 

node and the other nodes are normal.  

 We used a multi-hop node because the black hole is more 

effective and affects the topology of the network. In this 

scenario, we placed the malicious node in a strategic position 

that separates several nodes that communicate with the sink 

via the malicious node. For further information, some nodes 

are located in the direct range of the sink node, while others 

are not, and data packets from nodes outside of radio 

coverage are routed through other nodes to the sink node. All 

data packets from senders' nodes are destined to the sink. 

As appears in Figure 6, Nodes 2, 3, 4, and 5 are located 

within radio coverage, while nodes 6 and 7 are outside the 

radio area. The malicious node is the link between the nodes 

inside the radio area and the nodes outside the radio area of 

the sink node. The route of data packets from nodes 6 and 7 

to the sink is passed via a malicious node. And this leads the 

topology of the network to isolate several nodes due to the 

malicious node in a strategic position as appear in Figure 7. 

Each one executes and implements the malicious code in 

its way to examine and test its intended purpose. As well, we 

can implement the malicious code in different layers. In this 

case, we implemented and developed the malicious code in 

the network layer. In the malicious node of the blackhole 

scenario, we set some global variables (parameters) to zero to 

drop all packets like uip_len, uip_flags, uip_ext_len, and 

uip_ext_bitmap. The uip_len variable is the length of the 

packet in the uip_buf buffer, and the uip_buf buffer puts 

incoming packets in it, whereas the uip_flags variable is used 

for communication between the IPv6 and the application 

program like UDP. Therefore, many operational routers may 

be set to discard all packets with a hop-by-hop option header 

(HBH), but major difficulties still exist (RFC8200). In IPv6, 

we can have extension headers. If present, the HBH must be 

processed before forwarding the packet (Contiki team). In 

this scenario of black holes are present. As well as extension 

headers, HBH can be processed or handled by each node 

along a packet's delivery path until it arrives at its destination. 

Figure 6. BHA scenario 

Figure 7. Effect BHA on topology 
These parameters are set up and configured in the 

malicious node to drop all the packets by the created drop 

function. Thus, what's going on is that there are some 

conditions on the global variable. For example, if the global 

variable is greater than or equal to zero, it goes to the drop 

function. In the drop function, we return these variables to 

equal zero. These parameters are set up and configured in the 

malicious node to drop all the packets by the created drop 
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function. Thus, what's going on is that there are some 

conditions on the global variable. For example, if the global 

variable is greater than or equal to zero, it goes to the drop 

function. In the drop function, we return these variables to 

equal zero. Because these variables must usually be greater 

than zero due to the updating and changing of their values 

during each process. This means when these values of 

variables are updated or changed to any values, the malicious 

code returns these values to zero. Hence, the malicious node 

may or may not continue to receive and forward the data 

packets generated by other nodes. Also, the malicious node 

may not continue to process its generated packet. The 

malicious node drops the incoming and outgoing packets. The 

effects of the malicious node on the topology of the network 

are completely isolated. The global parameters in IPv6 were 

more effective in isolating the route between the malicious 

node and the destination. 

4.1.3. ON-OFF attacks 
OOA is a sort of selective attack to avoid it being classified 

as an untrusted node [34]. So, the malicious node switches its 

behavior from harmful to normal and back again, allowing it 

to remain unnoticed while launching attacks. Therefore, in 

this attack, there are two statuses: the ON status is called 

"attack," It is a critical case while the OFF status is called 

"normal.". This attack hits the advantage of the dynamic 

features of trust by exploiting the time-domain of status and 

inconsistent behavior [33]. The attacker swaps between ON 

and OFF. When the attack is ON, the malicious node initiates 

attacks, and when it is OFF, it does nothing [33], [35]. An 

OOA attacker often has to deal with various neighbors to gain 

incompatible opinions of trust from the same node. 

ContikiMAC is a radio duty cycling technique that 

employs periodic wake-ups to monitor neighboring packet 

streams. If a packet transmission is detected during a wake-

up, the receiver is kept turned ON [49] so that the packet may 

be received. When a packet is received correctly, the receiver 

sends an acknowledgement. The transceiver (transmitter-

receiver) must be completely turned between OFF and ON to 

send and receive radio if the status is ON and save power if 

the status is off. Therefore, to achieve low power 

consumption, ContikiMAC nodes sleep most of the time and 

intermittently wake up to check for radio activity [49]. 

The purpose of this scenario is to achieve the properties of 

an OOA to create a real dataset that will be trained in our 

model to detect OOA. The malicious node in our scenario 

switches its action from the attacker to normal and from 

normal to attackers if the case malicious node's cycle is ON 

via sending both trusted and untrusted packages randomly. 

 In this scenario, we initialized eight nodes that were 

placed randomly in the network area as shown in Figure 8. 

Node 1 is a server. Node 8 is malicious, while the other nodes 

are normal. Node 1 is exposed to any malicious node because 

this node is always active (ON-status). This node wants to 

receive its data from neighbors' nodes in a position of trust, 

without any doubt. Node 8 is a malicious node that generates 

and sends inconsistent data alternatively. In a malicious node, 

the duty cycle of the ON status to OFF status is set up 

similarly, 50%-50% percent. This ratio makes it easier to 

detect malicious behavior if the radio status is ON. Normal 

and malicious nodes request a service from the server. 

Figure 8. OOA Scenario 
The malicious code was implemented only in node 8. This 

malicious node alternately produced trusts and untrusted 

packages to node 1. Node 1 was set up to have an ON status 

all the time. It is not known if the data being sent by the 

malicious node is reliable or unreliable data. 

In a malicious node, we created two functions. The first 

function is called "Trusted_Function," and the second 

function is called "Untrusted_Function." The 

Trusted_Function sends trusted packages to node 1, while the 

Untrusted_Function sends untrusted packages. In another 

sense, the Untrusted_Function sends UDP packets that are not 

standard and have different parameters (i.e., payload) than 

their peers. Additionally, this function sends their packages at 

an abnormal time. For example, all the normal nodes send 

their UDP packets every 1 minute. The trusted function in 

malicious nodes also sends their UDP packets every 1 minute. 

Unlike the Untrusted_Function, it sends its UDP packets 

every 30 seconds. Thus, the malicious node did these 

functions, generating trusted and untrusted packages 

randomly to put neighboring nodes in doubt with their 

inconsistent behavior. Node 1 is the service provider for the 

other nodes. This node is vulnerable to any malicious node 

because it is always in the ON status (active). It is more 

vulnerable to attacks from malicious nodes. Because it 

receives huge packets from nodes, especially from malicious 

nodes. Node 1 may bring the malicious code from malicious 

nodes and spread them to other nodes. 

We use the implementation of ContikiMAC as Radio Duty 

Cycling (RDC) in the MAC layer. ContikiMAC is a duty-

cycling mechanism that allows nodes to keep their radios off 

as much as possible to achieve low power consumption and 

save energy [49]. The default radio duty cycling mechanism 

in Contiki 2.7 [49] uses a power-efficient wake-up 

mechanism with a set of timing constraints to allow devices 

to keep their transceivers off. By default, this setting is active 

when we initialize nodes in the Cooja network area. Thus, the 

function of the duty cycle is that we can set it up however It 

is desired. 
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Figure 9. OOA mote output 
This function was called in the OOA attacks scenario to 

serve the purpose of keeping the malicious node active and 

node 1 at risk. Alternately, the malicious node switches to 

lunch the malicious code (Untrusted_Function) and normal 

code (Trusted_Function). It remains undetected while the 

status is active. As for the node that is vulnerable to attack, 

the parameters of this function were set to 1 (100%), which 

means node 1 has its radio transceivers ON, high reception 

packets, and power consumption. The parameters for the 

malicious node were set to 0.5 (50%). Figure 9 illustrates the 

output of nodes in the OOA Scenario. This shot was captured 

after spending over an hour in the Cooja simulator. where 

observed the malicious node switch their behavior from trust 

to untrust randomly as clarified in the rectangle. 

4.2. Dataset collection and manipulation 

At this stage, we collected all the datasets generated via 

Contiki OS that was captured by the 6LoWPAN analyzer and 

Power Trace tool. Table 2 summarizes the number of 

observations/samples and the number of features that were 

collected and processed that represent the radio messages and 

power features in each scenario. The analysis of the radio 

message improves its security, and the analysis of the power 

improves its reliability. From all the scenarios, we obtained 

three datasets. The numbers of captured data are 9912, 12696, 

and 25072 from DoS, BHA, and OOA, respectively. These 

three datasets are merged into one dataset and are called the 

KoÜ-6LoWPAN-IoT dataset. In the process of merging the 

datasets at the beginning of each dataset, a sample of 20% 

was taken and copied one by one into the unified dataset from 

each attack dataset, and then the remainder was copied 

successively into the file that represented 80%. The datasets 

are not directly merged one by one. The reason is that in the 

ML phase when we split the data into training and testing 

data, the testing data was taken from the DoS sample only 

because the dataset was large and the testing dataset was not 

randomly extracted from all attack samples. 

Table 2. Observations and features in each attack. 

Attacks 

types 

Simulation 

duration 

Samples of 

Radio 

message and 

power trace 

Number 

Features of 

Radio 

message/ 

power trace 

DoS 45 min 9912 84 /12 

BHA 1 hour 12696 84/12 

OOA 2 hours 25072 84/12 

Total 3:45 47680 96 

4.3. Pre-processing phase 

The practice of preparing raw data for use in a machine 

learning model is known as data preprocessing. It is the first 

and most critical step in the development of a machine 

learning model. Real-world data in most circumstances has 

noise, missing values, and is in an unsuitable format that 

cannot be directly used for machine learning models. 

Therefore, data preprocessing is a necessary step in 

manipulating data and preparing it for a machine learning 

model, as well as improving the model's accuracy and 

efficiency. The first thing we need to develop a machine 

learning model is a dataset because a machine learning model 

is completely dependent on data. A dataset is the collection 

of data for a certain topic in the appropriate format. Like the 

IoT attacks dataset that was generated via Contiki OS to 

detect malicious activity and inconsistent behavior. 

The train-test split procedure is a very important part of 

ML. It is used to estimate the performance of machine

learning algorithms. Thus, we split the dataset into 80% for

training and 20% for testing. The IoT dataset contains a huge

number of samples of attacks collected from DoS, BHA, and

OOA attacks, which total 47680 samples of observations, 84

features from radio messages, and 12 from the power trace.

The number of samples that were captured in DoS is 9912

samples over 45 minutes, while the number of samples that

were captured in BHA is 12696 samples during 1 hour and

the number of samples that were captured in OOA is 25072

samples over 2 hours. Therefore, the number of samples for

training was 38142, while the number of tests was 9535. The

features contain a mixture of categorical and numerical data.

4.4. Decision tree-based phase 

At this stage, we preferred four machine learning algorithms 

that depend on their work and structure on a decision tree 

(Decision Tree-Based). The main reason for this is that these 

algorithms have practically demonstrated their efficiency in 

accurately outputting results and working on the real IoT 

dataset produced by Contiki OS, which is difficult for some 
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machine learning algorithms to deal with until these 

categorical data are converted into numerical data using one-

hot encoding or any other method. This leads to an increase 

in the number of features after converting them, which leads 

to a slow model in efficiency. 

In addition to time, in training time, the algorithms that do 

not work on decision tree-based models need more time to 

finish training than algorithms that work on decision tree-

based models. For example, a neural network needs a lot of 

time to finish training the data on it. The AMLS takes more 

than an hour and 15 minutes to train the model on 47680 

samples. The reason is that neural networks are more 

computationally expensive and do require a graphics 

processing unit (GPU) to finish training, unlike the 

algorithms that work on decision tree-based systems that are 

less computationally expensive and do not require a GPU to 

finish training. Also, when a model is requested from an 

external source to predict and classify new data, the response 

time of the model that has been trained on the decision tree-

based approach is much faster compared to models that do 

not work on it. For example, when the random decision forest 

model was requested via the Postman tool, the response time 

of the model was most up to 6 seconds, while some models 

needed more than 240 seconds. 

In this study, we utilized four algorithms that depend on 

the tree for their decisions. Two of these are for the 

classification of the attacks and two for regression to predict 

the attacks in the IoT ecosystem. To classify the attacks, we 

utilized multiclass random decision trees and multiclass 

decision tree jungle models. Also, to predict we used decision 

forest tree regression and boosted decision tree regression for 

regression. The general parameter configurations are the 

same in both algorithms. Thus, the number of decision trees 

is set at 50, and the maximum depth of the trees is 96.  

5. Used Tools

5.1. Contiki OS 

Contiki is a networked operating system that is designed to 

function on hardware with severe memory, power, and 

parameter constraints, with an emphasis on low-power 

wireless IoT devices. Contiki contains the 6LoWPAN stack 

network mechanisms which provide the routing protocol for 

low power and lossy networks IPv6 with the 6LoWPAN 

header compression and adaptation layer for IEEE 802.15.4 

links [45]. 

5.1.1. Cooja simulator 
Contiki includes the Cooja framework. Cooja is a powerful 

simulator utilized in the IoT. It is a network simulator 

designed for simulating sensor networks. It's a Java-based 

simulator that lets us write sensor nodes in the C language. 

[48].  

5.1.2. 6LoWPAN analyzer tool 
A 6LoWPAN analyzer is a tool built on the Cooja framework 

that captures radio messages and saves them as packets with 

an extension. PCAP was developed to capture all the packet 

data with details. Once this tool is activated when running the 

Cooja simulator and scenario, it does its job of capturing and 

saving the file with the extension PCAP automatically. This 

PCAP file can be opened with Wireshark to know the details 

of the packages closely. 

5.1.3. Wireshark 
Wireshark is a network packet analyzer that tries to display 

the packet data details [48]. It allows viewing packet data 

from a live network or a previously stored capture file 

interactively like PCAP. The PCAP format is one of the 

native capture file formats for Wireshark, which it can read 

and write. Wireshark is used to monitor network traffic and 

keep a close eye on what's going on in the network. It enables 

us to retrieve this data and convert it to CSV for further 

processing and analysis, as we did in our model to detect IoT 

attacks. By default, it displays four features of the packets, 

such as source, destination, protocols, and information 

control message. In our study, we enabled all the features and 

parameters for the packets, which numbered 84 features. The 

reason is due to the impact of attacks on some parameters in 

packets, which in turn make them more accurate in detecting 

attacks and knowing the behavior of malicious nodes than 

normal nodes. The features of the packet are different from 

one another, and the number of features is too large, thus 

aiding our model in detecting misbehavior in a good manner. 

5.1.4. Power trace tool 
Power tracing is a run-time power profiling method that 

estimates each node's power usage via power state tracking. 

by calculating the time each component spends in each power 

state. The ContikiMAC low power radio duty cycling 

mechanism is utilized by Cooja [18]. The goal of radio duty 

cycling is to switch the radio off as much as possible while 

still being able to communicate to save power. A node cannot 

receive transmissions from neighbors if the radio transceiver 

is turned off. To communicate while keeping the radio turned 

off as much as possible, the radio must periodically wake up 

between two statuses to receive packets from neighbors [18]. 

Nodes in a duty-cycled network do three things: transmit 

packets, receive packets, and periodically wake up so that it 

can receive packets from neighbors. These parameters that 

are calculated by the power traces tool are called and printed 

in each scenario and converted to a CSV file. Because the 

malicious activity in the network is affect these parameters in 

some types of attacks. For example, the malicious activity 

maybe effects on radio state and still the status ON all the 

time thus leading to consuming much energy and maybe 

vulnerability to any malicious activity. The radio must be 

turned completely off-duty-cycled- as possible to decrease 

power consumption and prevents other dangerous issues.  

5.2. Azure Machine Learning Studio (AMLS) 

AMLS is a platform that provides machine learning 

algorithms in separate modules for creating and deploying 

ML workflows on Azure. It is a cloud solution that helps us 
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speed up and manage our machine learning projects. It is a set 

of services and technologies aimed at assisting developers in 

the development and deployment of machine learning 

models. It may be used by machine learning experts, data 

scientists, and engineers in their workflows to design, train, 

and manage models. Individuals and teams deploying 

machine learning operations inside their company may use 

AML to move machine learning models into production in a 

safe and auditable environment. We can build our experiment 

from scratch using one of the popular programming 

languages such as Python or R. In addition to that, it provides 

ready-made modules that make it easier for us to build and 

test our model, which contains practical and common 

modules and algorithms in artificial intelligence. In this 

study, we utilized an MLS because it provides a flexible and 

extensible framework for machine learning. Each stage of this 

process is handled by a different type of module, which may 

be updated, added to, or eliminated without impacting the rest 

of the experiment.  

6. Discussions and Results

The (ML) Decision Tree-Based Models were able to analyze 

and evaluate data by predicting and classifying it into normal 

and malicious nodes as in Figure 10. In Classification 

decision tree-based, the evaluation model gives us the 

parameter values of estimation that are derivative values from 

the confusion matrix. Therefore, in the multiclass random 

decision forest ML-based model, we obtain the overall 

accuracy, averaged precision, and averaged recall of 98.9%, 

98%, and 97.1%, respectively. In comparison to multiclass 

decision tree jungle, we get 82.5%, 82%, and 44.1% for 

overall accuracy, averaged precision, and averaged recall, 

respectively. In regression decision tree-based, the metrics to 

evaluate the models are Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), Relative Squared Error (RSE), 

and Coefficient of Determination (CD). Therefore, in the 

decision forest, tree regression is carried out at 0.138 and 

0.143 for MAE and RMSE while achieving 6.75 % and 93.2 

% for RSE and CD, respectively. In comparison to boosted 

decision tree regression, we got the MAE and RMSE of 0.12 

and 0.246, while for RSE and CD we obtained 19.83% and 

80.1%, respectively. 

 As a result, as shown in Figure 11, the multiclass random 

decision forest ML-based model obtained 98.9% overall 

accuracy in identifying IoT attacks for the real dataset IoT 

features-based, compared to 87.7%, 93.2%, and 87.1% for 

decision tree jungle, decision forest tree regression, and 

boosted decision tree regression, respectively. As a 

consequence, multiclass random decision forest produces fair 

results when compared to other algorithms, but this does not 

exclude the development of lightweight custom ML 

algorithms for future IoT challenges. 

7. Conclusions

The cooperation of technologies among them makes them 

able to increase security in their aspects. The enable of ML-

based techniques in finding IoT security solutions is a strong 

point. However, ML-based techniques make IoT devices 

more secure and reliable due to the heterogeneity and difficult 

conditions for IoT devices consequently, As summarized in 

this study, we have proposed our method to detect IoT attacks 

that depend on ML-based approaches. Also, we implemented 

Figure 10. Decision tree-based Models 
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Figure 11. The overall accuracy of decision tree-based model. 

and examined three attacks in the IoT ecosystem: DoS, 

BHA, and OOA, to generate a novel dataset of IoT 

features-based that was produced via Cooja simulator-

based. The ML-based approaches depend on decision tree-

based models that have proven their efficiency in 

manipulating, examining, and classifying malicious 

activity of the IoT features generated via the Cooja 

simulator. As a result, the multiclass Random Decision 

Forest ML-based model achieved 98.9% overall accuracy 

in detecting IoT attacks for the KoÜ-6LoWPAN-IoT 

dataset compared to the decision tree jungle, decision forest 

tree regression, and boosted decision tree regression, which 

achieved 87.7%, 93.2%, and 87.1%, respectively. The 

multiclass random decision forest achieved the highest 

accuracy overall. As the orientation of designing the 

lightweight ML custom algorithm to solve the IoT security 

problem. It is a matter of interest and tends to be on the 

minds of developers.  
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