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Abstract 

A novel in situ imaging solution and detectors array for the focused electron beam (e-beam) are the first time pro-

posed and demonstrated. The proposed in-tool, on-wafer e-beam detectors array features full FinFET CMOS logic 

compatibility, compact 2 T pixel structure, fast response, high responsivity, and wide dynamic range. The e-beam 

imaging pattern and detection results can be further stored in the sensing/storage node without external power sup-

ply, enabling off-line electrical reading, which can be used to rapidly provide timely feedback of the key parameters of 

the e-beam on the projected wafers, including dosage, accelerating energy, and intensity distributions.
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Introduction

�e focused electron beam (e-beam) can be used in vari-

ous applications, one special example is in the accelera-

tors and free-electron lasers (FEL) which requires the 

participation of e-beam [1, 2]. On the other hand, e-beam 

plays an important role in the semiconductor manufac-

turing process; prior reports proposed e-beam treatment 

for the interface modification of the damascene inter-

connect, the electrical performance of copper and low-κ 

dielectric can be improved without damaging their film 

quality or dielectric constant [3]. Besides, it is proven 

that certain kind of EUV photoresist can be made under 

e-beam exposure without chemical agents [4]. Moreover, 

e-beam technology has been developed to write patterns 

on the wafer directly [5], creating transistors [6, 7], poly-

mer structures [8], nanowires [9], and other nanostruc-

tures [10]. Furthermore, photomask fabrication using 

e-beam has become one of the most common methods 

for nanometer CMOS technologies [11–14]. However, 

all the above applications may fail if e-beam cannot be 

precisely controlled, ensuring that the e-beam accelerat-

ing energy, dosage, and uniformity are consistent.

To further monitor of e-beam accelerating energy and 

dosage inside the processing chamber, an in-tool, on-

wafer e-beam detector is necessary. One previous study 

on e-beam detector using thin-film thermocouple [15] 

cannot directly measure the distribution of high energy 

electrons and lack of sensitivity due to the limitation 

of thermocouple itself. �ere are also optical detec-

tion methods using fibers [16] and other devices such as 

Pockels cell [17]. On the other hand, microchannel plate 

(MCP) is commonly used for the detection of single par-

ticle and radiation [18, 19]; with suitable instrumental 

design and well-tuned parameters, the e-beam detection 

results using optical methods and MCP can quite sat-

isfactory. Yet, it is a challenge for them to be integrated 

into a small chip, which makes them not the best can-

didate for in-tool, on-wafer e-beam detection. Conven-

tional CMOS image sensor (CIS) methods employing 

active pixel sensor (APS) can be helpful [20, 21], because 

the electrons can be collected directly, and the noise can 

be reduced by the carefully designed readout scheme, 

leading to higher signal-to-noise ratio (SNR); however, an 

external power supply to drive the conventional APS chip 
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is required during sensing, reducing its feasibility and 

increasing the complexity of e-beam chamber design.

In this study, an in-tool, on-wafer approach for e-beam 

detection without external power supply is proposed and 

verified. �e proposed e-beam detector/recorder adopts 

floating gate as the sensing node which is compatible 

to 16-nm FinFET CMOS logic process, featuring stor-

age capability of detection results, compact 2-transistor 

(2 T) pixel, fast response, wide dynamic range and high 

responsivity. After in-line e-beam radiation, the key char-

acteristics of electron dosage and accelerating energy can 

then be readily and rapidly extracted by off-line electrical 

measurement, such as wafer acceptance test (WAT) and 

other nondestructive reading procedures.

Pixel Structure and Methodology

�e experimental setup and basic operational principle 

of the proposed in-tool e-beam recorder are outlined as 

Fig.  1. During the e-beam exposure, the proposed on-

wafer detector will be firstly placed inside the e-beam 

chamber as illustrated in Fig.  1a, collecting the injected 

high energy electrons by the floating gate structure. As 

high energy electrons collide with metal and dielectric 

layers above, the energy of the corresponding electrons 

decreases consequently. Depending on the accelerating 

energy of injected electrons, part of them will reach and 

rest on the floating gates, which then be stored the sensed 

level after exposure. �erefore, without power supply to 

the detecting chip, the projected e-beam levels at each 

site will then be stored in the unique 2  T pixel which 

schematic is as Fig. 1b. After the in-line e-beam exposure, 

the corresponding dosage and accelerating energy can be 

read out by off-line electrical current–voltage (IV) meas-

urement, as shown by the measurement data in Fig. 1c, 

which can be used to reconstruct the projected e-beam 

imaging, pattern and in situ intensity distribution. For 

chip-level detectors array, image readout can be greatly 

improved if parallel readout peripheral circuit is incorpo-

rated, which readout time is expected to be within msec. 

Besides, the detector array can be refreshed for the next 

e-beam detection after initialization step within seconds.

�e three-dimensional structure illustration of the 

proposed e-beam detector featuring a compact 2  T 

pixel is as Fig.  2a, consisting of p-channel transistors 

fabricated by pure 16-nm FinFET CMOS technologies, 

including one row select (RS) transistor which can be 

used to control sequential readout; and the other is a 

floating gate (FG) transistor for storing the sensing 

results. �e unique compact pixel structure and the 

in-pixel FG storage node can be observed clearly by 

the transmission electron microscope (TEM) images 

along bit line (BL) and the corresponding layout as 

shown in Fig. 2b and c, respectively. �e pixel pitch of 

the proposed 2 T pixel can be scaled down to 0.7 μm, 

enabling high spatial resolution of e-beam imaging and 

detection.

During the injection, both secondary electrons 

(SE) and backscattered electrons (BSE) emission will 

occurred. SE are the electrons ejected out from the tar-

get material due to inelastic scattering of the surface, 

while BSE are the electrons of the primary beam which 

injected the target material and then elastically scat-

tered out at large angles [22]. �erefore, positive charge 

might be introduced to the exposed pixel by the above 

effect, those positive charge might be recombined with 

the stored negative charge. Generally, the net potential 

of the storage node is negative in this study, because 

the SE emission coefficient, which is defined as the 

ratio between the SE current and the primary electron 

Fig. 1 a The experimental setup and b schematic of the proposed 

e-beam detectors array, start with in-chamber detection, on-wafer 

off-line readout and intensity image reconstructed by c its electrical 

characteristics measurement results
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current, of most kinds of metal is lower than 1 for 

energy higher than 5 keV [23]. Hence, both positive and 

negative charges can be stored in the pixel unit, and 

both will reflect on the read out current.

Experimental Results and Discussion

�e trajectory of injected e-beam can be estimated by 

the Monte-Carlo simulation results [24], as the data in 

Fig. 3a indicates, the e-beam is expected to travel deeper 

with higher accelerating energy; therefore, the collection 

efficiency as well as the number of electrons penetrated 

to the proposed detector through wafer surface will 

increase for electrons with higher energy (between 0 and 

30  keV) as the simulation data suggested in Fig.  3b. As 

for e-beam energy higher than 30 keV, most of the elec-

trons will penetrate to the silicon substrate, decreasing 

the FG collection efficiency. �e collection efficiency ( η ) 

is defined as followed:

where QFG stands for charge collected and stored in the 

FG, and Qtotal represents the total injected electrons from 

the applied e-beam.

(1)η =

QFG

Qtotal

,

According to the simulation results in Fig.  3, the 

e-beam is expected to penetrate and travel through a dis-

tance of a few microns, and the electron velocity before 

injection can reach to 6 cm/ns at energy of 10 keV [25], 

the response time is estimated to be within μsec level 

[26], enabling responses to fast scanning e-beams.

Before the in-chamber e-beam exposure, the FG charge 

 (QFG) induced from the semiconductor manufactur-

ing process steps [27, 28] must be cleared out. Here, an 

initialization step by baking the detector chips at 250 

degrees Celsius is conducted, as the measurement data 

corroborated in Fig.  4a, the BL current distribution 

tighten as the randomly placed charge is removed. �e 

overall readout BL current becomes lower than 0.1pA 

after initialization, as arranged in Fig. 4b, suggesting that 

FG charge can be effectively emptied.

�e BL current distribution of the pixels in their initial-

ized states and that after increasing e-beam radiation at 

a fixed energy of 30  keV is demonstrated in Fig.  5. �e 

Fig. 2 a The 3D structure, b TEM image along BL and c layout 

illustration of the proposed e-beam detector, featuring compact 

2-FinFET pixel with a FG storage/sensing node by 16-nm FinFET 

CMOS technologies

Fig. 3 a Monte Carlo simulation results of the projected trajectory 

of the injected electron with different accelerating energy, and b the 

corresponding projection depth and penetration probability onto the 

on-wafer detectors array
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measurement data indicates BL current will increase with 

larger e-beam dosage. �e injected electrons collected by 

detector will charge FG to a certain negative bias level, 

which will gradually turn on the p-channel FG transis-

tors, resulting in larger readout BL currents. Further-

more, the measured data implies there is still room in the 

range of several order of magnitude before the BL cur-

rent hit saturation, making it suitable for wide dynamic 

range sensing.

As the measurement data in Fig. 6 reveals, the readout 

BL current shift is positively correlated with the acceler-

ating energy of the applied e-beam, which is expected to 

the simulation results in Fig.  3, validating the proposed 

detector can precisely reflect the characteristics of the 

injected e-beam dosage and accelerating energy. With 

a high spatial resolution of 700 nm in pitch the sensing 

plane, this detector can also demonstrate a minimal sens-

ing e-beam dosage level of 24μC/cm2 at 5 keV.

�e two-dimensional images on the 8 × 8 test arrays are 

demonstrated in Fig. 7, after 30 keV e-beam with dosage 

of 0.2μC/cm2, 0.6μC/cm2 and 1μC/cm2 are compared.

�e proposed e-beam detector not only features linear 

and high response to dosage and accelerating energy, the 

ability of in-pixel data storage is one of its unique proper-

ties. As the data demonstrated in Fig. 8, the BL current 

shift induced by e-beam exposure can stay relatively sta-

ble in 85 degrees Celsius for days; therefore, the e-beam 

detection results can remain in the storage node without 

external power, enabling the consequent off-line electri-

cal readout by automatic measurement systems.

�e experiment conducted in Fig. 9 implies there will 

be slight decrease on the collection efficiency of the 

proposed e-beam detector when the neighbor pixel is 

already charged. Due to the negative potential from 

Fig. 4 a The distribution of BL current will be tightened after baking 

in 250 °C for more than 100 k seconds and b the cumulative plot 

indicates read current converge to below 0.1pA which further ensure 

 QFG is cleared out

Fig. 5 The distribution of the proposed detectors at the initialized 

state and that after e-beam exposure with increasing dosage at a 

fixed energy level of 30 keV

Fig. 6 The injected dosage and its accelerating energy can be 

precisely reflected by the resulting BL current of the e-beam exposed 

array
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adjacent pixels, the electrons experience repulsive force 

during injection; hence, patterns and array design must 

be considered to reduce such pattern interface effect.

Conclusions

In this work, an in-tool, on-wafer e-beam detectors 

array featuring FinFET CMOS logic compatibility, wide 

dynamic range and high responsivity is presented. �e 

unique compact 2 T pixel structure can improve the spa-

tial resolution with sub-micron pixel pitch. �e projected 

e-beam imaging and detection results can be stored non-

volatilely without external power supply in the sensing/

storage node of the proposed novel e-beam detector, 

enabling off-line electrical readout. Finally, the proposed 

e-beam detectors array is believed to be the promis-

ing solution for enhancing the stability of future e-beam 

lithography systems and processes.
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