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S U M M A R Y
Galvanic distortion has long been recognized as an obstacle in the interpretation of magne-
totelluric (MT) data. One fundamental problem for distortion removal is that the equations
that describe the effects of galvanic distortion on the impedance tensor are underdetermined.
We have previously shown that an explicit solution for four of the parameters of the regional
(undistorted) impedance tensor can be resolved without any assumptions. These determinable
parameters are the components of a tensor (the phase tensor) representing the phase informa-
tion contained in the impedance. The coordinate invariants of the phase tensor provide a simple
and objective guide to the dimensionality of the regional impedance tensor at each measured
frequency. Where the regional structure is 2-D, one of the principal axes of the phase tensor
will be aligned parallel to the strike of the regional conductivity. The distortion tensor and the
parameters of the regional impedance tensor that represent the amplitude information cannot
be determined without assumptions. Where the phase tensor shows the regional impedance
tensor to be 1-D, the distortion tensor and the regional impedance can be determined to within
a single multiplicative constant. Where a 2-D regional structure is indicated, two assumptions
are necessary to determine the regional impedance tensor but the solution is not unique, and
any choice of assumptions could be made with equal validity. For 3-D structures, the phase
tensor provides the direction of greatest inductive response, which is the closest equivalent of
a strike direction. In this case four constraints are required for a solution. In practice, a MT
sounding may contain sections that display different characteristic dimension and the distor-
tion tensor can be determined from the section of the sounding with the lowest characteristic
dimension. The greatest amount of information is determined from a 1-D section. The use
of the information contained in the phase tensor overcomes some of the shortcomings of tra-
ditional distortion analysis. Illustrating the tensors using an elliptical representation aids the
interpretation of the tensor data involved in this analysis.

Key words: electromagnetic methods, galvanic distortion, geo-electrical strike, magnetotel-
lurics, phase tensor, regional conductivity.

I N T RO D U C T I O N

Galvanic distortion is often observed in magnetotelluric (MT) mea-
surements. Galvanic distortion can be regarded as the superposition
of the (frequency independent) signatures of localized, near-surface
(3-D) heterogeneities on the (frequency dependent) signature of the
larger-scale regional structure. Such distortion can mask the prop-
erties of the larger-scale structure that is the usual target of the MT
surveys. The primary aim of distortion analysis is to eliminate the
influence of the near-surface heterogeneities from the measured MT
impedance tensor and hence determine the impedance tensor that
represents the regional structure alone. Ideally this would be done
without having to make any assumption regarding the nature of the
regional structure.

There have been a number of different approaches to deriving a
solution for the regional (undistorted) impedance tensor. The most
common techniques used for distortion removal are the decompo-
sition method of Groom & Bailey (1989, 1991), hereafter referred
to as G&B, and the related technique of Smith (1995). In both these
methods distortion analysis is also used as a means of determining
an appropriate strike of the regional structure, assuming that struc-
ture to be 2-D (e.g. McNeice & Jones 2001). In this form, G&B
analysis has almost taken on the role of pre-conditioning MT sur-
vey data prior to 2-D modelling. The basis of these approaches is not
intuitively obvious and their physical basis remains controversial.
An alternative approach to the problem is that of Bahr (1988, 1991),
which is based on the analysis of the phase and is aimed primar-
ily at determining the dimension of the regional (undistorted) MT
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916 H. M. Bibby, T. G. Caldwell and C. Brown

data, and estimating the strike direction. Good summaries of these
and other approaches can be found in McNeice & Jones (2001) and
Ritter (1996), for example. A more general approach was made by
Weaver et al. (2000) who used a carefully selected set of invariants
of the impedance tensor to deduce the inherent regional dimen-
sionality and to identify the presence of distortion. These invariants
can be linked to the properties of the phase tensor (Weaver et al.
2003).

In analysing the problem of distortion removal, Smith (1995)
pointed out that the mathematical description of the full distortion
problem involves finding a solution for a set of equations that is
underdetermined and that a solution is not possible without assump-
tions. It should be of concern, however, that the set of assumptions
made by both G&B and Smith (1995) reduces the underdetermined
set of equations to an over-determined set, which is subsequently
solved using a least squares approach. This reduction of the prob-
lem from an underdetermined to an over-determined set of equations
suggests that, for the general case, too many constraints have been
applied. Indeed we show below that one determinable parameter of
the general problem is inadvertently assumed to be zero in these
approaches.

The key step in understanding the limitations of distortion re-
moval is in the recognition that the set of underdetermined equations
of distortion has a partial solution, which can be determined without
any assumption. This partial solution for the regional impedance is
represented by the four components of a tensor: the phase tensor
(Caldwell et al. 2004 from herein referred to as CBB). Using the
phase tensor it is possible to determine the characteristic dimension
(or symmetry) of the regional impedance tensor and, for 2-D sit-
uations, the strike direction. Thus the problem of determining the
strike direction can be separated from that of determining the dis-
tortion, as was shown by Bahr (1988, 1991) in his analysis of the
phase. The assumption of 2-D regional structure tacitly assigns one
of the determinable parameters to be identically zero, that parame-
ter being the indicator of 3-D. The solution for the distortion tensor
and the remaining components of the regional impedance tensor
cannot be solved without assumptions. However, we show here that
the information provided by the phase tensor on the dimension of
the regional impedance tensor can be used as a guide to the subse-
quent analysis and allows the minimum number of assumptions to
be made: one, two or four assumptions for 1-D, 2-D or 3-D, respec-
tively. The nature of the assumptions and their significance are also
illustrated.

G A LVA N I C D I S T O RT I O N
O F T H E E L E C T R I C F I E L D

The theory describing the galvanic distortion of MT measurements
is now well established (e.g. Groom & Bahr 1992; Chave & Smith
1994) and is only briefly summarized here. Distortion is usually
described in terms of the influence of small localized conductiv-
ity heterogeneities, which alter the direction and magnitude of the
electric field at the measurement site. At periods (T) greater than
some threshold value, Tc, inductive effects within these conductivity
heterogeneities become negligible compared with the inductive re-
sponse produced by the regional conductivity structure (e.g. Jiracek
1990). For periods greater than Tc, the effect of the heterogeneities
on the electric field vector can be regarded as independent of period
and, thus, the measured electric field, E, can be represented as a lin-
ear function of the regional electric field ER (the electric field that
would be measured in the absence of the heterogeneities). With this

approximation, the measured electric field, E, can be written as

E = D ER; T > Tc, (1)

where D, the distortion tensor, is real and is independent of period
(Groom & Bahr 1992; Chave & Smith 1994). The influence of the
distortion is to change the magnitude and direction of the electric
field but, as D is real, the phase relationships are preserved. In
Cartesian coordinates D can be written as a 2 × 2 matrix:

D =
[

D11 D12

D21 D22

]
. (2)

Although it is possible to also have distortion of the magnetic field
(Groom & Bahr 1992; Singer 1992; Chave & Smith 1994), we will
assume that no magnetic distortion is present so that the horizontal
component of the measured magnetic field H is, to a good approxi-
mation, equal to the corresponding regional magnetic field HR.

The MT impedance tensor Z is defined by the relationship be-
tween the measured electric and magnetic fields

E = Z H. (3)

If no distortion is present the impedance tensor representing the
regional structure ZR is given by

ER = ZR HR. (4)

Therefore, from 1 and 3

E = D ER = D ZR HR = [D ZR] H (5)

and the relationship between the regional and observed impedance
tensors can be written

Z = D ZR. (6)

This is the key equation of galvanic distortion. To eliminate the
effects of distortion on measured MT data, it is necessary to deter-
mine ZR from a given Z. However, eq. (6) represents a set of eight
equations in twelve unknowns (four components of D and eight com-
ponents of ZR) so that the set of equations is underdetermined.

T H E P H A S E T E N S O R

Despite the underdetermined nature of eq. (6) a partial solution is
possible without any assumptions. This partial solution is repre-
sented most easily by the phase tensor of CBB. The key elements of
the phase tensor derivation are given below.

By splitting the impedance tensors Z and ZR into real (X) and
imaginary (Y) parts

Z = X + i Y and ZR = XR + i YR (7)

we can rewrite eq. (6) as two equations

X = D XR, (8)

Y = D YR. (9)

We define a phase tensor Φ as

Φ = X−1 Y, (10)

where X−1 is the inverse of X. From eqs (8) and (9),

Φ = (D XR)−1 (D YR)

= X−1
R D−1 D YR = X−1

R YR

= ΦR. (11)
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MT distortion removal 917

Thus the measured and the regional phase tensors are identical and
are independent of galvanic distortion. The phase tensor of the re-
gional impedance, ΦR, is thus a partial solution to the equations
of distortion (6). The four components of the phase tensor, which
are simple functions of the components of the measured impedance
tensor, are in general, the only uniquely determinable portion of the
regional impedance tensor. This partial solution of the distortion
equations requires no assumption about the nature of the conductiv-
ity distribution or the forms of the distortion and regional impedance
tensors. Indeed, the phase tensor provides information on the nature
of the regional conductivity structure, as is shown below.

Expanding eq. (10) in terms of the components X and Y, the
phase tensor can be written

Φ =
[

X22Y11 − X12Y21 X22Y12 − X12Y22

X11Y21 − X21Y11 X11Y22 − X21Y12

] /
det(X)

=
[

�11 �12

�21 �22

]
, (12)

where det(X) = X11 X22 − X21 X12.
The explicit expression for the phase tensor (eq. 12) allows the

error estimates in Z to be propagated rigorously to all subsequent
functions of the phase tensor.

Properties and visualization of the phase tensor

The properties of the phase tensor are best presented by the use
of tensor invariants. There are three independent invariants for any
2-D, second rank tensor. We will represent the phase tensor in two
related forms (CBB and Bibby 1986). From Bibby (1986) we write

Φ = �1

[
cos 2α� sin 2α�

sin 2α� − cos 2α�

]
+ �2

[
cos 2β� sin 2β�

− sin 2β� cos 2β�

]
,

(13)

where �1, �2 and β� are independent invariants, and α� is de-
pendent on the coordinate axes used. Angles α� and β� can be

Figure 1. The graphical representation of a tensor as an ellipse (see Appendix). The semi-major and semi-minor axes of the ellipse are defined by the coordinate
invariants �max and �min, respectively. The invariants (β, �max and �min) represent the intrinsic physical properties of the tensor that are not dependent on
the reference frame.

expressed in terms of the components of Φ as

tan 2α� = (�12 + �21)/(�11 − �22)

tan 2β� = (�12 − �21)/(�11 + �22)
(14)

and similarly

�1 = 1

2

[
(�11 − �22)2 + (�12 + �21)2

]1/2

�2 = 1

2

[
(�11 + �22)2 + (�12 − �21)2

]1/2
. (15)

The phase tensor (and indeed any 2 × 2 real matrix) can be
graphically represented as an ellipse the properties of which can be
described by the parameters given above (Fig. 1 and Appendix). In
particular, the semi-major and semi-minor axes of the ellipse are
given by �max = �2 + �1 and �min = �2 − �1 and the orienta-
tion of the major axis is given by α� − β�. The angle α� defines
the position of a reference axis relative to the coordinate axes and
β� defines the position of the principal axis of the ellipse relative
to the reference axis. Rotating the coordinate axes will change the
angle between the reference axis and the coordinate axes, but the
shape and geographic position of the ellipse will be unchanged.
This graphical representation (Fig. 1) provides an intuitively sim-
ple means of illustrating the properties of any of the tensors (X,
Y, D, Φ) used in MT analysis. Note that as the phase tensor is a
function of the impedance tensor, the phase tensor invariants can be
expressed as functions of the invariants of the impedance tensor as
was demonstrated by Weaver et al. (2003).

Although there are only three independent invariants any com-
bination of invariants will also be an invariant. In particular, the
magnitudes of the principal axes of the phase tensor ellipse �max

and �min (Fig. 1, Appendix) are invariants. For later dimensional
analysis we also introduce the non-dimensional ratio λ = �1/�2.

Using these invariants, the phase tensor can be written in the
alternative form (CBB)

Φ = RT(α� − β�)

[
�max 0

0 �min

]
R(α� + β�), (16)

where R is the rotation matrix
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918 H. M. Bibby, T. G. Caldwell and C. Brown

R(θ ) =
[

cos θ sin θ

− sin θ cos θ

]
(17)

and superscript T indicates the matrix transpose.

Phase tensor and dimensionality of the regional
conductivity

1-D structure

If the regional structure is 1-D, the impedance ZR will be indepen-
dent of the coordinate axes and takes the antidiagonal form

ZR =
[

0 Z1D

−Z1D 0

]
. (18)

Thus from eq. (12) the phase tensor can be written

Φ1D = (Y1D/X1D) I, (19)

where I is the identity matrix, and (Y 1D/X 1D) = Im(Z 1D)/
Re(Z 1D) is the tangent of the (scalar) phase.

By comparison of eq. (19) with eq. (13), the necessary conditions
for regional 1-D structure are

�1 = 0 (or �max = �min) and β� = 0 (20)

or equivalently, in terms of the components of Φ

�12 = �21 = 0 and �11 = �22. (21)

In the graphical representation of the phase tensor as an ellipse
(Fig. 1) the major and minor axes (�max and �min) become equal
and the ellipse reduces to a circle. Note that in this case the prin-
cipal axes are undefined or equivalently, the coordinate dependent
term α� is undefined. This is equivalent to the observation that the
strike is undefined in a 1-D situation (see discussion of 2-D be-
low). The requirement for eq. (19) to be non-trivial is that the phase,
tan−1(Y 1D/X 1D), is defined. In terms of the invariants this requires

(Y1D/X1D) = �2 �= 0.

Hence the necessary conditions for 1-D (eq. 20) can be written in
the dimensionless form

λ = �1/�2 = 0 and β� = 0. (22)

2-D structure

For an idealized 2-D structure, the impedance tensor is purely an-
tidiagonal when the coordinate axes are rotated to be parallel (or
perpendicular) to the conductivity strike. That is,

ZR = RT(ψ)

[
0 Z ′

12

Z ′
21 0

]
R(ψ), (23)

where ψ is the strike direction with respect to the observational
coordinate system. (We denote parameters defined in coordinates
aligned with the strike direction by primes.) Writing eq. (23) in its
real and imaginary parts, using Z′ = X′ + i Y′ the phase tensor can

be written as

Φ2D = {RT(ψ)

[
0 X ′

12

X ′
21 0

]
R(ψ)}−1 RT(ψ)

[
0 Y ′

12

Y ′
21 0

]
R(ψ)

= RT(ψ)

[
Y ′

21/X ′
21 0

0 Y ′
12/X ′

12

]
R(ψ). (24)

Comparing eqs (24) and (16), the necessary condition for 2-D is
simply β� = 0. When this applies, the strike direction relative to the
measurement axes is given by ψ = α� and the principal components
become Y ′

21/X ′
21 = �max and Y ′

12/X ′
12 = �min. Note that when

distortion is present, the strike direction must be determined from
the phases, as has been previously noted by other authors (e.g. Bahr
1988; Berdichevsky 1999). The effect of distortion on the measured
impedance tensor Z is to modify the amplitudes and thus the strike
information cannot be derived from these amplitudes. Graphically
(Fig. 1), the principal axes of the phase tensor ellipse are of lengths
�max and �min and one of these axes is in the strike direction. The
reference axis in this case is aligned with the direction of the major
axis of the ellipse (β� = 0).

3-D structure

In the presence of a 3-D regional structure, all of the components
and invariants of the phase tensor are, in general, non-zero. The
graphical representation of the phase tensor (Fig. 1) differs from
the 2-D case in that the principal axis of the ellipse is now at an
azimuth given by (α� − β�) and is no longer aligned with the
reference axis. The values of β� may be regarded as a measure of
departure from the condition for 2-D; the greater the value of β�,
the greater the deviation from the simple 2-D case. For small values
of β�, however, the error introduced by adopting conventional strike
angles, derived assumingβ� =0, will be small, suggesting there will
be 3-D conditions under which conventional 2-D approximations
may not introduce significant error.

The phase tensor properties may also provide an indication of the
presence of complicated conductivity variations in the earth. Taking
the determinant of eqs (10) and (16)

det(Φ) = det(Y)/ det(X)

= �max�min. (25)

A negative determinant of the phase tensor requires that either
�max or �min be negative or, equivalently, one of the phase angles,
tan−1(�max) or tan−1(�min), must lie outside the range 0–90 degrees.
Conductivity distributions that give rise to this condition are extreme
but by no means impossible (e.g. Egbert 1990). Such anomalous
phases have been observed in the Andean subduction zone (Lazaeta
& Haak 2003), for example, and Heise & Pous (2003) have modelled
these extreme phases using an anisotropic layering in the presence
of large resistivity variations. When anomalous phases are present,
eq. (25) requires either det(X) or det(Y) to be negative, correspond-
ing to tan−1(�max) > 90 or tan−1(�min) < 0, respectively. It is in-
teresting to note that Lilley’s (1998) defining criterion for ‘a regular
impedance tensor’ requires these determinants to be positive.

Physically, the condition for det(X) or det(Y) = 0 corresponds
to the in-phase (or quadrature) components of the electric field
becoming independent of the direction of the magnetic field. In
each case the phase ellipse collapses into a line. Anomalous phases
(det(Φ) < 0) occur when either the real or imaginary component
of the electric field lies at an angle greater than 90 degrees from
its expected direction in a uniform earth. The electric field thus
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MT distortion removal 919

has a component in the opposite direction from that in a uniform
half-space. The procedure for plotting the phase ellipse given in the
Appendix can still be applied, but care is required in the interpreta-
tion, as one of the axes has negative values. Data for which the phase
tensor has a negative determinant should be treated with caution.

To summarize: the dimensionality indicated by an impedance
tensor (single site, single period) is given by invariants β� and λ.
Both β� and λ are well defined provided det(Φ) is finite and non-
zero.

(i) The necessary conditions for 3-D is given by non-zero β�

(or |β�| > β c, β c selected as an appropriate threshold and/or error
condition);

(ii) The necessary conditions for 2-D requires |β�| < β c and
non-zero value of λ (λ > λc, λc selected as an appropriate threshold
and/or error condition);

(iii) The necessary conditions for 1-D is both |β�| < β c and
λ < λc.

If det(Φ) is negative, one of the principal phase angles passes outside
the range 0◦ to 90◦.

The criteria provided by the phase tensor are necessary (but not
sufficient) conditions for determining the dimensionality of the re-
gional conductivity structure. The phase tensor at a single period,
under suitable conditions of symmetry, can have the characteristics
of a lower dimension than that of the regional structure. Thus for ex-
ample, the impedance tensor for a site that lies along an axis of sym-
metry of a 3-D structure can display 2-D characteristics, although
neighbouring sites could appear 3-D. In essence, the dimensionality
of the phase tensor must be evaluated taking into account the data
at adjacent periods and neighbouring locations.

S O L U T I O N S F O R T H E R E G I O N A L
I M P E DA N C E T E N S O R

Previous approaches to the problem of solving for the regional
impedance tensor (G&B, Smith 1995) have mixed two quite dis-
tinct problems: one is soluble without any assumption, while the
other requires constraints or assumptions to determine a solution.
The phase tensor represents the soluble part of the problem. We
describe below how the assumptions made to solve the combined
problem affect both portions of the solution and impose unnecessary
restrictions on the phase tensor.

The full set of (eight) equations for the (unknown) regional
impedance and distortion tensors are represented by eq. (6). As
the set of equations is underdetermined (eight equations in 12 un-
knowns), the first step taken by both G&B and Smith (1995) is to
make the assumption that the regional structure is 2-D. This as-
sumption sets four components of the regional impedance tensor to
zero when the axes are rotated into the (unknown) strike direction,
thereby reducing the number of unknowns by three. An undesirable
consequence of this assumption is that one of the determinable pa-
rameters of the phase tensor (represented by β�) is inadvertently
set to zero. To obtain a solution it is still necessary to make two
further assumptions concerning the form of the distortion tensor.
G&B and Smith (1995) differ in their choices of these assumptions,
but in both methods the number of unknown parameters is reduced
to seven and the original underdetermined set of equations becomes
an over-determined set.

Recognizing that the phase tensor is a partial solution of the full
distortion problem allows a simpler approach. In particular, the as-

sumptions necessary to derive a solution can be made consistent
with the information contained in the phase tensor.

Once the phase tensor is known, the equations for the regional
impedance tensor (eq. 8) can be written as

X = D XR, (26a)

YR = XRΦ. (26b)

The non-unique nature of the problem is clearly apparent in eq. (26a),
which is a set of four equations in eight unknowns. No solution is
possible without constraints on either the form of the distortion
tensor or the impedance tensor (or both). Once the distortion tensor
is known, the regional impedance can be simply derived using

ZR = D−1 Z = D−1X(I + iΦ). (27)

The key to solving eq. (26) is to use the information provided by the
phase tensor on the dimension of the regional structure (including,
when appropriate, the strike direction). Thus it is possible to analyse
the problem according to the previously determined dimensionality.
The number of assumed parameters required is a function of this
dimension.

1-D structure (β� = 0 and λ = 0)

Substituting the 1-D form of the regional impedance tensor (eq. 18)
into eq. (26a) gives

X = g D

[
0 1

−1 0

]
, (28)

where g is the unknown real part of the 1-D regional impedance
tensor (g = X 1D). This is a set of four equations in five unknowns,
which can be solved to within a single unknown multiplicative con-
stant g. From eq. (28)

gD = X

[
0 −1
1 0

]
. (29)

Note that the form of the distortion tensor is determined by eq.
(29). When plotted as an ellipse, the orientation and aspect ratio
of the distortion ellipse are known although the size of the ellipse
is unknown. Equivalently, β D , Dmin/Dmax (invariants) and α D (not
invariant) are known, although the magnitude of Dmin or Dmax is
undetermined.

The scale constant g is essentially an unknown ‘static shift’ that
can be applied to the apparent resistivity sounding curve after the
removal of the determinable part of the distortion. This unknown
constant can be determined by the use of external information, pro-
vided, for example, by a TEM sounding at the measurement site.
However, without external information the scale is unknown and
the magnitude can be set by applying a constraint on D. To avoid
dependence on the coordinate system in which the impedance tensor
is represented, it is desirable for the chosen constraint to be placed on
an invariant of D. Furthermore, constraints should be chosen to be
compatible with the case of no distortion. Possible choices include
trace(D) = 2, det(D) = 1 or ||D||2 = 2 where ||D|| is the Frobenius
norm. Each of these provides a scale to the distortion tensor. These
give, respectively,

g = (X12 − X21)/2, g = det(X)1/2 or g = ||X||/√2. (30)

It is also possible to derive a solution for D using the Y compo-
nent of the impedance tensor using the same procedure. In practice,
where β� and λ contain noise (so that |β�| < β c and λ < λc) both
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920 H. M. Bibby, T. G. Caldwell and C. Brown

components can be used to derive estimates of the distortion tensor
at any given period.

Choosing a constraint on the form of D is equivalent to assuming
something of the nature of that distortion. The influence of varia-
tions in the near-surface electrical structure on the electric field vec-
tor has an analogue in the (tensor) multiple-source dipole–dipole
resistivity method (e.g. Bibby et al. 1998). Modelling of tensor
dc resistivity for shallow heterogeneities within an otherwise uni-
form resistivity background (Bibby & Hohmann 1993) shows that,
close to the disturbing body, although the electric field is disturbed
(distorted), the determinant of the apparent resistivity tensor is vir-
tually unchanged from that of the surroundings. The equivalent in
MT surveying would suggest that the determinant of the impedance
tensor should remain nearly constant under distortion, provided the
measurement site does not lie within the heterogeneity. The condi-
tion on the distortion tensor that achieves this is det(D) = 1. This
forms one of our preferred conditions.

The solutions given by eq. (30) provide the basis of a simple but
rigorous technique for distortion removal that can be applied to any
sounding curve that contains a 1-D section. The distortion tensor
can be determined for each period within the 1-D section and an
appropriately weighted mean determined. The distortion can then
be removed from the longer period part of the curve, irrespective of
its dimension.

Anisotropic structures form a special case. In a horizontally
anisotropic earth the phase tensor is indistinguishable from that of
an isotropic half-space (CBB) although the apparent resistivity will
differ along the axes of anisotropy. As a consequence the variation
of apparent resistivity with azimuth is indistinguishable from the
effects of local distortion. The identification of anisotropy would
require measurements at several sites and would be indicated by the
apparent distortion tensor being independent of location.

2-D structure (β� = 0, λ �= 0)

Where the phase tensor analysis indicates that an MT sounding
has no 1-D section, it may be necessary to seek a solution using
a 2-D section of the sounding. The phase tensor not only provides
confirmation of 2-D conditions it also provides an estimate of the
principal axes of the regional impedance tensor, ψ = α�. Rotating
eq. (8) to the principal axes, the real part of the impedance tensor
X′ can be written

X′ = R(α�)X RT(α�) = R(α�) D XR RT (α�)

= [
R(α�) D RT(α�)

]
R(α�) XR RT(α�) = D′ X′

R

= D′
[

0 X//

X⊥ 0

]
, (31)

where D′ = R(α�) D RT(α�) is the distortion tensor relative to axes
aligned in the direction of the strike, and X // and X ⊥ are the principal
components of the regional impedance tensor parallel and perpen-
dicular to the strike. This is a set of four equations in six unknowns
(four components of D′ and the two principal values X // and X ⊥).
There is no unique solution. In order to solve eq. (31) two assump-
tions are required, one more than for the 1-D case. In essence, the
necessary constraints can be regarded as unknown scale factors on
each of the two principal components of the regional impedance
tensor (Smith 1995). Note that, although for 1-D structure TEM
soundings can provide the external information necessary to esti-
mate the unknown scale factor, a TEM sounding is not sufficient
when the near-surface structure is 2-D.

In practice when the data contain errors, the distortion tensor will
be sought using a band of periods for which the phase tensor indi-
cates 2-D conditions and the estimated strike is nearly constant. It
is thus desirable that constraints on D′ should not be dependent on
the calculated strike direction (and consequently on the coordinate
system). That is, it is desirable for conditions to be placed on the
invariants of D′. By applying two constraints, eq. (31) is reduced
to four unknowns and explicit expressions can be derived for these
parameters. Any combination of invariants of D could be assigned
values to derive a solution of eq. (31). This could include, for exam-
ple, assigning det(D), trace(D) or β D . Note that the condition β D =
0 is equivalent to that used by Zhang et al. (1993), that the distortion
tensor itself has a 2-D form. Setting the two constraints to be

det(D) = P and trace(D) = T (32)

gives

X// = 2 X ′
12/[T − S] and X⊥ = 2 X ′

21/[T + S], (33)

where S2 = [T 2 + 4 P X ′
12 X ′

21/det(X′)].
The distortion tensor, from eq. (31), is given by

D′ = X′
[

0 1/X⊥
1/X// 0

]
. (34)

The requirement that S2 is positive limits the choice of the values
of P and T . In particular it is possible that setting P = 1 and T =
2 (consistent with no distortion) could be incompatible. In practice,
as any choice of constraint on D′ is equally valid, the value of one
of the parameters will be set and the other chosen to satisfy the
condition that S2 > 0 for all the periods selected for the analysis.
Note that there are two solutions given by eq. (33), which depend
on the choice of the sign of S. Changing the sign of S effectively
interchanges the scale factors in eq. (33).

Unlike the 1-D solution, the form of the distortion tensor can vary
according to the constraints chosen. In particular, the directions of
Dmax and Dmin will vary with the constraint used and consequently
the derived distortion tensor does not necessarily provide any infor-
mation relating to the conductivity gradients that give rise to that
distortion.

The distortion analysis techniques of G&B and Smith (1995) also
introduce constraints on D′, although indirectly and each of a slightly
different form. A major point of difference between these techniques
and the phase tensor approach is that the dimensionality of the re-
gional structure is not assessed prior to analysis but is assumed to
be 2-D. The constraints used in these methods are only formally
applicable when the 2-D assumption is valid (the case considered
here).

G&B write D′, the distortion tensor rotated to the strike direction,
in the form of a product of ‘twist’ and ‘shear’ matrices. Such a
description is coordinate dependent, and requires the coordinate
axes to be specified for the description to be valid. The G&B form
of distortion tensor is equivalent to setting two conditions on D′:

trace(D′) = 2 and gx = gy, (35)

where gx = (D′2
11 + D′2

21)1/2 and gy = (D′2
12 + D′2

22)1/2.
The second condition is not invariant and gx, gy will change when

D′ is expressed in any other coordinate axes. For 2-D situations, the
G&B ‘estimate’ has an explicit form obtained by solving eq. (31)
with the constraints of eq. (35).

X// = 0.5[X ′
12 + X ′

21 R], X⊥ = 0.5[X ′
21 + X ′

12/R], (36)

where R = sign(X ′
12 X ′

21) [(X ′2
12 + X ′2

22)/(X ′2
11 + X ′2

21)]1/2. The
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MT distortion removal 921

sign is chosen in order to give the appropriate solution when no
distortion is present. The explicit form of the distortion tensor can
then be calculated from eq. (34).
Smith (1995) uses a similar approach to G&B except that the con-
straints are given by

gx = gy = 1. (37a)

For comparison with G&B these constraints can be rewritten in the
form

||D||2 = 2 and gx = gy, (37b)

where ||D|| denotes the Frobenius norm (an invariant). Like G&B
only one of the conditions is invariant. For 2-D conditions, the ex-
plicit solution for the principal components of XR using these con-
straints is

X// = [
X ′2

12 + X ′2
22

]1/2
, X⊥ = [

X ′2
11 + X ′2

21

]1/2
. (38)

It is important to stress that there is an infinite set of valid solu-
tions all of which satisfy eq. (31) but which differ according to the
constraints chosen. The inherent non-uniqueness of distortion re-
moval in a 2-D situation can be demonstrated using synthetic data.
For this purpose we use the 2-D example from McNeice & Jones
(2001), which was also used by CBB to illustrate the properties of
the phase tensor. Fig. 2(a) shows the real and imaginary parts of a
synthetic 2-D regional impedance tensor (XR, YR) using the ellipse
representation (see Appendix). Note that the principal axes of the

Figure 2. Demonstration of the effects of distortion using a synthetic example from McNeice & Jones (2001). (a) The regional impedance tensor plotted using
the graphical representation (Fig. 1). The solid and dashed ellipses show the real and imaginary parts of the impedance tensor, respectively. (b) The distortion
tensor ellipse. (c) The distorted impedance tensor ellipses (i.e. product of tensors of a and b). (d) The phase tensor derived from the distorted impedance tensor.
Note that the principal axes of the phase tensor coincide with the principal axes of the regional impedance tensor.

X Y

Figure 3. The non-uniqueness of the determination of the undistorted impedance tensor is demonstrated for the example shown in Fig. 2(a) Elliptical
representation of a set of possible solutions for the distortion tensor (thin lines) derived using the coordinate invariant constraints det(D) = 1 and β D with
values varying between ±12◦ (4◦ intervals). The bold ellipse is the applied distortion tensor (Fig. 2b) and the dotted and dashed ellipses are the estimates of
the distortion tensor obtained using the constraints of G&B and Smith (1995), respectively. (b) and (c) show the corresponding solutions for the real (X) and
imaginary (Y) parts of the impedance tensor.

XR and YR ellipses are coincident and lie parallel and perpendicu-
lar to the strike of the regional structure (a necessary condition for
2-D structures). A distortion tensor (Fig. 2b) is applied resulting
in the distorted (measured) impedance tensor shown in Fig. 2(c).
The major axes of the two ellipses, representing the real and imagi-
nary parts of the measured impedance tensor, are no longer parallel
and neither is parallel to the strike direction. The aim of distortion
analysis is to recover the regional impedance of Fig. 2(a) from the
measured data of Fig. 2(c). The initial step in the analysis of the dis-
torted data is to determine the phase tensor (eq. 10), which is shown
in Fig. 2(d). As would be expected for noise free data in a 2-D
situation, the value of β� for the phase tensor is zero and the prin-
cipal axes of the phase tensor are the same as those of the regional
data (Figs 2a and d). Thus the regional strike direction is recovered
exactly.

The non-unique step is the estimation of the distortion and re-
gional impedance tensors. Fig. 3(a) shows a selection of estimates
of the distortion tensor calculated using different constraints (see
caption for details). For comparison, the original distortion tensor
is also shown together with the G&B and Smith (1995) estimates.
Note that for noise-free 2-D data, the latter two estimates differ from
each other only by a scale factor. Figs 3(b) and (c) show the cor-
responding recovered impedance tensor components (XR, YR). All
choices of the constraints applied to the distortion tensor solution
are equally valid. Although some of the resulting estimates of the re-
gional impedance tensor approximate the original input data more
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922 H. M. Bibby, T. G. Caldwell and C. Brown

closely than others, these estimates will correspond with a set of
constraints that happen to match the form of the original distortion
tensor. More importantly, however, there is no way of knowing a pri-
ori the form of the original distortion tensor. A set of constraints that
recover the input data for this example will not necessarily provide
the best estimate in any other situation.

3-D structure (β� �= 0)

In a 3-D situation, there is no simplification to the form of the
regional impedance tensor that can be applied to eq. (26). Four
constraints are required to determine the regional impedance tensor
and effectively no information can be obtained about the distortion
tensor. Even when 3-D structures are present, the phase tensor ellipse
in most instances has well defined principal axes (at an azimuth
given by α� − β�), which CBB suggest can be considered to be a
generalization of the concept of strike direction to 3-D. The principal
axes indicate the directions of greatest and least induction current
at a given period, which, in 2-D, are parallel or orthogonal to the
strike direction. In 3-D this may be considered to be the nearest one
can come to determining a ‘best’ approximation to the 2-D strike.
The greater the value of β�, the greater is the deviation from simple
2-D symmetry. It is thus possible, when β� is small, to proceed
as though a principal axis of the phase tensor ellipse is the strike
direction (the pseudostrike) and to make the same assumptions as
were made to estimate the regional impedance tensor in 2-D, that is,
assume that the real part of the regional tensor, XR, is antidiagonal
in a coordinate system aligned with the principal axes of the phase
tensor ellipse. One advantage of this procedure is that no distinction
is needed between the approaches used in 2-D and 3-D situations.
These assumptions provide two of the four necessary constraints
required to obtain a solution to eq. (26). Note that, although XR is
assumed to have a 2-D form, the imaginary part YR =XR Φ will
not have an antidiagonal form (unless Φ indicates 2-D conditions).
To complete the solution it is necessary to make assumptions on
the form of the distortion tensor, as was required for 2-D analysis.
Although a solution for XR may be obtained, the appropriateness of
3-D distortion analysis is questionable.

D I M E N S I O N A L I T Y A N D D I S T O RT I O N
R E M OVA L — F I E L D E X A M P L E S

To demonstrate the use of the phase tensor for dimensional analysis
and the consequential removal of distortion we use data from a site
on the eastern side of the Taupo Volcanic Zone of New Zealand.
Fig. 4 shows plots of the apparent resistivity and phase from a site
where the apparent resistivity curves are not coincident at small
periods. The corresponding phase tensor is shown in two forms.
Fig. 5 shows elliptical representations of the phase tensor for every
second period of the curve of Fig. 4. An alternative representation
of the phase tensor is given in Fig. 6, which shows the invariant
parameters of the phase tensor that reflect the dimensionality of the
regional (or undistorted) structure. Fig. 6(a) (upper plot) shows the
ratio λ = (�max − �min)/(�max + �min), which will be zero in
1-D conditions, and Fig. 6(b) (central plot) shows values of β� (in
degrees), the measure of 2-D/3-D structure. Fig. 6(c) (lower curve)
shows the azimuth of the maximum of the phase tensor plotted for
periods when the structure is not 1-D. The direction of this axis
corresponds to the direction of the major axes of the ellipses shown
in Fig. 5.

Although the values of λ are small at the shortest periods, they
do not lie within one standard error of zero. This characteristic
of small, but not exactly zero, λ at the early part of the curves
is typical of almost all the measured data from the Taupo area.
The small difference from zero is surprising and suggests either
that the assumption of purely galvanic distortion is incorrect, or
possibly, that some small systematic error (or bias) is present in the
measurement, so that the error bounds may be under estimated. For
the purposes of distortion analysis we have categorized values of λ<

0.1 as 1-D. The next section of the curve, extending to periods of
about 10 s, shows 2-D characteristics, with small values of β�,
(<1.5◦) and λ > 0.1. At periods >10 s, β� becomes >1.5◦, although
the principal axis of the phase tensor ellipse occurs at a near constant
azimuth.

1-D analysis. 1-D distortion analysis has been applied to data from
the first six periods. As 1-D conditions are not met exactly, separate
estimates were made using both the X and Y components at each
period, using the condition that det(D) = 1. The derived distortion
tensors (from both X and Y) are shown in a single plot in Fig. 7. An
indication of the validity of the approach is the consistency of the
individual estimates at each period and between the estimates based
on X and Y components. This consistency starts to breakdown if
more periods are included when the 1-D approximation becomes
invalid. The distortion tensor (in the measurement coordinate sys-
tem) derived from the mean of individual estimates for T < 0.02 s,
after weighting each estimate by its computed variance, is given by

D =
[

1.07 −0.04
−0.02 0.93

]
±

[
0.02 0.01
0.02 0.02

]
. (39)

The small off-diagonal terms suggest that the distortion is almost
purely an amplitude change to the components expressed in the
measurement coordinates. The regional impedance tensor is derived
from eq. (28) with the appropriate scale factor g (from eq. 30) and the
resulting sounding curves are shown in Fig. 8. The estimated errors
in the apparent resistivities are slightly larger than in the measured
data (Fig. 4a) reflecting the uncertainty in the distortion tensor. The
presence of asymmetry in the distortion tensor will result in a change
in the shape of the sounding curve in all coordinate systems, which
cannot be reproduced static shifts alone. The phases (Fig. 8b) are
almost unchanged in the process. The difference between ρ xy and
ρ yx apparent resistivities at small periods is eliminated by the dis-
tortion removal, although there is still an unknown scale factor or
site gain that can be applied to the impedance tensor at all periods.
The site gain can only be determined from independent data, such
a TEM soundings or using data from surrounding sites (e.g. Ogawa
& Uchida 1996).

2-D analysis: If a sounding contains a 1-D section then distortion
analysis would normally be applied to that portion of the sounding.
However, there will be soundings that contain no 1-D section and
distortion analysis of a 2-D section of the curve will be necessary.
To illustrate 2-D analysis we use a 2-D section of the sounding of
Fig 4. Analysis was applied to the section 0.12 < T < 1.2 s, which
shows 2-D character (β� < 1.5◦) and near constant azimuth of the
phase tensor maximum (strike direction ≈−78◦). The invariant con-
straints det(D) = 1 and trace (D) = 2.1 were used, where the value
of the trace was selected to ensure that S2 of eq. (33) is positive at all
the periods of the selected range. The resulting estimates of the dis-
tortion tensor, shown in Fig. 9, are almost constant with period. The
mean value of the distortion tensor derived with these constraints
gives

D =
[

0.83 −0.25
−0.21 1.27

]
±

[
0.01 0.01
0.01 0.01

]
. (40)
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MT distortion removal 923

Figure 4. Magnetotelluric sounding curve for a site near the Taupo Volcanic Zone, showing the xy and yx apparent resistivity and phases in the measurement
coordinate system (aligned magnetic north and east).

Figure 5. Phase tensor ellipses plotted for every second data point of the MT sounding shown in Fig. 4. A radius of unity corresponds to a phase of 45 degrees.
Near-circular phase tensor ellipses at short periods are indicative of near 1-D structure. At longer periods the figures are more elliptical with clearly defined
principal axes.
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924 H. M. Bibby, T. G. Caldwell and C. Brown

Figure 6. Parameters of the phase tensor for the data of Fig. 4. (a) The (coordinate invariant) phase tensor ellipticity λ = (�max − �min)/(�max + �min).
1-D structure is indicated by (near) zero values of λ. (b) The phase tensor skew angle β�, which is zero for 2-D structure. (c) The azimuth of the major axis
(�max) of the phase tensor ellipse, plotted for data where λ > 0.1.

The distortion tensor derived from the 2-D analysis would not be
expected to match that derived from the 1-D analysis, as an addi-
tional constraint has been applied. When the distortion is removed
(Fig. 10) the two curves do not coincide within the section used to
determine the distortion tensor. Indeed the separation of the curves
will be a function of the constraints used. In this example it is possi-
ble to compare the 2-D distortion removal with the 1-D case. For a
sounding with no 1-D section this would not be possible. In general,
the curves will not coincide within a 2-D section and there is no
means of gauging the relative scale for the apparent resistivity. In

coordinates aligned with the principal axes of the 2-D section, the
shapes of the curves are uniquely determined but each curve can
be offset parallel to itself by an indeterminate amount. In this ex-
ample the added information from the 1-D section is sufficient to
fix the curves relative to one another, although the absolute value
cannot be determined from the MT sounding alone. This use of 2-D
analysis followed by adjustment of the curves using a 1-D portion
of the MT curve was proposed by Groom & Bahr (1992). How-
ever, if a 1-D section is present, 1-D analysis is the most effective
approach.
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MT distortion removal 925

Figure 7. Superimposed plots of the distortion tensor ellipses derived from
the approximately 1-D section of the MT sounding (first six periods, Fig. 4)
showing the consistency between the estimates at each period. The distortion
tensors are determined using the constraint det(D) = 1.

I N S TA L L AT I O N E R RO R A N D
A P PA R E N T D I S T O RT I O N

Errors during installation or inaccurate alignment of sensors in the
field can appear as an apparent distortion when the resulting data
are analysed. The influence of these errors can be simply calculated.
Assuming the azimuth of the electric field measurement dipoles are
misaligned by angles ε x and ε y then the measured electric field
vector E′ is related to the true electric field E by the relationship

E′ =
[


x cos εx 
x sin εx

−
y sin εy 
y cos εy

]
E

= D E, (41)

where 
x and 
y are the ratios of the lengths of the assumed elec-
trode spacing to the actual line length. This equation is identical in
form to the galvanic distortion given in eq. (1). The effect of inac-
curate electric field sensor installation is indistinguishable from the
distortion produced by near-surface galvanic effects and can be dealt
with, and corrected for (removed) in a similar way. Care is required
in the choice of constraints as apparent distortion caused by installa-
tion errors can have characteristics that could be incompatible with
some forms of constraint. For example, the reversal of one electric
field line (ε x = π , ε y = 0) gives an apparent distortion tensor with
a negative determinant. Thus, the constraint det(D) = 1 would be
inappropriate. When dealing with installation error the most robust
form of constraint is the Frobenius norm ||D||2 = 2. Note that the
condition for D to be singular, when the distortion problem has no
solution, is given by cos (ε x − ε y) = 0, which corresponds to the
electric field lines being parallel, a situation that may accidentally
occur with certain electrode configurations.

Misalignment of the magnetic sensors will produce a signature,
which cannot be removed quite so simply. Assuming magnetic coils
are misaligned by angles ζ x and ζ y , the measured magnetic field,
H′, is given by

H′ =
[

cos ςx sin ςx

− sin ςy cos ςy

]
H

= C H, (42)

where H is the magnetic field that would be recorded if the sensors
were correctly aligned. In this case the phase tensor Φ does not
eliminate the error. The corresponding modified phase tensor Φ′ is
given by

Φ′ = C Φ C−1. (43)

In a 1-D situation the phase tensor is unchanged by magnetic sensor
misalignment, but in 2-D the influence on the phase tensor is such
that the apparent dimensionality of the structure can be changed. In
particular, β�, which would be expected to be zero for 2-D regional
structure will not be zero. Furthermore, since β� is a function of
the components of Φ′ its value will vary with period so that the
effect of misalignment on the phase tensor is could be mistaken for
the effects of a 3-D regional structure. Modern MT instrumentation
and data processing are rapidly approaching the point where the
alignment of receivers can be a significant contribution to the total
measurement error.

Field example

Fig. 11 shows the component apparent resistivity sounding curves
from sites 600 m apart (sites 100 and 110), adjacent to the Taupo
Volcanic Zone (Ogawa et al. 1999). The sites are in a similar geo-
logical domain as that of the curve of Fig. 4. The second site (110,
Fig. 11b) was occupied to overcome the poor data quality between
1 and 10 s (gap in Fig. 11a) caused by tree movement at the original
location (100). However, data from the replacement site (Fig. 11b)
had significant differences from that of the original site. Analysis
suggests that phase tensor data for the two sites (Fig. 12) are the
same within the (large) errors. For periods less than 0.1 s the data
at both sites suggest (near) 1-D characteristics (λ < 0.1) allowing
the use of 1-D distortion removal. For site 100 (Fig. 11a) the dis-
tortion tensor determined from the 10 shortest periods is within one
standard deviation of the identity matrix, indicating no near-surface
distortion is present at this site. There are less data within the 1-D
section at site 110 (Fig. 11b) and the 1-D analysis can be applied at
only the first six periods. The resulting distortion estimates (setting
trace (D) = 2) are constant within errors at each period and give a
mean distortion tensor of

D =
[

1.13 −1.12
0.85 0.87

]
±

[
0.03 0.06
0.03 0.03

]
. (44)

The large values of the off-diagonal terms are indicative of a large
rotational component to the distortion and suggest the ‘distortion’
may result from a blunder in the electric field installation rather than
from the near-surface conductivity structure. From eq. (41), the ap-
parent angular errors, ε x and ε y , can be derived from the ratios
D12/D11 and −D21/D22, which give angles of −44.7◦ and −44.3◦,
respectively (twice the magnitude of the local magnetic declina-
tion) suggesting an installation blunder as the origin of the problem.
The sounding curve (Fig. 11c) derived by applying the distortion
removal matches that at the adjacent site within the standard errors,
after allowance for the undetermined multiplicative constant. This
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926 H. M. Bibby, T. G. Caldwell and C. Brown

Figure 8. MT sounding of Fig. 4 after the removal of the distortion tensor derived from the 1-D section of the sounding. The distortion tensor used is the
weighted mean of the individual estimates shown in Fig. 7. The value of the apparent resistivity is determined to within a single multiplicative constant.

example illustrates an extreme case of apparent distortion. We sug-
gest that minor installation errors are a frequent cause of low level
distortion.

D I S C U S S I O N

The usual scenario envisaged in distortion analysis is the presence of
small, near-surface, 3-D heterogeneities within an otherwise sim-
pler (1 or 2-D) regional structure. At periods greater than some
threshold the inductive currents caused by the heterogeneity be-
come negligible and the response of the heterogeneities becomes
frequency independent or galvanic. Once the near-surface response
becomes galvanic, the phase tensor reflects the inductive response of
the regional structure alone. Large-scale features can also be treated
as distorters, and their influence removed from the longer period

portion of an MT sounding provided the inductive currents associ-
ated with these conductivity structures are negligible. Thus a MT
sounding curve may be thought of as passing through a sequence of
galvanic distorters each with a different characteristic length scale
and different threshold period. Whether the response at a particular
period range is treated as distortion or as a recoverable part of the
resistivity structure may depend on the scale of the survey and the
distribution of measurement sites. At the extreme, the upper crust
may be considered as a galvanic distorter to the inductive response
of the lower crust and mantle (e.g. Simpson 2001; Bahr & Simpson
2002).

The simple approach to MT soundings that appear to be 1-D at
short periods and which are characterized by a portion of the ap-
parent resistivity sounding curves, which are (near) parallel but not
coincident, is to apply a ‘static shift’. This involves displacing one
or both curves so that the apparent resistivities are equal within the

C© 2005 The Authors, GJI, 163, 915–930

Journal compilation C© 2005 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/163/3/915/595238 by U

.S. D
epartm

ent of Justice user on 16 August 2022
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Figure 9. Distortion tensor ellipses derived from the approximately 2-D
section of the MT sounding (Fig. 6), where the azimuth of �max (strike
direction) is near constant at ≈ −78◦. (See text for details of the constraints
used.) The ellipses are superimposed to show the variability between the
estimates at each period. Because of the additional constraints required, the
distortion tensors do not match those derived from the 1-D analysis (Fig. 7).

Figure 10. MT sounding curves of Fig. 4 after the removal of the distortion
tensor derived from the weighted mean of the individual (2-D) estimates
shown in Fig. 9. Note that the curves separate at small periods. This separation
is a function of the constraints used in the analysis. The relative position of
the curves is not fixed by 2-D analysis, nor is the absolute values of either
of the principal components.

(assumed) 1-D section of the sounding. This is equivalent to apply-
ing an inverse distortion matrix which is diagonal in the coordinate
system used (or symmetric in any other coordinate system). In gen-
eral, however, the distortion tensor is not symmetric and the pres-
ence of distortion will change the shape of the both the phase and
the sounding curves in any coordinate system. That is, part of the
distortion cannot be removed by a static shift and this process alone
will not correctly recover the shape of the curves. When TEM data
is used to determine a scale correction for the apparent resistivity,
the scaling should be applied after the distortion has been removed.

The methods of G&B and Smith (1995) have become standard
methods for (simultaneously) determining both the ‘strike’ direc-
tion and for removing distortion. These techniques make assump-
tions that are strictly only applicable for 2-D resistivity structures,
and tacitly treat as noise the determinable parameter that is indica-
tive of 3-D conditions. There are disadvantages in combining the
analysis of strike (uniquely determinable) and distortion (requir-
ing constraints) for either single soundings or an array of sites
(McNeice & Jones 2001). The greatest amount of information about
the distortion tensor is found in a 1-D section of a sounding whereas
the strike is only determinable from a 2-D section. As we have
shown, the strike can be determined from the phase response alone
and requires no knowledge of the distortion tensor. When the prob-
lems are combined, determinable parameters are lost as the solution
for the distortion tensor is incomplete. Furthermore, the misfit re-
sulting from over-constraining the solution in the 1-D section is
treated as noise by this process. More information can be deter-
mined from the combination of the phase tensor analysis followed
by formal distortion removal.

C O N C L U S I O N

The distortion of the electric field caused by localized variations of
conductivity is a ubiquitous problem in MT. Removal of the effects
of galvanic distortion, where the cause of the distortion is unknown,
is an underdetermined problem and cannot be solved uniquely. There
is, however, a well-defined partial solution, the phase tensor, which
represents four of the eight parameters needed to define the regional
(undistorted) impedance tensor (CBB). The phase tensor is inde-
pendent of the distortion and is simply expressed in terms of the
observed impedance tensor components. Furthermore, it provides
a simple and objective measure of the dimensionality of the MT
response at any period. The remaining parameters required to fully
define the regional impedance tensor (and the distortion tensor)
cannot be uniquely determined without introducing assumptions or
constraints. The number of determinable parameters of the regional
impedance tensor and the number of constraints necessary to deter-
mine a solution depend on the minimum dimension of the regional
conductivity structure.

In order to obtain the maximum amount of information on the
regional (undistorted) impedance tensor we propose an approach
that uses the information on the dimensionality provided by the
phase tensor. We then apply the minimum number of constraints to
the distortion tensor appropriate to near-surface dimensionality (or
the minimum dimension). The greatest amount of information can
be determined from a sounding, which contains a 1-D section from
which the form (although not the magnitude) of the distortion tensor
can be recovered. This allows the undistorted impedance tensor to
be recovered to within a single multiplicative constant. It is only
in the 1-D case that any information about the distorting field is
recovered. In this case, the form of the distortion tensor, and in
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928 H. M. Bibby, T. G. Caldwell and C. Brown

Figure 11. (a) and (b). Data from two MT soundings near the Taupo Volcanic Zone, 600m apart. Site 110 (b) was omitted from analysis because of large
apparent distortion. Data are shown for coordinate axes rotated to be parallel and perpendicular to the trend of the Taupo Volcanic Zone (azimuth of 45◦).
(c) Sounding curve (site 110) after distortion removal using the 1-D section of the curve. The revised data lie within a multiplicative constant (which is
unconstrained in the distortion analysis) of the regional curve at the neighbouring site (a).

particular the orientation of the tensor maximum, will reflect the
cause of the distortion.

When a sounding does not contain any coherent section that can
be identified as 1-D, analysis can be applied to a section of higher
dimension. However, when this occurs, the form of the derived dis-
tortion tensor is a function of the assumptions made to obtain a
solution and thus it can provide no information on the cause of
that distortion. Where a 2-D section of the sounding is used for
the analysis, the impedance tensor can be determined to within two
multiplicative constants, which represent unknown scale factors on
each of the principal apparent resistivities. Where a sounding dis-
plays 3-D character throughout, there is no simplifying form of the

regional impedance tensor and the phase tensor is the only distortion
free portion of the impedance tensor that can be recovered.

The problem of distortion removal is commonly misunderstood.
It has become common practice to combine the problem of de-
termining the strike direction with distortion removal. The phase
tensor separates the problems, providing the maximum information
on the implicit dimensionality of the impedance tensor and, when
appropriate, an explicit solution for the strike direction. The use of
the information provided by the phase tensor leads to a simple yet
rigorous approach to the problem of distortion removal involving a
minimum set of explicit assumptions. Distortion removal should be
used as a routine process in the analysis of MT data.
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MT distortion removal 929

Figure 12. Phase tensor parameters for MT data from sites 100 and 110 (Fig. 11). Note the similarity of the phase tensor data for all the parameters, including
the azimuth of the maximum of the phase tensors, despite the difference in the curves (Fig. 11). The phase tensor is independent of distortion and misalignment
of the electric field array. The analysis of the derived distortion suggests that the electric field array was installed at an angle of 45◦ with respect to the magnetic
field sensors.
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A P P E N D I X : G R A P H I C A L
R E P R E S E N TAT I O N O F A T E N S O R

The graphical representation of a second order second rank tensor
is used in Bibby (1986) for the presentation of tensor dc resistivity
data. This representation is outlined here in a slightly different form
using, as the example, the distortion tensor D. The same technique
can be used for any (real) second order tensor. The distortion tensor
defines the relationship between the regional ER and the measured
E electric field vectors

E = D ER. (A1)

In effect the role of the distortion tensor D is to map the regional
electric field vector into the measured vector. It is convenient to
write the tensor in the form given in eq. (16), which uses the tensor
invariants. That is, we write

D = RT(αD − βD)GD R(αD + βD), (A2)

where R (θ ) is the rotation matrix, and GD is a diagonal (gain)
matrix given by

GD =
[

Dmax 0

0 Dmin

]
(A3)

and angles α D and β D are defined in eq. (14). Note that β D , Dmax

and Dmin are invariants of D.

Now consider the effect of the distortion on a unit vector Ê in
direction θ . The corresponding measured electric field E is given by

E = RT(αD − βD) GD R(αD + βD)Ê(θ ), (A4)

where

Ê(θ ) =
[

cos(θ )

sin(θ )

]
.

As θ varies the vector E plots out an ellipse with major axis
occurring when θ = (α D − β D) (see Fig. 1). This is most easily
shown by rotating the coordinate axes to the direction of the major
axis. In the rotated coordinates

E′ = R(αD − βD) E

= R(αD − βD) RT(αD − βD)GD R(αD + βD) Ê(θ )
= GD R(αD + βD) Ê(θ ). (A5)

Writing E′ in component form[
E ′

x

E ′
y

]
= GD

[
cos(θ − αD − βD)

sin(θ − αD − βD)

]
. (A6)

Using the definition of GD[
E ′

x

E ′
y

]
=

[
Dmax cos(θ − αD − βD)

Dmin sin(θ − αD − βD)

]
, (A7)

which is the parametric equation for an ellipse with semi-major and
semi-minor axes of length Dmax and Dmin, respectively. Eliminating
(θ − α D − β D) gives the equation for the ellipse:

E ′
x

2
/(Dmax)2 + E ′

y
2
/(Dmin)2 = 1. (A8)

Relative to the original axes, the principal axis of the ellipse occurs
when E is in the direction (α D − β D). However, this occurs when
Ê(θ ) is in the direction θ where

θ = αD + βD . (A9)

Thus, the effect of the distortion tensor is to rotate the electric field
vector by 2β D .

An example of the elliptical representation of the phase tensor Φ
is shown in Fig. 1. The principal axes (shown as �max and �min)
together with the angle β are rotational invariants although α is not.
The angle α − β defines the orientation of the semi-major axis of
the ellipse (Fig. 1) relative to the coordinate axes. The angle α is the
principal axis of the symmetric part of D and defines a reference
axis, which lies at an angle β relative to the major axis of the ellipse.
Rotations of the coordinate axes will change only the angle α so that
the ellipse and the reference axis can be thought of as fixed relative
to the Earth. The angle α thus defines the orientation of the ellipse
and its reference axis relative to the coordinate axes, or equivalently,
defines the coordinate axes relative to the ellipse.

Note that when the real and imaginary components of the MT
impedance tensor are plotted using this technique the angle β is not
near zero as it is for a diagonally dominant tensor such as the phase
tensor. In uniform conditions the magnetic and electric field vectors
are orthogonal. Thus the impedance tensor, which is a mapping of
the magnetic field onto the electric field, must include a rotation of
the magnetic vector by about 90◦. This is accommodated by a value
of 2β of approximately 90◦ (β ≈ 45).
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