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Abstract

Static analysis for JavaScript can potentially help program-

mers find errors early during development. Although much

progress has been made on analysis techniques, a major ob-

stacle is the prevalence of libraries, in particular jQuery,

which apply programming patterns that have detrimental

consequences on the analysis precision and performance.

Previous work on dynamic determinacy analysis has

demonstrated how information about program expressions

that always resolve to a fixed value in some call context may

lead to significant scalability improvements of static analy-

sis for such code. We present a static dataflow analysis for

JavaScript that infers and exploits determinacy information

on-the-fly, to enable analysis of some of the most complex

parts of jQuery. The analysis combines selective context and

path sensitivity, constant propagation, and branch pruning,

based on a systematic investigation of the main causes of

analysis imprecision when using a more basic analysis.

The techniques are implemented in the TAJS analysis tool

and evaluated on a collection of small programs that use

jQuery. Our results show that the proposed analysis tech-

niques boost both precision and performance, specifically

for inferring type information and call graphs.

Categories and Subject Descriptors D.2.4 [Software En-

gineering]]: Software/Program Verification

General Terms Languages, Algorithms, Verification

Keywords JavaScript, program analysis

1. Introduction

JavaScript programmers need better tools to help detect er-

rors early during development, transform code for refac-

toring or optimization, and understand existing code bases.
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1 jQuery.each("ajaxStart ajaxStop ... ajaxSend".split(" "),
2 function(i, o) {
3 jQuery.fn[o] = function(f) {
4 return this.on(o, f);
5 };
6 });

Figure 1. A small example of code (abbreviated with

“...”) from jQuery-1.8.0 that causes challenges for static

analysis.

Static analysis may be a fruitful foundation for such tools.

However, the dynamic language features of JavaScript are

challenging to reason about with static analysis, and the

prevalent use of libraries is a major obstacle for further

progress.

Most JavaScript web applications today use libraries to

provide convenient functionality on top of the basic browser

API, and these libraries generally exploit the dynamic lan-

guage features intensely. Moreover, the library code for

many websites is an order of magnitude larger than the ap-

plication code itself. A survey has shown that 58% of the

top 10 million websites use the jQuery library, and it has a

market share among JavaScript libraries of 93.4% [35]. This

means that practical static analysis tools for JavaScript web

applications must be able to cope with jQuery. Since jQuery

evolves and new versions appear regularly, and thousands of

plugins exist, writing analysis-specific models of the library,

for example as detailed annotations of the library interface,

is not a viable option. Instead, we need to improve the static

analysis techniques to become able to reason precisely and

efficiently about the programming patterns that are used in

the library code.

As an example, consider what is required for a static anal-

ysis to reason about the small snippet of jQuery library code

shown in Figure 1. This code converts a string into an array

["ajaxStart", "ajaxStop", ..., "ajaxSend"] and

then iterates over this array using the jQuery.each library

function, assigning a function to a property of the object

jQuery.fn, which jQuery applications use as prototype ob-

ject for HTML node sets. In the first iteration, for exam-

ple, jQuery.fn.ajaxStart is set to a function that passes

a callback f to this.on("ajaxStart",f). If the analy-

sis does not have precise information about the value of o

in the assignment jQuery.fn[o] or at the inner expres-



1 // Multifunctional method to get and set values of a collection

2 // The value/s can optionally be executed if it’s a function

3 access: function(elems, fn, key, value, chainable , emptyGet, pass) {

4 var exec, bulk = key == null, i = 0, length = elems.length;

5 // Sets many values

6 if (key && typeof key === "object") {

7 for (i in key) {

8 jQuery.access(elems, fn, i, key[i], 1, emptyGet, value);

9 }

10 chainable = 1;

11 // Sets one value

12 } else if (value !== undefined) {

13 // Optionally , function values get executed if exec is true

14 exec = pass === undefined && jQuery.isFunction(value);

15 if (bulk) {

16 // Bulk operations only iterate when executing function values

17 if (exec) {

18 exec = fn;

19 fn = function(elem, key, value) {

20 return exec.call(jQuery(elem), value);

21 };

22 // Otherwise they run against the entire set

23 } else {

24 fn.call(elems, value);

25 fn = null;

26 }

27 }

28 if (fn) {

29 for (; i < length; i++) {

30 fn(elems[i], key,

31 exec ? value.call(elems[i], i, fn(elems[i], key)) : value,

32 pass);

33 }

34 }

35 chainable = 1;

36 }

37 return chainable ?

38 elems :

39 // Gets

40 bulk ?

41 fn.call(elems) :

42 length ? fn(elems[0], key) : emptyGet;

43 }

Figure 2. The jQuery access function, showing heavy use

of overloading.

sion this.on(o, f), then subsequent calls to the func-

tions on jQuery.fn will be mixed together by the analy-

sis. However, that information requires detailed knowledge

by the analysis of the meaning of not only the split and

jQuery.each functions, but also context sensitive reason-

ing of the nested closures. Specifically, notice that o in the

innermost closure is bound in the outer closure, so the anal-

ysis must track the connections between the closure objects.

In addition, the analysis must have precise knowledge of

the values of jQuery.each and split at the function calls,

which is not trivial to obtain due to the dynamic resolution

of variables and object properties in JavaScript. In principle,

both functions could be redefined elsewhere in the program.

The split function is part of the JavaScript standard li-

brary [6]. The jQuery.each function, on the other hand, is

itself defined in jQuery, using several for and for-in loops

and the native functions call and apply. Those functions

provide functionality to call any given function. Imprecise

treatment of their arguments during the analysis of eachwill

also have severe consequences on the analysis precision for

the code in Figure 1.

JavaScript libraries often use reflection to implement

overloading. As an example, the jQuery attr function for

accessing HTML attributes works as a getter if given one

string argument (the attribute name) and as a setter if given

one object argument (with a set of properties corresponding

to the attributes to set) or two arguments where the first is

a string (the attribute name) and the second is a string (the

new attribute value) or a function (that computes the new at-

tribute value based on the old value). Much of that function-

ality is shared by other jQuery functions, so it is placed in a

general, highly overloaded function, named access, shown

in Figure 2. Lines 6–9 handle the case of multiple setters

using recursive calls, single setters are handled in lines 12–

34, and the return value for ordinary getters is computed in

line 42. The overloading is implemented using reflection in

the branches, for example, line 12 checks whether the value

parameter is provided, in which case it is a setter operation.

The actual getting and setting of attributes is done via the

fn function in lines 20, 24, 31, 41 and 42. Analyzing func-

tions such as access evidently requires precise techniques

to avoid mixing together the different modes of operation

and the dataflow from different call sites.

Static analysis must inevitably approximate the dataflow,

but for JavaScript even small losses of precision are ampli-

fied by the poor encapsulation mechanisms of the language.

(JavaScript has no module system and no notion of private

fields, although these features to some extent can be mim-

icked with closures.) This often occurs with dynamic prop-

erty access, written x[y] (e.g. line 3 in Figure 1) where x is

an expression that evaluates to an object and y evaluates to

a string, possibly via coercion, that is interpreted as an ob-

ject property name. If x evaluates to the global object, which

plays a central role in JavaScript programs, and the value

of y is unknown due to approximations, then a read oper-

ation z=x[y] may conservatively result in numerous built-

in values—including the eval function and the Function

function that make it possible to execute dynamically gener-

ated code, the document object that gives access to the entire

HTML DOM, and other critical objects, such as Array and

Math. If the program being analyzed subsequently uses z in

function calls or property access operations then the analy-

sis may conservatively infer that, for example, eval is be-

ing invoked or the core methods on arrays are being modi-

fied. Most of the resulting dataflow is likely spurious in such

cases. For an assignment x[y]=f where the value of y is

unknown, static analysis will infer that the assignment may

overwrite any method of x, including toString, which is

used in type coercions. For a call x[y]( . . . ) where x is a

function object and the value of y is unknown, y could in

principle be the string "apply", in which case the function

x is invoked instead of some function stored in one of x’s

properties. Obviously, such imprecision quickly renders the

analysis results useless.

Static analysis tools often require more time and space

when precision degrades. Conversely, improving analysis

precision can cause significant improvements of time and



space requirements in practice, even though the theoretical

worst-case complexity may be higher [21, 30, 33]. While

working with specific analysis tools for JavaScript, we often

observe that some programs can be analyzed with high preci-

sion using modest resources, whereas other programs cannot

be analyzed at all due to cascading spurious dataflow, even

with many GB of space and hours of running time. The use

of challenging dynamic language features is more decisive

for analysis success than the program size.

Our goal is to enable practical, sound static analysis of

JavaScript programs that use the jQuery library. As a mea-

sure of analysis precision we consider (1) type analysis,

which infers the possible types of all variables and expres-

sions, (2) call graph construction, which infers the possible

callees at every function call site, and (3) dead code detec-

tion, which may be useful for optimization of applications

that do not use the entire library. As we focus on the jQuery

library itself, in this work we take the first steps and consider

only small client programs, not full-scale applications of the

library. For the reasons discussed above, time and space effi-

ciency is not our primary concern at this point, and we sim-

ply consider analysis executions that require less than one

minute as tractable.

Although jQuery has been studied in previous work re-

lated to dataflow analysis [22, 29, 33], no existing static

analysis has been shown capable of reasoning precisely

about the programming patterns found in libraries such

as jQuery. Among the most promising ideas is the obser-

vation by Schäfer et al. that determinacy information can

be exploited in static analysis, most importantly to handle

dynamic property access operations and overloaded func-

tions [29]. An expression is said to be determinate if it al-

ways evaluates to the same value when executed at runtime.

In practice, the most useful determinacy facts only hold in

a given context, so all determinacy facts in the approach by

Schäfer et al. are qualified with a complete call stack and

with values of loop iteration variables. As an example, a dy-

namic analysis of the code from Figure 1 may tell us that the

variable o always has the value ajaxStart in line 4 for the

first iteration of the loop inside the jQuery.each function,

and similarly for the other iterations. Such information may

then be used by a static analysis to enable context sensitiv-

ity and loop unrolling at the critical places in the JavaScript

code. We elaborate on the connection between our approach

and dynamic determinacy analysis in Section 2.

Our main contributions are as follows:

• We show how to integrate determinacy into a static anal-

ysis, which avoids the drawbacks of dynamic determi-

nacy analysis. The design of our static analysis is based

on a systematic investigation of imprecision in an exist-

ing dataflow analysis tool, TAJS [15–18], when applied

to jQuery. By extending TAJS with selective context and

path sensitivity, we obtain a fully automatic static anal-

ysis that simultaneously infers and exploits determinacy

information. As part of this, we introduce a flow-sensitive

variant of the correlation tracking technique by Sridharan

et al. [33]. The individual analysis techniques we apply

are variations of well known ideas, but to our knowledge

they have not before been applied in concert to analyze

JavaScript programs.

• We experimentally measure the effect of the analysis ex-

tensions on analysis precision and performance using a

collection of small jQuery programs and different ver-

sions of the library. The experiments demonstrate that

the improved analysis is capable of performing sound

and precise analysis of 86 of 154 benchmark programs,

showing that the presented techniques make it possible

to obtain detailed type information and call graph infor-

mation for substantial parts of jQuery. Most importantly,

the effects of the individual analysis techniques are in-

vestigated. We observe that the combination of selective

context and path sensitivity, constant propagation, and

branch pruning is critical for successful analysis.

Although this work does not solve all the problems in

static analysis of programs that use jQuery, we have now

reached the important milestone of handling at least small

applications that involve considerable parts of the library.

Programs that could not be analyzed before with available

resources can now be analyzed with high precision within

seconds. These results not only provide new insight into

challenges and possible solutions to static analysis for dy-

namic languages; they may also enable new practical tools

for supporting JavaScript programmers become more pro-

ductive.

We first, in Sections 2 and 3, describe the main related

work on static analysis for JavaScript and jQuery and briefly

introduce the existing TAJS analysis. Section 4 describes

our methodology that has led us to the proposed analysis

extensions, which are then explained in Sections 5–8. The

experimental evaluation is described in Section 9.

2. Related Work

Static analysis for JavaScript has been studied for a decade [2,

34], initially considering only subsets of the language and

ignoring practical issues, such as the browser environment

and the programming patterns used in libraries. It has later

become clear that handling real-world libraries, in particular

jQuery, is “a formidable challenge to static analysis” [33].

Except for the TAJS analysis tool, described separately in

Section 3, most analysis techniques separate pointer analysis

from dataflow analysis. WALA from IBM Research [29, 33]

is based on Andersen-style pointer analysis. Although the

correlation tracking technique by Sridharan et al. [33] shows

improvements, their experiments show that WALA is not

able to build a call graph for jQuery without manually mod-

ifying the core library function extend (which we return to

in Section 6) since “any sort of traditional flow-insensitive



analysis of this function gets hopelessly confused about what

is being copied where”. In addition, they report that WALA

cannot analyze jQuery unless ignoring the built-in functions

call and apply, which play an important role in jQuery.

Those experimental results are for a JavaScript application

that does nothing but load jQuery. By incorporating deter-

minacy information, Schäfer et al. [29] take a step further,

but still conclude that jQuery 1.3 and later versions are “not

yet analyzable” with WALA, and even the older versions

of jQuery require unsound modeling of the HTML DOM.

Their technique works in two phases: First, they infer de-

terminacy facts using a dynamic analysis. Each determinacy

fact consists of (1) an expression e in the program, (2) a con-

crete value v, and (3) a call stack c including values of it-

eration variables. The interpretation of such a fact is that e

will always have the value v when executed in a context that

matches c. This is exploited in the second phase, which is

a context sensitive static analysis. For example, if analyz-

ing a read operation x[y] in a call context c and a determi-

nacy fact provides the string value "p" for y in a context that

matches c, then the analysis can treat the operation x[y] as

x.p and hence know precisely which object property is be-

ing accessed.

The concept of determinacy plays a central role in our

work, as discussed in Section 1. As mentioned, Schäfer et al.

compute determinacy facts using a dynamic analysis before

performing the static analysis of interest. In contrast, our

analysis infers determinacy facts on-the-fly, during the static

analysis. This has several advantages:

1. Since the determinacy facts being inferred by the dy-

namic approach are qualified with the entire call stack

and values of loop iteration variables, each such fact only

provides information for a very specific context. This

means that it generally requires an extraordinarily thor-

ough dynamic execution to cover all the contexts that

may be relevant for the subsequent static analysis. The

jQuery case study [29] eschews this problem by consid-

ering only the simplest possible jQuery application that

loads jQuery and does nothing else, which means that

a single execution of that application covers practically

all relevant contexts. Our static analysis avoids explicitly

computing such qualified determinacy facts and automat-

ically covers all possible contexts.

2. Dynamic determinacy analysis requires a so-called coun-

terfactual execution to account for branches that are not

reached through the ordinary execution. This is not only

nontrivial to implement; it also leads to imprecise re-

sults when indeterminate calls or native functions with

side effects are encountered. For instance, a method call

x.m() causes the entire heap to be marked as indetermi-

nate by the dynamic analysis if x is not itself determinate.

In contrast, a static analysis can simply model the possi-

ble callees according to the current abstract state, without

losing all determinacy information.

Other related work includes the Actarus analysis by

Guarnieri et al. [11], which performs taint analysis for

JavaScript. It relies on WALA’s pointer analysis and thereby

inherits its limitations regarding jQuery. The Gatekeeper

analysis by Guarnieri and Livshits [10] is also based on a

variant of Andersen-style pointer analysis, using plain al-

location site abstraction and a coarse modeling of dynamic

property accesses and for-in loops, and it has not been

shown capable of handling the complexity of the jQuery

code. The related approach by Jang and Choe [14] has simi-

lar limitations.

Pointer analysis for JavaScript has been used as a foun-

dation for refactoring. Again, using traditional pointer anal-

ysis techniques has shown to be insufficient for JavaScript

libraries [7, 8].

The information flow analysis by Chugh et al. [5] uses

a context-insensitive constraint-based technique. Dynamic

property accesses are treated unsoundly, and the analysis

lacks support for call and apply, so it is unlikely that such

analysis is capable of reasoning precisely about dataflow in

jQuery.

The control flow analysis by Guha et al. [12] is based on

the uniform k-CFA algorithm. Some of their experiments in-

volve the Prototype library, which causes similar difficulties

for analysis as jQuery, and they had to manually modify 200

lines in the library to make it amenable to their analysis.

The event handler race analysis by Zheng et al. [39]

achieves scalability by avoiding the jQuery code entirely and

instead requiring manually written inference rules to model

its functionality.

The analyses by Hackett and Guo [13] and Logozzo and

Venter [23] are able to infer type information for optimiza-

tion, but in connection with runtime execution, not using off-

line static analysis. The blended analysis by Wei and Ryder

similarly handles the dynamic features of JavaScript by re-

quiring a dynamic analysis to provide information for the

static analysis [37].

Other techniques are able to analyze jQuery applica-

tions statically by sacrificing soundness, for example, ig-

noring dynamic property accesses altoghether [9], or ignor-

ing all library code [24]. Another approach to reason about

jQuery code is to introduce a static type system, as in Type-

Script [38] or the work by Lerner et al. [22], however, we

aim for a technique that does not require tedious and error

prone maintenance of complex type annotations.

In summary, no existing static analysis can reason pre-

cisely about the programming patterns found in libraries

such as jQuery. To this point, the state of the art is WALA,

which is capable of analyzing a JavaScript program that does

nothing but load jQuery, and only for outdated versions of

jQuery with manual modifications and unsound treatment of

the DOM and some core JavaScript functions.



3. Background: The TAJS Static Analysis

We assume that the reader is familiar with the basic features

of the JavaScript programming language, and we here briefly

describe the TAJS analysis tool [15–18] that our work is

based on.1

TAJS is a whole-program dataflow analyzer for JavaScript,

including the ECMAScript standard library [6] and large

parts of the W3C browser API and HTML DOM function-

ality. JavaScript programs are represented in TAJS as flow

graphs, with nodes representing primitive instructions and

edges representing intraprocedural control flow. Interpro-

cedural control flow is discovered during the analysis. A

representative list of the primitive instructions that may ap-

pear at flow graph nodes are shown in Figure 3. (To simplify

the presentation we here omit instructions related to dele-

tion of variables and properties, with and for-in blocks,

and special forms of call and construct operations.) Nested

JavaScript expressions are linearized using a notion of tem-

porary registers to hold intermediate values.

The dataflow analysis, which is derived from the mono-

tone framework [19], is flow sensitive and partly context sen-

sitive, using allocation site abstraction for objects and con-

stant propagation for primitive values. The basic abstract do-

mains used by the analysis, which closely mimic the EC-

MAScript specification, are shown in Figure 4. The flow

graph for the program being analyzed defines the set N of

flow graph nodes and the set R of temporary registers. The

set C is used for context sensitive analysis, as explained in

the following sections, L is the set of abstract addresses of

objects. The set P contains all object property names, in

other words, all strings plus some pseudo-properties: the in-

ternal ECMAScript properties [[Prototype]] and [[Value]],

and default_index, and default_other that provide default

values for, respectively, array index properties and other

properties.

The main domain AnalysisLattice provides a call graph

and an abstract state for each pair (c, n) ∈ C×N of a context

and a flow graph node. A call graph g ∈ CallGraph is a set

of call edges, each defined by a caller context, the location

of a call or construct node, a callee context, and a function

entry node. An abstract state s ∈ State provides an abstract

object for each address, an abstract value for each register,

and an execution context. An execution context in JavaScript

contains the current scope chain (which is used for resolv-

ing variables) and references to a designated variable object

(which is used for variable declarations) and a ‘this’ object

(which defines the current value of this). Execution con-

texts are modeled by the lattice ExecutionContext. An ab-

stract object o ∈ Obj assigns an abstract value, absence in-

formation, and attribute information to every property name.

(For property names where the abstract value is ⊥, the infor-

mation for default_index or default_other is used instead.)

1 Our starting point is TAJS v0.9-2, which contains minor changes com-

pared to the existing research papers on TAJS.

declare-variable[x]: declares a program variable named x

with initial value undefined

declare-function[f, r]: creates a closure for the function f

to be stored in register r

read-variable[x, r]: reads the value of a program variable

named x into register r

write-variable[r, x]: writes the value of register r into a pro-

gram variable named x

constant[c, r]: assigns a constant value c to register r

read-property[r1, r2, r3]: performs an object property read

where r1 holds the base object, r2 holds the property

name, and r3 gets the resulting value

write-property[r1, r2, r3]: performs an object property write

where r1 holds the base object, r2 holds the property

name, and r3 holds the value to be written

if[r]: represents conditional flow for if, for, and while

statements

call[v, r0, . . . , rn, u] and construct[v, r0, . . . , rn, u]:

represent calls and new expressions, where register v

holds the function value, r0, . . . , rn hold the values of

this and the parameters, and u gets the return value

return[r] and return-exc[r]: the unique exit (normal/excep-

tional) of a function body

throw[r] and catch[x]: represent throw statements and en-

tries of catch blocks

<op>[r1, r2] and <op>[r1, r2, r3]: represent unary and

binary operators, where the result is stored in r2 or r3,

respectively

Figure 3. The main instructions in TAJS flow graphs.

The sub-lattices Absent and Attr indicate whether the prop-

erty may be absent, and, if present, what attributes (Read-

Only, DontDelete, DontEnum) it may have, and Mod tracks

whether the property has been modified within the current

function (see [15] for details). Each abstract object also car-

ries a scope chain, represented as a finite list of sets of object

addresses. Values are modeled by the product lattice Value
with a component for each kind of value: undefined, null,

booleans, numbers, strings, and references to objects. For

each kind of primitive value, the corresponding lattice is

chosen as the constant propagation lattice [36], with ⊤ rep-

resenting any possible value and ⊥ representing the situation

where the value cannot have that type. The Num and String
lattices, modeling numbers and strings, have additional lat-

tice elements for representing unknown array index values.

The String lattice furthermore has special lattice elements

that group strings with a common prefix [18]. Note that TAJS

models program variables as properties of activation objects,

directly corresponding to the ECMAScript specification [6].

The transfer functions for the flow graph nodes model the

effects of the instructions, including type coercions.



N : flow graph nodes

R : registers

C : contexts

L : object addresses

P : property names

AnalysisLattice = (C ×N → State)× CallGraph

CallGraph = P(C ×N × C ×N)

State = (L → Obj)× Registers × ExecutionContext

Registers = R → Value

ExecutionContext = ScopeChain × P(L)× P(L)

ScopeChain = P(L)∗

Obj = (P → Value×Absent×Attr×Mod)×ScopeChain

Value = Undef × Null × Bool × Num × String × P(L)

Figure 4. Basic abstract domains used by TAJS.

In its most basic mode, TAJS uses allocation site abstrac-

tion where objects are distinguished only by their allocation

site, that is, L = N . The default behavior, however, adds

recency abstraction [3] to distinguish the most recently allo-

cated object from older ones originating from the same allo-

cation site, thereby enabling strong updates for many write

operations. Since a single primitive instruction may create

multiple new objects, for example at call instructions, TAJS

further distinguishes between objects of different kinds, for

example, activation objects and arguments objects.

TAJS employs a basic form of path sensitivity by pruning

certain infeasible dataflow at branches [1]. For example, at

a conditional statement if (x) S1 else S2, the analysis

may assume that x is not false, undefined, or any other

“falsy” value at the entry of S1 and conversely at S2. In

situations where pruning infeasible values leads to ⊥Value

(for example, if x is constant) the entire abstract state can be

reduced to ⊥State, thereby concluding that the corresponding

branch is unreachable in the given call context.

The default setting for context sensitivity is based on the

idea of object sensitivity [26], using C = P(L), where call

contexts are distinguished by the abstract value of this (but

only for functions that contain this).

Other analysis techniques used by TAJS include lazy

propagation [16], abstract garbage collection [25], modi-

fied flags [15], modeling of the HTML DOM and browser

API [17], and on-the-fly elimination of eval calls [18], but

those techniques are not essential to understand the exten-

sions we consider in this paper.

4. Integrating Determinacy in Static Analysis

The concept of determinacy fits naturally into static analy-

sis, as known from context sensitive constant propagation

for primitive values and single-target resolution for objects

in many existing analyzers. A determinacy fact in static anal-

ysis is then simply a dataflow fact that an abstract value in

the abstract state at a given flow graph node and context is

a single, concrete value, such as, a string constant or a func-

tion object. Thus, constant propagation is in itself a simple

form of determinacy analysis, which TAJS already exploits

at dynamic property access (by treating x[y] as x.p if y is

known to be a constant string p) and at conditionals (by prun-

ing infeasible flow, as mentioned in the previous section).

This raises two questions: (1) It is possible to extend

TAJS to infer more determinacy information? (2) Can we

exploit that additional information to improve analysis of

jQuery? Our starting point is an analysis that suffers from

fatal imprecision and extreme memory and time consump-

tion when given a trivial JavaScript application that loads

jQuery and does nothing else. We now present some sim-

ple techniques that have helped us reveal the main causes

of imprecision or redundant work in the analysis, to suggest

opportunities for inferring and exploiting more determinacy

information.

First, we interrupt the dataflow fixpoint solver after a

number of iterations, e.g. 10 000 node transfer function exe-

cutions. Since the fixpoint has not been reached, the current

abstract states are generally not a sound approximation of the

possible program behavior, however, they can still be useful

for identifying likely spurious dataflow. We define a heuris-

tic measure of suspiciousness on the abstract values and the

call graph:

• An abstract value is suspicious if it has many different

types, where we categorize types as numbers, strings,

booleans, functions, arrays, native objects, DOM objects,

and other objects.

• A call graph is suspicious at a given call site and call

context if that pair has a large number of callees.

We have found that a high degree of suspiciousness often

indicates a high amount of spurious dataflow, so manually

inspecting the most suspicious cases often provides valu-

able insights about the causes of imprecision and potential

solutions. Using a delta debugging tool, such as JS Delta2,

with a suspiciousness threshold as predicate helps finding

smaller programs that exhibit the bottlenecks of interest. An

additional effective technique to reduce the complexity of

the task is to apply a simple form of program slicing by re-

moving the functions and conditional branches in the jQuery

code that are not used by the given application at runtime.

Based on such an investigation of imprecision when at-

tempting to analyze programs that use jQuery, we propose

2 https://github.com/wala/jsdelta

https://github.com/wala/jsdelta


three analysis improvements related to context and path sen-

sitivity: parameter sensitivity as a variant of object sensitiv-

ity, loop specialization to improve precision of for loops

and for-in loops, and context sensitive heap abstraction

for selected allocation sites. Each improvement can be ex-

pressed and implemented as a manageable extension of the

analysis framework described in Section 3. Specifically, the

abstract domains only require modifications of C and L.

5. Parameter Sensitivity

As indicated by the examples in Figures 1 and 2, it is criti-

cal that certain library functions are analyzed context sen-

sitively. Object sensitivity is not sufficient, since this is

not used by many of the functions. An alternative, such as

1-CFA [32], which includes the call site in the context, is

also insufficient, since many of the library functions, includ-

ing each and access from our examples, involve multi-

ple layers of nested calls. Although the more general tech-

nique k-CFA (or, the call string technique [31]) may help,

our study of imprecision, as discussed in Section 4, suggests

that we instead focus on the abstract values of selected func-

tion parameters. For example, what matters for a call to the

closure in line 2 in Figure 1 is not the location of the call site

but the values of its two parameters. For this reason, we sug-

gest a notion of parameter sensitivity, which can be seen as

a variant of object sensitivity that is easily incorporated into

the existing TAJS analysis framework. The basic concept of

parameter sensitivity is not new – similar techniques have

been used in pointer analysis [21] and type inference [27]

– but it has not been investigated before how it works for

JavaScript libraries and when and how it should be applied.

The idea in selective parameter sensitivity is that certain

functions should be analyzed context sensitively depending

on the abstract values of their parameters at the call sites. If

we let A denote the set of all function parameters (identified

by their position in the list of actual parameters) we now

extend the notion of contexts from C = P(L) to:

C = P(L)× (A ⇀ Value)

The interpretation of a context (t, a) ∈ C is that t represents

the value of this, as in Section 3, the extra component a

specifies an abstract value for selected parameters in A for

the current function. The analysis transfer functions require

modifications only for call and construct: when creating a

context (t, a) ∈ C, the t component is created as before, and

the a component is found by reading the abstract values of

the selected actual parameters in the current abstract state.

With this infrastructure in place, the question that remains

is how to decide which parameters to select when construct-

ing the new contexts. Selecting all parameters will likely be

too costly and result in an explosion in the number of con-

texts; selecting none is equivalent to omitting the analysis

extension. Based on the approach explained in Section 4 we

propose the following simple heuristic that performs the se-

lection on-the-fly, during the static analysis:

When a transfer function creates a new context (t, a)
at some call site, we select those parameters for inclu-

sion in a whose abstract value is a concrete string (i.e.,

a known string in the String lattice) or a single object

address (i.e., exactly one object allocation site).

According to the structure of the domain AnalysisLattice,

this extension allows us to have multiple abstract states at

a program point, irrespective of this. As an example, if

the access function from Figure 2 is called twice, at each

place with a function literal as the second parameter (named

fn), then the body of the access function will effectively

be analyzed twice, which prevents the two function literals

from being mixed together. In this way, the analysis knows

precisely what fn refers to in each context. This increases

precision at all calls to fn inside access, and it also works

smoothly in line 8 where fn is passed as a parameter in a

recursive call.

Regarding the example from Figure 1, the use of parame-

ter sensitivity will allow the analysis to distinguish between

the different values of o in line 3. However, more precision

improvements are needed to handle the entire example satis-

factorily, which we return to in Section 7.

Notice how TAJS’s constant propagation and context sen-

sitive interprocedural analysis fit well together. All the func-

tions that appear in Figure 1 may be invoked with many

different parameter values, but our selective use of parame-

ter sensitivity ensures that the central parameters often have

constant values in each context. In other words, the static

analysis infers determinacy information that is qualified by

abstract contexts, not by concrete call stacks as in dynamic

determinacy analysis. Other static analysis algorithms per-

form context sensitive constant propagation [28]. In our set-

ting, it is important that the constant propagation includes

folding at operators, for example == and === in Figure 2,

and at native ECMAScript functions, for example split in

Figure 1, which we discuss in Section 8.

As the extension with parameter sensitivity makes the

analysis lattice infinite-height (since the Value lattice that

we now use in C has infinite width), some form of widening

is needed to ensure termination. We simply select a thresh-

old, for example 100, specifying the maximum number of

abstract states at any program point. If this limit is exceeded,

parameter sensitivity is disabled for the functions in ques-

tion. However, this is mostly a theoretical concern: if the

number of abstract states grows large, the analysis will likely

be imprecise and not terminate anyway within a reasonable

time budget. The worst-case complexity of the analysis in-

creases dramatically by this extension. The interesting ques-

tion is whether this complexity outweighs the increased pre-

cision, which we study experimentally in Section 9.



1 each: function(obj, callback, args) {

2 var name, i = 0, length = obj.length,

3 isObj = length === undefined || jQuery.isFunction(obj);

4 if (args) {

5 if (isObj) {

6 for (name in obj) {

7 if (callback.apply(obj[name], args) === false) {

8 break;

9 } }

10 } else {

11 for (; i < length;) {

12 if (callback.apply(obj[i++], args) === false) {

13 break;

14 }

15 }

16 }

17 // A special, fast, case for the most common use of each

18 } else {

19 if (isObj) {

20 for (name in obj) {

21 if (callback.call(obj[name], name, obj[name]) === false) {

22 break;

23 }

24 }

25 } else {

26 for (; i < length;) {

27 if (callback.call(obj[i], i, obj[i++]) === false) {

28 break;

29 }

30 }

31 }

32 }

33 return obj;

34 }

Figure 5. The jQuery each function.

6. Loop Specialization

Some central library functions, including the each function

(called in line 1 in Figure 1 and shown in Figure 5) and also

the access function (Figure 2) iterate through arrays, and

we sometimes observe a critical loss of precision, in the form

of an unknown dynamic property read, if the analysis does

not distinguish between the individual iterations. For exam-

ple, in the for loop starting in line 26 in Figure 5 it is impor-

tant that the possible values of i are not mixed together. The

callback is invoked with obj[i] as the parameter, so impre-

cision of i will propagate to, for example, f in line 4 in Fig-

ure 1. This makes the analysis unable to distinguish between

the different functions in jQuery.fn. One consequence of

this is that subsequent calls to jQuery.fn.each will pro-

duce dataflow to the function on line 3 in Figure 1, which

will register the callback parameter as an event handler, ulti-

mately resulting in a proliferation of spurious dataflow.

6.1 Specialization of for Loops

Our solution is to perform a simple kind of loop unrolling

during the analysis. We do this by, again, extending the

notion of contexts, adding yet another component to C:

C = · · · × (B ⇀ Value)

Here, B is the set of local variable names occurring in the

program, and “· · · ” corresponds to the former definition of

C in Section 5. The interpretation of a context (. . . , b) ∈ C

is that b describes the values of selected local variables. No-

tice that the notion of “context” now not only characterizes

information from call sites, but also intraprocedural infor-

mation. Whenever the analysis fixpoint solver propagates

abstract states intraprocedurally, the contexts now change

when the abstract values of the variables in b change. This

is, fortunately, easy to accommodate in the TAJS implemen-

tation. Similar to our approach to parameter sensitivity, the

question is which local variables to select when constructing

b. We again propose a simple heuristic that decides on-the-

fly:

When a context (. . . , b) is created, we select those lo-

cal variables for inclusion in b whose abstract value is

a concrete integer (as represented in the Num lattice)

in the current abstract state. However, we include only

variables that appear syntactically in the condition and

in the body of a non-nested for loop in the current

function, and are involved in a dynamic property read

operation (i.e. as a sub-expression of e2 in e1[e2]).

Applying this technique to the each function in Figure 5,

the analysis will select the local variable i for specialization

and effectively unroll the for loops, creating a new con-

text for every loop iteration. This can be viewed as a form

of path sensitivity [4]. Observe how this analysis extension

improves the inference of determinacy information, espe-

cially when combined with the parameter sensitivity tech-

nique from Section 5. The analysis exploits this information,

for example to precisely model which parameter values are

passed to the callback in line 27.

Some form of widening is obviously needed to ensure

termination, as in Section 5. As a pragmatic solution, we

choose to restrict this context specialization to a small range

of numeric values, 0 to 50. Similar to the discussion about

the increased theoretical worst-case complexity of adding

parameter sensitivity, our experiments in Section 9 show

whether the extra complexity caused by this additional ex-

tension pays off.

6.2 Specialization of for-in Loops

We now consider the for-in loops, which can often also

benefit from context specialization as they play a central

role in many library functions, including access (Figure 2),

each (Figure 5), and extend (Figure 6). The extend func-

tion plays a central role in jQuery for populating its core

objects, but it is also often used in application code to copy

properties from one object to another. The first part (lines 2–

23) inspect the arguments object to determine which of the

many possible ways it is being used. In particular, this sets

target to the object being copied to, and i becomes the

index of the first parameter containing a source object. The

outermost for loop (lines 24–49) then iterates through the

source objects, and the innermost for-in loop (lines 28–49)

iterates though their properties, copying them to the target

object. The deep variable determines whether to use shallow

or deep copying. Notice again how interprocedural constant

propagation is exploited: calls to extend typically pass in



1 jQuery.extend = jQuery.fn.extend = function() {

2 var options, name, src, copy, copyIsArray , clone,

3 target = arguments[0] || {},

4 i = 1,

5 length = arguments.length,

6 deep = false;

7 // Handle a deep copy situation

8 if (typeof target === "boolean") {

9 deep = target;

10 target = arguments[1] || {};

11 // skip the boolean and the target

12 i = 2;

13 }

14 // Handle case when target is a string or something

15 // (possible in deep copy)

16 if (typeof target !== "object" && !jQuery.isFunction(target)) {

17 target = {};

18 }

19 // extend jQuery itself if only one argument is passed

20 if (length === i) {

21 target = this;

22 --i;

23 }

24 for (; i < length; i++) {

25 // Only deal with non-null/undefined values

26 if ((options = arguments[i]) != null) {

27 // Extend the base object

28 for (name in options) {

29 src = target[name];

30 copy = options[name];

31 // Prevent never-ending loop

32 if (target === copy) {

33 continue;

34 }

35 // Recurse if we’re merging plain objects or arrays

36 if (deep && copy && (jQuery.isPlainObject(copy) ||

37 (copyIsArray = jQuery.isArray(copy)))) {

38 if (copyIsArray) {

39 copyIsArray = false;

40 clone = src && jQuery.isArray(src) ? src : [];

41 } else {

42 clone = src && jQuery.isPlainObject(src) ? src : {};

43 }

44 // Never move original objects, clone them

45 target[name] = jQuery.extend(deep, clone, copy);

46 // Don’t bring in undefined values

47 } else if (copy !== undefined) {

48 target[name] = copy;

49 } } } }

50 // Return the modified object

51 return target;

52 };

Figure 6. The jQuery extend function.

literal objects, which are then kept separate by the analysis

due to the use of parameter sensitivity.

TAJS represents for-in loops using four special kinds

of flow graph instructions as illustrated in Figure 7. Intu-

itively, begin-for-in[r1, r2] creates an iterator r2 for iterating

through the properties of the object pointed to by r1, has-
next-property[r2, r3] sets r3 to true or false depending on

whether r2 has reached the end or not, next-property[r2, r4]

picks the next property from r2 and stores its name in r4,

and end-for-in represents the end of the loop body. We use

r1, r2, r3, r4 ∈ R as temporary registers, as discussed in

Section 3. The iteration order is implementation dependent

according to the ECMAScript specification, so to remain

conservative TAJS must model all possible orders. The or-

dinary behavior of TAJS is to let r2 represent the least upper

bound of the property names of r1 (including null to rep-

resent end-of-list), set r3 to any-boolean, and set r4 equal to

r2, corresponding to nondeterministically picking a property

3
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Figure 7. Representation of for-in loops in TAJS flow

graphs.

name in each iteration. Although sound, this is evidently too

imprecise for jQuery.

This motivates the addition of a variant of the context spe-

cialization mechanism that we introduced above for ordinary

for loops, now considering selected registers instead of pro-

gram variables using an additional component in C:

C = · · · × (R ⇀ Value)

We now modify the transfer functions of the four special in-

structions as follows. First, the transfer function of begin-
for-in will attempt to split the current context into a special-

ized context for each property name in the r1 object, such

that r2 in the corresponding abstract state that is propagated

to has-next-property is a fixed string representing exactly

one of the property names. Again, an on-the-fly heuristic de-

cides whether to perform this specialization or not:

The transfer function of begin-for-in will split the

current context if the set of property names of r1 can

be determined precisely in the current abstract state.

(Otherwise, it will use the ordinary behavior, as explained

above, as a fallback.) For instance, if the current abstract

state has r1 = {ℓ7} for some abstract address ℓ7 ∈ L and

the abstract object at ℓ7 has the property names {p1, p2}
in that abstract state then the current context (. . . , d) ∈ C

is split into two specialized versions, (. . . , d[r2 7→ p1])
and (. . . , d[r2 7→ p2]), that are propagated along with the

correspondingly specialized abstract states to the has-next-
property instruction. The analysis is then ready to analyze

the loop body twice, once for each property name.

When the transfer function for has-next-property re-

ceives such a specialized abstract state where the value of r2
is a fixed string p and not the end-of-list marker null, it will

immediately pass the abstract state to the next-property

instruction, which then assigns p to r4. The only nontrivial

case is the transfer function for end-for-in, which is respon-

sible for merging the changes made to the abstract states

by the loop body. Simply taking the least upper bound of

the abstract states is a sound, but overly conservative solu-

tion, since it will effectively include the infeasible execution

that skips the loop body entirely. Instead, we exploit the fact

that TAJS already keeps track of which parts of the abstract

states have been modified since the entry of the current func-

tion (cf. the Mod sub-lattice in Figure 4; see also [15, 16]).



By treating every has-next-property instruction as a pseudo-

function entry, this directly gives us the heap locations that

have been modified by the loop body. The merged abstract

state created by end-for-in is then defined as the least up-

per bound of the specialized abstract states, except that we

let modified parts in one state overwrite non-modified parts

from another state. To soundly model the nondeterminis-

tic iteration order, we make sure the effects of one iteration

are visible by the others by propagating the merged abstract

state not only to the successor node of the loop but also back

to the specialized contexts at the has-next-property node.

As a result, the analysis soundly captures all possible

dataflow, without mixing together the property names. For

example, the extend function from Figure 6 is used for

bootstrapping the jQuery library with several calls of the

form jQuery.extend({p1:v1, ..., pn:vn}) that copy

the given object properties to the jQuery object itself. Our

analysis technique handles such patterns with high precision.

6.3 Connections to Other Analysis Techniques

The form of context specialization at for-in loops pre-

sented in Section 6.2 is reminiscent of the correlation track-

ing technique by Sridharan et al. [33] in WALA’s flow insen-

sitive pointer analysis. The primary motivating example con-

sidered by Sridharan et al. is a simple version of the extend

function from jQuery. The key idea in correlation tracking

is to identify correlated dynamic property accesses, such as

copy = options[name] and target[name] = copy in

Figure 6 (lines 30 and 48), extract the block of code con-

taining the accesses into a new function, and then analyze

that function context sensitively. The main differences be-

tween correlation tracking and our for-in specialization

technique are that our approach works for flow sensitive

analysis and without explicitly tracking correlated read/write

pairs or extracting functions. Moreover, our approach does

not require manual modifications of jQuery’s extend func-

tion, unlike WALA.

We have seen in the preceding sections how the increased

context sensitivity and loop specialization can boost constant

propagation. This in turn gives more power to the basic form

of path sensitivity that TAJS uses at branches as described in

Section 3. Consider, for example, the branches in lines 8, 20,

and 20 in Figure 6 for a call jQuery.extend({p1:v1,

..., pn:vn}) with parameter sensitivity enabled. With

that context, the analysis will infer that the three branch

conditions will definitely evaluate to false, false, and

true, respectively. In other words, the analysis automati-

cally prunes branches that are infeasible in the specific con-

texts, thereby eliminating a considerable source of spuri-

ous dataflow. In this way, our combination of static analy-

sis techniques can also be viewed as an alternative to the

dynamic determinacy analysis discussed in Section 2: we

effectively infer determinacy information during the static

analysis rather than requiring a separate dynamic analysis.

The notion of type refinement by Kashyap et al. [20] is

based on the same idea that TAJS uses at branch conditions

to restrict dataflow, as mentioned in Section 3, although

Kashyap et al. suggest more kinds of branch conditions

than TAJS currently supports. Interestingly, we observe only

negligible improvements of the analysis results for jQuery

by using this technique, since it is often dominated by the

use of context sensitive constant propagation and pruning of

infeasible branches.

7. Context Sensitive Heap Abstraction
Our investigation of analysis imprecision, as described in

Section 4, suggests that context sensitive heap abstrac-

tion [21] may also be necessary. Figure 1 again motivates

the need: if analyzing a program that uses, for example,

jQuery.fn.ajaxStart or jQuery.fn.ajaxSend, it is

important that these functions are kept separate in the ab-

straction. Parameter sensitivity is not sufficient, because the

functions are closures with free variables that are bound in

enclosing activation objects.

We incorporate a variant of context sensitive heap ab-

straction by extending the definition of abstract addresses

from L = N to:

L = N × (A ⇀ Value)× (B ⇀ Value)× (R ⇀ Value)

(As mentioned in Section 3, to simplify the presentation

we here ignore the other components of L that are used

for recency abstraction and object kinds.) This means that

objects are now not only distinguished by their allocation

site, but also by a valuation of selected program variables

and registers. Similar to our other analysis extensions, there

is a wide range of possibilities for selecting when and how

to apply this technique. Motivated by our study of analysis

imprecision, we suggest using the extra components of L in

four situations in different transfer functions:

1. When a declare-function instruction with source location

n in some context (t, a, b, d) ∈ C creates a new function

object, its abstract address is selected as (n, a, b, d) ∈
L; that is, the context sensitivity valuations a, b, and d

are taken directly from the current context. This causes,

e.g., jQuery.fn.ajaxStart or jQuery.fn.ajaxStop

to have distinct abstract values after the code in Figure 1

has been executed.

2. When a call or construct instruction creates a new ac-

tivation object and a new arguments object, the abstract

addresses of these objects obtain their context sensitivity

valuation directly from the newly created callee context.

This allows the analysis to distinguish the scope chains

of the function objects for jQuery.fn.ajaxStart and

jQuery.fn.ajaxStop. Thereby, when the functions

jQuery.fn.ajaxStart or jQuery.fn.ajaxStop are

later invoked, the value of o in line 4 in Figure 1 will

be bound precisely to "ajaxStart" or "ajaxStop", re-

spectively, without mixing together the different values.



3. Wrapper objects created in type coercions are treated

context sensitively in the same way as function objects,

as explained above, except that we only use the parameter

sensitivity component. As a motivating example, jQuery

passes primitive string values via the call function in

each (line 27 in Figure 5) into this in the callback

whereby they are coerced into string wrapper objects.

4. For every object literal {p:v, ...} that is in a for-in

loop or syntactically contains a function parameter that

is present in the parameter sensitivity component (Sec-

tion 5) of the current context, the abstract address of the

object will be context sensitive in the same way as wrap-

per objects. This is useful, for example, when jQuery cre-

ates its innerHeight method using nested calls to each

and an object literal of the form {padding: "inner" +

name, ...}.

For all other objects, the heap abstraction remains context

insensitive. The experiments in Section 9 show the effect of

this analysis extension on the precision and performance.

8. Modeling Standard Library Functions

The original version of TAJS models the JavaScript standard

library functions with a focus on type information, which

is the natural choice when developing a static type anal-

ysis [15]. As an example, String.prototype.split is

modeled as creating an array of unknown strings. A more

precise model is, however, needed when analyzing line 1 in

Figure 1 and similar uses of split throughout jQuery. We

observe a similar situation with regular expressions, which

are used frequently in jQuery. For instance, jQuery contains

the expression

dataTypeExpression.toLowerCase().split(core_rspace)

which TAJS reaches for an abstract state where the value

of dataTypeExpression is the string "json jsonp" and

core_rspace is the regular expression /\s+/. Those values

originate from other functions, and our use of context sen-

sitive interprocedural constant propagation is necessary to

infer that the values are constants that for a specific context.

Our solution is, not surprisingly, to strengthen the models

of the standard library functions to obtain full precision in

cases where their input consists of constant primitive values

in the abstract state at the call site. As a consequence, calls

with determinate input will return determinate output. We

achieve this by invoking an external JavaScript interpreter.3

Another critical source of imprecision is the use of object

property names that consist of random sub-strings. Such

property names are used by jQuery and other libraries to

attach library data to non-library objects. The following two

expressions from jQuery show how such property names are

typically computed (the actual code varies slightly between

the different versions of the library):

3 http://www.mozilla.org/rhino/

"jQuery" + (jQuery.fn.jquery + Math.random())

.replace(/\D/g, "")

("sizcache" + Math.random()).replace(".", "")

The resulting strings are used as keys in dynamic property

accesses. If the analysis models these strings conservatively

as “any string” (i.e., the top element of the String lattice),

then it will mix together the library data and all the other

properties of the involved objects.

Our solution is to augment the Value lattice with a

bounded number k of “random numbers or strings” and aug-

ment the State lattice with a counter from 0 to k. The trans-

fer function for Math.random then picks the next random-

value element and increments the counter if less than k. Note

that the correctness of jQuery relies on the assumption that

the randomly generated property names do not clash with

any other properties. If that assumption holds for a million

websites, we can use it too: in all comparisons, we can as-

sume that these random values are different from all other

strings and numbers, in particular, object property names.

Similarly, we assume that operations, such as the + opera-

tor or the built-in replace function, produce random values

when given random values as input. Since these random

strings are always created in the library initialization phase,

it suffices to set the bound k to a low number, e.g., 10.

9. Experimental Evaluation

Our main research question is: Do the analysis techniques

suggested in Sections 5–8 improve the analysis efficacy?

The extensions increase the theoretical worst-case complex-

ity of the analysis, so it is not obvious whether they improve

or degrade the results of the analysis. More specifically, for

each of the extensions, does the theoretically increased pre-

cision cause more programs to be analyzable, or conversely,

does the increased complexity manifest itself and diminish

the increased precision? In cases where the analysis suc-

ceeds within a reasonable time bound, how precise is it? And

conversely, in cases where it fails, is the cause related to our

analysis extensions, or can those cases suggest directions for

future work in improving the analysis further?

To evaluate the suggested analysis techniques and answer

these questions we have implemented them in TAJS and col-

lected four groups of benchmark programs: (A) The first

group contains 12 programs that each load a different ver-

sion of jQuery from 1.0.0 to 1.11.0 and does nothing else.4

(B) The second group consists of 71 programs from a jQuery

tutorial5 that load jQuery 1.10.06 and perform a few simple

operations using the library, thereby exercising the different

categories of functionality in jQuery. (C) To be able to ex-

plore the different parts of jQuery in isolation we use the

4 jQuery version 2.x is different from 1.x in that compatibility support for

older browsers has been removed, however, it uses ES5 getters and setters,

which are not yet fully supported by TAJS.
5 http://www.jquery-tutorial.net/

6 jQuery 1.10.0 was the newest version when this work was initiated.

http://www.mozilla.org/rhino/
http://www.jquery-tutorial.net/


jQuery
LOC load-LOC

flow graph

version nodes

1.0.0 981 261 6 925

1.1.0 1 125 290 7 878

1.2.0 1 484 289 11 190

1.3.0 2 124 632 16 282

1.4.0 2 828 725 21 630

1.5.0 3 583 910 26 882

1.6.0 3 896 969 29 078

1.7.0 4 082 1 108 30 443

1.8.0 4 074 1 158 30 093

1.9.0 4 121 1 162 30 861

1.10.0 4 141 1 192 31 234

1.11.0 4 311 1 218 32 927

Table 1. The main versions of jQuery, showing the number

of source lines that contain executable code, the number of

lines containing code that is executed by loading the library

in Chrome, and the number of primitive instructions in the

TAJS flow graph.

71 programs from the jQuery tutorial again, but now using

sliced versions of jQuery 1.10.0. That is, each program in

group C uses its own sliced version of jQuery where all parts

that are unreachable according to a dynamic execution in the

Chrome browser have been removed. (D) Finally, to mea-

sure the impact of the analysis modifications on non-jQuery

code, we include 69 programs from the Google Octane suite,

the SunSpider suite, the 10K Event Apart Challenge, and

Chrome Experiments that have been used in previous work

on TAJS.

The jQuery benchmarks in groups A, B, and C are evi-

dently far from full scale web applications, but as discussed

in Section 2 just loading jQuery causes major complications

for existing analysis tools. Some characteristics of the dif-

ferent versions of jQuery are shown in Table 1. In particular,

the numbers in the table show that substantial parts of the

library are involved in the loading process.

Our implementation and all benchmarks are available

online.7 All experiments are performed on a 2.9 GHz PC

running a JVM with 2 GB RAM.

We first run TAJS on the benchmark programs from

groups A, B, and C in 7 different analysis configurations.

The first is the modified analysis with all tricks enabled:

• branch pruning (Section 3),

• parameter sensitivity (Section 5),

• loop specialization for ordinary loops (Section 6.1),

• loop specialization for for-in loops (Section 6.2),

• context sensitive heap abstraction (Section 7), and

• improved modeling of the standard library (Section 8).

7 http://brics.dk/TAJS/jquery.html

Programs Success

A 12 11

B 71 27

C 71 48

total 154 86

Table 2. Analysis success for the three groups of jQuery

benchmarks, with all analysis features enabled.

Each of the remaining six configurations disables a single of

these analysis features. We classify an analysis execution as

successful if it reaches a fixpoint within one minute.

The configuration with all features enabled results in suc-

cessful analysis in 86 cases. The numbers for each of the

three groups of benchmarks are shown in Table 2. This is a

substantial improvement compared to WALA, which is un-

able to analyze beyond the first 3 versions of the 12 programs

in group A, as mentioned in Section 2. Moreover, for all the

remaining configurations we find that almost none of the 154

benchmark programs can be analyzed successfully. In other

words, all the analysis features must be enabled to obtain

successful analysis. This observation confirms that the indi-

vidual analysis techniques support each other, as discussed

in Section 6.3.

In the cases where the analysis succeeds, the analysis

time is between 1 and 24 seconds, with an average of 6.5
seconds. Increasing the time-out by a factor 10 allows only

three additional cases to succeed, which confirms that the

analysis precision is more important than the time bound.

To measure the analysis precision we investigate how

well TAJS performs type analysis, infers call graphs, and

detects dead code for the 86 successful executions in the

configuration where all features are enabled:

1. For every reachable read-variable and read-property in-

struction we count the number of possible types that the

resulting value may have in each abstract state (using the

same categories of types as in Section 4). According to

the analysis, 99% of the values have a unique type. As

the analysis is conservative this is a lower bound. Also,

the analysis finds that the average number of types for

each of the instructions is 1.006, where the real number

must be at least 1.

2. We inspect the abstract values of all properties of the ob-

jects jQuery and jQuery.fn at the exit of the program.

Those properties define the public interface of the library,

so it is important that the analysis is capable of keeping

the individual functions apart, which is challenging since

they are created dynamically when the library is loaded.

We find that 99% of the values that contain functions are

resolved uniquely by the analysis.

http://brics.dk/TAJS/jquery.html


3. We measure for each call and construct instruction

in each reachable call context the number of possible

callees. (Due to the use of higher-order functions, we

choose to measure this per context instead of considering

all possible callees for a given call.) As a result, 99% have

a unique callee according to the analysis.

4. For each benchmark program in group A and B, we count

the lines of dead code reported by TAJS relative to the

actual dead code as observed by exhaustively executing

the programs using the Chrome browser. On average,

TAJS finds 98% of the actual dead code.

These results show that the analysis has high precision in the

cases where it reaches a fixpoint before the time-out.

A concern about the benchmark programs that are not an-

alyzed successfully is that the cause could in principle be

explosions in the number of contexts or abstract addresses

resulting from the increased worst-case complexity with the

analysis extensions. To test this, we also measure the anal-

ysis precision using the same metrics as above, on abstract

states obtained after the 1 minute time-out. The resulting ab-

stract states are then under-approximations of the fixpoints,

but they can still be useful for measuring precision (as dis-

cussed in Section 4). As a result we see in each of the failing

cases that the cause is not an overwhelming number of con-

texts or abstract addresses, but imprecision in the individual

abstract states. The following numbers are for the bench-

marks in group C, which only contain reachable code and

are thereby easier to compare:

• The average number of contexts and abstract addresses

relative to the number of functions is 9.84 and 25.8, re-

spectively, for the 48 successful cases. The corresponding

numbers for the 23 unsuccessful cases at the time-out are

not much higher: 14.7 and 31.5.

• The relative number of read-property instructions that

yield abstract values with multiple possible types (mea-

sured as in Section 4) is 13 times higher for the unsuc-

cessful cases than for the successful cases.

Although the proposed analysis techniques are obviously not

sufficient to handle all aspects of jQuery, this indicates that

the techniques are necessary constituents in jQuery static

analysis tools.

To investigate this further, we also run the analysis on the

69 benchmarks in group D that do not use jQuery. Each of

those benchmarks is analyzable with the original TAJS. En-

abling all the new features except loop specialization for or-

dinary loops (Section 6.1) improves not only precision but,

surprisingly, also the analysis time. In other words, we ob-

serve that the increased analysis complexity does not de-

grade the performance on programs that do not need the

new features. The loop specialization technique sometimes

unrolls loops unnecessarily, which causes a modest slow-

down for some benchmarks, suggesting that adjustments of

the heuristics in Section 6.1 may be beneficial.

A possible threat to validity of our results is that the

benchmarks in groups A, B, and C are not independent of

each other: the different versions of jQuery naturally share

some code, and group C is directly constructed from group

B by removing unreachable code to be able to explore the

relevant parts of the library. Nevertheless, these experiments

demonstrate the effect of the analysis techniques and can be

helpful for identifying opportunities for future work.

Another potential concern is that we have no proof of

soundness, although this is no different from all existing

work on static analysis for JavaScript web applications.

(TAJS has known soundness bugs, but those we are aware of

do not affect our conclusions.) In addition to the existing test

suite in TAJS we have used its ability to detect dead code as

a simple soundness check: If the analysis reaches a fixpoint

where some code is reported as dead, the analysis is unsound

if that code is reached in a concrete execution in a browser.

This technique has caught a few subtle bugs in the modeling

of the DOM compared with how modern browsers work.

We have performed a preliminary investigation of the un-

successful cases (i.e. those where the analysis did not termi-

nate within one minute), using the methodology from Sec-

tion 4. Typically in the unsuccessful cases, unknown dy-

namic property reads (x[y] with an unknown y) lead to

much spurious dataflow and consequently many spurious

call edges, as exemplified in Sections 1 and 6. We have iden-

tified some of the major causes of these unknown dynamic

property reads, which suggests the following three areas

where additional analysis precision may be needed for suc-

cessful analysis of more benchmarks. (1) The loop unrolling

heuristic in Section 6.1 should unroll more loops that ulti-

mately influence dynamic property reads. An example of this

is a large loop that iterates over determinate strings, parses

them as CSS selector strings, and stores the parse results

as strings that are later used as keys in dynamic property

accesses. (2) The control sensitivity for overloaded func-

tions should be increased. Otherwise all the properties of the

global object will be read in a dynamic property read for

some uses of jQuery. Increased precision for type predicate

functions, such as isFunction, is likely to help with this.

(3) DOM elements and events should be treated with more

precision, as some DOM object property values are used as

keys in dynamic property reads and for deciding which over-

loaded function variants to use. An improved analysis could

then avoid querying DOM elements using unknown dynamic

property reads in places where the analysis should query the

numeric properties of an internal cache object instead.

Our results are based on small jQuery applications only,

so further studies are required to determine how indetermi-

nacy in the application code affects analysis of the library.

Although some JavaScript programs will surely remain be-

yond reach of sound static analysis, we conjecture that many

real-world jQuery applications can be analyzed effectively

by refining the techniques presented in this paper.



10. Conclusion

Previous work on static analysis for JavaScript web applica-

tions has shown that jQuery and related libraries are remark-

ably difficult to analyze efficiently, yet there is a substantial

potential in creating effective analysis tools for such code.

This could, for example, lead to better IDE support or tools

that can perform optimizations or help programmers detect

type-related errors during development.

We have shown how determinacy information can be in-

ferred and exploited by a static analysis to enable analysis of

a significantly larger part of the jQuery code base than pre-

vious tools have accomplished. Most importantly, we have

demonstrated the decisive effect of combining selective con-

text sensitivity with constant propagation and branch prun-

ing. Each of the techniques we apply increases analysis pre-

cision, yet the consequent increased theoretical worst-case

complexity does not manifest in practice in our experiments.

Although much work remains to be done, these results

suggest that high-precision dataflow analysis is a promis-

ing approach to static analysis of real-world JavaScript code.

Our investigation of the remaining challenges points toward

more precise treatment of loops, overloaded functions, and

DOM objects as potential topics of future work. Many vari-

ations of the heuristics proposed in Sections 5–7 can be con-

ceived, which may be worthwhile to explore further.
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