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Abstract

This paper provides a framework for establishing the determinacy of equilibria in general
equilibrium models with infinitely many commodities and a finite number of consumers and
producers. The paper defines a notion of regular economy for such models and gives sufficient
conditions on the excess savings equations characterizing equilibria under which regular
economies have a finite number of equilibria, each of which is locally stable with respect to
perturbations in exogenous parameters, and under which regular economies are generic. For
the case of sequence economies in which there are countably many commodities, such as discrete
time models or markets with countably many assets, the paper develops sufficient conditions on
preferences and technologies for these generic determinacy conclusions to hold. These
arguments build on the intuition that these economies can be thought of as the limit of economies
with a large finite number of commodities, and conclude that the sharp predictions of generic
determinacy in economies with finitely many commodities Carry over to economies with
countably many. commodities under one additional assumption, which prohibits goods from
becoming perfect substitutes asymptotically.




1 Introduction

The predictions arising from perfect competition in the classical Arrow-Debreu model
have been extensively studied over the last forty years. In one sense these predictions
are very imprecise, since the set of competitive equilibria is essentially arbitrary as
demonstrated by the striking work of Sonnenschein, Debreu, and Mantel. In a more
fundamental sense. however, the Arrow-Debreu model of perfect competition yields
sharp predictions: almost all smooth economies have only finitely many equilibria,
and perhaps more importantly. comparative statics in such regular economies are
locally determinate. since equilibria can be expressed locally as smooth functions of
underlying exogenous parameters. Furthermore, the restrictions on preferences and -
production technologies needed to generate a smooth economy are relatively mild, as
if preferences are smooth in the sense of Debreu (1972) for example, then the resulting
exchange economy is smooth and equilibria are generically determinate.

Part of the predictive power of the classical Arrow-Debreu model derives from the
fact that it allows for only a finite number of possible commodities. This restriction
means that it must be a static or finite horizon model if goods are interpreted as
time-dated, that there can be only finitely many possible states of the world if goods
are Interpreted as contingent commodities. or that there can be only a finite number
of distinct marketed assets if goods are interpreted as portfolic holdings in financial
markets. Such restrictions rule out many of the most important features of dynamic
economies, models of choice under uncertainty, and financial markets. To model any
of these ideas properly requires an infinite number of commodities, as much recent
work has emphasized. _

When the Arrow-Debreu model is extended to settings involving infinite-dimensional
commodity spaces, the issue of determinacy of equilibria loses none of its importance.
Indeed, if equilibria are indeterminate. then the slightest changes in exogenous pa-
rameters in the economy or the smallest amount of measurement error can lead to
large changes in equilibria, resulting in equilibria which may then have vastly different
properties from the original prediction. As these models become the standard for ad-
dressing dynamic questions, models of choice under uncertainty, or issues in financial
markets, resolving questions about determinacy in models with an infinite number of
commodities becomes all the more pressing. Moreover in several notable cases, such
as overlapping generations economies and incomplete financial markets models (Mas-
Colell (1991)), extending the Arrow- Debren model to accommodate infinitely many
commodities introduces robust indeterminacies in the set of competitive equilibria.
Both of these examples also involve market distortions which result in a failure of the
first welfare theorem, so whether the source of indeterminacy in these economies is
the lack of Pareto optimality or the addition of an infinite number of commodities is
left unclear by this work.

Furthermore, the existing positive results concerning determinacy in economies
with infinitely many commodities do not completely resolve this question. In a dis-
crete time, infinite horizon model with a finite number of infinitely-lived households, -
Kehoe and Levine (1985) show that equilibria are generically locally unique, as long
as each consumer’s utility function is additively separable, by relying on Negishi’s




approach, which uses the welfare theorems to characterize equilibria as the prices
and Pareto optimal allocations at which each consumer’s budget constraint is sat-
isfied (see Negishi (1960)). Their analysis. however, relies crucially on the additive
separability of preferences in their model. When consumers’ preferences are addi-
tively separable, consumption decisions in one pericd have no effect on marginal
utility in any other period, and hence the infinite-dimensiona! social planner’s prob-
lem characterizing Pareto optimal allocations becomes simply a countable sequence of
independent finite-dimensional problems, finding the Pareto optimal allocations in a
sequence of independent, standard finite-dimensional economies. Familiar arguments
and assumptions can be applied in each of these single period, finite-dimensional
economies to demonstrate that the Pareto optimal allocations and supporting prices
are smooth functions of the welfare weights in each period. Once this has been estab-
lished, each of the consumers’ budget equations can be written as a smooth functjon
of these welfare weights, and standard arguments immediately yield the conclusion
that equilibria are generically determinate in this model. -

Although the additively separable model yields sharp and straightforward results
concerning determinacy of equilibria, the assumption of additive separability is quite
restrictive as a model of intertemporal preferences for consumption over an infinite
horizon or uncertainty over a countable number of states. For example, the additively
separable mode] implies that consumers’ marginal rates of substitution between pe-
riods depend only on the amounts of the goods consumed in each period, and are
independent of consumption in any other period, which is contradicted by exper-
imental evidence and casual empiricism or introspection (see, e.g., Peleg and Yaari
(1973), Strotz (1936), or Thaler (1990)). In models with uncertainty, additive separa-
bility implies that the rate of intertemporal substitution and the rate of risk aversion
cannot be disentangled (see Epstein and Zin (1989)). As soon as one moves away
from this model to one which allows for more interaction across time or between
commodities in consumers’ utility, such as models incorporating habit formation or
recursive preferences, the ‘argument used to establish determinacy in the additively
separable case breaks down. No longer can the characterization of Pareto optimal
allocations and supporting prices as functions of the welfare weights be decomposed
into a sequence of independent finite-dimensional problems; such a characterization
is inherently and inextricably an infinite-dimensional problem, and the difficulty of
studying determinacy in this more general setting has been well-documented (see,
e.g.. Mas-Colell (1992) or Mas-Colell and Zame (1991)).

Some of these difficulties are highlighted by the work of Kehoe, Levine, Mas-Colel],
and Zame (1989), who give conditions under which equilibria are generically deter-
minate in large square exchange economies by taking as primitives smooth demand
functions for all consumers. Although such an approach is standard in economies
with a finite- number of commodities, and reasonable assumptions on preferences
such as differential convexity and strong survival conditions like requiring that in- -
difference curves do not intersect the boundaries of the consumption set ensure the
existence of smooth demand in finite economies. this approach is more problematic
in models with an infinite number of commodities. For most reasonable preferences
over infinite-dimensional commodity spaces. demand functions are not defined for all
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prices because budget sets are typically unbounded. Moreover, in most of the impor-
tant economic models with infinitely many commodities, the positive cone, which is
the natural domain for consumption bundles and for prices, has an empty interior.
In such cases, implicit in the assumption that demand functions are smooth is the
assumption that demand functions are well-defined not only for positive prices but
for negative prices as well. 7

To compensate for the emptiness of the interior of the positive cone, Mas-Colell’s
(1986a) seminal work uses the notion of uniform properness to ensure the existence
of prices supporting each Pareto optimal allocation. One explanation for the connec-
tion between uniform properness and the existence of supporting prices is the fact
that uniform properness of preferences is essentially equivalent to saying preferences
can be extended beyond the positive cone to some larger domain which does have
a nonempty interior, while still preserving the convexity of preferences, as Richard
and Zame (1986) show. This observation is important for determinacy analysis be-
cause it means that uniformly proper preferences are incompatible with the survival
conditions or Inada conditions necessary to guarantee positive consumption of all
commodities. When consumers can shift from consuming a good to not consuming
it in response to changes in prices or welfare weights or other parameters, consump-
tion will exhibit kinks. To illustrate this point. consider a simple model of choice
under uncertainty over a countable number of states. Considering only consumption
claims with ﬁnite variances leads to the commodity space £,, the space of sequences

x such that Z |ze|? < oo, which is a simple version of the model studied by Duffie

and Huang (1985) Consider an exchange economy in this setting composed of two
types of consumers, each of which has a von Neumann-Morgenstern utility function

of the form U(z) = Z Biui(z,), and suppose types have heterogeneous beliefs, so

81 > Ba. In order for each indifference set to have a well-defined supporting price at
each point which is a continuous linear functional, marginal utility for consumption
must be bounded, but this assumption rules out standard Inada conditions requiring
that the marginal utility for a good go to infinity as the quantity consumed goes to
zero. In every Pareto optimal allocation in this model, type 1 consumers eventually
consume the entire endowment in each state while type 2 consumers eventually con-
sume nothing. Moreover, the state in which this divergence takes place depends on
the weights assigned to each type by the social planner, so as these weights change,
consumption of type 2 agents in a given state will go to zero, and the consumption
of these consumers exhibits kinks at such weights.! Indeed, as is discussed in more
detail throughout this paper, these modeéls are ones in which the nonsmoothness of
the equilibrium equations is inherent in the problem; no simple assumptions such as
differential convexity or that the indifference curves do not intersect the axes are at

INote that the solution to the social planner’s problem here is determined by the solution to
the social planner’s problem in each state, and the relevant first order conditions in each state are

M=) 5 (8 : LrAty ot ot ty ot ; &\ ¥4
Sueh 2 (F#) end 2h(Birup(zh) ~ Bi\ui(zt)) = 0. Since (31) —0ast —ooand 37 is
bounded, zb = 0 for ¢ sufficiently large. Similar examples can be easily constructed under the

assumption of homogeneous beliefs, in which 8; = fs.




once consistent with the economic structure of the model and sufficient to guarantee
smoothness.

Studying determinacy in economies with infinitely many commodities while al-
lowing for more interaction across goods or periods, or for a more robust relationship
between time and uncertainty, will then require a different mode of analysis, one not
predicated on the finite-dimensional structure of the additively separable model, on
the notion of excess demand, or on the differential techniques pioneered by Debreu
(1970). This paper provides such a framework for establishing the determinacy of
equilibria in general equilibrium models with infinitely many commodities and a fi-
nite number of consumers and producers in two basic steps. First, the paper defines
a notion of regular economy for such models which is independent of smoothness, and
gives sufficient conditions on the equilibrium equations under which regular economies
have a finite number of equilibria. each of which is locally srable with respect to per-
turbations in exogenous parameters, and under which regular econornies are generic.
The primitive notion here, rather than excess demand functions as in Debreu (1970),
is the excess savings equations arising from Negishi’s characterization of equilibria.
Secondly, for the case of sequence economies in which there are countably many com-
modities, such as discrete time models or markets with countably many assets, the
paper develops sufficient conditions on preferences and technologies for these generic
determinacy conclusions to.hold. These arguments build on the intuition that these
economies can be thought of as the limit of economies with a large finite number of
commodities, suggested by Bewley’s (1972) seminal work and explored recently by
Balasko (1995), who studies the structure of the equilibrium set in the context of an
additively separable exchange model. This paper concludes that the sharp predic-
tions of generic determinacy in economies with finitely many commodities carry over
to economies with countably many commodities under one additional assumption,
a stronger notion of concavity prohibiting goods from becoming perfect substitutes
asymptotically. In particular, these results are applied to show that when the com-
modity space is {5, as in the previous financial markets model, generic determinacy
follows simply from strong differential concavity of consumers’ utility functions.

The paper proceeds as follows. Regular economies are defined in section 2, and
properties of regular economies are developed for general infinite-dimensional models
based on properties of the excess savings equations. Focusing on sequence economies,
section 3 introduces the notion of uniform concavity and shows that equilibria are
generically determinate under this additional restriction on preferences in an exchange
economy with finitely many consumers. In section 4, this analysis is extended to allow
preferences to satisfy Inada conditions in the case when the commodity space is £,
and in section 5, these methods are extended to production economies. Examples are
given in all of these sections to illustrate the application of these generic determinacy
results.




2 Regular Economies

This section develops a framework for establishing the determinacy of equilibria in
economies with infinitely many commodities which does not relv on smooth methods.
Although the rest of the paper focuses.on sequence economies, in which there are
2 countable number of commodities, the results of this section also apply to more
general economies with an infinite-dimensional commodity space. The definitions
and results of this section are thus stated for general economies. and these ideas are
illustrated using sequence economies. To simplify notation these results are stated for
exchange economies, but they carry over in a straightforward manner to production
economies. This extension is discussed in section 5. The main conclusions of this
section are that even though consumption will typically exhibit kinks in economies
with infinitely many commodities, there is a meaningful notion of regular economy
which has all of the strong properties of regular economies in a finite-dimensional
setting, and as long as the excess savings equations describing equilibria are at least
Lipschitz continuous, such regular economies are generic.
The basic assumptions maintained throughout the paper concerning these economies

are contained in the following definition.

Definition 2.1. An economy is a smooth exchange economy if the commodity-
price pairing Is a symmetric Riesz dual system (X, X'} ? and for each consumer i =
1,...,m,

1. Wy = X+...,’

2. Ui : X4 — R is monotone, strictly concave, and T continucus for some compat-
ible locally convex topology T, with U(0) = 0;

3. U; is twice continuously Gateaux differentiable on X2
4. D(Jz(a:) € X!, foreachz € X ;
5. D*Uy(z) is negative definite for each = € X,.

These assumptions combine the basic structure of infinite-dimensional economies
needed to ensure the existence of equilibria with natural analogues of the assumptions
maintained in smooth economies with a finite set of commodiries. The assumption

2A dual system (X, X’} is a symmetric Riesz dual system if X is a Riesz space, X' is an ideal of the
order dual of X. the duality function is the natural one, so that (z, z'} = z'(z) for each z and z', and
each order interval in X is weakly compact (see Aliprantis, Brown, and Burkinshaw (1989)). Given
a dual system (X, X'), the ordering conventions used here are as follows: Xy ={reX:z2>0}
and Xy, ={z € X :(z,2'} > 0 for all £’ € X} \ {0}}.

Two aspects of this statement may require clarification. F irst, the assumption that DIJ; and
D2U; are continuous is not explicitly required for this section. The topology in which these deriva-
tives are assumed to be continnous is specified explicitly in all remaining sections. Secondly, a
function f is Gateaux differentiable on X if there exists a finitely open set U/ O X, on which f
is defined and Gateaux differentiable, where a set is finitely open if and only if its intersection with
every finite-dimensional subspace is relatively open. See Hille and Phillips (1957, 1.10 and 3.16} for
more on this.




that the relationship between commodities and prices can be described by a sym-
metric Riesz dual system means that the order intervals in the commodity space X
are weakly compact, which ensures that the set of feasible allocations is weakly com-
pact and, together with the continuity of preferences, that Pareto optimal allocations
exist. Furthermore. this assumption implies that given any two elements p,q € X,
the functionals p "/ g and p A ¢ are also continuous. As in Mas-Colell and Richard’s
(1991) striking work, this lattice structure of prices will play a crucial role in char-
acterizing equilibria. This assumption. together with assumptions (1) and (2), are
standard assumptions needed to guarantee the existence of equilibria with infinitely
many commodities. Note, however, that preferences are not required to be uniformly
proper. Instead, assumption (3) imposes a differential version of properness by re-
quiring that at each point in the positive cone, each consumer’s utility function has a
unique continuous subgradient given by DUj(z). Mas-Colell (1986b) shows that this
condition performs the same function as uniform properness, generating prices sup-
porting each Pareto optimal allocation. The existence of a subgradient at each point
is necessary for the existence of prices supporting individual consumption; moreover,
this assumption implies that each consumer’s utility function can be extended be-
yond the positive cone, which Richard and Zame (1986) have shown implies, and is
essentially equivalent to, uniform properness. Assumptions (3)-(3) strengthen this
condition by requiring the subgradient to be strictly positive and to move continu-
ously with its argument. These additional conditions allow us to express supporting
prices as a continuous function of the underlying allocation, which will be important
for extending the analysis of equilibria in these models beyond questions of existence
to encompass questions like determinacy. : '

As an example. consider sequence economies in which the commodity space is £,
for some p such that 1 < p < co. The commodity-price pairing {£5.£,) is a symmetric
Riesz dual system. where 1 -I--;- = 1. In such a model, if each consumer’s utility
function is norm continuous and twice norm continuously Gateaux differentiable,
differentiably strictly monotone and differentiably strictly concave. then the economy
will be a smooth exchange economy.* For specific examples of such utility functions,
see section 3. Other important symmetric Riesz dual systems include (£ (1), £1 (1))
where 4 is o finite, and (£,{p), £,(p)) for 1 < p < oo (see Aliprantis, Brown and
Burkinshaw (1989)).

Not surprisingly, for some commodity spaces it may be possible to weaken some
-of these assumptions by using specific properties of the space, as is the case when the
commoadity space is £, the natural commodity space for discrete time, infinite hori-
zon economies. In these economies, prices should be representable as sequences, so
the most economically meaningful or appealing commodity-price pairing is (£, #;).
Furthermore, it is natural to model consumers as being impatient or myopic in this set-
ting, and thus having Mackey continuous preferences (see Brown and Lewis (1981)).°
In such economies. the analogues of assumptions (1)- (5) are the following conditions:

1U(z) is differentiably strictly monotone if DU{z) > 0 for each = and differentiably strictly
concave if D2U{z) is negative definite for each z.
SMackey continuity here means continuity in the Mackey topology for the pairing ((. £y).




(D)oo @i € Looiy;

(2)s U; : €yy — R is monotone, strictly concave. and Mackey continuous, where

D','(O) = 0;
(3)x U is twice norm continuously Gateaux differentiable on fos;
(4)s0 DU(x) > 0 for each z € £,

(8} DU;(z) is negative definite for each z € £.4.

An economy satisfying assumptions (1) — (5)s will be called a smooth myopic’
exchange economy, and in the remainder of the paper, the term “smooth exchange
economy will also include smooth myopic exchange economies. Note that in such
an economy. utility functions are required to be Mackey continuous, but only norm
continuously differentiable. Furthermore, the assumption that the gradient at each
point is strictly positive leaves open the possibility that the gradient, as a norm
continuous linear functional on £, may not have a sequence representation. Although
some elements of the norm dual of £, which is ba, may fail to have a sequence
representation, Mackey continuity and Gateaux differentiability are sufficient to rule
out such cases and ensure that all supporting prices lie in £;. To say that the derivative
lies in £; means that we can think of the derivative as a sequence of marginal utilities
or generalized discount factors, and that as time goes to infinity, marginal utility of
consumption in period t goes to 0. Then to say that the derivative lies in 4, is to say
that when calculating the marginal utilities of goods across time, consumers do not
put much weight on consumption arbitrarily far in the future, and don’t place any
weight on consumption “at infinity”. As such. this condition is a differential form
of impatience or myopia, and so it should not be surprising that this property will
always hold if the utility function is Mackey continuous, as the following result shows.

Theorem 2.1. Let U : £, — R be strictly concave, strictly monotone, and Mackey
continuous. If U has a unique subgradient at z, then 8U(z) € ¢,. In particular, if U
is continuously Gateaux differentiable on .., then DU(z) € &, for every = € €.

Proof: Let T € £, be given. Let p = OU(z), the set of subgradients of U at . By
assumption, U (z) is single-valued, so p € ba. Since U is strictly monotone, p > 0.
By the Hewitt-Yosida theorem, p = p. + p;, where p. € #; and Py is purely finitely
additive. Then it suffices to show that Py = 0. To see this, we will show that p. is
also a subgradient of U at z. Suppose not, so that there exists z € £+ such that
U(z) > U(z) and p. - z < p. - z. Since U is Mackey continuous, there exists n such
that U(z") > U(x), where 2" = (z1,-..,22,0,0,...),and p.- 2" < p.- 2 < p. - z. Thus

prat=p-2i4p 2t =p-t<pz+pir=p-z

which is a contradiction, since p is a subgradient of 7 at x. Thus pP=p: €.
If U is Gateaux differentiable at z, then DU(z) = 8U(z), so the result follows -
immediately. -




As an explicit example of a smooth myopic exchange economy, suppose that the
commodity space is £, and that each consumer’s preferences are represented by a

utility function of the form Uj(z) = f Btui(z,), where 5; € (0,1), u; : R, — Ris C?
==

on Ry with ui(c) > 0 and u/(c) < 0 for each ¢ > 0. Given any initial endowments
Wi € foot+, an economy with such consumers is a smooth exchange economy. as the
following result shows,

Theorem 2.2. Let U : {. — R be given by U(z) = § Btu(x:), where 0 < 8 < 1,
£=0

w:Ry — Ris C% u/(e) > 0 and w'(c) < 0 for every ¢ € R,. Then U(z) satisfies

assumptions (2)e — (5)co-

Proof: See the appendix. |

Now let £, be a smooth exchange economy. Equilibria of this exchange economy
are prices and Pareto optimal allocations at which each consumer’s budget constraint
is exactly satisfied. To characterize the possible Pareto optimal allocations, for each

AEA={AeR}: Z A; = 1} define the social planner’s problem:

max Z A,-Ui(xi)

i=1
m

s.t. Zmigw, eX., i=1,...,m.
i=1

Because each consumer’s utility function is strictly monotone, strictly concave and
T continuous, and the order interval [0,w] is weakly compact, the social planner’s
problem will have a unique solution for each A € A. Thus the Pareto map

z(A) = arg max ZA,-UZ-(GJ,-)

m
s.t.Z:c,-Sw, eX, i=1,...,m

i=1

is well-defined on A. The equilibria of the exchange economy &, are then the solutions
(p,A) to the m — 1 independent budget equations

P (za(A) —wy) = 0

P (zm(A) —wm) = 0,

where the price p is a price supporting the allocation z()).

To completely characterize equilibria using the welfare weights, we must also be
able to characterize the possible equilibrium prices using these weights. To see how
prices can be determined from the welfare weights and the solution to the social
planner’s problem, note that any equilibrium price p must support the corresponding

g




equilibrium allocation, which is Pareto optimal. Although there may be several prices
supporting any given Pareto optimal allocation, especially since these allocations will
typically be on the “boundary” in models with an infinite-dimensional commodity
space, one such price is always determined by the allocation and consumer preferences.
That is, if we define p(\) = VZ; A;DUi(z;(})), then p()) is always a price supporting
the allocation z(A).

Lemma 2.1. Let &, be a smooth exchange economy, and for each A € A let p(\) =
e MDUi(z:())). Then p()\) supports the Pareto optimal allocation x()).

=1

Proof: This follows from Mas-Colell (1986b, Lemma p. 327 and Theorem 2). See also
Mas-Colell and Richard (1991). B

This result also suggests that smooth techniques will not necessarily apply in these
economies, since p(A) will typically not be smooth unless the maximum operation is
trivial. Using this result, equilibria can be unambiguously characterized as the welfare
weights A € A at which the m — 1 excess savings equations are satisfied, i.e., at which

p(,\)-(:rg()\)—w?) = 0

PN - (Zm(A) —wn) = 0.

To give a simple parameterization of economies, assume that the economy has a fixed
structure of revenues, so that each consumer’s endowment has the form w; = cyuw,

m
where o; > 0 and 3 @; = 1. Prices can be normalized so that the value of the social
i=1

endowment is always 1 by letting $()) = %%. Thus the excess savings equations
characterizing equilibria become

BA) - 22(X) o
s() = s =|
BA) - 2m(A) m

L]
Economies are then naturally parameterized by the set @ = {a € RT7!: ¥ o; < 1},
i=2

This set simply represents the possible income distributions among the m consumers
that give a positive share to each person. ©

81n sequence economies, a more natural and less restrictive way to parameterize economies can
be developed by instead normalizing prices by setting the price of the first good equal to 1. Let
B(A) = -ﬁ;\-)p()\) and let @; = (0,wj,,wj,,...). Then the excess savings equations characterizing
equilibria in a sequence economy become

B{A) - (z2(A) — @2) wa,
3(A) = . =
BA) - (Zm () — dm) W,
With this normalization, equilibria are the solutions to the equation #(\) = w!, where w'! =
(w2,,...,Wm,}, so instead of assuming a fixed structure of revenues, sequence economies can be

parameterized using the set W = {w! e R7!: Poma Wi <wit
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Even though the commodity space is infinite-dimensional, the Negishi argument
results in a characterization of equilibria which is formally identical to that arising
in a standard Arrow-Debreu economy with a finite-dimensional commodity space.
Equilibria are solutions to a finite system of equations in a finite number of variables,
so a simple counting of equations and unknowns suggests that we might expect the
qualitative features of equilibria in these economies to be similar to economies with
a finite set of commodities. If so, the methods used to establish such determinacy
results will have to be fundamentally different from the smooth techniques prevalent
in analyses of finite economies. As the simple example in the introduection hi ghlights,
the social planner’s allocation problem. and hence the equilibrium equations, will not
be smooth when preferences are supportable in general, so it is even unclear how a
regular economy should be defined here. A natural definition, suggested by Rader’s
(1973) work on finite-dimensional economies with nonsmooth demand, is to require
that the Jacobian of excess savings be defined and nonsingular at each equilibrium.

Definition 2.2. Given a smooth exchange economy £, we will say that £, is a
regular economy if @ is a regular value of s, that is, for all A such that s(\) = a,
Ds(X) exists and is nonsingular. Anyv economy which is not a regular economy will
be called a critical economy.”

Note that this definition of regular economy makes sense even if s(A) is not smooth,
and if s(A) is smooth, then this notion agrees with the standard notion of regular
economy. Whether this notion is the right definition of a regular economy obviously
depends on the properties of equilibria in regular economies. First, an immediate
consequence of this definition is the fact that regular economies have locally unique
equilibria. |

Theorem 2.6. Let £, be s smooth exchange economy. If€, is a regular economy;,
then each equilibrium is locally unique. If in addition s{}) is continuous, then there
are finitely many equilibria.

Proof: By assumption, a is a regular value of s since &, is a regular economy, and
$: D* = R™ ! where D° = {(Ay,...,An) € RT;! : 1— ¥ A; > 0}. Then D° is
i=h
open, so each equilibrium is locally unique by Shannon (1994a, Thm. 1). Moreover,
if A € D°, then A; = 0 for some 7 = 1,...,m, which means that z;{A) = 0, and
Ui(zi(A)) = Uy(0} = 0 < Ui(w;). Individual rationality then implies that s(A) # aif
A € 8D°. This argument shows that if s is continuous, then 57(a) is compact, and
so must be a finite set. : ]

We would also like to draw conclusions about comparative statics or local sta-
bility of equilibria with respect to perturbations in exogenous parameters. In order
to examine how equilibria vary as underlying parameters like endowments change,
we will need results concerning sensitivity analysis for solutions to nonsmooth equa-
tions. In contrast with the smooth case, in general the savings equations will not

"Similarly, in sequence economies, we can define a regular economy to be one in which w! is
a regular value of 3. All of the results of this section carry over to this alternative definition for
sequence economies. '
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be locally invertible around an equilibrium X without stronger assumptions than the
assumption that s is continuous and ¢ is a regular value of s, so even if ¢ is a regular
value of s(A) and we restrict attention to points arbitrarily close to A and a, the
equilibrium set s™'(a) may be multivalued as « varies. In order to answer this sort of
sensitivity question relating to the dependence of equilibria on the initial endowments
', one must then turn to recent work in nonsmooth analysis, which has concentrated
on developing generalized notions of derivatives for correspondences, as well as for
Lipschitz continuous and other nonsmooth functions, and building a calculus around
such derivatives, in part to answer sensitivity questions for correspondences (see e.g.,
Clarke (1975), (1983); Rockafellar (1988); Aubin and Frankowska (1990)). By using
results from nonsmooth analysis, Shannon (1994a) shows that if we restrict attention
to Lipschitz functions, then in a neighborhood of a regular value, the solution set will
be locally stable even if it is multi-valued. To make this statement precise requires
a notion of stability for correspondences. A correspondence G : Y =2 X is said to be
upper Lipschitzian at § € Y if there exists £ > 0 and a neighborhood V of 7 such
that
Gly) CG@) +kily-7IlB YyeV,

where B is the unit ball in X'. Note that this savs that if z € G(y), then there exists
T € G(7) such that ||z — Z|| < kfly — 7. so that as y varies, the values of G(y) remain
close in a Lipschitzian sense. Results from Shannon (1994a, Thm. 8) imply that if s
is locally Lipschitz and a is a regular value of s. then the equilibrium set s~Ha) is
locally upper Lipschitzian in «.

The strongest results concerning determinacy are thus obtained in the case where
the savings equations are locally Lipschitz continuous. If the savings equations are
locally Lipschitz, the economy £, will be called a Lipschitz economy. As long as
the economy is a Lipschitz economy, these strong determinacy results described above
will hold: regular economies will have a finite, and in fact odd, number of equilibria,
and each equilibrium will be locally upper Lipschitzian in a.

Theorem 2.7. Let £, be a smooth exchange economy which is also a Lipschitz
economy. If £, is a regular economy, then £, has an odd number of equilibria, each
of which is upper Lipschitzian in c.

FProof: See the appendix. e

As with all such results which “count” the number of equilibria, note that this
result automatically implies that equilibria exist in all Lipschitz economies, since this
result establishes that equilibria exist in regular Lipschitz economies, and by definition
critical economies must have equilibria.

Finally, as in economies with finitely many commodities, these results are more
compelling when the set of regular economies is large, when we can assert that critical
economies are exceptional cases and that the economy exhibits no robust indetermi-
nacies. To measure the size of the set of regular economies requires a version of Sard’s
theorem in this nonsmooth setting. One such result has been established by Rader
(1973), who shows that Sard’s theorem holds for a broad class of nonsmooth functions
including Lipschitz continuous functions. As long as the excess savings equations are
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differentiable almost everywhere and map sets of measure zero into sets of measure
zero, then this version of Sard’s theorem implies that the set of regular economies will
have full measure. In particular, if the excess savings equations are Lipschitz, locally
Lipschitz. or pointwise Lipschitz, then they will satisfy these assumptions, and hence
almost every economy £, will be regular.®

Theorem 2.8. Let £, be a smooth exchange economy. If s : D° — R™" ! s differ-
entiable almost everywhere and has the property that if B has measure 0 then s(B)
has measure zero, then the set of critical economies has measure 0. In particular, if
&, is a Lipschitz economy, then the set of critical economies has measure 0.

Proof: This follows immediately from Rader (1973, Lemma 2). B

For this to be a useful framework for establishing the determinacy of equilibria in
general exchange or production economies, without the sort of detailed information
about preferences, technologies, and the nature of the Pareto map available in highly
parametrically specified models, the obvious problem now is to find conditions on the
primitives of the economy, consumers’ preferences and firms’ production sets, which
guarantee that the excess savings equations are Lipschitz continuous. Such results
are developed in the next three sections along with a number of examples illustrating
these ideas. I have separated the results of this section from those of the following
sections to highlight the fact that just as the original results of Debreu (1970} and
Dierker (1972) for finite economies relied only on smooth excess demand, the results
here rely only on Lipschitzian excess savings. The following sections develop a set of
methods which exploit the structure of sequence economies, and build on the intuition
that economies with infinitely many commodities are limits of economies with a large
finite number of commodities. There may be a variety of methods for establishing
that excess savings equations are Lipschitz continuous in different settings, such as
using dynamic programming arguments in stationary economies; see Shannon (1994b)
for one such example. Regardless of the methods used, however, as long as the excess
savings are Lipschitz continuous, the results of this section can be applied to conclude
that equilibria will be generically determinate.

3 Lipschitz Economies

In order to show that the determinacy results of the previous section apply to a
‘particular economy, we must show that the excess savings equations characterizing
equilibria in that model are Lipschitz continuous. Since the prices supporting any
Pareto optimal allocation can be expressed as a function of that allocation, the prop-
erties of the excess savings equations will be determined by the properties of the

8A function is said to be pointwise Lipschitz at z if there exists K > 0 and a neighborhood NV
of z such that for all £ € N, [if(z) - f(2)|| < K|lz ~ z||. That Lipschitz and locally Lipschitz
functions f : R™ — R™ are differentiable almost evervwhere [ollows from Rademacher’s theorem
(see, e.g., Federer (1969, 3.1.6)), and that such functions map sets of measure 0 into sets of measure
0 is well known (see, e.g., Federer {1969, 2.10.11)); for a proof that pointwise Lipschitz functions
[ R™ — R" satisfy these properties, see Rader (1973, Lemma 3).
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Pareto map which solves the social planner’s problem. For example, in the sequence
economies which will be the focus of the rest of the paper, the economy will be a
Lipschitz economy as long as the Pareto map is Lipschitz continuous; Lipschitz con-
tinuity of the Pareto map in these models is then sufficient for generic determinacy
of equilibria.

To study the planner’s problem, we will consider these economies as limits of finite
economies, letting the number of commodities grow to infinity, an idea suggested by
Bewley's (1972) seminal work.® More precisely. let £.. be a smooth myopic economy
in which the commodity space is £, and consider the exchange economy in which
each consumer’s endowment bundle is truncated at good T, so endowments become
w!l = (wy,... Wiz, 0,0,...). Because consumers are impatient, so their preferences
are Mackey continuous, the solution to the social planner’s problem in this truncated
economy should converge to the solution to the social planner’s problem in the original
economy as ' — oo. Similarly, if the commodity space is £,, then the norm continuity
of consumers’ preferences in 4 smooth economy has the same effect of ensuring that
the distortion caused by truncating the economy becomes arbitrarily small as the
number of commodities goes to infinity. This observation suggests that, at least in
economies with countably many commodities, we should be able to use properties of
the truncated economy, in which the social planner’s problem is finite-dimensional,
to establish properties of the original economy.!® This program is carried out in this
section, and several examples are given to illustrate théese ideas.

To formalize the argument sketched abave, for each T > 0, define consumer #’s

utility in the truncated T- good economy U7 : RT — R by
UiT(y) = Ui(yh e )yT,-O: O: . )

Since the criginal utility function U/ (z) is twice continuously Gateaux differentiable on
oy, UT is C? on RY for each T, and its derivatives are Jjust given by the truncations
of the corresponding derivatives of U;.1* Thus

U, o
DUT(y) = (33:] 4:0.0..) 5

(,0,0.. .))

and 2U
DT (y) = : (y,0,0... .
U’ (y) {amiaﬂl‘j (y, > )}i,j-_—l,_,_‘_’[‘

Moreover, DU (y) > 0 and DU (y) is negative definite for each y € RT. Each
T-good economy looks very much like an economy in which preferences are smooth

9This idea has also been explored recently by Balasko (1995) in the additively separable case.
In this case, he shows that every equilibrium in a regular economy is the limit of equilibria in the
truncated economies as the number of commeodities goes to infinity. See also Mas-Colell (1991).

101n particular, note that this argument is fundamentally different from Bewley’s argument. While
he constructs a convergent net of equilibria in finite-dimensional restrictions of the economy and
argues that the limit of this net is an equilibrium in the original infinite-dimensional economy, his .
argument does not imply that equilibria must be determinate in the limit, even if each equilibrium
in the net is determinate.

11Gee the discussion in footnote 3.
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in the sense of Debreu (1972), with the exception that indifference curves may inter-
sect the boundaries of the positive cone in these economies. The main result of this
section is that in such sequence economies, the powerful properties and predictions of
these finite-dimensional truncated economies, in particular the generic determinacy
of equilibria, carry over to the original infinite-dimensional economy under one addi-
tional restriction on preferences, which strengthens the notion of concavity in these
models and prevents goods from becoming perfect substitutes in the limit.

The proof of this result simply involves filling in the steps outlined above. First,
for each A € A, define (A, w) to be the solution to the social planner’s problem when
the social endowment vector is w and the welfare weights are X, Note that z(\,w7) is
just the sclution to the social planner’s problem in the truncated economy in which
the social endowment is w?. Moreover, as the first two lemmas below show, as the
number of goods grows, these truncated Pareto optimal allocations converge to the
Pareto optimal allocation in the original economy.

Lemma 3.1. Let &, be a smooth exchange economy in which the commodity space
is £, for some p such that 1 < p < co. Then z(A\,w7) = z(\ w) for each A € A and
for each w € €,,. Moreover, z(-,w) is norm continuous for each w € Lot

Proof: For each w € £,,, define C(w) = {z € £, : Tzn: z; = w}. Then C{w) is convex
t=1

and norm compact for each w € £, since order intervals in £, are norm compact

(see appendix, Lemma A2). Since U;(z) is norm continuous for each i, the result now

follows essentially from Berge’s theorem. To see this, note that C(-) is clearly upper

hemicontinuous, as if w, — w and z, € C (wn) for each n, where z, — z, then
™ m m

W =Y &y, — ¥ 2;,50 3 z; = w. Thus 7 € C(w). Now let z € C(w) and consider
=1 =1 i=1

the sequence {w”}. By definition, 27 = (27 ,...,27) == 2z, and 27 € C(WT) for

all T. Thus C(w) is lower hemicontinuous along sequences of the form {w7}. Now I

claim that 2(A,w”) = z{A,w). To show that this is true. suppose not. Then there !

exists a convergent subsequence 2(\, w?) = z # z(\,w). However, € C(w) by the

argument above, so if £ # z(A,w), then ¥ NUi(z;) < 3. AilUi(z: (A, w)). Also, since
i=1 =1

z(A,w®) - z, there exists T' large enough such that if S > 7,

m

z AU (z:(A, w¥)) < i AiUi(mi(A,w')).

=1 i=1

Then z(A,w)® € C(w?) for all 5,'? and z(\,w)® = 2(\,w), so for S large enough,
z(\,w)® € C(w®) and

m m

Z /\,;Ui(.?:,'(/\, L:JS)) < Z AiUi(Ii()\,W)S).

i=} i=1

But this contradicts the definition of z{A,w%), so z(A,wT) = z(\,w).

2Recall that this notation means that (A w)¥ = (21 (A w)5, ... (X, w)5), where z (A w)s =
(i, (A w), Lz (AN @), 0,0,.. ).

-
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That z(,w) is norm continuous follows immediately from Berge’s theorem, since
C(w) is independent of A. B

The same result holds in a smooth myopic economy when the commodity space
is £, using the weak” topology in place of the norm topology.

Lemma 3.2. In a smooth myopic exchange economy, (A, wT) 2o (), w) for each
A € A and for each w € £y, Moreover, z(-,w) is weak® continuous for eachw € £,

Proof: Note that C(w) is weak” compact for each w € .. Moreover, since Us(z)
is Mackey continuous and the Mackey and weak” topologies agree on norm bounded
subsets of £, Ui(z) is weak® continuous on [0,w). The argument is then identical to
the proof of Lemma 3.1, with the weak” topology in place of the norm topology. B

Furthermore, if the social endowment is w7 then the social planner faces a finite-
dimensional problem, and it is relatively straightforward to show that each such
truncated problem has a solution z{\,w”) which is a Lipschitz function of the wel-
fare weights. If in addition we can choose a uniform Lipschitz constant for each of
these problems, then the solution to the original social planner’s problem will also be
Lipschitz continuous.

Theorem 3.1. Let £, be a smooth exchange economy in which the commodity space .
is £, for some p such that 1 < p < co. For each T > 0, z(-,wT) is a Lipschitz function
of X with constant er. If {er} is bounded, then z(-,w) Is also Lipschitz continuous.

Proof: To see that z(-,w7) is Lipschitz, note that by definition,

;c(,\,wT) = arg max Z)\,-Ui(:r,;)
i=1
m .
s.t. Z:r:,-zwr, 20 i=1,..., m

i=]

So z(A,w”) = (] (A, w"),0,0,..., 2T (A wT),0,0,...,... 28 (A,wT),0,0,...), where

;cT(,\,uT) = arg max Z/\iUzT(yi)
i=1

st. Y w=0T, 3 >0i=1,...,m

=1

and @7 = (wy,...,wr). Thus it suffices to show that z7 (A, wT) is Lipschitz in A. Since
each of these problems is finite-dimensional, arguments similar to those used by Mas-
Colell (1985) to establish that demand is Lipschitz in finite-dimensional economies
will give the desired result.

For each coordinate subspace L of R™7T, define

7 (M wT) = arg max Y AU ()

i=1

s.t. Zyi m(IJT, y € L.
i=1
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Since D*UT (y;) is negative definite for all 3 € RT. 2T(A\,w7) is C! in A for each
subspace L. Moreover,

T\ wT) € U zi(nwh)
LES(R™T)

where S(R™7) is. the set of all coordinate subspaces of R™T. Since this set has a
finite number of elements and z7(),w”) is continucus in A, zT(X,wT) is Lipschitz
continuous in A with some constant ¢y > 0 (see MasColell (1985)) . :
Now suppose {cr} is bounded, and let ¢ = super. We must show that (A, w)
T

is Lipschitz. First suppose 1 < p < co. Let zr(A) = z(\,w?). By Lemma 3.1,

zr{A) = z(A, w) pointwise. If {7} is bounded, then each function z is Lipschitz

with constant ¢ = sup er. Thus {z7(A)} is an equicontinuous family, so by passing
T

to a subsequence if necessary, 27(A) — (A, w) uniformly. This uniform convergence
implies that z(A,w) is also Lipschitz with constant ¢. To see this, let AN €A be
arbitrary. and let ¢ > 0 be given. Then choose T such that ||z7{}) — z(},w)]| < € for
all A € A, Then

lzh w) =2V W)l < llz(\w) = 2r(A) ] + f2r(X) — 22 (V)|
| Her(N) = 2(X, w)||
< A= N + 2e

Since € > 0 was arbitrary, z(-,w) is Lipschitz in A with constant ¢ for each w.

Now suppose p = co. By lemma 3.3, z(\,w7T) 22 z(A,w) pointwise. So for every
n and for each 4, z;, (A, w”) — z; (A w) pointwise, where z; (-) is the n® term of
z;(-). But {zx(A\,w”)} is uniformly Lipschitz with constant ¢ > 0, so {z: (A, wT)} is
also uniformly Lipschitz with constant ¢ for each n, since VA, X € A,

l;in(’\)w’r) - "L‘in()\’sz)l ..<... III‘,;(A,LJT) - ‘Ti()\’!wT)”'

Thus for each n, {z;,(-,w”)} is equicontinuous in . Let n be arbitrary. By passing
to a subsequence if necessary, z;, (\,w’) — z; (A w) uniformly. Then by the same
argument used above, this uniform convergence implies that z; () w) is Lipschitz
with constant ¢ as well. But then for every A, N € A,

500 ) = (N, @)l = sup o2, (A1) = 21, (¥ )] < cf]A = N].

So x(A,w) is Lipschitz in A with constant c. [

Showing that an economy is a Lipschitz economy, and thus has generically deter-
minate equilibria, then amounts to showing that these truncated planner’s problems
are uniformly Lipschitz continuous. In some cases this result can be applied directly
by calculating the Lipschitz constants in these truncated economies and verifying that
they are uniformly bounded. For example, let U (z) be a recursive utility function
generated by an aggregator of the form w(c,y) = u(c) + g(y), where u, g : Ry - R
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are C? on Ry, differentiably strictly concave and differentiably strictly monotone,
and there exists § € (0,1) such that 0 < g'(y) < B for each z € R,. Showing that
such preferences satisfy the assumptions of a smooth exchange economy is straightfor-
ward, so is left to the reader. To see that such preferences also give rise to Lipschitz
_economies requires a bit of notation. For each z, let .= = (z;, Z,1,...). and abusing
notation slightly, let g(z) = g(U(z)). Then note that 2 =v/(z1) and for t > 2,

%}I(cr) =¢'(22) - g'(e2)2d (z2)-

For each t, define b(z) = %(‘E)* so by definition, DUT(z) = (b(xz),...,bp(x)).

Furthermore. using this notation,

bi(z) 4 0 |
0 by(z)iiza) 0 T
DU () = 2(7) 375 + 3" RY(x),
: : t=2
0 0 br(z) L]
where
0 0 0 0
. 0 ... 0 0 0
Rlz)=10 ... o b(x) &b, (1z) .. bi(@) S b, (o)
0 . 0 br(@)Z{Sh(a) ... br(e)Eera () )

Although in general D*U7T(z)~! becomes unbounded as T goes to infinity, this hap-
pens essentially because of the consumer’s impatience or myopia, as refiected by the
sequence of generalized discount factors or beliefs b(x) = (by(z), by(z), . . .). This se-
quence Is just equal to the consumer’s gradient DU(x), however, which suggests that

- -1
[DQUT(:E)] DUT(z) will be bounded. At least with two consumers, this is essen-
tially sufficient to ensure that the planner’s problems are uniformly Lipschitz, and
hence that the economy is a Lipschitz economy.

Theorem 3.2. Let £, be an exchange economy with two consumers in which the
commodity space Is {. For each i, let U;: £, — R be a recursive utility function
generated by a separable aggregator wi(c,y) = wi(c) + g:(y), where w;, g; : Ry, — R
are C? on Ry, differentiably strictly concave and differentiably strictly monotone,
and there exists §; € (0,1) such that 0 < gi(y) < B for eachy € R.. Then £, is a
Lipschitz economy:. C

Proof: See the appendix. B

Equilibria are generically determinate in this recursive economy, and the cru-

cial condition guaranteeing generic determinacy is that ‘;‘:,—r((;%l is uniformly bounded
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away from zero on [0,w], which amounts to prohibiting goods from becoming per-
fect substitutes or prohibiting consumers from becoming risk neutral asymptotically.
Furthermore, this argument can be extended to show that equilibria are generically
determinate in economies with recursive preferences generated by a nonseparable ag-
gregator w(c,y). provided current consumption and future utility are substitutes, so
that w,,(c,y) < 0 for all (¢,y), and provided a suitable upper bound can be put on
“risk aversion”. so that %=(c,y) < %Cj(c,y) and 22(c,y) < T2 (c,y) for all (¢,y). In
all of these recursive economies, equilibria are generically determinate.

These results will be most useful, however, if we can identify general conditions
on preferences which lead to uniformly Lipschitz planner’s problems. Each finite-
dimensional truncated economy is a Lipschitz economy because consumer’s indiffer-
ence curves have non-zero curvature, since for each T > 0 there exists some 87 > 0
such that

2 DUT(z)z = (2, DU {(z)z) < —Brilzfi?

for each z € R7. With a finite number of goods, this condition rules out the robust
indeterminacies that arise when goods are perfect substitutes, or when consumers are
risk neutral. Intuitively, a similar condition which implies that indifference curves
have non-zero curvature. and rules out goods which are perfect substitutes or con-
sumers who are risk neutral in the limit, should be necessary to prohibit robust
indeterminacies in infinite-dimensional economies. The difficulty with verifying this
intuition comes in defining such a condition which is sufficient to guarantee generic
determinacy and also consistent with the other assumptions of smooth exchange
economies. A natural condition, analogous to the finite-dimensional one, would be to
require that there exist ¢ > 0 such that

2 DA (z)z = (2, DU (x)z) < Fcl]2||§

for all z, or equivalently. that {8r} be bounded away from zero. When the com-
modity space is £y, this condition is simply strong negative definiteness of the second
derivative, or strong concavity of the utility function, and the results below show that
equilibria are indeed generically determinate in £, when consumers’ utility functions
are strongly concave. When the commodity space is not £, however, it is typically
impossible to rule out preferences violating this restriction due to myopia or impa-
tience. For example, in all smooth myopic exchange economies, 37 — 0 as T — 00,
precisely because of the assumption of myopia. When the commodity space is not &,
then, a more delicate argument accounting for this myopia or discounting will be re-
‘quired, together with some notion of curvature or negative definiteness valid in these
more general settings.

One way to formalize this intuition involves defining a generalized notion of inner
product valid cutside the setting of 45, or outside of a Hilbert space more generally.
For a Banach space X, we can define the semi-inner product between two elements

z and y to be
. o1

(.9)+ = Iy} lim = [lly + tl| - llyll).

For R", 43 or for any Hilbert space. this semi-inner product coincides with the stan-

dard inner product (z,%). In a general Banach space, this notion essentially measures
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the Gateaux derivative of the norm of y in the direction of z, and shares many of the
important properties of an inner product, providing a way to measure curvature or
define notions of negative definiteness.!® In particular, for each z, let F(z) : £, — A
be a linear operator. Then F'(x) will be called uniformly negative definite if there
exists ¢ > 0 such that

(2, F(2)2)5 < —cll22

for each T > 0, for each z € R, and for each z. This definition suggests a natural
way to define stronger notions of concavity in these models.

Definition 3.1. Let {'(x) : {4 — R be twice norm continuously Gateaux differen-
tiable on £,,. Then U is called uniformly concave if

[DQUT(x)]hl DUT(z)|| < k for each = and for

P

1. there exists k > 0 such that
each T > 0, and

2. D*U(z) = B(z)S(z) for each x € £,,, where B(z) = diag{gg(i)}“ and
S(z) : £, — £, is uniformly bounded and uniformly negative definite.

To understand this definition, notice that because of impatience or myopia, the
second derivative will typically go to zero in these economies, at least in some direc-
tions. To prevent goods from becoming perfect substitutes asymptotically, the first
condition specifies that the second derivative cannot go to zero faster than marginal
utility does. The second condition says that myopia or impatience is essentially the
only reason the second derivative goes to zero. The main result of this section is that
these two additional conditions are sufficient to imply that in the resulting economy,
equilibria are generically determinate.

Theorem 3.3. Let £, be a smooth exchange economy in which the commodity space
is £, for some p such that 1 < p < co. If each consumer’s utility function is uniformly
concave then the economy £, is a Lipschitz economy.

Proof: See the appendix. B

To see how to check for uniform concavity, note that by definition

(. 57(@)2)s = 157 ()2 lim - [IS7(@)z + t2] - |7 (2)2]]

13See the appendix and Deimling (1985), for example, for a discussion of this definition of semi-
inner product.

M Here diag{c, ..., cx } refers to the operator represented by the matrix
Cy o ... 0
0 e ... 0O
0 o ... Cp

20




so uniform negative definiteness can be equivalently characterized by requiring that
there exist ¢ > 0 such that for each T, for each r and for all z € RT,

ll=)?

18T (2)z + tz]] < (1ST(z)z] — te TS ()]

for all ¢ > 0 sufficiently small. In many cases, this condition can be simplified even
further, as is the case when S(z) is uniformly bounded below, so that there exists
k > 0 such that ||ST(z)z}| > k||z|| for all T > 0. for each z € R7, and for each z.

Lemma 3.3. Let S{z) : £, — ¢, be uniformly bounded below. If there exists ¢ > 0
such that for all T > 0, for each x and for all z € RT,
IST(2)2 + t2f] < (1 = te)| ST (=)=

for all - > 0 sufficiently small, then ST () is uniformly negative definite.
Proof: Let T > 0 and z be given, and let z € RT. By assumption

57 (z)z + 2] < (1 - te) || ST (z)z])
for all ¢ > 0 sufficiently small. Thus there exists > 0 such that if t < T, then
18T (z}e + tzl| — IST(2)2]] < —tcll ST ()2,

which implies that
IST@)313 [157(@)z + 12l ~ IS (@)z1] < el ST(@)2I? < —ckY?
since [|ST(z)z]l > kl|z]l. So
(. ST @21 = Jim IS7 @215 (157 ()2 + t2] — 57 (2)z]]] < —ckPfz:

Thus ST (z) is uniformly negative definite. |

A class of examples to which these results immediately apply is the additively sep-
arable framework of Kehoe and Levine (1985). In their model, the commodlty space

is £y, and preferences are given by utility functions of the form U, (z) = )6 ui(Ty),

where 3; € (0,1). Given such preferences, D2U;(z) = diag{! ”(mt)} and DU( ) =

{Biu{x,)} for every z € oy, so (DUT (z))~ DU (z) = {u”(?)}t__. Under the

assumption that u; is C? on Ry, ui(¢) > 0 and u/(c) < 0 for each ¢ > 0, this caleu-
lation shows that (D*U](z)) ! DU (z) is uniformly bounded on any interval of the -
form [0,w]. Furthermore, D?U(z) = B(z)S(z), where S(z) = diag {’;—’,'(%%}, which
is uniformly negative definite on [0,w]. To see this, first note that S(z) is uniformly

bounded below on [0,w], since given T > 0 and z € R, $T(z)z = {“—,g—’)l/.s} SO
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157 (@)zll = kllz[l, where k = min |92 > 0. Then ST(z)z+tz = {¥E2, 113,

refo. i ¥} u'(2,)
and for ¢ sufficiently small.
u" () u’(zy) w'(zg)
Z t s = g t 23
Wiz o TH vz | )
= |ZE (1o |l
u{xs) | \'°° u'(z )|
wizs) [\ v (s)
= [1- z,
u’(z5)| /) [ o (zs)
(1- 1) |2,
—_ c ’U.f(xs) “851
where ¢ = legin ! ;‘,',—%% > 0. So |ST(z)z +tz)) < (1 - te)|ST(x)z{l, which by
rel0. wi

Lemma 3.3 implies that S(z) is uniformly negative definite. Since all Pareto optimal
allocations are contained in the order interval [0,w] defined by the social endowment
w, uniform concavity on this interval is sufficient for the generic determinacy results
to apply, and again the crucial condition guaranteeing uniform concavity is that “;—l,%f—:-)l
is bounded away from zero, ruling out asymptotic risk neutrality or goods becorning
perfect substitutes in the limit. '

These results can also be extended by explicitly modelling consumers’ impatience
or myopia. As a motivating example, consider additively separable economies again.
For such utility functions. note that we can also write D*U;(x) = Bi(z)S;(z). where
Bi(z) = diag{8]} and S;(z) = diag{w/(z,)}. and under the standard assumptions on
the single good utility functions described above, S;(z) is uniformly negative definite
on any interval of the form {0,w]. Moreover, the sequence b;(x) = {6} represents
the consumer’s discount factors or measures his myopia in the sense that his gradient
DUj(z) is bounded with respect to this sequence, so that [Bi{z)]"! DU,(z) is uniformly
bounded on [0, w]. Modulo this sequence of discount factors or beliefs, such preferences
then display the same basic features of uniformly concave preferences. Furthermore,
if each consumer has such preferences, then the consumers’ beliefs are consistent
in the sense that we can substitute one sequence bj(z) for another b;(z) and obtain
preferences similar to the original ones. These ideas can be formalized by the following
two definitions,

Definition 3.2. Let U(zx) £+ — R be twice norm continuously Gateaux differen-
tiable on £,,. Then U(z) is called myopically concave if D2 () = B(x)S(z) for
each r € {,., where

1. B(z) : £ — {, has the form B(z) = diag{b(z)}, where b(z) € £,,, and
[B(z))7' DU (z) is uniformly ‘bounded, and

2. S(z): £, — £, is uniformly bounded and uniformly negative definite..

If a consumer’s preferences are represented by a myopically concave utility func-
tion, then we can essentially decompose the effects on marginal utility into a term
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reflecting the consumer’s discounting or beliefs, represented by the vector b(z), and
a second part which is negative definite in a strong sense. As long as these discount
factors or beliefs are comparable, this condition suffices to ensure that the social
planner’s problem is well-behaved in the limit. Here comparability means that if
we adjust by another set of beliefs, the result, B;(z;)"1D%U;(z;), is at least finitely
negative definite, where F(x) : £, — £, is finitely negative definite if

(z, FT(z)z)+ < 0

for each 7 and for each z € R7 \ {0].

Definition 3.3. Suppose each consumer is myopically concave. Then the consumers
are consistent if for each i # j, D{z;, z;) = B;(x;) *D*Uy(x;) is fnitely negative
definite for all x; and z;.

The argument used to prove that uniform concavity is sufficient for an economy to
be a Lipschitz economy can then be adapted to show that these two conditions are also
sufficient to rule out robust indeterminacies, as the following corollary demonstrates.

Corollary 3.1. Let &£, be a smooth exchange economy in which the commodity
space is £, for some p such that 1 < p < co. If each consumer’s utility function is
myopically concave and the consumers are consistent, then the economy Is a Lipschitz
economy.

Proof: See the appendix. | |

Using Corollary 3.1, a class of examples allowing for more interaction between
goods in economies with commodity space ¢, can be developed by considering habit

formation preferences, which have the form Ulz) = v(zo) + %0: Btut(2:_1, z:). Suppose
t=1

here that 0 < 8 < 1, v*,v are C?, and that v'(c) > 0 and v"(c) < 0 for every c € R,.
Suppose further that {Duf(z,_;,z,)} € £y, for each z € £,, and that D2ut(ey, ¢y)
is uniformly negative definite. Here this assumption means that there exists ¢ > 0
such that z"D%u¥(e),¢y)z < —c||z}i? for each t, for each (c1,c2) € R% and for all
z € R% If all consumers have such habit formation preferences, then this economy
is also a smooth exchange economy, which can be established by a straightforward
adaptation of the proof of Theorem 2.2; the details are left to the reader. Furthermore,
under these assumptions, habit formation preferences are myopically concave for all
sufficiently large discount factors, as the following result shows.

Theorem 3.4. Suppose U : 5, — R is given by Ulz) = v(zo) + E Biut(z, 1, x,) as
t=1

described above. There exists 8 € {0,1) such that if 8 > B, then U(z) is myopicaﬂjr
concave on (0, w)] for each w € £,

Proof: See the appendix. . R

When all consumers have the same discount factor, they are also consistent by the
same argument. An application of the results of this section then demonstrates that
these habit formation economies have generically determinate equilibria. This result

23




can also be extended to a setting in which ¢; € RT for each 1, allowing for either n
goods each period or a 2n period window over which consumption decisions affect
current utility. ;

When the commodity space is £, as in this example and in many financial markets
models, these results can be simplified further by making use of the special features
of this commodity space. Let U; : 5. — R be a consumer’s utility function, and
suppose that D®U;(z) is strongly negative definite. or that there exists ¢ > 0 such
that for each z € #,,.

' DUy(z)z = (z, Di(z)z) < —cl 2}

for all z, which is equivalent to assuming that D*U;(z) is uniformly negative definite.1®
Such utility functions will be called strongly concave. Strongly concave util-
ity functions are myopically concave and consistent under the trivial decomposition
D?*Uy(z) = 1D*;(z). so strong concavity alone suffices to ensure that equilibria are
generically determinate when the commodity space is 5.

Theorem 3.5. Consider a smooth exchange economy in which the commodity space
is {3. If each consumer’s utility function is strongly concave on [0, w], then the econ omy
€. is a Lipschitz economy.

“'

Proof: This follows from the previous discussion, Lemma A4, and Corollary 3.1. M

For economies in which the commodity space is £,, these results parallel exactly
those obtained for economies with finitely many commaodities: in a smooth exchange
economy, equilibria are generically determinate provided consumers’ utility functions
are strongly concave, which is the appropriate extension of differential concavity to
these economies. When the commodity. space is not #5, consumers’ impatience or
myopia will mean that typically there are no smooth economies in which preferences
are strongly concave. Uniform concavity and myopic concavity then capture the same
idea by explicitly accounting for this discounting.

To develop a further class of examples in which these results apply in commoedity
spaces other than f, we can again consider additively separable preferences as a
motivating example. If preferences are additively separable, then the only thing
influencing marginal utility for consumption of good t is consumption of good ¢. So if
the utility function U;(z) is additively separable, then the second derivative D*Ui(x)
is a diagonal matrix with diagonal {8}u(z:)}, and thus has a dominant diagonal
in a very strong sense: all of the off-diagonal elements are 0. If we consider more
general preferences, consumption of goods other than ¢t will affect marginal utility for
consumption of good ¢, so the second derivative will no longer be a diagonal matrix.
As long as the effect of consumption of good s on marginal utility for consumption
of good ¢t is small relative to the effect of consumption of the same good t however,
the economy will still be a Lipschitz economy. -

**In a smooth economy. DU;(z) € fo, for each z € {24, because {3 is self-dual. Furthermore,
D*U{z) is a linear operator between £, and itself for each z € £y, , for the same reason. Note that in
this case, strong negative definiteness is also equivalent to requiring that all eigenvalues of D?U;(x)
be negative and uniformly bounded away from 0.

24




In order to make sense of that claim, we must first define the notion of dominant
diagonal in this setting. If A(z) is a continuous linear operator on £, foreachz € V C
fe, then A(z) has a dominant diagonal d(z) = {ay(z)} if there exists m € (0, 1)

such that Z |CL"(%%] < m < 1 for every t. Moreover, if this bound holds for every

zeV, then we say that A(:c) has a uniformly dominant diagonal over the set V,
and if in addition m < 3, then A(z) has a strongly dominant diagonal over V.

Now suppose that foreach i = 1,...,m, D?U(z) has a strongly dominant diagonal
{d;,.(z)} which is uniformly bounded with respect to DUi(z), so that there exists
M > 0 such that -g%j(x) < M|dy, (x)} for all z € V. If these conditions are satisfied,
we will say that U;(z) has a dominant diagonal. If so, then each consumer’s utility
function is myopically concave.

Theorem 3.6. If U : £, — R has a dominant diagonal, then U is myopically
concave.

Proof: Let D?U(z) = {ds(2)}:5=;. Then let B(z) = diag{—du(z)} and S(z) =
B(z)"'D*U(z) = {-%}:zf Then S{z} also has a strongly dominant diagonal
given by (=1.—1,~1,.. .}, as does ST(z) for all 7. Fix T > 0 and z € R7 such that
lz{lc = 1. Now since D*U(z) has a strongly dominant diagonal, ST(z) = -14+C7(x)
for all 2. where ||CT{z)|| < m for some m € (0, 3). First, ST(x) is uniformly bounded
below, since :

IST(z)zlf = I| = 2 + CT(z)z] Il = ICT(2)z]

>
>z = mlizf = (2 = m)fiz)

and 1 — m > 0. Then

1ST(@)z +t2 = | =2+ CT(2)z + 2] |
= |- z+CT(2)z ~ t{—z + CT(z)2) + tCT (z)z]|
< (@=8)I8T(2)zl| + ) C7 (z)z]
< (1= 1))1ST(@)2) + tmiz]
= (1-0))ST(@)2]| + tm}] — z + CT(z)z — CT(z)z]|
< (1=t(1—m)ST(@)z|| + tm?) 2|
< (1= t(1=m—m?)|ST(2)zlf + tm?2].

Repeating this argument shows that

m

w%m+wS@—thmJM§wu (1 - IS (=),

and ¢ =1~ ;7= > 0 since m < — . Thus by Lemma 3.3, S(z) is uniformly negative
definite. : B

Furthermore, note that in this case, for all ¢ # 7, (Bj{z;)) 1 D*Uy(x;) also has
a strongly dominant diagonal, so (B;(z;))"'D?U;(z;) is finitely negative definite for
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each z; and z;. Thus consumers with such preferences are consistent. Any economy in
which all consumers’ utility functions have a dominant diagonal will then generically
have determinate equilibria by an immediate application of Corollary 3.1.16

Theorem 3.7. Let £ be a smooth myopic exchange economy. If U;{x) has a domi-
nant diagonal on [0,w] foreachi=1,...,m, then the economy is a Lipschitz economy.

One class of economies to which this result can be applied is the habit formation
economies discussed above when the commodity space is £,,. For these preferences.
if D?u(cy,cy) has a strongly: dominant diagonal for each (c),c;) € RE, then U(z)
will have a dominant diagonal on [0,w] for each w € £, and hence will be myopi-
cally concave on this feasible set. Equilibria are thus generically determinate in such
economies. -

For another example of an economy with dominant diagonal preferences, consider

utility functions of the form. U(z) = io: Brue(zy.. .., 1), where u, : R, — R and
=1

{8} € £144+. Suppose that for each t, u, is C? on R’ , differentiably strictly con-
cave and differentiably strictly monotone, and that u, has a dominant diagonal for
each t. Moreover. suppose that, given w € £y, there exist M;, My > 0 such that

sup %i(m) < M;and sup aai:gi(m) < —Mj;. Stroyan (1983) has shown that such
tsxe0n] tsze(0..] 7 ’

utility functions are Mackey continuous on ¢, and showing that U (z) is twice con-
tinuously Gateaux differentiable is straightforward, as is verifying that DU(z) € £;, .
and that D?U(z) is negative definite for each x € £o..,. Moreover, U(z) is myopically

concave. To see this, given T > 0, for each t < T, let 8%u;(x;,...,2,) be the T x T
matrix ' - ;
Pus(zy. .. . VL) = ( U (1, ..., 22 tx(T—t) ) .
O(r—tyxt O(r—tyx(7-1)

T
Then D2UT(z) = ¥ 5,0%u(x,. . .. , 1), which has a strongly dominant diagonal on
=1

any interval of the form [0,w]. Thus an exchange economy in which consumers have
such preferences will have generically determinate equilibria.

All of these results have been in a setting prohibiting Inada conditions commonly
found in infinite horizon models. As discussed earlier, such conditions are inconsis-
tent with supportability or properness in almost all economies with infinitely many
commodities, since in most of these settings, including all ¢, spaces except £, the
positive cone has an empty interior. One notable exception, £, is the canonical
model for discrete time, infinite horizon economies in which Inada conditions often
play a prominent role. so in the next section, I discuss how the results of the pa-
per can be extended to allow for Inada conditions in such economies, and what such
conditions might mean in these general infinite horizon models.

5This result can also be extended to economies with commodity space £, where p # oo by
defining an analogous notion of dominant diagonal, for example requiring that 87 (z) = {_g-::i(g} =
—I +CT(z), where ICT(z)]] < m < '3

26




4 Determinacy and Inada Conditions

To allow for Inada conditions when the commodity space is £,,. we must change the
notion of a smooth economy. One of the requirements of a smooth economy was the
existence of a well-defined continucus linear functional supporting each consumer’s
indifference set at each point in the positive cone, but natural Inada conditions will
give rise to preferences which violate this assumption. For example, consider addi-

tively separable preferences of the form U{z) = OZO: B*u(z,); here the natural Inada
t=0

condition requires that %/'(c) — oo as ¢ — 0. If the consumption vector z is not
uniformly bounded away from 0, then the consumer’s indifference set at that bun-
dle typically will not be supported by a continuous linear functional. In contrast,
in smooth economies with a finite number of goods, the boundary condition that
indifference curves do not intersect the boundary of the positive cone immediately
guarantees that every indifference set and every Pareto optimal allocation is sup-
ported by a well-defined, unique price. An assumption like that here would mean
that consumers cannot be impatient or myopic and must instead be infinitely far-
sighted. To see this, note that the assumption of Mackey continuity implies a priori
that consumers’ indifference curves will intersect the boundary of the positive cone.
For example, if Uj(z) > U;(y) and Ui{:) is Mackey continuous, then there exists
n such that Uy(z") = Ui(z1,...,24.0.0,...} > U(y); preferences between bundles
do not rely on consumption “at infinity”. Any assumption prohibiting the indif-
ference curves from intersecting the boundary of the consumption set will then be
incompatible with the assumption of Mackey continuity. With an infinite number of
commodities, finding analogous boundary conditions which are consistent with the
assumption of Mackey continuity of preferences and still guarantee that the excess
savings equations are well-defined becomes more complicated. Thus I first present a
series of successively stronger boundary conditions on preferences which imply suc-
cessively stronger interiority properties for the resulting Pareto optimal allocations,
before discussing how to extend the determinacy results of the previous sections to
this setting.

The first of these conditions is the weakest, and will ensure that all consumers
consume positive quantities of all goods at any Pareto optimal allocation which assigns
positive weight to each consumer, and so in particular ensures that all individually
rational Pareto optimal allocations are strictly positive.

Definition 4.1. Consumer i satisfies the weak survival condition if for every
T €l and for every t, if z, > 0 then g—;ff(:r) exists, and

au;

3:17:
@(mc,zﬁt) —ooasz, —0

Bz,
for all fixed =_, such that z, > 0.7

The weak survival condition says that if consumption of some good goes to zero,
then the consumer’s marginal rate of substitution for that good with respect to some

"Here, x_, denotes the elements of x corresponding to goods r 3£ ¢,
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other good he consumes in a fixed positive amount goes to infinity as the amount
of the diminishing good goes to 0, and this must hold regardless of the (fixed) level
of consumption of other goods. This condition, if satisfied by all consumers in the
economy, means that consumption bundles are strictly positive in all Pareto optimal
allocations giving positive weight to each consumer.

Theorem 4.1. Let £, be an economy in which each consumer’s utility function
satisfies the weak survival condition. If \ € A°, then (A} € {7 .

Proof: See the appendix. B

In a finite-dimensional model, strictly positive bundles are interior bundles, but
since that is not true in infinite-dimensional models, stronger conditions will be neces-
sary to ensure that Pareto optimal allocations lie in the interior of the positive cone.®
Two such conditions are presented below.

Definition 4.2. In an economy £, let z be an allocation in which z; — 0 for some
sequence r — ©0, and in which there exists a consumer j and a fixed constant ¢ > 0
such that z; > c for every r. Consumer i satisfles the survival condition if he
satisfies the weak survival condition, and if

ar, ¢,
. = ()
m sup S, L= 0.

52 {x5)

Let z™ be a sequence of allocations such that x} € int £, for each k and n, and
such that for some sequence {r(n)} such that r(n) — co as n — oo, 3, — 0 and

for some consumer j and some fixed constant ¢ > 0, 5 ., = ¢ for all n. Consumer
¢ satisfles the strong survival condition if in addition to satisfying the survival

condition,
ar; n
. e
. axr(n.j ( k1 )
lim sup —p——
m o (7]
riny +

These notions. embody several different restrictions. Marginal utility for a good
must go to infinity as the quantity of the good consumed goes to zero, and consumers
should be discounting at roughly the same rate, which guarantees that the ratio of
marginal utilities of consurmption of good t of two consumers, calculated at bundles in
which one agent’s consumption of good t is bounded away from zero uniformly across
goods and the other agent’s consumption is going to zero as t goes to infinity, should
converge to infinity with ¢. The strong survival condition strengthens this notion
by requiring this convergence to hold across sequences of allocations. These stronger
conditions are sufficient to guarantee that Pareto optimal allocations are interior, and
the strong survival condition guarantees in addition that the individually rational
Pareto optimal allocations are uniformly bounded away from 0. Alternatively, if we
call a consumer an interior consumer if z,;()) € int £, for all A € A°, then these
survival conditions predict when one or all consumers will be interior consurmers.

"®Recall that the interior of £, consists of all bundles uniformly bounded away from 0, so
z €int £, if and only if ix%f:rt > 0.
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Theorem 4.2. If each consumer satisfies the weak survival condition and some con-
sumer j satisfies the survival condition, then consumer j is an interior consumer. If all
consumers satisfy the survival condition, then all consumers are interior consumers.

Proof: T will prove the second claim; the proof of the first is the same. Let (Z1,...,Zm)
be a positive weight Pareto optimal allocation, i.e., an allocation corresponding to
weights A; > 0 for each 7. First note that z;, # 0 for all i and ¢ by the previous result.
Now suppose there exists i such that z; ¢ int /.. Then there exists a sequence
7 = 0o such that x;, — 0. Moreover, by feasibility there exists a consumer j such
that, by passing to a subsequence and relabeling if necessary, z; > £ for each r,
where w = il;if wt > 0, and w; is the aggregate endowment of good t. Define

R aU; oL’
5 = () 52 w)

for each t. Since (£},... 2%) is Pareto optimal in the truncated ¢ good economy for
each 7, the price p” supports 27 for each . In particular, for each T,

- Oz
[<1%; = AU
Eif(xt) E{:’(%)

8U; al;
5 (85)  gt(zs)

611
é_ﬁ_&(x.) - QQE(I.)’
6:1:1 z 53:;- t

but this is a contradiction. since the terms on the left become unbounded as r —s o,
and the term on the right is bounded. Thus z; € int l oy for all 4. B

Theorem 4.3. Suppose that each consumer satisfes the strong survival condition.
Then there exists € > 0 such that every individually rational Pareto optimal allocation
z is bounded below by ¢, that is, such that irtlf |2;,] > € for all 4.

Proof: See the appendix. |

Examples of economies satisfying these various survival conditions are relatively
easy to construct. First, the exchange economy in which each consumer’s utility
function is additively separable provides a range of examples in which, depending on
the consumers’ discount factors, either the consumers are all interior, or there exists
at least one interior consumer. For these examples, suppose that for i = 1,... m,

Ui(z) = tiﬁfu.;(mt), where 0 < 3; <1, 4, : Ry — Ris C? on R2_, u(c) > 0 and

T

u;(e) < 0 for every ¢ € R,.. and ui{c) — o0 as ¢ — 0. Each consumer in this
economy satisfies the weak survival condition, as for all ¢ and 8,




as r;, — 0 if z;, is fixed and positive. Similarly, if all consumers discount at the same
rate, so there exists some § € (0,1) such that 8 = 3; for all i, then all consumers
satisfy the other survival conditions as well, as

() _ ulzy)

O,

i(z)  uylzs)

for all 4, j,r. Furthermore. if consumers discount at different rates, then those con-
sumers with the greatest discount factor are interior consumers. To see this, note
that if we choose k such that 8, > 3; for every i, % > 1 and

(@) (B wiley)
8l; (I) - ﬁz’ .

oxy

Similarly, suppose consumer’s utility functions exhibit habit formation, so that
they have the form U;{z) = Z B*ui(zi-1, x,), where u; : R2 — R satisfies the following

condition: for any sequence (xn,yn) in R? such that (z,,1,) — — (=, y), 2 o (T, yn) =
o0 <= z, — 0 and similarly 2« B (Zn,Yn) — 00 < y, — 0.1° Then all consumers
will satisfy the strong survival condltlon and thus by Theorem 4.3, Pareto optimal
allocations will be uniformly bounded below. If consumers have dlfferent discount
factors ;. then again the most patient, those with the largest discount factors, will
be interior consumers. 7 '

Similarly, if m — 1 consumers have additively separable utility functions with con-
stant discount rate 3 as described above, and one consumer has recursive preferences
generated by an aggregator of the form w(c, z) = u(c) + g(z), where u'(c) — o as
¢ — 0and a < ¢'(z) < v for some a,v € [3,1), then the recursive consumer will
satisfy the strong survival condition, and hence by Theorem 4.3 she will be an interior
consumer.

By these results, if each consumer satisfies the weak survival condition and some
consumer satisfies the survival condition, then this consumer always receives an inte-
rior bundle in every individually rational Pareto optimal allocation. These survival
conditions thus imply that we can characterize equilibria using the excess savings
equations much as we did in section 2 while still allowing for Inada type restrictions.
Indeed, without loss of generality, we can assume that the first consumer satisfies
the survival condition. Given any weights A, the price supporting the Pareto optimal
allocation z(A)} must be proportional to DU;(z1(A)). so define p(A) = DU;(z,(N)).
Then as in section 2. normalizing prices by setting the price of the first good equal to
1 and letting p(A) be the normalized price vector, we can characterize equilibria as
the welfare weights A satisfying the equation §(A) = w!. The analogue of a smooth
economy in the presence of these Inada conditions is then the following.

Definition 4.3. An economy with commodity space £, is a smooth exchange
economy with Inada conditions if for each consumeri=1,...,m,

'°An example of such a function is u(z,y) = /= + 2y + N2
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1. w; €int £4;

2. Ui : £+ — R is monotone, strictly concave, and Mackey continucus, where

7;(0) = 0;
3. U; is twice norm continuously Gateaux differentiable on int £ ;
1. DU;(z) € 144 foreachx €int £, :

D?*U,(z) is negative definite for each = € int £, ;

[@]]

6. U, satisfies the weak survival condition, and there exists some consumer j such
that U satisfies the survival condition.

In a smooth exchange economy with Inada conditions, all of the strong predictions
concerning competitive equilibria in smooth economies established in sections 2 and
3 carry over. For example, by the same arguments used to prove Theorems 2.7 and
2.8, Lipschitz economies in this setting have generically determinate equilibria.

Theorem 4.4. Let £, be a smooth exchange economy with Inada conditions which
is also a Lipschitz economy. If £, is a regular economy, then £, has an odd number of
equilibria which are upper Lipschitzian in w'. Moreover, the set of critical economies
has measure 0 in W. _

Furthermore, the main result of section 3 remains valid, showing that uniform
concavity implies that the economy is a Lipschitz economy, and this result can be
established by virtually the same argument. The only difference in the argument
comes in defining utility functions in the truncated T-good economies. Since each
consumer’s utility function is Gateaux differentiable on the intérior of £, define
U :RT — R by

U,T(y) = Ui(yl, e YT Wi Wi g )

Then for each T, U7 is C? on RT_, with DU (y) > 0 and D?U7T (y) negative definite
for each y € RT, | since (y,wir,, \Wir_p, .-} € 1nt . With this definition for utility
in each T-good economy, the analysis of section 3 carries over immediately to these

econormies.

Theorem 4.5. Let £, be a smooth exchange economy with Inada conditions. If each
- consumer’s utility function is uniformly concave on int £, then the economy &, is
a Lipschitz economy.

Finally, myopically concave and dominant diagonal preferences generate classes of
economies in which these Inada conditions are consistent with generic determinacy.
For example, Theorem 3.6 remains valid in this setting allowing for Inada conditions,
and the model of habit formation discussed in section 3 can be modified by adding
the simple boundary conditions discussed above to yield an economy satisfying Inada
conditions and having generically determinate equilibria. As in section 3, consider

habit formation preferences of the form U(z) = v(zo) + io: B'u(ze1. 7). Suppose
t=1
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here that 0 < 8 < 1, u,v are C%, v'(c) > 0.v"(c) < 0 for every ¢ € R,,, that
Du(cy,e3) > 0 and that D%u{cy, ¢;) is negative definite and has a strongly dominant
diagonal for every (c1,cp) € R%,. Assume in addition that the functions u; satisfy the
boundary condition described above. This assumption means that the individually
rational Pareto optimal allocations lie in some interval of the form [z, Z], wherez < Z
and £, T € int €, by Theorem 4.3. Since these habit formation preferences are
myupically concave on any interval of this form. equilibria are generically determinate
in this economy.

5 Determinacy in Production Economies

Thus far the paper has focused exclusively on determinacy in exchange econcmies,
but many of these results carry over in a straightforward manner to economies with
production. This section briefly discusses one such extension. To simplify the dis-
cussion, let Y denote the aggregate production set in the economy; the goal of this
section is to give restrictions on the aggregate production set and on preferences and
endowments under which the corresponding production economy has generically de-
terminate equilibria. As in Mas-Colell (1986b). the production set will be described
by a transformation function and a pre-technology set Z C X which is a weakly
closed, convex sublattice of X containing the origin and satisfying free disposal, so
that Z — X, C Z.2° The following definition collects the basic assumptions regarding
the production set ¥ that will be maintained throughout this section.

Definition 5.1. Let the commodity-price pairing be a svmmetric Riesz dual system

(X.X'). The production set Y is a smooth production set if

1. Y is weakly closed and convex
2. Y i X+ = {0}

3 Y={yeZ: fly)y<0}anddY ={y € Z: f(y) = 0} for a transformation
function f : X — R satisfying

a. f is strictly convex, strictly monotone, and T continuous for some compat-
ible locally convex topology 7, and f(0) = 0

b. f is twice continuously Gateaux differentiable on Y

c. Df(y) e X\, forallye dY

d. D?f(y) is positive definite for all y € 8Y .

If the production set Y is a smooth production set. then at each point on the
efficiency frontier Y there is a well-defined vector of marginal rates of transformation

2 As Mas-Colell (1986b) notes, the use of such a pre- technology set to describe the production set
allows us to extend the analysis of production economies beyond the case in which the production _
set has a nonempty interior, since if Y = {y € X : f(y) < 0} for some T continuous transformation
function f and f(y) < 0 for some y, then Y will have nonempty 7 interior.
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given by Df(y}). This assumption plays the same role played by the assumption of
Gateaux differentiability of utility functions in exchange economies, substituting for
uniform properness of the production set and guaranteeing the existence of prices
supporting each Pareto optimal allocation. Thus if consumers’ preferences satisfy the
assumptions of a smooth exchange economy and the feasible production set is weakly
compact, equilibria can be characterized using the excess savings equations as in the
case of pure exchange economies. These assumptions are captured by the following
definition.

Definition 5.2. An economy is a smooth production economy if the commodity-
price pairing is a symmetric Riesz dual system (X, X') and

1. the aggregate production set Y is a smooth production set;

2. YV = (Y + {w}) N X, is weakly compact;

3wy € Xyy fori=1,...,m, and consumer i receives share #; in profits from

m
aggregate production, where 6; > 0 and Y 4, = 1;
=1

4 foreachi=1,...,m,
a. U;: Xy — R is strictly monotone, strictly concave, and T continuous for
some compatible locally convex topology 7, with U;(0) = 0;
b. U; is twice continuously Gateaux differentiable on X ;
c. DU(z) € X',, foreachz € X,;
d. D?U;(z) is negative definite for each z € X,
In a smooth production economy, we can define the social planner’s problem char-

acterizing Pareto optimal allocations just as in a smooth exchange economy, so given
AEA, let

(y(A),z(A)) = argmax i/\iUi(x,-)

i=1

m
s.t. inEY, z;€Xs,1=1,....m

=1

Then if we define
p()) = (\7 A:DU;(z( )\/7 }Df(y(A)),
i=1

where y()) is the Lagrange multiplier on the feasibility constraint in the social -
planner’s problem, p(A) will be a price supporting the Pareto optimal allocation
(z(A),y(A)), as shown by Mas-Colell (1986b, Lemma p. 327 and Theorem 2). Thus

equilibria in a smooth production economy can be characterized as the welfare weights
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at which the excess savings equations are satisfled, that is, as the solutions to the
equations

P(N) - (22(0) — Bay(N) —wz) = 0

PN - (En(A) = Omy(A) ~wm) = O.

If prices are normalized so that the value of aggregate production is always 1, then
these equations can be rewritten

B(A) - (z2(A) — wo) 2
s(A) = : =1 ],
B(A) - (#m(A) —wm) O
where p(A) = —ﬂi\)—— As in the exchange case, this characterization of equilibria sug-

p(A)p(A)”
gests a natural parameterization of economies using the shareholdings of consumers,

indexed over the set © = {# € R : f: g; <1}.%
1=2

Using this formulation of the excess savings equations, the notion of a regular
economy can be extended to production economies in the natural way. A production
economy will be called a regular economy if # is a regular value of s{A). If the ex-
cess savings equations are Lipschitz continuous, then we can draw strong conclusions
about determinacy analogous to the results developed in section 2. For example, the
following result is  straightforward extension of Theorems 2.6. 2.7, and 2.8 the proof
is left to the reader.

Theorem 5.1. Let & be a smooth production economy which is also a Lipschitz
economy. If £ is a regular economy, then it has finitely many equilibria, each of
which is upper Lipschitzian in 8. Moreover, the set of regular economies has full
measure in ©.

When the commodity space is a normed space, showing that the social planner’s
problem has a Lipschitz solution is sufficient to guarantee that the economy is a Lips-
chitz economy and thus has generically determinate equilibria. In the case of sequence
economies, the social planner’s problem can be studied by considering truncated ver-
sions of the feasible production set, just as in exchange economies the planner’s prob-
lem can be studied by considering truncated versions of the social endowment vector
deﬁning the feasible set. More precisely, if the commodity-price duality is (£,.£,)
where 1 s T3 1 =1, then for each T we can define the truncated feasible set -

Tt{yT€€p+:yE)}}.

21 As in the exchange case, sequence economies can be alternatively parameterized using initial
endowments.
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The solution to the social planner’s problem given this truncated feasible set is then

(yr(A),z7(\)) = argmax i)\iU;(xz)

i=]

m
s.t. Z.l‘,; cYT, Ty €lpy, i=1,...,m.

f=]

Consumers’ myvopia in a smooth production economy implies that as T becomes
large, the solurivn to this truncated problem approximates the solution to the original
planner’s problem. as in the case of pure exchange economies. Lipschitz properties of
the planner’s problem in these finite-dimensional approximations will then carry over
to the infinite-dimensional economy as long as the Lipschitz bounds on the finite-
dimensional approximations are uniform. Uniform convexity?? of the transformation
function describing the aggregate production possibility frontier and uniform concav-
ity of consumers’ utility functions will suffice to ensure that these Lipschitz constants
are bounded. and hence that the resulting production economy is a Lipschitz economy.

Theorem 5.2. Let & be a smooth production economy in which the commodity-
price duality is (£,.£;) where & +1 = 1. If each consumer’s utility function is uniformly
concave and the transformat:on ﬁmct;on [ is uniformly convex, then the economy &,
is a Lipschitz economy.

Proof: The proof is similar to the proofs of Lemmas 3.1 and 3.2 and Theorems 3.3
and 3.1. The details are contained in the appendix. B

As in exchange economies, when the commodity space is £, these results can be
simplified significantly along the lines of Theorem 3.5. A smooth production econ-
omy with commodity space £, will be a Lipschitz economy as long as the transfor-
mation function describing the aggregate production set is strongly convex and each
consumer’s utility function is strongly concave. Similarly, the results on myopic con-

cavity and dominant diagonal conditions can be extended to characterize classes of

uniformly convex or myopically convex transformation functions.
As a last example of such an economy, consider transformation functions of the

form f(y) = af: Bifilu, ..., 1), where f, : R® — R and {ﬁt} € £1,4.. Suppose that

for each ¢, ft is C?, differentiably convex and differentiably monotone, and that fi
has a dommant diagonal for each ¢. As in section 3, such transformatlon functions
are Mackey continuous on £, and twice continuously Gateaux differentiable, where
Df(y) € {11+ and D*f(y) is positive definite for each y. Moreover, [ is myopically
convex. On the production side, the only assumption which might not be satisfied
by such a technology is the assumption that the feasible production set ¥ is weak®
compact. Since Y is weak® closed, it will be weak” compact if and only if it is norm
bounded, thus V is weak® compact if and only if {fr} is bounded, where §r solves the
equation f(—<_1:%) = 0. Even if ¥ is not bounded, however, suitable restrictions
on preferences will yield a weak* compact set of Pareto optimal allocations, which

2 A function £ is uniformly convex if —f is uniformly concave.
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is sufficient to carry out the analysis of the paper.? Finally. although the results in
this section are in the setting of an economy with a single producer to simplify the
notation and discussion, the same ideas could be used to extend these resuits to allow
for an arbitrary finite number of producers.

6 Conclusions

This paper has developed two distinct but complementary ideas. First, the bound-
ary case in which the equilibrium equations are not smooth, rather than being the
exception as in the classical Arrow-Debreu model with finitely many commodities, is
the rule in economies with infinitely many commodities. The techniques pioneered
by Debreu (1970} are thus inapplicable for studying determinacy in most economies
with infinitely many commodities. Despite this important difference between the
Arrow-Debreu model with finitely many commodities and its extension to a setting
with infinitely many commodities, the qualitative features of regular economies with
finitely many commodities carry over to infinite-dimensional economies as long as the
economy is a Lipschitz economy. There will typically be many different methods for
determining whether a particular economy is a Lipschitz economy, which motivates
the separation of these ideas from the rest of the results of the paper.

The second theme of the paper, however, is that in many models with infinitely
many commodities there is a natural and intuitive method for verifying that an econ-
omy is a Lipschitz economy based on the preferences of consumers and the technologies
of firms, by thinking of the economy as the limit of economies with a large but finite
number of commodities as in Bewley’s seminal work. The stronger conclusion sought
here, that equilibria are generically determinate rather than simply that equilibria
exist, requires stronger assumptions than does Bewley’s work, in particular on the
structure of the commodity space. Although a number of important economic models
have a countable number of commodities, others, such as asset trading in continuous
time or markets with differentiated commodities, may require a richer specification
of commodities. For these economies, the framework for studying determinacy devel-
oped here is suggestive but incomplete. More intricate approximation arguments or
some Lipschitz version implicit function theorem, as in Shannon (1994b), will then be
required in these economies to establish a general class of preferences and technologies
which prohibit robust indeterminacies in the set of competitive equilibria.

#38ee Shannon (1996) for one such set of conditions, and for a further discussion of this point.
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7 Appendix

The appendix presents the proofs of several results in the text, as well as several
additional lemmas needed in the proofs of Theorem 3.3 and Corollary 3.1. These
lemmas and the proofs of Theorem 3.3 and Corollary 3.1 are given first. :

Lemma Al. Consider a smooth exchange economy in which X is a normed space
and X' is a Banach lattice. If {}) is locally Lipschitz continuous, then s(}) is locally
Lipschitz continuous, so the economy is a Lipschitz economy. '

Proof: First note that since DU,(z) is continuously Gateaux differentiable on X,

DUi(z) is locally Lipschitz on X;. Thus DU;(z;())) is locally Lipschitz on A° if £(A)

is locally Lipschitz. Similarly, p{A) = V2,(M\DUi(zi{)\})) is locally Lipschitz on A°. -
To see this, let p*(\) = A, DU;(2:(7)). By the above argument, p*()\) is Lipschitz for

each 4, and p(A) = p!(A) v -+ v p™()). Without loss of generality, assume m = 2,

and let A € A°. Choose a neighborhood W of X such that W < A®, and let N € W.

Since X is an Archimedean Riesz space,

p(\) — (V)] = [PH(A) v P*(A) = pH(X) v PR(N)] < [P(A) = pE(Y)] V [pR(A) — BN

Then note that [p!(A) — p}(N'}| = 0 and [p*(A) — p*(X)| > 0, so

0 < Ip'(A) —p' (W) VP (V) = PP(N)L < 1P (A) = pHX)| + P2 (Y) — P2(V).

Putting these together implies that

PO =PV < ') =P () + 1P () =P (V)] = |IPYA = 2" ()] + [ (A) = ()]

Since X' 1s a Banach lattice,

) =501 < 20— P01+ ) — )| 1
ip' () =2 )1 + 12> ) = P |
= 1P'0) = PO+ 1200 = POV,

where the last equality again follows because X' is a Banach lattice. But then since
p' and p? are locally Lipschitz continuous, there exists some constant k > 0 such that
p(A) = p(W) |} < kJ|A = X|f. Moreover, v(A) = p(A)} - w is also locally Lipschitz on A°.
Now let A € A®, and choose a neighborhood V of A such that V ¢ A°, and on
which v(-) and p(-) are Lipschitz with constants K; and K. Then there exists C > 0
such that [v(A)] < C and ||p(A)|| < C for every A € V, and hence for every A € V.
Moreover, v{A) > O for every A € A, so there exists ¢ > 0 such that v()\) > ¢ for
every A € V, and hence for every A € V. Then if A1, A2 ¢ V,

p(A)  p(»?) p(V) _p(¥) L p(AY) _ p(X?)

v(A1)  u(A2) v(AY)  w(Al) (Al w(A2)

e

tA

< ool =200+ el 5 -
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_ 1 1 2 : v(A?) — (M)
= 5o 1P =200+ oS |
< LN =+ S0 - o)

< KN -,

where K = 1K, + $K;. So p(A) = f% is locally Lipschitz on A.

Now it suffices to show that since x;(\) is locally Lipschitz on A°, then p(A)-z;{)\)
is locally Lipschitz on A® as well. Let A € A® and choose a neighborhood U of A as
before such that U C A°, and on which 5()) and z;()\) are Lipschitz with constants
Ly and L;. There exists M > 0 such that ||p(A)]| < M and |z;{\)]| < M for every A
in U and hence for every A in U. Let AL A2 e[ '

1B - 2,(A1) = BA?) - 2, (A% IBAT) - 2, (A1) = B(AT) - =5 ()]

‘ HIB(A) - 2,(A%) = BN -2, (W)

< Bz, (A1) = 2,00 + 2,32 BN — 3O
< MLGJIA = A% + ML,|A" = 22

= LA - 2. |

IA

Thus s(A) is locally Lipschitz on A°. - B

Lemma A2. Let x € f,, where 1 < p < co. Then the order interval [0, z] is norm
compact.

Proof: This follows from the fact that the inter\'ﬁl [0, 7] is norm totally bounded, and
from Theorem 9.1 in Aliprantis and Burkinshaw (1985) and Theorem 1 in DeVito
(1990, p. 110). |

The proofs of Theorem 3.3 and Corollary 3.1 make fundamental use of the notion
of uniform negative definiteness introduced in the paper and the properties of the
semi-inner product (-,-)4. For these arguments, the most important properties of
this semni-ifner product are contained in the following result.

Lemma A3 (Deimling (1985, Proposition 13.1)). Let X be a Banach space.
Then for all z,y,z € X, (z +y,2)4 < (z,2)s + (y,2)+ and [(z,2)4] < ||z||fjz]|. If
a,B > 0, then (az, B2), = af(z,2),.

The main differences between this semi-inner product and a real inner product
are that, with the exception of the case when X is a Hilbert space such as 4, the
semi-inner product is not necessarily linear or symmetric. The lack of symmetry leads
to an alternative definition of “negative definite” to the one given in the paper. Let
F(z) : £, — £, be a linear operator for each z. Then F(x) is uniformly dissapative
if there exists ¢ > 0 such that

(F7(x)z.2)1 < —cz]?
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for all T > 0, for all z € R7, and for each z. and F(x) is finitely dissapative if
(FT(2)z,2)4 <0

for all T > 0, for each z, and for all = € RT \ {0}. In particular, note that if
F(z) is finitely negative definite, then F7(z)! exists for each T, and FT(z)™! is
finitely dissapative, since if y £ 0, then (FT(z) 'y, y)+ = (2, FT(2)z), < 0, where
z=FT(z)"ly#0. : '
Lemma Ad4. For every x, let S(x): £, — £, be a linear operator, for some p such
that 1 < p < oo. If S{z} is uniformly negative definite (uniformly dissapative), then
[ST(x)]™! is uniformly bounded, i.e., there exists Af > G such that | ST(z) 1| < M
for all T and for all x. Moreover, if in addition S(r) is uniformly bounded, then
ST(z)~! is uniformly dissapative (uniformly negative definite).
Proof: 1 will prove the lemma for the case in which 5(x) is uniformly negative defi-
nite; the uniformly dissapative case is analogous. First note that S7(z) is uniformly -
bounded below. To see this, let 7" be given and choose z € RT such that ||z]), = 1.
Let $7(z)z = y. We must show that |[y]l, is uniformly bounded away from 0. By the
assumption that S is uniformly negative definite, there exists ¢ > 0, independent of
T, such that
(2.8 (@)2)] = Hz,9)4| 2 ¢

This implies that

¢ < [(z.9)+] < Hzlplivlle = .

So ||yl is uniformly bounded away from 0. i
Now suppose w € RT and ||wil, = 1. Since ST(z) is uniformly negative definite.
ST{x)~! exists. so let g satisfy S7(z)""w = ¢. Thus w = ST(x)g, and

L= Jull, = § 57 (z)qll,.

But this implies
1= [IS"(z)ql, = cllall,

by the previous argument. So figll, < 1, i, [|[ST(z)7Y| < 1, and this bound is
independent of T and z.

To see that ST(z)™! is uniformly dissapative if S(x) is uniformly bounded, let
T be arbitrary and let [y[l, = 1. Then (§7(2)"'y,y)+ = (2,57 (z)z)+, where z =
ST(z)"ty. Thus y = $7(z)z, so '

1= |lyll, = 157 ()2, < UST (@),
- . - - 1
which implies that ||z||, > TS So
|(ST(@) yv)+] = (2, 8T (2)2)4] = ¢z} > d
for some d > 0 since 57 () is uniformly bounded. Thus §7(z)~" is uniformly dissap-

ative. B
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Lemma A5. For every x, let S1(z), So(x) : £, — €, be linear operators. If Sy(z) is
uniformly dissapative and Ss(z) is finitely dissapative, then 8§1(x)+ So(z) is uniformly
dissapative. '

Proof: Let T > 0 be given and let z € R?. Then by Lemma A3.
((ST(z) + 87 (2))z, 2)4 < (ST ()2, 2)4 + (5] ()2, 2)+,

and since Sy(z) is uniformly dissapative and S3(z) is finitely dissapative, there exists
¢ > 0 such that

(ST (=) + 87 (z))z,2)+ < (ST (2)2.2)4 < —cllz]3.
Thus Si{x) + S2(z) is uniformly dissapative. ]

Proof of Theorem 3.3: By Lemma A.l. it suffices to show that z(A) is locally
Lipschitz continuous. Then by the previous lemmas, it suffices to show that {cr}
is bounded, where ¢y is the Lipschitz constant on z7(),w”). Using the notation of

the previous proof, since 27 (A, wT) € Upes@mry 2L (A w7T), cr = m(gx_r) ¢, Where
LeS(Rm

cir is the Lipschitz constant of 7 (A, w7?). By the Implicit Function Theorem, each
function zT (X, w7} is C!, and

D, = DT )]” 0T

J=1

- DU (a ] [i [, 0?07 ()] IJ_ {/\iDgUf(:r:i)]_l(DU,-T(J:,-)+DU1T (z1),

and for j # 1,

D,\jx:; = [,\ipmf“(xi)]'l Li [\D2UT (a:k)]_l} h [Ajpﬂzﬂ" (z5)] " (DUT (2;)+ DUT ().

=1

Let A € A® and choose a neighborhood W of A such that W C A°. Since D), 2% (A, w7)

is bounded on W for each 7, :rL(/\ wT) is Lipschitz in A on W with constant ¢, given =

by cpr = sup DAJHIL(/\ wT). Since z;(A,w?) solves the social plariner’s problem, .
FAEW

DU (z1) = 22 DU (z:) for each i. To ease the notational burden, for the rest of the

argument [ will suppress the arguments in these derivatives. Then on W, z7(\,w7)

is Lipschitz with constant ¢z given by the maximum of

sup 3
LAz AEW 1

7=1

-1 .
0207) 7 pUT - (0207 [Z [\ D?UT ]‘1] Mt [np2uT| ™ pUT

and

[np2ur]” Li InwD2UT]” } ’\‘T*"l)‘—[,\ pu?| ™ pu7|.

=1

sup
LT AEW
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On W, (X;)"! and 5%‘* are bounded for each i, so by this calculation, it suffices to
show that

: m -1
fL;}; [D2UJT]_1 DUJ.T < oo and jl;}; [AjDQUJT]—l [; [/\iD?UE"] 1} < 0.

By uniform concavity there exists & > 0 such that ||(D2U7)"'DUT|| < k for all
-1

7, T and z. Now consider [A\;D*UT]! [ DU } . By assumption we can

rewrite this expressmn as

ST BN S sD e | )

where BT = diag{§%(z;)}. By definition, (BT)"!BT = diag {%ﬂ,,-’-\-:} for each

7
i,7, and T, so (*) can be equivalently written as

ml(S}“)-l [i AJ—I(SE")—I} ) .

Since S7 is uniformly bounded and uniformly negative definite for each 1, (S8Ty-t
is uniformly dissapative, thus A;" 3 (S7)~" is uniformly dissapative on W. So by
=1

Lemma A 4,
-1

ety

is uniformly bounded on W. Since ); ;87 (25) is uniformly negative definite, Aj (ST)

is also uniformly bounded on W by Lemma A4, so (*) is uniformly bounded on W.
Thus the sequence of Lipschitz constants {cr} is bounded. -]

Proof of Corollary 3.1: Let A € A® be given, and let W be a neighborhood of A "~

such that W C A°. To ease the notational burden, I will suppress the dependence on
-1

z in the proof. By assumption, [,\jDzUﬂ DUT = A;l(SJ-T)"I(BjT)‘IDU}", where

(B_;r)"lDUf is uniformly bounded by the assumption of myepic concavity, and S;

is uniformly negative definite, which implies that (SJT )~! is uniformly bounded by
Lemma A.4. So there exists £ > 0 such that for all j,z and T,

[, D27 DUT|| < &

m _1

Similarly, consider [A; D2UT]! { [)\iD2Uz-T]'1] . By assumption we can rewrite this
i=1

expression as

-1
A;I(SJ.T)*[ T ATHST) )"‘B}"} .

]
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Then since (B])™'B] ST is finitely negative definite, (ST)~*(B7)~'BT is finitely dis-
sapative, which implies that A71(S7)™" + ¥ A71(ST)~1(BT)~' BT is uniformly diss-
J#1

apative by Lemma A3. The rest of the argument now follows exactly as the proof of
Theorem 3.3. B

Proof of Theorem 2.2: That ["(z) is Mackey continuous follows from Bewley (1972,
Appendix II), and clearly U/{r) is strictly concave and strictly monotone. Then I
claim that U is continuously Gateaux differentiable on . and that given z € oy,
DU(z) = {f*v'{z,)} € £1... To see this, note that by definition it suffices to show
that for each h € £,

| i [B'uz: + rhy) — Bulzy) — 784U (@) Al
lim = Il , =0.

But for each r # 0,

| f;o [Btulz, + rhy) — Blulz,) — 13U (z)h]l  mo

e

ulz, + rhy) — u(z,) — rv/(z)he
Iri t=0) '

r

Since u is C? on [0, 00), there exists 7 > 0 such that on {~7, ||z|| + 7], ©'(z) exists and
is bounded, so there exists A/ > 0 such that |[u'(2)] < M for all such z. Then given

€ > 0. choose T such that f 3" < ¢/2M. For every t,
t=T .

\u(a:t + rhy) — ulzy) — ru'(ze) by
r

-0
asr — 0, sofor £t =1,...T there exists Aét > 0 such that for |r| < &,

€

1-8

{u(:z:t +rh) - ur(:ct) —ru'(z)hy <

Set 6 = min{n,6,:t=1,...T} > 0. For |r| < 6,

3 18%ulwe +he) = Bu(a:) ~ r8u (w0l < § et rh) = ula) = ety
r 2 f
T ot v — u(a) — v (e
_ gﬁtU(m +7mhy) — u(z,) ru(m)h’
N
< Z gt wl@ F Th) — ur(mt) — 1/ (z)he
5% pf e (et
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for some z; € (z,, z; + rh),

< €+ 2M - m = ¢,

So DU (z) = {3%/(z,)} for every x € £,,,. Since z € £, and v’ is continuous and
strictly positive, DU(z) € ;4.

To show DU (x) is norm continuous, suppose {1} € fooy and 2" — z. We must
show that DIU'(z") — DU(z) in £, i.e., that

lif{nz |8 (z}) — B ()| = ©.
£=0

Then let € > 0 be given. Since %' is continuous and {z,z",n = 1,2,...} is bounded,

there exists 3/ > 0 such that |[v/{(a]){ < M for all t and all n, and ju'(z;)| € M for

all t. Choose T such that Of: Bt < ¢/2M. For t = 1,...,T, there exists §, > 0
t=T+1

such that |z — =} < 6 = |u/{z) — v/ (z;)| < ¢/(1 — B), by the continuity of u'. Let

5= min{&l, ..., 6r} and choose N such that n > N = |[z" —z|| < §. Thenif n > N,

=) T oo
I8 () = B ()] = OB () —u(z) + Y B (af) — o (30)]
t=0 t=0 t=T+1
€ T o
< SN g+aem Y p
1-5 t=0 t=T+1

< €4¢€=2¢.

Thus lim i |30 (x]) — B {x,)] = 0.
Tot=0

Now [ claim that D?U(z) : £, — {¢; is the operator such that for h € £,
D2U(z)h = {3 (z,)h:}. To establish this, we must show that for each h € £,

f Ghu (ze + The) — B (z) — B (2 ) e

lim &2 = 0.
|{ri—0 IT’|

A straightforward variation of the argument given above to show that DU(z) =
{B*u ()} will show that this holds. Moreover, D?U(-)} is continuous. To see this, let
{z"} € €.+ be such that " — z. We must show that | DU (z")~ D?U(z)| — 0. Let
-z € £, be such that ||z|| < 1. Then (D*U(z") — D2U(z))z = {8t (v (zF) — u"(z,)) 2 },

50

(DU (z") - D*U(x)z| = Zﬁt "(7) — (@) zl

t==0

Iz iﬁt]u"(x?) — ' (z).

IA

Thus | D?*U(z™) - DU (z)|| < E Btu" (27} —v"(x,)| — O by the same argument given
t=0

above to show that DU(z) is continuous.
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Finally, we must show that D?U(z) is negative definite. If z € £, and z # 0, then
ZTDW(x)z = ¥ 8" (2)(2:)? < 0, so D*U(z) is negative definite. |
t=0

Proof of Theorem 2.7: The theorem will be proven by constructing an appropriate
homotopy between the equilibrium equations and a set of equations whose degree is
known to be 1, and appealing to homotopy invariance. Let A € A° be fixed, so X; > 0
fori=1,...,m. Define H(At): Ax [0,1] - R™ ! by '

HA) =1 -8 =2 +ts(A) - a).
H(-) islocally Lipschitz, and H(),0) = A=A, so d(H(),0),A°,0) = 1. Then by homo-
topy invariance, to show d(s(A) — a, A%, 0} = 1. it suffices to show that H(§A°t) # 0

for every ¢ € [0,1]. Clearly if t = 0 or if t = 1. H(A®,t) # 0. so suppose t € (0,1)
and H(A,t) = 0. Then '

Hs(A) —a) = —(1 = t)(A - X),

or
tBA) z;(A) —e) = —(1-8 =), j=2,...,m. (1)
If A€ 8A°, then A, =0 for some i =1,..., m. where A\, = 1 = E: M. If X =0 for
1=2
some ¢ = 2,...,m. then x;{A) =0, and (1) implies

0> —te; = t(H(A) - z:{N) — ;) = (1 — )N\ > 0,

which is a contradiction. Suppose A; = 0. By (1),

I (0 @) = =1 ) 30 - ),
and thus
B0 ) - = =19 TR == O -R). (@)

Since A; = 0, z1(A) = 0, thus (2) implies that
0< tal = —(1 ~—t):\1 < 0,

which is a contradiction. Hence H(BA°t) # 0 for every t € [0,1]. By homotopy
invariance, d(s(\) — @, A”,0) = 1. Since a is a regular value of 5. by Shannon (1994a,
Theorem 10), -
1=d{s,A%a)= > sgn det Ds()).

Aes~1{a)
Hence s~!{a) has an odd number of elements, which means that the economy &, has
an odd number of equilibria. B

44




Proof of Theorem 3.2: Since there are two consumers, it suffices to show that
Z2(A;) is locally Lipschitz. Given w € £u4, by Theorem 3.1 and the calculations in

the proof of Theorem 3.3, it suffices to show that [DQUiT (I)] - DUT(z) is uniformly
bounded on [0,w] for i = 1,2, and that

sup
zp(A)

D02 [[A,D2U1T]_l + [AgDﬁug“]’l]"] [MD*uT) ™ 3 DUT

First, consider [DzUt-T(:r)]_l DUT(x), and suppress the subscript i. Using the
notation defined in section 3, D?*U7T (x) = BT(:I:)ST( z)foreach T > 0 where B (z) =

diag{b,(xz)}1_, and 87 (z) = dlag{uﬂl I+ Z Rz}, with

It)

/0 ... 0 0 .- ]
0 ... 0 ) 0 ce 0
Rifz)=1o0 ... 0 ‘;,(:; bi(zz) ... i—,((f)lbrﬂ-t(ta:)
S e T
“n o' (:z) l(t:r) .- a'{:z) T"}‘l‘*t(f,l‘)

Since DU (z) = (b1(x),...,br(x)), it suffices to show that ST(z)~'1 is uniformly
bounded, where 1 = (1,1,...,1). Let T > 0 be arbitrary, and let z € RT solve the
equation S7(z)z = 1. Thus

1
2 (xl)zl = 1
U (xy)
uh'(xz)
zy + = 1
W {2s) 2T @
u'(z
( 3)43+042+G.3 = 1
'U."(.’L'g)
u(zp_
:( - 1)'?2"—1'5'3524“ +ar-1 = 1
u (-TT«I)
u” T " T
( ,( T)+g,(T ))ZT+GI2+ t+ar; = 1
u'(zr)  g'(rz)
grr oz T+1i~t . .
where a; = L% > bs(:Z)2115-1. Equations (T) and (T — 1) imply that
UH(IT—])

2\ Ty _(¥'(zr) | ¢'(rz) .
w'(z7-1) o= (U'(IDT) - 9’(2‘35)) o

which implies that sgn 2r_; = sgn z7. Then by definition

g (p-1z)

¢ (112 (bi{r-12)zr-1 + bar-1T)27),

ar-1 =
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SO sgn ar_; = —sgn Zy_; = —sgn zz. Similarly, equations (T" = 1) and (T — 2) imply
that

u”(-TT—2) i B UH(I'T—I) i

__——_u’(a:y_g) Ir-2 = mu’($T_1) ir-1+ar-y,
which implies that sgn z7_» = sgn 2r.; = sgn z7. and hence sgn ar_» =sgn ar_; =
—sgn zp. Repeating this argument and recursing backwards shows that sgn z; =
sgn 27 for all £ > 2. and thus that sgn a, = —sgn z for all .

Now suppose z; > 0 for all t > 2. Then the left-hand side in equation (t) is

negative while the right-hand side is equal to 1. a contradiction. Thus z; < 0 for all

t, which implies that a; > 0 for all t. Then for each t, equation (t) implies that

u'(x
|z} < ”( o
w(z,)
This argument was independent of T, so {iz|| = [|ST(x)"11}| < sup % Thus
; t t
ST(x)~'1 is uniformly bounded on any interval of the form [0,w].
Now consider
“yop2rT] ! 27;7] 7! 271717 2777) 7! T
22 D?UT] H,\ID Url™ + [2D°0]] ] [(MD2UT] MDUT. (%)

Then () can be rewritten as
MDT + 0DUF] T M DUT = [MBTST + \BYST] ' A DUT.
Since /\]Bl = /\QBQ = Aldlag {b}t(ﬂ'}l)} and DUl(.'L‘l)T = (bll(:rl)a'-':blr(ml))a it

-1
suffices to show that [S]T + ST ] 1 is uniformly bounded on [0,w]. But this follows
from the same argument given above. |

Proof of Theorem 3.4: Let z € [0,w] and consider an arbitrary row of D?U(z) =
{d:s(z)}}. Letting subscripts on u denote partial derivatives,

Bub (Te_1, ) ifs=t—-1;
dis(z) = Brugg(Te-1,2e) + ﬁtﬂuﬁl(ﬂ?t:ﬂ?tﬂ) if s = t;

5”1“?{1(3&,5&4—1) ifs=t+1;

0 otherwise.

We must show that U7(z) is uniformly concave. By Corollary 3.1 and Lemma
Ad, it suffices to show that ST(z) is uniformly negative definite, where S7(z) is given
by

’U"(IO) ' ‘ \

+Bui; (20, 21) Buig{zo, 1) 0 0 ... 0
ub(mo, ) u%z(ﬂfo, z1) '
+Bud (z1,22)  Budy(z:1, Ta) 0 e 0
0 uly (1, 7o) ud, (1, 25)
L FBuli(z,m)  PBud(me,Ts) - 0
0 0 ] 0 e ugz(xT—l 1)

+Bul Y (2r,0) /
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T
So z1ST(z)z = v"(wo)2? + Buli (z7r, 0022 + ¥ (21-1, 2) 1D (@eo1, 2:)(2e-1, 2:) Where

t=

Dt(mtﬁl xt) - (Juiz(mz-l, -’L‘r,)‘ ﬁuﬁz(;rt_;,xt)) ‘
, uig(zoy, ) ubg(zyy, )
Note that D*(z,_;,x,) is negative definite if and only if D*(z;_y, x;) + D*(2:-1, 2,)7 is

negative definite. and -

' 26Ut (Itul $t) (1 +}6)Ut (:—Et—l;xt))
t t t 11 ’ 12
Dleena) + Davad = (o Ly

- t 2
which is negative definite if and only if h(3) = +22x > (rplme-1.20)” - Then

(1+'B}2 u%](‘*"&—lylt}uig(:t—lyzt)
(uly(z:-1.21))%
ul {ze-1,zeJuby (@e-1.2e)

since h{0) =0, h(1) =1, and h is increasing. and given that
for all z. let 3 € (0, 1) satisfy the equation

46 (ugg(xn—laxt)y

— . = max
(148 =ze0 uly(Teo1, T )udp(Te_1, 1)

Then for 8 > 3. D¥(z,_, z,) is negative definite and continuous, so there exists d > 0
such that y"D*(c;. )y < d[[y” for each y € R? and (c1,¢3) € [0, |lw||] x {0, [jwll]).
Thus

T
282z < —d(2f + 27+ 3 ll(zen, 2))17) < —dljz)?
L=}
for some d > 0. Thus S7(z) is uniformly negative definite on [0, w). : =

Proof of Theorem 4.1: First [ will establish this result when there are only a finite
number of commodities. Suppose not, so suppose that there exists a Pareto optimal
allocation (z1,...,Zm) such that A; > 0 for all 7, so that U;(z;) > 0 for all i, and such
that x;; = 0 for some good j. Since Uy(z,) > 0, there exists k such that z;, > 0.
'\/Ioreover by feasibility there exists ¢ such that z;; > 0. Let €,6 > 0. Then letting e,
be the ™ unit vector,

Us(z; — ee; + bex) ~ Us(z:) = DUZE,) - (Sex — ee;)
oU; ... oU; .
53$k (Z:) — fb“;;(xi)

for some Z; = o(z; — ee; + bex) + (1 — a)z; where € (0,1). In particular, note that
.i',;j > 0. So

Ui{z; — ee; + bep) — Ui(z;) 2 0 =
Moreover, if ¢ > 0,

' 1
Uiy + €e; — bep) — Ui(my) > Uy{z, + e, — bep) — Uy + Efej)

= DU (&) - (E=-

ee; — bey)
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for some #; = (1 — v){(z1 + ee; — bex) + ¥(z1 + lee;). In particular, note that

#1; = (1—7v)e+vie and &, = z;, — (1 —7)8. Moreover, note that if 52 < -gi(m})

then U7 (x + €e; — beg) — Uy(zy) > 0. Now we can find constants §, ¢, ¢ such that

au; . au

)< S S8 B
FU—‘I’—“ - B, \ L1
311, € C—].E. E:

since the left hand side is bounded and the right hand side goes to infinity as ¢ — 0.
This is a contradiction, since we have thus found a Pareto improving trade.

The argument for the case of commodity space £, is similar. Suppose by way of
contradiction that there exists i, such that xz;, = 0. Since U;(z;) > 0 for all j, there
exists ' such that for each consumer j, x; > 0 for some r < t'. For each s and for
each : € £, define 2* = (z;,...,2,). Let T = max(¢t,#'), and consider the truncated
T good economy in which consumer j's utility function U T :RT — R is given by
UT( ) = Uiy, o141, Tr42,...) foreachy € RZ, and in whlch consumer j’s endowment
is w; Clearly (£],...,41) is a Pareto optimal allocation in this economy, and each
consumer satisfies the weak survival condition in this finite-dimensional economy, so
by the previous theorem, £, = z;, > 0 for all j and k, which is a contradiction. So
z; € {5, for all 1. [ ]

Proof of Theorem 4.3: First, by Theorem 4.2. all individually rational Pareto
optimal allocations are interior. Now suppose the theorem is false, so that there exists
a sequence of individually rational Pareto optimal allocations z* and there exists i
such that inf|zf| = b" — 0 as n — co. Since each z" is interior, A7 DU(z}) =

A} DU;(x?) for each i, 7 and for every n.ﬂSo for each 4,7, t, n,

Foreachi=1,...,m, define F; = {A € A : Uy(z:(\,w)) > Us(w;)}. By Lemmas 3.2
and 3.3. U;(x;(A,w)) is a continuous function of ), so F; is a closed set. Thus for each
i, F; is compact, since F; C A. Moreover, since U{w;) > 0, A; # 0 for all A € F.
Thus there exists A; > O such that \; > ), forall A € Fi. Let F = Ni¥; Fi. Then
F corresponds to the set of individually rational welfare weights, and bv the above
argument, F is a compact set on which Aj 2 A > 0 for some A and for all 7. Thus on
F, ;\,_1 is bounded for each 1, j.

Since F is compact, £(F) is weak" compact, and in particular, for every ¢ there
exists M, > 0 such that |z;,} > M, for all j and all z € z{F). Thus there exists a
sequence 7(n) — oo as n — oo such that 3, — 0. Now by feasibility, passing to a
subsequence and relabeling if necessary, there exists j such that xy
Then by the strong survival condition,

w!
Hszoralln.

" 38[{' : (7))
3 n
lim sup = )\ = lim SUp 5~ = 00
n A 5 (gg)
Ir(n) J
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But this contradicts the fact that A}/A} is bounded on F. Thus the individually
rational Pareto optimal allocations are bounded below. _ |

Proof of Theorem 5.2: First note that if 2(A) is Lipschitz, so is y{A), since y(A) =

w— Z x;(A). So it suffices to show that z(A) is Lipschitz. As in the proof of Theorem
=1
3.3 in the exchange case, the proof consists of three steps.

n

Claim 1. If1 < p < oo, then z7()\) — z()) for each A € A, and z(-) is norm
continuous. If p = oo, then zr(A) <5 z()\) for each A € A, and z(-) is weak"
continuous.

Proof of Claim 1: I will prove the claim for the case 1 < p < oo; the case p =

is analogous. Note that Y is norm compact, and for every T, YT C Y and Y
is closed. Thus for every T, Y7 is compact. Suppose by way of contradiction that
zr(A) # z(A) for some A € A. Since YT C Y C [0, 7] for some § € £,, then for every
T, zr(\) € [0,7]™. So there exists some convergent subsequence x5(A) — z # z()\).

m

Since Y is closed, S z; € ¥, and since z # z(A).
i=1

™ m

SoNUi(z) < 3 Us(=:(N)).

=1 i=1

Note that by definition, in: (AT € YT for all 7. and 2(\)T 2 z(A), so for some T

=1

> Alien () < 3 Tia ()

n

But this contradicts the definition of z7(A). So z7(A}) —= z{\). .

sufficiently large,

Claim 2. ForeachT > 0, zp(A} is Lipschitz with constant cr, where ¢ = sup ¢ < co.
T

Proof of Claim 2: To see that zr () is Lipschitz, note that by definition
z7(A) = arg  max Z/\iUi(zi)
=1

m
Z:L‘iEYT, ;20 i=1,...,m

i=1
" S0 z7,(A) = (zT(A\,w7),0,0,...), where
zT(A\) = arg max i,\‘-Uf(z,-)
i=1
s.t. fT(iz,-) =0, z>01i=1,....m
and fT(w) = f(w,0,0,...) for all w € RT. Thus it suffices to show that z7(\) is

Lipschitz in A. Since each of these problems is finite-dimensional, arguments similar
to those used by Mas-Colell {1985) and in Theorem 3.1 to will give the desired result.
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For each coordinate subspace L of R™, define

m
ri(AwT) =arg max Y AUT(z)

i=]

s.t. fT(i z)=0, zelL.

fe=]

Since D2UT(z;) is negative definite for ail z; € RT and D?f7(w) is positive definite

)

for all w such that f7(w) =0, 2T(A) is C* in X for each subspace L. Moreover,

Z(Aye U I

LeS(R™T)

where S(R™7) is the set of all coordinate subspaces of R™7. Since this set has a finite
number of elements and z7(A)} is continuous in A, 27 (A) is Lipschitz continuous in A
with some constant ¢ > 0 (see MasColell (1985)) .

Now as in the proof of Theorem 3.3, to show that {cr} is bounded, it suffices
to show that z7(A) is uniformly Lipschitz. By the Implicit Function Theorem, each
function 27(A) is C* and D,,27(}) is given by

Dyal, = [nD%7] " DUt
-1
- o] {Z (DU [’YD2fT]_1] [7D?U7) 7 (DUT + DfT),
=1

and for j # 1,
Dy, = [nD7]” [i (WDUT] ™ + [yD? fT}‘lr (\D2UT)H(DUT + Dy,
k=1

where 7y is the Lagrange multiplier on the feasibility constraint, and again I have su-
pressed the arguments to ease the notational burden. But now an argument identical
to that given in the proof of Theorem 3.3 shows that this quantity is bounded for all
Jand T, and thus that ¢ = super < oc. '

T
Finally, arguments identical to those in the proof of Theorem 3.1 show that because

{cr} is bounded, z7(A) — z()) uniformly, and thus z()) is Lipschitz with constant
c. B
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