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L2-DETERMINANT CLASS AND
APPROXIMATION OF L2-BETTI NUMBERS

THOMAS SCHICK

Abstract. A standing conjecture in L2-cohomology says that every finite
CW -complex X is of L2-determinant class. In this paper, we prove this when-
ever the fundamental group belongs to a large class G of groups containing, e.g.,
all extensions of residually finite groups with amenable quotients, all residually
amenable groups, and free products of these. If, in addition, X is L2-acyclic,
we also show that the L2-determinant is a homotopy invariant — giving a short
and easy proof independent of and encompassing all known cases. Under suit-
able conditions we give new approximation formulas for L2-Betti numbers.

1. Introduction

For a finite CW -complex X with fundamental group π, L2-invariants of the
universal covering X̃ are defined in terms of the combinatorial Laplacians ∆∗ on
C∗(2)(X̃) = C∗cell(X̃) ⊗Zπ l2(π), which, after the choice of a cellular base, is a finite
direct sum of copies of l2(π). In this way

∆p = (cp ⊗ id)∗(cp ⊗ id) + (cp−1 ⊗ id)(cp−1 ⊗ id)∗

becomes a matrix over Zπ ⊂ Nπ, which acts on l2(π)d via multiplication from the
left. Here Nπ is the group von Neumann algebra with its natural trace trπ, defined
as follows:

1.1. Definition. For ∆ = (aij) ∈M(d× d,Nπ) set

trπ(∆) :=
∑
i

trπ(aii),

where trπ(a) := a1 = (a, 1)l2(π) is the coefficient of the trivial group element if
a =

∑
g∈π λgg ∈ Nπ ⊂ l2(π).

Particularly important are the spectral density functions

Fp(λ) := F∆p(λ) := trπ χ[0,λ](∆p).(1.2)

The L2-Betti numbers are defined as

b(2)
p (X) := b(2)

p (∆p) := F∆p(0) = dimπ(ker(∆p)).

These are invariants of the homotopy type of X .
Another important invariant is the regularized determinant :
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1.3. Definition. For a positive and self-adjoint operator ∆ ∈M(d× d,N ) over a
finite von Neumann algebra N with spectral density function F∆, define

ln detN (∆) :=

{∫∞
0+ ln(λ)dF∆(λ) if the integral converges,
−∞ otherwise.

Sometimes, this regularized determinant is called the Fuglede-Kadison determinant.

This gives rise to the next definition:

1.4. Definition. A self-adjoint operator ∆ as above is said to be of π-determinant
class if and only if ∫ 1

0+
lnλdF∆(λ) > −∞.

The space X is said to be of determinant class if the Laplacian ∆p is of π-
determinant class for every p.

1.5. Conjecture. Every finite CW -complex is of determinant class.

If X is of π-determinant class and all L2-Betti numbers are zero, then we can
define its (additive) L2-Reidemeister torsion

T (2)(X) :=
∑
p

(−1)pp ln detπ ∆p.

Burghelea et al. [2] show that L2-Reidemeister torsion is equal to L2-analytical
torsion (for closed manifolds) and therefore is a generalization of the volume of a
hyperbolic manifold in the following sense: for odd-dimensional compact manifolds
whose interior admits a complete hyperbolic metric of finite volume, the analytic
torsion is proportional to the volume of the interior [15] with non-zero constant of
proportionality [9].

Lück and Rothenberg [14, 3.12] show that this torsion is an invariant of the
simple homotopy type of X . They conjecture

1.6. Conjecture. L2-Reidemeister torsion is a homotopy invariant.

They prove [14, 3.11]:

1.7. Theorem. L2-Reidemeister torsion is a homotopy invariant of L2-acyclic fi-
nite CW -complexes with fundamental group π if and only if for every A ∈
Gl(d× d,Zπ) the regularized determinant is zero: ln detπ(A∗A) = 0.

1.8. Remark. In fact, ln detπ(·∗·) factors through the Whitehead group of π. The
corresponding homomorphism is denoted Φ by Lück and Rothenberg, but we will
write ln detπ for the map on Wh(π) as well.

1.9. Remark. Mathai and Rothenberg [16, 2.5] extend the study of L2-determinants
from the L2-acyclic to the general case, dealing with determinant lines instead of
complex numbers. Without any difficulty, this could be done in our more gen-
eral situation as well. Because this would only complicate the notation and the
generalization is transparent, we will not carry this out.

Suppose that π is residual, i.e. it contains a nested sequence of normal subgroups
π = π1 ⊃ π2 ⊃ . . . such that

⋂
i πi = {1}. Then we construct the corresponding

coverings Xi of X with fundamental group πi. L2-invariants can be defined for
arbitrary normal coverings (the relevant von Neumann algebra is that of the group
of deck transformations). We conjecture:
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1.10. Conjecture. In the situation just described, for every p, the L2-Betti num-
bers b(2)

p (Xi) converge as i→∞, and

lim
i→∞

b(2)
p (Xi) = b(2)

p (X).

The projections π → π/πi induce maps pi : M(d × d,Zπ) → M(d × d,Zπ/πi),
and the Laplacian on Xi (considered as such a matrix) is just the image of the
Laplacian on X̃. Therefore, Conjecture 1.10 follows from the following conjecture
about such matrices (and, in fact, is equivalent, as follows from the proof of [13,
2.2]).

1.11. Conjecture. For A ∈M(d× d,Zπ) set Ai := pi(A). Then

lim
i→∞

dimπ/πi(kerAi) = dimπ(kerA).

Conjectures 1.5, 1.6 and 1.10 were proven for residually finite groups by Lück
[11]. Using the ideas of Lück in a different context, Dodziuk and Mathai proved
Conjecture 1.5 for amenable π [6, 0.2]. They also established an approximation
theorem for L2-Betti numbers of a slightly different type in this case.

Clair [3] proved Conjectures 1.5, 1.6 and 1.10 for residually amenable fundamen-
tal groups. To prove Conjecture 1.6 he used [16, Proposition 2.5], where Mathai
and Rothenberg gave a proof of 1.6 for amenable π. Unfortunately, this proof is
very complicated and not complete (some steps even seem to be wrong). In this
paper we will obtain in particular an independent (and much easier) proof of this
result (and of the results of Clair).

One can interpret the cohomology of the covering spaces as cohomology with
coefficients in l2(π/πi). Michael Farber [7] generalized Lück’s results to certain
other sequences of finite-dimensional coefficients which converge to l2(π).

The aim of this paper is to extend the above results (except Farber’s) to the
following larger class of groups.

1.12. Definition. Let G be the smallest class of groups which contains the trivial
group and is closed under the following processes:

• If U < π is any subgroup such that U ∈ G and the discrete homogeneous space
π/U admits a π-invariant metric which makes it into an amenable discrete
homogeneous space, then π ∈ G.
• If π = dirlimi∈I πi is the direct limit of a directed system of groups πi ∈ G,

then π ∈ G, too.
• If π = invlimi∈I πi is the inverse limit of a directed system of groups πi ∈ G,

then π ∈ G, too.
• The class G is closed under taking subgroups.

Here we use the following definition (compare 4.1):

1.13. Definition. A discrete homogeneous space π/U is called amenable if on π/U
there is a π-invariant metric d : π/U × π/U → N such that sets of finite diameter
are finite and such that ∀K > 0, ε > 0 there is a finite subset ∅ 6= X ⊂ π/U with

|{x ∈ π/U ; d(x,X) ≤ K and d(x, π/U −X) ≤ K}| ≤ ε |X | .

This is in particular fulfilled if U is a normal subgroup and π/U is an amenable
group.
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It follows immediately from the definition that G contains all amenable groups,
is closed under directed unions and is residually closed. Section 2 contains more
results on the structure of G.

The main theorem of the paper is the following:

1.14. Theorem. Suppose π belongs to the class G. Then for every CW-complex
with fundamental group π which has finitely many cells in each dimension, Con-
jectures 1.5 and 1.6 are true. The approximation results 1.10 and 1.11 (and gen-
eralizations thereof, compare Section 6) are valid under the condition that all the
groups which occur belong to G.

The more general form of the approximation result can be applied to get more
cases and new proofs of the following conjecture, which is called the Atiyah conjec-
ture [1]:

1.15. Conjecture. Suppose π is torsion free. Then dimπ(kerA) ∈ Z whenever
A ∈M(d×d,Zπ). Equivalently, whenever X is a finite CW -complex with π1(X) =
π, then b

(2)
p (X) ∈ Z ∀p ∈ Z.

We will address this in a forthcoming paper. Linnell [10] proved that the Atiyah
conjecture is true for abelian groups, for free groups, and for extensions with ele-
mentary amenable quotient.

1.16. Remark. So far, no example of a countable group which does not belong to
the class G has been constructed. Good candidates for such examples are finitely
generated simple groups which are not amenable, e.g. groups containing a free group
with two generators.

On the other hand, we cannot give an example of a non-residually-amenable
group which belongs to G, either. In any case, our description of G leads easily to
many properties like being closed under direct sums and free products (Proposition
2.7), which (if true at all) are probably much harder to establish for the class of
residually amenable groups.

In fact, we prove a little bit more than Theorem 1.14. Namely, we show that the
relevant properties are stable under the operations characterizing the class G. We
use the following definitions:

1.17. Definition. Let C be any property of discrete groups. It is said to be
• stable under direct/inverse limits if C is true for π whenever π is a di-

rect/inverse limit of a directed system of groups which have property C,
• subgroup stable if every subgroup U < π of a group with property C shares

this property, too, and
• stable under amenable extensions if π has property C whenever it contains

a subgroup U with property C such that the homogeneous space π/U is
amenable in the sense of Definition 1.13.

The properties we have in mind are listed in the following definition:

1.18. Definition. Let π be a discrete group. We say that
• π is of determinant class if ∆ is of π-determinant class for every ∆ ∈
M(d× d,Zπ) which is positive and self-adjoint;
• π has semi-integral determinant if ln detπ(∆) ≥ 0 for every ∆ ∈M(d×d,Zπ)

which is positive self-adjoint. In particular, every such ∆ is of π-determinant
class, i.e. π itself is of determinant class; and
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• π has Whitehead-trivial determinant if ln detπ(A∗A) = 0 ∀A ∈Wh(π).

1.19. Theorem. The property “Whitehead-trivial” determinant is stable under di-
rect and inverse limits and is subgroup stable.

1.20. Remark. In the light of this theorem, we can use the fact that the Fuglede-
Kadison determinant must be trivial on trivial Whitehead groups, e.g. for every
torsion free discrete and cocompact subgroup of a Lie group with finitely many
components [8, 2.1]. Waldhausen has shown that the Whitehead group is trivial
for another class of groups, including torsion free one-relator groups and many
fundamental groups of 3-manifolds [18, 17.5].

The validity of the isomorphism conjecture of Farrell and Jones would imply
that the Whitehead group is trivial if π is torsion free.

We can extend G to the class G′ which is the smallest class of groups containing
G and in addition any class of groups whose Whitehead group is (known to be)
trivial, and which is closed under taking subgroups and direct and inverse limits of
directed systems. Then every group in G′ has Whitehead trivial determinant; i.e.,
L2-torsion is a homotopy invariant for L2-acyclic finite CW -complexes with such a
fundamental group.

1.21. Theorem. The property “semi-integral determinant” is stable under direct
and inverse limits, subgroup stable, and stable under amenable extensions.

We now show that the complicated proofs of homotopy invariance of L2-torsion
in [11, 16, 3] can be replaced by a very short and easy argument.

1.22. Theorem. If for a group π and ∀A ∈ Wh(π) we have ln detπ(A∗A) ≥ 0,
then the Fuglede-Kadison determinant is trivial on Wh(π).

In particular, semi-integral determinant implies Whitehead-trivial determinant.

Proof. A ∈Wh(π) implies that A has an inverse B ∈ Wh(π). Now by [12, 4.2]

0 = ln detπ(id) = ln detπ((AB)∗AB) = ln detπ(A∗A)︸ ︷︷ ︸
≥0

+ ln detπ(B∗B)︸ ︷︷ ︸
≥0

,

and the statement follows.

It follows from the induction principle 2.2 and the fact that the trivial group has
semi-integral determinant (Lemma 6.8) that 1.21 and 1.22 imply the first part of
our main theorem 1.14.

For the reader’s convenience, the first section after this introduction could give
a more detailed account of L2-invariants, group von Neumann algebras and their
dimension theory. Instead we refer to older sources, e.g. [11] and [6]. One of the
reasons is that many results of this paper are obtained by an elaboration of the
basic methods of Lück’s paper and (to some extent) the paper of Dodziuk and
Mathai.

The actual plan of the paper is as follows: In Section 2 we give a closer description
of our class G. Sections 3–6 contain the proofs of the theorems stated in this
introduction. In Section 7 we discuss the question of how one can generalize the
approximation result 1.11 to matrices over the complex group ring. Section 8 gives
a slight generalization of the determinant class conjecture 1.5.
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2. Properties of the class G

We proceed with another definition of the class G, similar to the description
Linnell gave of his class C in [10, p. 570].

2.1. Definition. For each ordinal α, we define a class of groups Gα inductively.
• G0 consists of the trivial groups.
• If α is a limit ordinal, then Gα is the union of Gβ with β < α.
• If α has a predecessor α− 1, then Gα consists of all groups which

– are subgroups of groups of Gα−1, or
– contain a subgroup U which belongs to Gα−1 such that the quotient space

is an amenable homogeneous space as defined in 1.13, or
– are direct or inverse limits of directed systems of groups in Gα−1.

By definition, a group is in G if it belongs to Gα for some ordinal α.

The class G is defined by (transfinite) induction. Therefore, properties of the
groups in G can be proven by induction, too. More precisely, the following induction
principle is valid:

2.2. Proposition. Suppose a property C of groups is shared by the trivial group,
and the following are true:
• whenever K has property C and K < π with π/K an amenable homogeneous

space, then π has property C as well;
• whenever π is a direct or inverse limit of a directed system of groups with the

property C, then π has property C; and
• property C is inherited by subgroups.

Then property C is shared by all groups in the class G.

Proof. The proof of the induction principle is done by transfinite induction.
By assumption, C holds for G0. We have to establish C for every group in Gα,

granted its validity for groups in Gβ for all β < α. If α is a limit ordinal, this is
trivial. If α has a predecessor α − 1, the assumptions just match the definition of
Gα, so the statement follows.

Now, we study properties of the class G.

2.3. Proposition. The class G is closed under directed unions.

Proof. A directed union is a special case of a directed direct limit.

2.4. Proposition. The class G is residually closed. This means that if π contains
a nested sequence of normal subgroups π1 ⊃ π2 ⊃ . . . with trivial intersection and
if π/πi ∈ G ∀i, then also π ∈ G.

Proof. The inverse system of groups π/πi has some inverse limit G. The system of
maps π → π/πi induces a homomorphism π → G. If g ∈ π is mapped to 1 ∈ G,
then g has to be mapped to 1 ∈ π/πi ∀i, i.e. g ∈

⋂
i πi = {1}. As a directed limit,

G ∈ G, and as a subgroup of G, also π ∈ G.

2.5. Theorem. If U belongs to G and φ : U → U is any group homomorphism,
then the “mapping torus” extension of U with respect to φ,

π = 〈u ∈ U, t | t−1ut = φ(u), u · v = (uv); ∀u, v ∈ U〉,
also belongs to G (if φ is injective, this is a special example of an HNN-extension).
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Proof. There is a canonical projection π → Z sending u ∈ U to 0 and t to 1. Denote
its kernel by K. We will show that K belongs to G; then so does π because it is an
extension of K with amenable quotient Z.

Now K is the direct limit of the sequence

U
φ−→ U

φ−→ U
φ−→ U . . .

and belongs to G, which is closed under taking direct limits.

2.6. Remark. Although such a mapping-torus extension of a finitely presented
group is finitely presented again, the kernel K we used in the proof may very
well not even admit a finite set of generators. This is one instance where it is useful
to allow arbitrary groups, even if one is only interested in fundamental groups of
finite CW -complexes.

For the next property, we use the induction principle.

2.7. Proposition. G is closed under forming
1. direct sums and direct products,
2. arbitrary inverse limits, and
3. free products.

Proof. We have to check the conditions for the induction principle 2.2. Fix π ∈ G.
1. If U < G then U × π < G × π. If G × π ∈ G, the same is true for U × π.

If G is the (direct or inverse) limit of the directed system of groups Gi, then
G× π is the limit of the system Gi × π (compare Lemma 2.9 or 2.10). If (by
assumption) Gi × π ∈ G, then G × π ∈ G. Finally, if U < G, and G/U is
amenable, then U × π < G× π with the same amenable quotient. Therefore,
U × π ∈ G =⇒ G× π ∈ G.

The induction principle (and induction on the number of factors) now
implies that G is closed under direct sums. Since a direct product is the
inverse limit of finite direct sums (indexed by the directed system of finite
subsets of the indexing set), G is closed under direct products, too.

2. An arbitrary inverse limit is by construction a subgroup of a direct product.
Therefore the first assertion implies the second.

3. The case of free products is a little bit more complicated. As our first step
we prove that ∗i∈IZ/4 ∈ G for every index set I. This is the direct limit of
finite free products of copies of Z/4; therefore we have to prove the statement
for finite I. Now ∗ni=1Z/4 is a subgroup of Z/4 ∗Z/4 (contained in the kernel
of the projection onto one factor by 2.8), and Z/4 ∗ Z/4 is virtually free by
[5, IV.1.9] and [17, I Theorem 7], i.e. an extension of a free and therefore by
[4, page 57] residually finite group (the free group) with an amenable (finite)
group. Therefore Z/4 ∗ Z/4 belongs to G, and this implies the first step.

Next we show that π ∗ (∗j∈JZ/4) ∈ G for every set J . We prove this using
the induction principle. For π = 1 this is the conclusion of the first step. If
π is a limit of (πi)∈I , or a subgroup of G, then π ∗ (∗j∈JZ/4) is a subgroup
of the limit of πi ∗ (∗j∈JZ/4) (compare Lemma 2.9 and Lemma 2.10) or a
subgroup of G∗ (∗j∈JZ/4), and we can use the fact that G is subgroup-closed.
If U < π and π/U is amenable, π∗(∗j∈JZ/4) acts on π/U . We get a new point
stabilizer, which is isomorphic to the free product of U with ∗G/U (∗i∈IZ/4)
by Lemma 2.8. Fortunately, the induction hypothesis applies with the free
product of an arbitrary number of copies of Z/4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3254 THOMAS SCHICK

As the next step we show that ∗i∈Iπ ∈ G. This follows (as ∗i∈Iπ is a direct
limit) from the corresponding statement for I finite, and these are subgroups
of π ∗Z/4, contained in the kernel of the projection onto Z/4 by Lemma 2.8.
π1 ∗ π2 is contained in (π1 × π2) ∗ (π1 × π2), and the general statement

follows by induction and taking limits.

In the proof of Proposition 2.7 we have used the following well known lemmas.

2.8. Lemma. Let K be the kernel of the group homomorphism q : G→ Q, and H
a group. Then the kernel of q ∗ 1 : G ∗H → Q is the free product

(∗i∈QHgi) ∗K,

where {gi}i∈Q is a system of representatives for G/K ∼= Q.

Proof. The subgroup generated by the conjugates Hgi and K is contained in the
kernel of q∗1. For the converse, take an element of the kernel and write it in normal
form a1h1 . . . anhn with ak ∈ G and hk ∈ H . Check that it is possible to rewrite it
in a unique way as a product of factors in Hgi and K.

2.9. Lemma. If π is the direct limit of a system of groups πi and G is any group,
then π ∗G is the direct limit of πi ∗G, and π ×G is the direct limit of πi ×G.

Proof. There are obvious maps from πi ∗G to π ∗G and from πi ×G to π ×G.
Suppose one has consistent maps from πi ∗G (or πi×G) to some group X . Since

πi and G both are subgroups of πi ∗ G (or of πi × G), this means that we have a
consistent family of maps on πi multiplied with a fixed map on G. Therefore (from
the properties of products) there exists exactly one map from π ∗G (or π ×G) to
X making all the diagrams commutative (for the abelian product, note that the
union of the images of the πi in X commutes with the image of G).

2.10. Lemma. If π is an inverse limit of a system of groups πi and G is any
group, then π ∗G is contained in the inverse limit X of πi ∗G.

The inverse limit of πi ×G is π ×G.

Proof. First, we look at the free products:
We have a consistent family of homomorphisms from π ∗G to πi ∗G, therefore a

homomorphism from π ∗G to X . An element x = p1g1 . . . pngn ∈ π ∗G with pi ∈ π
and gi ∈ G is in the kernel of this homomorphism if and only if it is mapped to
1 ∈ πi∗G for every i ∈ I. This cannot happen if 1 6= p1 ∈ π. It remains to check the
case 1 6= g1 ∈ G. We may assume that g2 6= 1 if and only if p2 6= 1. If φi : π → πi is
the natural homomorphism, then x is mapped to φi(p1)g1φi(p2)g2 . . . gn ∈ πi ∗ G.
If this is trivial, but g1 6= 1, necessarily φi(p2) = 1 ∀i. This implies that p2 = 1,
i.e. x = p1g1, since we wrote x in normal form. But then (φi ∗ id)(x) 6= 1 ∀i, and
the kernel of the map to X is trivial, as required.

For the abelian product, let X be a group together with a consistent family of
morphisms to πi × G. These have the form x 7→ (φi(x), fi(x)). Composition with
the projections to πi or to G shows that φi is a consistent family of morphisms
to πi, and f = fi : X → G all coincide. Let φ : X → π be the limit. Then
φ× f : X → π ×G is a unique homomorphism which makes all relevant diagrams
commutative. By the universal property of inverse limits, the statement follows.
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3. Passage to subgroups

Suppose U ⊂ π is a subgroup of a discrete group. A positive self-adjoint matrix
A ∈M(d×d,ZU) can also be considered as a matrix over Zπ. Denote the operators
by AU and Aπ, respectively. Recall the following well known fact:

3.1. Proposition. The spectral density functions of AU and Aπ coincide.

Proof. Choose a set of representatives {gi}i∈I for U\π with 0 ∈ I and g0 = 1, to
write π =

∐
i∈I Ugi. Then

l2(π)d =
⊕
i∈I

l2(U)dgi.

With respect to this splitting, the action of Aπ on l2(π) is diagonal and, restricted
to each of the summands l2(U)dgi, is multiplication by AU from the left. It follows
that every spectral projection χ[0,λ](Aπ) is diagonal with χ[0,λ](AU ) on the diagonal.
Then (where ek = (0, . . . , 0, 1, 0, . . . , 0))

FAπ (λ) =
d∑
k=1

〈χ[0,λ](Aπ)eπk , e
π
k〉 =

d∑
k=1

〈χ[0,λ](Aπ)eUk · 1, eUk · 1〉

=
d∑
k=1

〈χ[0,λ](AU )eUk , e
U
k 〉 = FAU (λ).

3.2. Corollary. The properties of Definition 1.18 are inherited by subgroups.

In particular, we have proven the subgroup part of Theorems 1.19 and 1.21.

4. Amenable extensions

4.1. Definition. A discrete homogeneous space π/U is called amenable if on π/U
there is a π-invariant integer-valued metric d : π/U × π/U → N such that
• sets of finite diameter are finite, and
• for every K > 0, ε > 0 there is a non-empty finite subset ∅ 6= X ⊂ π/U with

|NK(X)| ≤ ε |X | ,

where NK(X) := UK(X)∩UK(π/U−X) is the K-neighborhood of the bound-
ary of X (with UK(X) := {x ∈ π/U ; d(x,X) ≤ K}).

A nested sequence of finite subsets K1 ⊂ K2 ⊂ . . . is called an amenable exhaustion
of π/U if

⋃
Kn = π/U and if for all K > 0 and ε > 0 there is an N ∈ N so that

|NK(Ki)| ≤ ε |Ki| ∀i ≥ N .

4.2. Lemma. Every amenable homogeneous space π/U admits an amenable ex-
haustion.

Proof. For n,K ∈ N we find Xn,K with |NK(Xn,K)| ≤ 1
n |Xn,K |. Fix some base

point o ∈ π/U . Since π acts transitively on π/U and the metric is π-invariant,
we may assume after translation that the base point is contained in each of the
Xn,K . Now we construct the exhaustion Ei inductively. Set E1 := X1,1. For
the induction, suppose E1, . . . , En are constructed with |Nk(Ek)| ≤ 1

k |Ek| for k =
1, . . . , n. Suppose En ⊂ Ud(o) with d ∈ N and d ≥ n+ 1. Set En+1 := En∪Un(o)∪
Xn+1,2d. Then Ud(En+1) ⊂ U2d(Xn+1,2d), by the triangle inequality and because
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o ∈ Xn+1,2d. Moreover, Ud(π/U − En+1) ⊂ U2d(π/U − Xn+1,2d). Consequently
Nn+1(En+1) ⊂ Nd(En+1) ⊂ N2d(Xn+1,2d). It follows that

|Nn+1(En+1)| ≤ |N2d(Xn+1,2d)| ≤
1

n+ 1
|Xn+1,2d| ≤

1
n+ 1

|En+1| .

Since Un(o) ⊂ En+1 we also have
⋃
n∈NEn = π/U . The claim follows.

4.3. Example. If U is a normal subgroup and π/U is an amenable group, it is an
amenable homogeneous space.

4.4. Definition. Suppose π is a group with subgroup U and amenable quotient
π/U . Choose an amenable exhaustion X1 ⊂ X2 ⊂ · · · ⊂ π/U . For B ∈ M(d ×
d,NU) set

trm(B) :=
1
|Xm|

trU (B).

For ∆ ∈ M(d× d,Nπ) positive and self-adjoint, set ∆m := Pm∆Pm, where Pm =
diag(pm) with pm ∈ B(l2(π)) given by projection onto the closed subspace generated
by the inverse image of Xm. Then ∆m no longer belongs to Nπ but still belongs
to NU , and we define (by slight abuse of notation)

F∆m(λ) := trm(χ[0,λ](∆m)),

ln detU (∆m) :=
∫ ∞

0+
ln(λ) dF∆m(λ) using the new F∆m .

Here ∆m is considered as an operator on the image of Pm. This subspace is NU -
isomorphic to l2(U)d|Xm|.

Note that there are two meanings of F∆m(λ) and ln detU (∆m) (using either trU
or trm), but in the amenable case we will always use the variant where we divide
by the volume of the sets Xm.

The following is one of the key lemmas which make our method work:

4.5. Lemma. In the situation above, there is a K ∈ R, independent of m, so that

‖∆‖ ≤ K and ‖∆m‖ ≤ K ∀m ∈ N.

Proof. This is an immediate consequence of the fact that ‖P‖ ≤ 1 for every pro-
jection P and ∆m = Pm∆Pm with projections Pm.

We now establish the second key lemma. It generalizes a corresponding result of
Dodziuk and Mathai [6, 2.3], where U is trivial. We need the result only for matrices
over Cπ, but for possible other applications we prove a more general statement here.

4.6. Lemma. Let p(x) ∈ C[x] be a polynomial. Suppose ∆ ∈M(d×d,Nπ). Then

trπ p(∆) = lim
m→∞

trm p(∆m).

Proof. By linearity it suffices to prove the statement for the monomials xN , N ∈ N.
Pull the metric on π/U back to π to get some semi-metric on π. Denote the

inverse image of Xk in π by X ′k.
We have to compare (∆Ngek, gek) and (∆N

mgek, gek) for g = gi ∈ X ′m, in partic-
ular for those gi with Ba(gi) ⊂ X ′m. Of course, we don’t find a ∈ R such that the
difference is zero. However, we will show that (for fixed N) we can find a such that
the difference is sufficiently small.
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First observe that Pmgek = gek if g ∈ X ′m, and (since Pm is self-adjoint)

((Pm∆Pm)Ngek, gek) = (∆Pm∆ . . . Pm∆gek, gek).

Now the following sum is a telescope, and therefore

(4.7) ∆Pm∆ . . . Pm∆ = ∆N −∆(1 − Pm)∆N−1

−∆Pm∆(1− Pm)∆N−2 − · · · −∆Pm . . .∆(1− Pm)∆.

It follows that, for g ∈ X ′m,∣∣(∆Ngek, gek)− (∆N
mgek, gek)

∣∣ ≤ N−1∑
i=1

∣∣((1 − Pm)∆igek, (∆∗Pm)N−igek)
∣∣

≤
N−1∑
i=1

∣∣(1 − Pm)∆igek
∣∣ · ‖∆∗‖N−i .(4.8)

Here we used the fact that the norm of a nontrivial projector is 1 and |gek| = 1.
Fix ε > 0. For i = 1, . . . , N − 1 and k = 1, . . . , d we have ∆igek ∈ l2(π)d. It

follows that we can find an R > 0 so that∣∣(1− PBR(g))∆igek
∣∣ ≤ ε,(4.9)

where PBR(g) is the projector onto the closed subspace spanned by the elements in⋃d
k=1 BR(g)ek. Since ∆ and the semi-metric are π-invariant, this holds for every

g ∈ π with R independent of g. If the range of PBR(g) is contained in the range of
Pm, i.e. if BR(g) ∈ X ′m, then (4.9) implies∣∣(1 − Pm)∆igek

∣∣ ≤ ε(4.10)

(since we replace by zero even more Fourier coefficients (in the standard orthonor-
mal base of l2(π)d coming from π)). Using (4.8) and (4.10), we get∣∣trπ ∆N − trm ∆N

m

∣∣ ≤ 1
|Xm|

d∑
k=1

∑
i∈Xm

∣∣(∆Ngiek, giek)− ((∆m)Ngiek, giek)
∣∣

≤ 1
|Xm|

d∑
k=1

∑
i∈Xm

N−1∑
j=1

∣∣(1− Pm)∆jgiek
∣∣ · ‖∆∗‖N−j

≤ 1
|Xm|

d∑
k=1

∑
i∈Xm−NR(Xm)

N−1∑
j=1

∣∣(1− Pm)∆jgiek
∣∣︸ ︷︷ ︸

<ε since BR(gi) ⊂ X′m by def. of NR(Xm)

‖∆∗‖N−j

+
1
|Xm|

∑
i∈NR(Xm)

d∑
k=1

N−1∑
j=1

∣∣(1 − Pm)∆jgiek
∣∣ · ‖∆∗‖N−j

≤ ε dN max
j=1,...,N−1

{‖∆∗‖j}︸ ︷︷ ︸
=:CN

+
|NR(Xm)|
|Xm|

dN ‖1− Pm‖︸ ︷︷ ︸
≤2

max
j=1...N

{‖∆‖j · ‖∆∗‖N−j}

︸ ︷︷ ︸
=:C′N

.

Note that CN and C′N are independent of m and ε. Since Xm is an amenable
exhaustion, for every R there is an mR so that |NR(Xm)|

|Xm| is smaller than ε for every
m ≥ mR. Since ε was arbitrary, the lemma follows.
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5. Direct and inverse limits

5.1. Remark. In this section, we study the properties of Definition 1.18 for direct
and inverse limits. However, we will only deal with the apparently weaker state-
ments that each of the conditions holds for every ∆ of the form ∆ = A∗A. The
general case is a consequence of this since we can easily compare the self-adjoint ∆
with ∆2 = ∆∗∆, because F∆(λ) = F∆2(λ2).

Now we describe the situation we are dealing with in this section:

5.2. Definition. Suppose the group π is the direct or inverse limit of a directed
system of groups πi, i ∈ I. The latter means that we have a partial ordering < on
I, and ∀i, j ∈ I we can find k ∈ I with i < k and j < k. In the case of a direct limit,
let pi : πi → π be the natural maps; in the case of an inverse limit, pi : π → πi.

Suppose A ∈M(d× d,Cπ) is given.
If π is an inverse limit, let Ai = pi(A) be the image of A under the projection

M(d, π) → M(d, πi). Set ∆ := A∗A. Then ∆i = (Ai)∗Ai (this follows from the
algebraic description of the adjoint [11, p. 465]). In particular, all of the operators
∆i are positive. Define

tri(∆i) := trπi(∆i).

F∆i(λ) is defined using the trace on the von Neumann algebra of πi (i ∈ I).
If we want to give a similar definition in the case where π is a direct limit, we

have to make additional choices. Namely, let A = (akl) with akl =
∑

g∈π λ
g
klg.

Then only finitely many of the λgkl are nonzero. Let V be the corresponding finite
collection of g ∈ π. Since π is the direct limit of πi, we find j0 ∈ I such that
V ⊂ pj0(πj0). Choose an inverse image for each g in πj0 . This gives a matrix
Aj0 ∈ M(d × d, πj0), which is mapped to Ai ∈ M(d × d, πi) for i > j0. Now we
apply the above constructions to this net (Ai)i>j0 . Note that this definitely depends
on the choices.

For notational convenience, we choose some j0 ∈ I also when we deal with an
inverse limit.

Now, we will establish in this situation the two key lemmas corresponding to
Lemma 4.5 and Lemma 4.6.

For the first lemma, instead of working with the norm of operators, we will use
another invariant which gives an upper bound for the norm but is much easier to
read off:

5.3. Definition. Let π be a discrete group, and let ∆ ∈M(d× d,Zπ). Set

K(∆) := d2 max
i,j
{|ai,j |1}, where |·|1 is the L1-norm on Cπ ⊂ l1(π).

5.4. Lemma. Adopt the situation of Definition 5.2. One can find K ∈ R, inde-
pendent of i, such that

‖Ai‖ ≤ K ∀i > j0 and ‖A‖ ≤ K.

Proof. Lück [11, 2.5] showed that ‖Ai‖ ≤ K(Ai). It follows from the construction
of Ai that K(Ai) ≤ K(A) in the case of an inverse limit, and K(Ai) ≤ K(Aj0) in
the case of a direct limit, with j0 as above. In both cases, we obtain a uniform
bound for ‖Ai‖.
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5.5. Lemma. Adopt the situation of Definition 5.2. Let p(x) ∈ C[x] be a polyno-
mial. There exists i0 ∈ I, depending on the matrix A and on p, such that

trπ(p(A)) = tri(p(Ai)) ∀i > i0.

Proof. Suppose π is the inverse limit of the πi. We follow [11, 2.6]. Let p(A) =(∑
g∈π λ

kl
g g
)
k,l=1,...,d

. Then

trπ(p(A)) =
∑
k

λkk1 and trπi(p(Ai)) =
∑
k

∑
g∈ker pi

λkkg .

Since only finitely many λijg 6= 0 and π is the inverse limit of the πi, we find i0 ∈ I
such that λkkg 6= 0 and g ∈ ker pi0 implies g = 1. For i > i0 the assertion is true.

If π is the direct limit, we have chosenAj0 with pj0(Aj0 ) = A. Then pj0(p(Aj0 )) =
p(A). However, there may be a g ∈ πj0 with nontrivial coefficient in p(Aj0) with
pj0(g) = 1, and this means that the relevant traces may differ. But still there
are only finitely many g with nontrivial coefficient in p(Aj0), and since π is the
direct limit of (πi)i>j0 we find an i0 such that pi0(g) = 1 for g ∈ πi0 with non-
trivial coefficient in p(Ai0) implies g = 1. Then the above reasoning shows that
trπi(p(Ai)) = trπ(p(A)) ∀i > i0.

6. Approximation properties and proof of stability statements

In this section, we use the information gathered so far to prove the statements
of the introduction, in particular Theorem 1.21. This is done by studying limits of
operators; therefore the same treatment yields approximation results for L2-Betti
numbers. The precise statements and conditions are given below.

We have already dealt with the passage to subgroups.
For the rest of this section, assume the following situation:

6.1. Situation. The group π is the direct or inverse limit of a directed system of
groups πi, or an amenable extension U → π → π/U (write πi = U also in this
case).

As described in 4.4 or 5.2, any matrix ∆ over Cπ then gives rise to matrices ∆i

over πi (after the choice of an inverse image in the case of a direct limit, and after
the choice of an amenable exhaustion for amenable extensions). Without loss of
generality we assume that ∆ = A∗A for another matrix A over Cπ (this is explained
in Remark 5.1). We also get spectral density functions FAi(λ) defined using the
group πi (remember that in the amenable case there is an additional normalization).

The problem now is to obtain information about F∆(λ) from the family F∆i(λ).
In particular, we want to show that FAi(0) converges to FA(0). (Translated to

geometry, this means that certain L2-Betti numbers converge.)
In short, we have

• a group π and a matrix ∆ ∈M(d× d,Cπ),
• a family (∆i)i∈I of matrices over Cπi which approximate ∆ (I is a directed

system),
• positive and normal trace functionals tri (on a von Neumann algebra contain-

ing ∆i) which are normalized in the sense that if ∆ = id ∈ M(d × d,Zπ),
then tri(∆i) = d ∀i
• If ∆ lives over Zπ, then ∆i is a matrix over Zπi.
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6.2. Definition. Define
F∆(λ) := lim sup

i∈I
F∆i(λ),

F∆(λ) := lim inf
i∈I

F∆i(λ).

Remember that

lim sup
i∈I

{xi} = inf
i∈I
{sup
j>i
{xj}}, lim inf

i∈I
{xi} = sup

i∈I
{inf
j>i
{xj}}.

6.3. Definition. Suppose F : [0,∞) → R is monotone increasing (e.g. a spectral
density function). Then set

F+(λ) := lim
ε→0+

F (λ+ ε),

i.e., F+ is the right continuous approximation of F . In particular, we have defined
F∆

+
and F∆

+.

6.4. Remark. Note that by our definition a spectral density function is right con-
tinuous, i.e. unchanged if we perform this construction.

To establish the first step in our program we have to establish the following
functional analytical lemma (compare [11] or [3]):

6.5. Lemma. Let N be a finite von Neumann algebra with positive normal and
normalized trace trN . Choose ∆ ∈M(d× d,N ) positive and self-adjoint.

If for a function pn : R→ R

χ[0,λ](x) ≤ pn(x) ≤ 1
n
χ[0,K](x) + χ[0,λ+1/n](x) ∀0 ≤ x ≤ K(6.6)

and if ‖∆‖ ≤ K, then

F∆(λ) ≤ trN pn(∆) ≤ 1
n
d+ F∆(λ+ 1/n).

Here χS(x) is the characteristic function of the subset S ⊂ R.

Proof. This is a direct consequence of positivity of the trace, of the definition of
spectral density functions, and of the fact that trN (1 ∈ M(d × d,N )) = d by the
definition of a normalized trace.

Now we give one of the key technical results. Corresponding special cases are
[11, 2.3(1)], [6, 2.1(1)], [3, 2.1], and the proof is essentially always the same.

6.7. Proposition. For every λ ∈ R we have

F∆(λ) ≤ F∆(λ) = F∆
+(λ) ≤ F∆

+(λ),

F∆(λ) = F∆
+(λ) = F∆

+
(λ).

Proof. The proof only depends on our key lemmas 4.5, 4.6, 5.4, 5.5. These say
• ∃K ∈ R such that ‖∆i‖ ≤ K ∀i ∈ I, and
• for every polynomial p ∈ C[x] we have trπ(p(∆)) = limi tri(p(∆i)).
For each λ ∈ R choose polynomials pn ∈ R[x] such that inequality (6.6) is

fulfilled. Note that by the first key lemma we have a uniform upper bound K for
the spectrum of all of the ∆i. Then by Lemma 6.6

F∆i(λ) ≤ tri(pn(∆i)) ≤ F∆i(λ+
1
n

) +
d

n
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We can take the limits inferior and superior and use the second key lemma to get

F∆(λ) ≤ trπ(pn(∆)) ≤ F∆(λ+
1
n

) +
d

n
.

Now we take the limits for n → ∞. We use the fact that trπ is normal and
pn(∆) converges strongly inside a norm bounded set to χ[0,λ](∆). Therefore the
convergence holds even in the ultra strong topology.

This implies that

F∆(λ) ≤ F∆(λ) ≤ F∆
+(λ).

For ε > 0 we can now conclude, since F∆ and F∆ are monotone, that

F∆(λ) ≤ F∆(λ + ε) ≤ F∆(λ+ ε) ≤ F∆(λ+ ε).

Taking the limit as ε→ 0+ gives (since F∆ is right continuous)

F∆(λ) = F∆
+

(λ) = F∆
+(λ).

Therefore both of the inequalities are established.

The next step is to prove convergence results without taking right continuous
approximations (at least for λ = 0). We are able to do this only under additional
assumptions:
• From now on, ∆, and therefore also ∆i ∀i ∈ I, are matrices over the integral

group ring.
The following well known statement is used as start for the induction (observed

e.g. in [11]).

6.8. Lemma. The trivial group has semi-integral determinant.

Proof. Take ∆ ∈M(d×d,Z) positive and self-adjoint. Then det1(∆) is the product
of all nonzero eigenvalues, and therefore the lowest nonzero coefficient in the char-
acteristic polynomial. In particular, it is an integer 6= 0, and ln det1(∆) ≥ 0.

Now we give a proof of Theorem 1.21 and prove the corresponding approximation
result.

6.9. Theorem. Suppose πi has semi-integral determinant ∀i ∈ I. Then the same
is true for π, and dimπ(ker ∆) = F∆(0) = limi F∆i(0).

Proof. Choose K ∈ R such that K > ‖∆‖ and K > ‖∆i‖ ∀i. This is possible
because of Lemma 4.5 or 5.4. Then

ln detπi(∆i) = ln(K)(F∆i(K)− F∆i(0))−
∫ K

0+

F∆i(λ) − F∆i(0)
λ

dλ.

If this is (by assumption) ≥ 0, then, since F∆i(K) = tri(1d) = d by our normaliza-
tion, ∫ K

0+

F∆i(λ)− F∆i(0)
λ

dλ ≤ ln(K)(d− F∆i(0)) ≤ ln(K)d.

We want to establish the same estimate for ∆. If ε > 0, then∫ K

ε

F∆(λ)− F∆(0)
λ

dλ =
∫ K

ε

F∆
+(λ)− F∆(0)

λ
dλ =

∫ K

ε

F∆(λ)− F∆(0)
λ
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(since the integrand is bounded, the integral over the left continuous approximation
is equal to the integral over the original function)

≤
∫ K

ε

F∆(λ)− F∆(0)
λ

=
∫ K

ε

lim infi F∆i(λ)− lim supi F∆i(0)
λ

≤
∫ K

ε

lim infi(F∆i(λ) − F∆i(0))
λ

≤ lim inf
i

∫ K

ε

F∆i(λ)− F∆i(0)
λ

≤ d ln(K).

Since this holds for every ε > 0, we even have∫ K

0+

F∆(λ)− F∆(0)
λ

≤
∫ K

0+

F∆(λ)− F∆(0)
λ

dλ

≤ sup
ε>0

lim inf
i

∫ K

ε

F∆i(λ)− F∆i(0)
λ

dλ

≤d ln(K).

The second integral would be infinite if limδ→0 F∆(δ) 6= F∆(0). It follows from 6.7
that lim supi F∆i(0) = F∆(0). Since we can play the same game for every subnet
of I, also lim inf i F∆i(0) = F∆(0), i.e. the approximation property is true.

To estimate the determinant, note that in the above inequality

sup
ε>0

lim inf
i

∫ K

ε

F∆i(λ) − F∆i(0)
λ

dλ

≤ lim inf
i

sup
ε>0

∫ K

ε

F∆i(λ)− F∆i(0)
λ

dλ = lim inf
i

∫ K

0+

F∆i(λ) − F∆i(0)
λ

dλ

≤ ln(K)(d− F∆i(0)).

Therefore

ln detπ(∆) = ln(K)(d− F∆(0))−
∫ K

0+

F∆(λ)− F∆(0)
λ

dλ

≥ ln(K)(d− lim
i
F∆i(0))− lim inf

i

∫ K

0+

F∆i(λ) − F∆i(0)
λ

dλ

= lim sup
i

(
ln(K)(d− F∆i(0))−

∫ K

0+

F∆i(λ)− F∆i(0)
λ

dλ

)
= lim sup

i
ln detπi(∆i) ≥ 0.

6.10. Remark. We can establish the approximation results only under the assump-
tion that the groups πi have good properties, e.g. belong to the class G. It is
interesting to note that for amenable groups every quotient group is amenable and
belongs to G. It follows that Conjecture 1.10 holds without additional assumptions
if π1(X) is amenable.
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6.11. Remark. It would be possible to give geometrical interpretations of the more
general approximation results similar to 1.10. However, this seems to be rather
artificial and therefore is omitted here.

Proof of Theorem 1.19. It remains to show that the property “Whitehead-trivial
determinant” is stable under direct and inverse limits.

We are still in the situation described at the beginning of this section, and,
in addition, we assume that ∆ is invertible in M(d × d,Zπ) with inverse B ∈
M(d× d,Zπ). If π is an inverse limit then ∆i and Bi are images of projections of
∆ and B, and therefore remain inverse to each other.

In case π is a direct limit, we first lift ∆ to some ∆j0 . We may assume that
we also can lift B to Bj0 . Then ∆j0Bj0 is mapped to the identity over π. Since
it has only finitely many nonzero coefficients, there is j1 such that the image of
∆j0Bj0 over πj1 already is the identity, and similarly for Bj0∆j0 . Therefore, we
may assume that the lifts ∆j0 and Bj0 are inverse to each other. The same is then
true for ∆i and Bi for i > j0, i.e. ∆i represents an element in Wh(πi).

By assumption, ln detπi(∆
∗
i∆i) = 0. Note that the proof of Theorem 6.9 applies

to our situation, and we conclude that ln detπ(∆∗∆) ≥ 0. Since ∆ ∈ Wh(π) was
arbitrary, Theorem 1.22 implies the result.

6.12. Remark. It is not possible to proceed along similar lines in the case when
U has an amenable quotient (even if π is amenable itself). The problem is that
we approximate the matrix ∆ (over Zπ) by matrices over ZU of larger and larger
dimension. One can show that these matrices are invertible over NU if ∆ itself was
invertible. However, even if the inverse of ∆ is a matrix over Zπ, in general this is
not true for the approximating matrices over ZU .

This finishes the proof of Theorems 1.19, 1.21 and 1.14. We conclude with some
side remarks.

7. Complex approximation

In this section, we will address the question of whether the approximation results
we obtained in section 6 are valid not only for matrices over the integral group ring,
but also over the complex group ring. In particular, we adopt Situation 6.1: A group
π is approximated by groups πi, and a matrix ∆ = A∗A by matrices ∆i.

Essentially, we will give a positive answer to our question only for free abelian
groups. We start with a general observation.

7.1. Lemma. Suppose in the situation 6.1 that ker ∆ = 0. Then the approximation
result holds without integrality assumptions: limi F∆i(0) = 0 = dimπ(ker ∆).

More generally, if λ is not an eigenvalue of ∆, then limi F∆i(λ) = F∆(λ).

Proof. We know that F+
∆(x) = F∆(x) for every x ∈ R. If F∆(λ) ≤ F∆(λ)− ε, then

F+
∆(x) ≤ F∆(λ)−ε for every x < λ, i.e. F∆(x) ≤ F∆(λ)−ε ∀x < λ. By assumption,

the eigenspace of ∆ to λ is trivial; therefore F∆ is continuous at λ and ε can only
be zero.

7.2. Proposition. If π = Zn and is contained in the inverse limit of quotient
groups {πi}i∈N, then the approximation result holds for all ∆ ∈ Cπ.

Proof. Embed C[Zn] into its ring of fractions. Let A ∈ M(d × d,C[Zn]). Lin-
ear algebra gives X,Y ∈ Gl(d × d,C(Zn)) with A = X diag(1, . . . , 1, 0, . . . , 0)Y .
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Collecting the denominators in X and Y , we find 0 6= c ∈ C[Zn] ∩ Gl(1,C(Zn))
and X ′, Y ′ ∈ M(d × d,C[Zn]) ∩ Gl(d,C(Zn)) such that cA = X ′DY ′ with D =
diag(1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸

r

). The corresponding equation holds after passage to matri-

ces ci, Ai, X ′i, Y
′
i over πi. Observe that, for V = l2(π(i))d and π- or πi-morphisms

u, v : V → V , the exact sequence

0→ ker(v) ↪→ ker(uv) v→ ker(u),

the inclusions im(uv) ⊂ im(u), and the exact sequences

0→ ker(u)→ V
u→ im(u)→ 0, 0→ ker(uv)→ V

uv→ im(uv)→ 0

together with additivity of the von Neumann dimension dim imply

max{dim(ker(u)), dim(ker(v))} ≤ dim(ker(uv)) ≤ dim(ker(u)) + dim(ker(v)).

Because they are invertible over the field of fractions C(Zn), the operators c, X ′

and Y ′ have trivial kernel. The above inequalities applied to ci, Ai, X
′
i, Y

′
i then

imply by Lemma 7.1 that

r = lim
i

dimπi(ker(X ′iDY
′
i )) = lim

i
dimπi G ker(ciAi) = lim

i
dimπi ker(Ai).

But we also have r = dimZn(ker(A)), and therefore the desired result.

8. Quotients

To enlarge the class G, it is important to find other operations under which our
main properties —determinant class and semi-integrality— are inherited.

We indicate just one partial result:

8.1. Proposition. Suppose 1 → F → π
p→ Q → 1 is an extension of groups and

|F | <∞, and π is of determinant class. Then also Q is of determinant class.

Proof. We only indicate the proof, which was discussed with M. Farber during
a conference in Oberwolfach, and which uses the theory of virtual characters of
Farber [7]. l2(π) corresponds to the Dirac character δ1. The representations Vk
of the finite group F give rise to characters χk of π with support contained in F .
Since l2(F ) =

⊕
µkVk, it follows that δ1 = 1

|F |
∑
µkχk with µk > 0. Since the

operator ∆ we are interested in arises from c∗ ⊗ id on C∗ ⊗ l2(π),

F∆(λ) =
∑ µk
|F |F

χk
∆ (λ)

(compare [7, 7.2]). Now the trivial representation V1 of F corresponds to the
quotient representation l2(Q), and Fχ1

∆ is just FQp(∆). By assumption∫ ∞
0+

ln(λ) dF∆(λ) > −∞.

Since
∫

ln(λ) dFχk∆ (λ) <∞ ∀k, it follows in particular that∫ ∞
0+

ln(λ) dFQp(∆)(λ) > −∞.

Since p is surjective, this is true for every matrix over Zπ we have to consider. This
concludes the proof.
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8.2. Remark. If we have an extension 1 → Zn → π
p→ Q → 1, we cannot write

the character of l2(π) as a direct sum, but as a direct integral (over the dual space
Ẑn = T n). Then F∆(λ) =

∫
Tn F

χη
∆ (λ) dη, and Fχ1

∆ (λ) = FQp(∆)(λ). If it would
be possible to establish an appropriate continuity property, we could conclude as
above that if π is of determinant class, then∫ ∞

0+
ln(λ) dFQp(∆)(λ) > −∞,

i.e. Q is also of determinant class.
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