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Abstract. This paper treats two topics: matrices with sign patterns and Jacobians of certain mappings on

the nonnegative orthant Rd
≥0. The main topic is counting the number of positive and negative coefficients in

the determinant expansion of sign patterns and of these Jacobians. The paper is motivated by an approach

to chemical networks initiated by Craciun and Feinberg. We also give a graph-theoretic test for determining
when the sign pattern of the Jacobian of a chemical reaction dynamics is unambiguous.

1. Introduction

This paper treats two topics: matrices with sign patterns and Jacobians of certain mappings. The main
topic is counting the number of positive and negative coefficients in their determinant expansion, but other
types of results occur along the way. It is motivated by an approach to chemical networks initiated by
Craciun and Feinberg, see [CF05,CF06], and extensions observed in [CHW08].

1.1. Determinants of Sign Patterns. The first topic, see §2, is purely matrix theoretic and generalizes
the classical theory of sign definite matrices [BS95]. This subject considers classes of matrices having a fixed
sign pattern (two matrices are in a given class if and only if each of their entries has the same sign), then
one studies determinants. Call a sign pattern a matrix A with entries which are ±Aij or 0, where Aij are
free variables. To a matrix B we can associate its sign pattern A = SP(B) with ±Aij or 0 in the correct
locations.

Example 1.1. Let B =
[
−1 10
0 −7

]
. Then A = SP(B) =

[
−A11 A12

0 −A22

]
.

If the sign pattern A is square, then the determinant of A is a polynomial in variables Aij , which we
call the determinant expansion of A. We call a square invertible matrix sign-nonsingular (SNS)
if every term in the determinant expansion of its sign pattern has the same nonzero sign. There is a
complete and satisfying theory of these which associates a digraph to a square sign pattern and a test which
determines precisely if the matrix is SNS, see [BMQ68,BS95]. Furthermore, SNS matrices can be recognized
in polynomial-time [RST99].

In this paper we refine the [BMQ68] characterization of SNS matrices by analyzing square sign patterns
and giving a graph-theoretic test to count the number of positive and negative signs in their determinant
expansions; Theorem 2.6. We extend the result to nonsquare matrices and call our test on a matrix the det
sign test.

In the appendix we say precisely when the product of a sign pattern with its transpose admits a sign
pattern, see Theorem 5.1.
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1.2. Jacobians of reaction form differential equations. The second topic, §3, in this paper applies this
to systems of ordinary differential equations which act on the nonnegative orthant Rd≥0 in Rd:

(1.1)
dx

dt
= f(x),

where f : Rd≥0 → Rd. The differential equations we address are of a special form found in chemical reaction
kinetics:

(1.2)
dx

dt
= Sv(x),

where S is a real d× d′ matrix and v is a column vector consisting of d′ real-valued functions. We say that
system (1.1) has reaction form provided it is represented as in (1.2) with v(x) = (v1, . . . , vd′) and

(1.3) vj depends exactly on variables xi for which Sij < 0.

Call S the stoichiometric matrix and the entries of v(x) the fluxes. We always assume the fluxes are
continuously differentiable.

Our second main result, Theorem 3.2, describes which S have the property that the Jacobian matrix
f ′(x) = Sv′(x) has a sign pattern, meaning that each entry f ′ij(x) = ∂fi

∂xj
(x) has sign independent of x in the

positive orthant. The characterization is graph-theoretic and simple. Extensions of these results can be found
in [HKKprept]. The question was motivated by works of Sontag and collaborators [AnS03,ArS06,ArS07].

Our third main result here, Theorem 3.15, when specialized to square invertible S counts the number
of plus and minus signs in the determinant expansion of the Jacobian f ′(x) = Sv′(x) of a reaction form
f(x) = Sv(x) in the terms of a bipartite graph associated to S and the det sign test. We use this to obtain
results on the determinant expansion for general nonsquare S.

We present many examples which illustrate features of our results and limitations on how far one can go
beyond them.

1.3. Chemistry. The reaction form differential equations subsume chemical reactions where no chemical
appears on both sides of a reaction, e.g. catalysts. Furthermore, in many situations all fluxes vj(x) are mono-
tone nondecreasing in each xi when the other variables are fixed, that is, v′(x) has all entries nonnegative.
This happens in classical mass action kinetics or for Michaelis-Menten-Hill type fluxes. See [Pa06] for an
exposition.

A key issue with reaction form equations is how many equilibria do they have in the positive orthant Rd>0.
It was observed in [CF05,CF06,CF06iee] that in many simple chemical reactions the determinant of f ′ has
constant sign on the positive orthant and as a consequence of a strong version of this, any equilibrium which
exists is unique. Other approaches exploiting this determinant hypothesis (under weaker assumptions) are
in [BDB07, CHW08]. Roughly speaking, if the determinant of the Jacobian f ′ does not change sign on a
compact region Ω, then degree theory applies and bears effectively on this issue; the full orthant Rd>0 can
easily be approximated by expanding Ω’s.

The degree argument is very flexible and probably extends to many situations. Fragile, however, is
establishing constraints on the sign of the determinant. A key tool is the determinant expansion of
(1.2), namely, the expression det(SV (x)) as a polynomial in the functions Vij(x), which are the entries of
the matrix function V (x) = v′(x). The main issue is the sign of the terms in the determinant expansion:
are they all the same or if not are there few “anomalous” signs? The [CF05, CF06, CF06iee] papers dealt
with chemical reaction networks where the determinant expansion has all plus or all minus signs, that is, no
anomalous signs, but the papers do give some examples where this is not true. In [CHW08] it is observed
that in each of these Craciun and Feinberg examples the determinant expansion has very few anomalous
signs. When this happens, then §6 of [CHW08] gave some methods, which are effective in many cases, to
prove existence and uniqueness of equilibria. For example, if the determinant expansion has one minus sign
and many plus signs, and if

vj(x) = kjmj(x),
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where mj is a monomial in x and kj > 0, then for a large collection of kj > 0, we get det(SV (x)) is positive
on large regions (which in particular situations can be estimated).

Our main results, Theorem 3.15 etc., on det(SV (x)) were motivated by a desire to develop tools for
counting anomalous signs. While the paper is not aimed at chemical applications, many of the examples of
matrices S we use to illustrate our work are stoichiometric matrices for chemical reactions.

The paper [BDB07] identified chemical reaction determinant expansions initiated by [CF05, CF06] with
classical matrix determinant expansion theory and sign patterns. This is described in the book [BS95] and
pursued into new directions in a variety of recent papers such as [BJS98,CJ06,KOSD07]. The bipartite graph
conventions in this paper are a bit different than conventional, but were chosen to be reasonably consistent
with [CF06].

The authors wish to thank Vitaly Katsnelson for diligent reading and suggestions. We also thank two
anonymous referees whose useful comments improved the presentation of the paper.

2. Matrices with sign patterns

This section gives the set-up and our main results on sign patterns as described in the introduction.

Let t(A), respectively m±(A), denote the number of nonzero terms, respectively positive or negative signs,
in the determinant expansion of the square sign pattern A. Recall a sign definite (SD) matrix A is one
with either m−(A) = 0 or m+(A) = 0 or det(A) = 0. The number of anomalous signs m(A) of a square
sign pattern A is defined to be

m(A) := min{m−(A),m+(A)}.
We say A is j-sign definite if it has j anomalous signs, that is m(A) = j.

Question (J-sign): Given a sign pattern S is every square submatrix sign definite, or more generally
what is the largest j for which S contains a j-sign definite square matrix.

We shall convert this question to an equivalent graph theoretic problem and give a more refined result for
square sign patterns A which counts m±(A).

2.1. Basics on graphs, matrices and determinants. To this end we use the standard notion of bipartite
graphs [HGBM06]. Given a sign pattern S let G(S) denote its signed bipartite graph. It is a signed
bipartite graph with one set of vertices C(S) based on columns and the other set of vertices R(S) based on
rows. There is an edge joining column c and row r if and only if the (r, c) entry Src of S is nonzero. The sign
of this edge is the sign of Src. This is a simplified version of the species-reaction (SR) graph in [CF06]. If
two edges meeting at the same column have the same sign, they are called a c-pair. By a cycle we mean a
closed (simple) path, with no other repeated vertices than the starting and ending vertices (sometimes also
called a simple cycle, circuit, circle, or polygon). A cycle that contains an even (respectively odd) number
of c-pairs is called an e-cycle (respectively o-cycle). Recall a matching in a bipartite graph is a set of
edges without common vertices. Equivalently it is an injective mapping from one of the vertex sets to the
other respecting the graph. A matching in a bipartite graph is called perfect if it covers all vertices in the
smaller of the two vertex sets. A k × k square submatrix A of S corresponds to k column nodes C(A) and
k row nodes R(A); there is an associated sub-bipartite graph G(A) of G(S).

Example 2.1. The following is an example taken from [CF05, Table 1.1.(v)] which illustrates these definitions.
Given

S =



−1 −1 0 0
−1 0 1 0

0 −1 −1 −1
0 0 −1 1
0 0 0 −1
1 0 0 0
0 1 0 0


,
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the signed bipartite graph G(S) is as follows:

R2?>=<89:; ________ C3 R4?>=<89:;

�
�
�
�
�
�
�

R6?>=<89:; ___ C1

R1?>=<89:; C2

�
�
�

R3?>=<89:; C4 R5?>=<89:;

R7?>=<89:;
Here the dashed lines denote positive edges and full lines represent negative edges.

The edges C3−R4 and C3−R3 are a c-pair, while C3−R4 and C3−R2 are not a c-pair. The cycle
C3−R4−C4−R3−C3 has one c-pair, so is an o-cycle. On the other hand, the cycle C1−R1−C2−R3−C3−R2−C1
has two c-pairs and so is an e-cycle. �

We use repeatedly the basic fact of linear algebra that if A is an n× n square matrix, then

(2.1) detA =
∑
σ∈Sn

sign(σ)
n∏
i=1

Ai,σ(i),

where Sn is the group of permutations on {1, 2, · · · , n} and Ai,j denotes the (i, j) term of A).

Remark 2.2. (1) The bipartite graph G(A) of a square sign pattern A has no perfect matching if and only
if detA = 0. This classic observation arises from the fact that there is a 1-1 correspondence between
nonzero terms in the determinant expansion of A and perfect matchings of G(A).

(2) If the bipartite graph of a rectangular matrix does not have a perfect matching, then the determinants
of all of its maximal square submatrices are 0.

(3) The number of terms in the determinant expansion of a square sign pattern A is the number of perfect
matchings of G(A). �

2.2. SNS matrices vs. e-cycles. Let us call a square invertible matrix sign-nonsingular (SNS) if every
nonzero term in the determinant expansion of its sign pattern has the same sign [BS95, Lemma 1.2.4]. If
all square submatrices of (a not necessarily square matrix) S are either SNS or singular, then S is a total
signed compound (TSC) matrix [DGESVD99]. Note that in [BDB07], TSC matrices are called strongly
sign-determined (SSD).

Proposition 2.3. A sign pattern S is TSC if and only if the signed bipartite graph G(S) has no e-cycle.

Proof. This fact is essentially classical, cf. [BS95, Theorem 3.2.1]. Also, it is a special case of Theorem 2.6.
�

2.3. Many Cycles: Square Matrices. Next we turn to the more general situation where e-cycles occur
in G(A). The bipartite graph G(A) enables us to count the number of positive, negative and anomalous
signs in the determinant expansion of a square sign pattern A. We permute and re-sign to make sure all
diagonal entries of A are negative. Thus these diagonal entries correspond precisely to a perfect matching
W in G(A). A cycle in G(A) that contains each edge (c,W(c)) in G(A) corresponding to any column c it
passes through, is called interlacing with respect to W, or W-interlacing for short.

Remark 2.4. To a given signed bipartite graph G we can associate (uniquely up to transposition and a
permutation of rows and columns) a sign pattern A with G(A) = G. The number of anomalous signs of
a signed bipartite graph G with equipollent vertex sets is defined to be m(G) = m(A).
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Example 2.5. Consider the following two graphs.

R1?>=<89:;
�
�
�

C3

�
�
�

R3?>=<89:;

C2 R2?>=<89:; C1

R1?>=<89:;
�
�
�

C3

�
�
�

R3?>=<89:;

C2 R2?>=<89:; C1

Graph G1 Graph G2

Graph G1 admits only one perfect matchingW. Namely the set of edges {C1−R2, C2−R1, C3−R3}. Hence
its only cycle R1−C3−R2−C2−R1 is not W-interlacing. The sign pattern associated to G1 is

B =

 0 B12 −B13

−B21 −B22 B23

0 0 −B33

 .
As det(B) = −B12B21B33, m(G1) = m(B) = 0.

Graph G2 on the other hand admits three perfect matchings. For instance, with respect to the matching
{C1−R3, C2−R2, C3−R1}, the cycle R1−C3−R2−C2−R1 is interlacing, while C1−R3−C3−R2−C1 is not.
The sign pattern associated to G2 is

C =

 0 C12 −C13

−C21 −C22 C23

−C31 0 −C33

 .
Since det(C) = −C12C23C31 − C12C21C33 + C13C22C33, m(G2) = m(C) = 1.

Note that the number of interlacing cycles depends on the matching chosen. For instance, the graph G3

R1?>=<89:;
�
�
�

C3

�
�
�

R3?>=<89:; ___ C4

C2 R2?>=<89:; C1 ___ R4?>=<89:;
Graph G3

with the matching {C1−R3, C2−R1, C3−R2, C4−R4} admits three interlacing cycles, while it has four
cycles interlacing with respect to the matching {C1−R2, C2−R1, C3−R3, C4−R4}. �

The following theorem gives our det sign test counting the number of signs in the determinant expansion
of a square sign pattern A in terms of G(A). For the sake of simplicity it is stated for matrices with nonzero
diagonal entries. This causes no loss of generality since such a matrix can be obtained from any square
invertible matrix with a permutation of rows.

Theorem 2.6. Let A be a square sign pattern with each diagonal element nonzero. Let W be the perfect
matching in the bipartite graph of A corresponding to its diagonal.

(1) The number of terms, t(A), in the determinant expansion of A is the number of disjointW-interlacing
cycles of G(A).

(2) Let ε be the sign of the product of the diagonal elements of A. Then the number of terms of sign −ε
in the determinant expansion of A, m−ε(A), equals the cardinality of the set of all sets of disjoint
W-interlacing cycles that contain an odd number of W-interlacing e-cycles.

Remark 2.7. By disjoint cycles we mean cycles with no common vertices. The empty set is counted as a set
of cycles. �

Remark 2.8. As observed in Example 2.5, the number of interlacing cycles depends on the matching W
chosen. However, the numbers t(A), m±(A) and m(A) obtained from Theorem 2.6 are (clearly) independent
of W. �
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The special case of Theorem 2.6 where m(A) = 0 is settled by [BS95, Theorem 3.2.1] which is due to
Bassett, Maybee and Quirk [BMQ68].

The count of the signs in the determinant expansion is simple in extreme cases, as the following corollary
shows. Recall [LMOD96] that a graph in which each pair of cycles has at least one vertex in common, is
called an intercyclic graph.

Corollary 2.9. Let A be a square sign pattern with each diagonal element nonzero. Let W be the perfect
matching in the bipartite graph of A corresponding to its diagonal. Let ε denote the sign of the product of
the diagonal elements of A.

(1) Suppose that G(A) is an intercyclic graph with t cycles interlacing with respect to W. Then the
number of terms in the determinant expansion of A is 1 + t and m−ε(A) is the number of W-
interlacing e-cycles.

(2) Suppose that there are t ≥ 1 cycles of G(A) each of which is W-interlacing and all are pairwise
disjoint. Then the number of terms in the determinant expansion of A is 2t and the number of
anomalous signs is either 0 (if all W-interlacing cycles are o-cycles) or 2t−1. In the former case,
mε = 2t and in the latter case m−(A) = m+(A) = 2t−1.

Proof. For (1) note that by assumption, every set of disjoint (interlacing) cycles of G(A) contains at most
one cycle. (2) By Theorem 2.6.(1), the number of terms in the determinant expansion of A is just the number
of all subsets of {1, . . . , t}, i.e., 2t.

For the second part of the claim we will compute the number m−ε(A). Let r be the number of e-cycles
among the t interlacing cycles. Of course, if r = 0, then there will be no anomalous signs. So assume r > 0.
There are t− r interlacing o-cycles. Since the cycles are pairwise disjoint, we have by Theorem 2.6 that a set
consisting of some of the t interlacing cycles contributes a term with sign −ε to the determinant expansion
of A if and only if it contains an odd number of the r e-cycles. Thus to find m−ε(A) we multiply the number
of ways we can choose an odd number of e-cycles from the r e-cycles by the number of ways we can choose
any number of o-cycles from the t−r o-cycles. The number of ways we can choose an odd number of e-cycles
from the r e-cycles is

b r−1
2 c∑

k=1

(
r

2k + 1

)
.

To simplify this, notice that 0 = (−1 + 1)r =
∑r
k=0

(
r
k

)
(−1)k implies

b r−1
2 c∑

k=1

(
r

2k + 1

)
=

1
2

r∑
k=0

(
r

k

)
= 2r−1.

The number of ways we can choose a subset of o-cycles from the t − r o-cycles is 2t−r. Thus, m−ε(A) =
2r−1 · 2t−r = 2t−1 and hence m(A) = m±(A) = 2t−1. �

Example 2.10. We now show how to determine when the determinant expansion of a square sign pattern A
has no or one anomalous sign. Let us assume that all diagonal entries of A are nonzero and thus induce a
perfect matching W. By Theorem 2.6.(2), m(A) = 0 if and only if G(A) contains no W-interlacing e-cycles.

We claim that m(A) = 1 if and only if G(A) contains exactly one W-interlacing e-cycle and no W-
interlacing cycles disjoint from it. Clearly, (⇐) follows from Theorem 2.6. For the converse, note that if
G(A) contains at least two W-interlacing e-cycles, then m(A) ≥ 2 by Theorem 2.6.(2). Similarly we exclude
the possibility of only one W-interlacing e-cycle with other W-interlacing cycles disjoint from it. �

2.3.1. Proof of Theorem 2.6. As preparation for the proof of the theorem, we briefly recall some well-
known facts about Sn. A Sn-cycle s = (s1 · · · sm) is the permutation mapping

s1 7→ s2 7→ · · · 7→ sm 7→ s1

and fixing {1, . . . , n} \ {s1, · · · sm} pointwise. To avoid collision with cycles in various graphs appearing in
the paper, we call these cycles Sn-cycles.
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Example 2.11. For instance, the S4-cycle σ = (1 2 4) is the mapping
1_

��

2_

��

3_

��

4_

��
2 4 3 1

 ,

while the mapping 
1_

��

2_

��

3_

��

4_

��

5_

��

6_

��

7_

��
2 4 5 1 3 6 7


can be written as (1 2 4)(3 5). �

Every permutation σ ∈ Sn can be written uniquely (up to the ordering in the product) as a product of
disjoint Sn-cycles. Conversely, every set of disjoint Sn-cycles gives a permutation in Sn.

Lemma 2.12. If σ = τ1 · · · τm is a factorization of σ ∈ Sn into disjoint Sn-cycles, and τi = (τi1 τi2 · · · τiti),
then

sign(σ)
n∏
i=1

Ai,σ(i) =
m∏
j=1

(−1)tj−1

tj∏
i=1

Aτj i,τj i+1

∏
k 6∈{τij}

Ak,k

(with the convention τj tj+1 = τj1).

Proof. If σ contributes to the determinant, then every τi induces a cycle of G(A). For instance, the cycle
G(τi) corresponding to τi is defined to be the subgraph

R(τi1)− C(τi2)−R(τi2)− C(τi3)− · · · −R(τiti)− C(τi1)−R(τi1)

of G(A). The other ingredient is sign(σ) = sign(τ1) · · · sign(τm) and sign(τi) = (−1)ti−1. �

Proof of Theorem 2.6. Let A be n × n. Statement (1) follows from Remark 2.2. To see why (2) is is
true, we invoke the determinant expansion formula (2.1). For convenience we assume that all diagonal
entries of A are negative. Then ε = (−1)n and we count the number of terms with sign −ε. Each term
x = sign(σ)

∏n
i=1Ai,σ(i) in the expansion gives us a permutation σ ∈ Sn. Since every permutation can

be written uniquely as a product of disjoint Sn-cycles, we obtain a set of disjoint cycles τ1, . . . , τ` with
σ = τ1 · · · τ`. Say τi = (τi1 τi2 · · · τiti). By the previous lemma,

x =
∏̀
j=1

(−1)tj−1

tj∏
i=1

Aτj i,τj i+1

∏
k 6∈{τij}

Ak,k.

Observe that the sign of a product of the form
∏tj
i=1Aτji,τj i+1 equals

(−1)number of c-pairs in G(τi) =: sign(G(τi)).

Taking into account that all diagonal entries are negative, the sign of x then equals the sign of

(−1)
P`
i=1(ti−1)(−1)n−

P`
i=1 ti

∏̀
i=1

sign(G(τi)).

This simplifies further to

(−1)n−`
∏̀
i=1

sign(G(τi)).

In order for the term x to have sign (−1)n−1, (−1)`
∏`
i=1 sign(G(τi)) must not be equal 1. We will show this

is the case if and only if the number of e-cycles among τ0, . . . , τ` is odd.
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Case (1): Suppose ` is odd. Then

(−1)`
∏̀
i=1

sign(G(τi)) = −1 ⇐⇒
∏̀
i=1

sign(G(τi)) = 1

⇐⇒ (−1)#(o-cycles among τ0,...,τ`) = 1

⇐⇒ # (o-cycles among τ0, . . . , τ`) is even

⇐⇒ # (e-cycles among τ0, . . . , τ`) is odd,

since ` is odd and # (e-cycles) = `−# (o-cycles).

Case (2): Suppose ` is even. Then

(−1)`
∏̀
i=1

sign(G(τi)) = −1 ⇐⇒
∏̀
i=1

sign(G(τi)) = −1

⇐⇒ (−1)#(o-cycles among τ0,...,τ`) = −1

⇐⇒ # (o-cycles among τ0, . . . , τ`) is odd

⇐⇒ # (e-cycles among τ0, . . . , τ`) is odd,

since ` is even and # (e-cycles) = `−# (o-cycles). �

A referee has pointed out that this proof is along the lines of a refinement of the [BMQ68] proof.

2.4. Many Cycles: Nonsquare Matrices. The graph-theoretic test described in §2.3 gives a det sign test
settling Question (J-sign). In this section we extend the det sign test to nonsquare sign patterns S.

A cycle has the property that the number of rows it passes through is the same as the number of columns
it passes through. A set of cycles is called balanced if the number of rows they pass through is the same
as the number of columns they pass through (i.e., if they are incident with the same number of rows and
columns). Every balanced set of cycles picks out a square submatrix A of S and hence induces a sub-bipartite
graph G(A) of G(S). Such a submatrix and the sub-bipartite graph are both said to be balanced. Note
each column and row of A appears in at least one cycle in G(A).

Proposition 2.13. For every square invertible submatrix B of a sign pattern S there is a balanced square
submatrix A of S with m(A) = m(B). In fact, A can be chosen to be a submatrix of B.

Proof. Suppose B is the smallest square submatrix of S violating the conclusion of the proposition. After
permuting rows we assume B has nonzero entries on the diagonal. Since B is not balanced, either a row or
a column of B does not appear in any cycle in G(B). Without loss of generality we assume this to be row 1.

Since we assume that row 1 does not appear in any cycle of G(B), for σ ∈ Sn with σ = τ1 · · · τ`, where
τi are disjoint Sn-cycles, the corresponding term in the determinant expansion x = sign(σ)

∏n
i=1Bi,σ(i) will

be zero if 1 appears in one of the τi. Hence the nonzero terms x will correspond to permutations σ with
σ(1) = 1. In other words, B1,1 will get picked from row one. So by removing row and column one from B we
obtain a smaller matrix B0 with m(B0) = m(B). By the minimality assumption on B, there is a balanced
square submatrix A of B0 with m(A) = m(B0) = m(B), a contradiction. �

By this proposition, the answer J to Question (J-sign) equals the maximal number of anomalous signs
obtainable from a balanced square submatrix of the sign pattern S. So a procedure for finding the desired
upper bound J is as follows. Consider sets of balanced cycles in G(S). Each of these induces a square
submatrix A of S. If G(A) admits no perfect matching, we continue with another set of balanced cycles.
Otherwise we count the number of anomalous signs in detA by the procedure described in Theorem 2.6 of
§2.3. The highest possible count obtained is the desired sharp upper bound J .
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3. Reaction form differential equations and the Jacobians

Now we turn to studying systems of reaction form (RF) ordinary differential equations which act on the
nonnegative orthant Rd≥0 in Rd:

(3.1)
dx

dt
= f(x) = Sv(x),

where f : Rd≥0 → Rd, S is a real d×d′ matrix and v is a column vector consisting of d′ real-valued functions.

The differential equation (3.1) has weak reaction form (wRF) provided V (x) := v′(x) satisfies Sij >
0⇒ Vji(x) = 0. If a differential equation has wRF, then it has reaction form provided Sij = 0⇒ Vji(x) = 0
and Sij < 0 ⇒ Vji(x) 6= 0. The flux vector v(x) is monotone nondecreasing (respectively, monotone
increasing) if ∂vj

∂xi
(x) is either 0 for all x ∈ Rd′≥0 or nonnegative (respectively, positive) for all x ∈ Rd′>0.

This section analyzes two properties the Jacobian of f(x) might have. First we say when f ′(x) has a sign
pattern (Theorem 3.2 and Corollary 3.1). Secondly we give a method based on §2 for counting the number
of plus and minus coefficients in its determinant expansion.

3.1. Sign pattern of the Jacobian. We first say when the Jacobian of a reaction form dynamics respects
a sign pattern and find that it does surprisingly often.

Corollary 3.1. Given a reaction form differential equation
dx

dt
= Sv(x)

with monotone increasing flux vector v(x). The Jacobian Sv′(x) respects the same sign pattern for all
x ∈ Rn>0 if the bipartite graph G(S) does not contain a cycle of length four with three negative edges.

The corollary is an immediate consequence of Theorem 3.2.(3) which is phrased symbolically. Note
that while the cycle condition is a necessary condition in Corollary 3.1, it is both necessary and sufficient
in Theorem 3.1.(3). We now introduce some definitions required to formulate our sign pattern results
symbolically.

Here and in the sequel, U will denote what we call the flux pattern assigned to S. It is defined to be a
d′× d matrix with each entry being 0 or a free variable Uij ; the (i, j)th entry of U is 0 if and only if Sji ≥ 0.
In case the differential equation (3.1) satisfies RF and the flux vector v(x) is monotone increasing, U is the
sign pattern of V (x). For an illustration, see Example 3.5.

Theorem 3.2. Let S be a real d × d′ matrix and U the corresponding flux pattern. Consider (3.1) and
suppose that the Vij(x) for fixed i are linearly independent. Then:

(1) The differential equation (3.1) has wRF if and only if each diagonal term in SV (x) is a negative
linear combination of the Vij(x).

(2) (Weak reaction form differential equations) If (3.1) has wRF, then SV (x) admits a sign pattern
(that is, each entry of SV (x) is a positive or negative linear combination of monomials in the Vij(x))
whenever the matrix S does not contain a 2× 2 submatrix with the same sign pattern as

(3.2)
[

+1 −1
−1, 0 −1, 0

]
or

[
−1 +1
−1, 0 −1, 0

]
or

[
−1, 0 −1, 0

+1 −1

]
or

[
−1, 0 −1, 0
−1 +1

]
.

Here −1, 0 stands for either −1 or 0.
(3) (Reaction form differential equations)

(a) The product SU admits a sign pattern if and only if the matrix S does not contain a 2 × 2
submatrix with the same sign pattern as

(3.3)
[

+1 −1
−1 −1

]
or

[
−1 +1
−1 −1

]
or

[
−1 −1
+1 −1

]
or

[
−1 −1
−1 +1

]
.

Equivalently, in terms of the bipartite graph, G(S) does not contain a cycle of length four with
three negative edges.
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(b) The entry (SU)ij is nonzero if and only if there is some k with Sik 6= 0 and Sjk < 0. If SU
admits a sign pattern, then sign((SU)ij) = sign(Sik).

Proof. (1) Write S = S+ − S− for real matrices S+, S− with nonnegative coefficients satisfying the compli-
mentarity property (S+)ij(S−)ij = 0. Diagonal entries of SV (x) are of the form

∑
j SijVji(x) which meets

the negative coefficient condition if and only if
∑
j(S+)ijVji(x) = 0 if and only if (S+)ijVji(x) = 0 for all

i, j. This uses the linear independence of the Vji(x). so no cancellation can occur. Thus Sij > 0 if and only
if (S+)ij 6= 0 implies Vji(x) = 0 which is the wRF condition.

(2) The (i, j)th entry of SV (x) does not have a sign pattern if and only if (S+V (x))ij 6= 0 and (S−V (x))ij 6=
0. (S+V (x))ij =

∑
k(S+)ikVkj(x), so (S+V (x))ij 6= 0 if and only if for some k, Sik > 0 and Vkj(x) 6= 0, so

by wRF, Sjk 6> 0. To summarize: Sik > 0 and Sjk 6> 0. Similarly, (S−V (x))ij 6= 0 if and only if there is
some ` with (S−)i` 6= 0 and V`j(x) 6= 0 so Sj` 6> 0. In summary, Si` < 0 and Sj` 6> 0. Taken together this
implies that the 2 × 2 submatrix of S given by rows i, j and columns k, ` has the same sign pattern as one
of the matrices in (3.2).

(3a) This follows as in (2) by using that Ukj 6= 0 if and only if Sjk < 0.

(3b) From (SU)ij =
∑
k SikUkj it follows that (SU)ij 6= 0 if and only if there is k with Sik 6= 0 and

Ukj 6= 0. Due to the construction of U , Ukj 6= 0 if and only if Sjk < 0. This proves the first part of the
statement and the second follows immediately since Ukj is “positive”. �

The issue in Theorem 3.2 is a variant on a simple characterization of when the product AB of two sign
patterns A and B, having “transposed” sign patterns, has a sign pattern, cf. §5.

Our next step is to introduce several different types of determinant expansions.

3.2. The core and other determinant expansions. Now we change to the topic of determinant expan-
sions of the Jacobian of f . Such were introduced to the subject of chemical reaction networks in [CF05] and
are discussed in §1.3 and §4. The Craciun-Feinberg determinant expansion [CF05] is defined to be

cfd(S) := det(SU − τI) with τ fixed, e.g. τ = 1

for S ∈ Rd×d′ and the corresponding flux pattern U . In this paper we introduce and study the core
determinant

(3.4) cd(S) := lim
τ→0

1
τd−r

det(SU − τI),

where r := rank(S). It is appropriate for analysis of many chemical reaction networks, see Theorem 4.1. For
more details on the relationship between the Craciun-Feinberg determinant expansion cfd(S) and the core
determinant cd(S) we refer the reader to §4.

The remainder of this section sets up machinery for the study of determinant expansions. We devote
most of our attention to the core determinant, because our ideas when applied to the Craciun-Feinberg
determinant are very similar. §3.2, §3.3 and §3.4 introduce definitions and constructions, then §3.5, §3.6 and
§3.7 give bounds on the number of anomalous signs as well as examples.

Proposition 3.3. Let C ∈ Rd×d′ , let D be a d′× d matrix with possibly symbolic entries and suppose C has
rank r. Define α to be the determinant of the compression of CD to the range of C. Then

α = lim
τ→0

1
τd−r

det(CD − τI).

Proof. Observe that

CD − τI =
[

(CD − τI)|imC ∗
0 −τI|(imC)⊥

]
.

As the size of the second diagonal block is (d− r)× (d− r),
1

τd−r
det(CD − τI) = det((CD − τI)|imC).
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Sending τ → 0 yields the desired conclusion. �

Definition 3.4. A column c in S ∈ Rd×d′ is called reversible if −c is also a column of S. (Many matrices
coming from chemical reactions have reversible columns.) We call −c the reverse of c.

Example 3.5. Let us consider an example which is a slight modification of [CF05, Table 1.1.(i)]:

R5?>=<89:; ___ C3,C4 R3?>=<89:;

R2?>=<89:; C5

�
�
�

R4?>=<89:; ___ C1,C2 R1?>=<89:;

The corresponding stoichiometric matrix S and the vector v(x) are given by the following:

S =


a11 −a11 0 0 −a13

a21 −a21 a22 −a22 0
0 0 a32 −a32 a33

−a41 a41 0 0 0
0 0 −a52 a52 0

 , v(x) =


k1x

a41
4

k2x
a11
1 xa21

2

k3x
a52
5

k4x
a22
2 xa32

3

k5x
a13
1

 .
Note some of the columns of S are reversible. This phenomenon is captured in the graph by listing two
columns that are reverses of each other in a common rectangular box. For example, C3 and C4 appear in
the same box and in fact columns 3 and 4 are reverses of each other. The sign of S33 is the same as the sign
of S23 and both appear in the graph as a solid line. S53 has sign opposite to these and so appears in the
graph as a dashed line. This is also true for C4. Other dashed vs. solid lines of the graph coming from a
box with reversible columns follow the same pattern.

The corresponding V (x) and U are as follows:

V (x) =


0 0 0 xa41−1

4 a41k1 0
xa11−1

1 xa21
2 a11k2 xa11

1 xa21−1
2 a21k2 0 0 0

0 0 0 0 xa52−1
5 a52k3

0 xa22−1
2 xa32

3 a22k4 xa22
2 xa32−1

3 a32k4 0 0
xa13−1

1 a13k5 0 0 0 0

 ,

U =


0 0 0 U14 0
U21 U22 0 0 0
0 0 0 0 U35

0 U42 U43 0 0
U51 0 0 0 0

 .
For generic choices of the numbers aij the matrix S will be of rank 3 and this is what we focus on. A
straightforward computation gives

cd(S) = −2a13a41a52U14U35U51 − 2a13a21a52U22U35U51 − 2a13a22a41U14U42U51

−2a13a32a41U14U43U51 − 2a13a21a32U22U43U51 + 2a11a22a33U22U43U51

Hence there is potentially one anomalous sign in cd(S). However,

−2a13a21a32U22U43U51 + 2a11a22a33U22U43U51 = 2(a11a22a33 − a13a21a32)U22U43U51

so cd(S) has one, respectively no anomalous sign, depending on whether a11a22a33 − a13a21a32 is positive,
respectively nonpositive. �
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Example 3.6. Suppose S =
[
−a11 a11

−a21 a21

]
. Then SU − I admits a sign pattern; it is a 2 × 2 matrix with

all entries negative. Hence the determinant expansion of its sign pattern has one anomalous sign by the det
sign test. However, cfd(S) and cd(S) have no anomalous signs. �

3.3. Formulas for determinants of products of matrices. For a matrix A, A[α, δ] will refer to the
submatrix of A with rows indexed by α and columns indexed by δ. If α is the full set of rows, we shall simply
write A[:, δ] etc.

Recall the Binet-Cauchy formula for the determinant of the product AB of a m × n matrix A and a
n×m matrix B:

(3.5) det(AB) =
∑

δ⊆{1,...,n}
|δ|=m

det(A[:, δ]) det(B[δ, :]).

(If m > n, then there is no admissible set δ and the determinant det(AB) is zero.)

Combining Proposition 3.3 with the Binet-Cauchy formula we obtain

Lemma 3.7. For S ∈ Rd×d′ having rank r, the core determinant is given by

(3.6) cd(S) = (−1)d−r
∑

|α|,|β|=r

det(S[α, β]) det(U [β, α]).

Proof. Use (3.5) and PQ+GH =
[
P G

] [ Q
H

]
to get

(3.7) det(SU − τI) =
∑
|δ|=d

det
([

S −τI
]

[:, δ]
)

det
([

U
I

]
[δ, :]

)
,

where d is the number of rows of S. Since rank S is r, τd−r factors out of det
([

S −τI
]

[:, δ]
)
, so

limτ→0
1

τd−r
det
([

S −τI
]

[:, δ]
)

exists. Let us look at terms of degree d−r in τ in (3.7). The determinant
det
([

S −τI
]

[:, δ]
)

will be of degree d− r in τ if and only if δ will consists of exactly r columns β of S.
If α denotes the set of rows of S that do not hit any of the columns of −τI chosen by β, then

det
([

S −τI
]

[:, δ]
)

= (−1)d−rτd−r det(S[α, β]).

It is clear that such pairs (α, β) are in a bijective correspondence with all δ that pick r columns of S. Hence

det(SU − τI) = (−τ)d−r
∑

|α|,|β|=r

det(S[α, β]) det(U [β, α]) + (higher order terms in τ).

Dividing by τd−r and sending τ → 0 proves (3.6). �

Formulas (3.6) and (3.7) are in contrast to cfd(S) which is given by the more complicated expression

(3.8) cfd(S) =
r∑
s=1

∑
|α|=|β|=s

(−τ)d−s det(S[α, β]) det(U [β, α])

The fact is known (cf. [CF05], [BDB07, proof of Theorem 4.4]) and its proof follows the line of the proof of
Lemma 3.7.

For the chemical interpretation of the core determinant vs. the Craciun-Feinberg determinant see our §4.

Lemma 3.8. The number of anomalous signs in cd(S) is at most the number of anomalous signs in cfd(S).

Proof. By looking at the formulas (3.6) and (3.8) it is clear that each term appearing in cd(S) also appears
(multiplied with τd−r) in cfd(S). Terms coming from cd(S) have degree r in the Uij ’s, while all terms in
cfd(S) not coming from terms in cd(S) have degree < r in the Uij ’s. Thus there is no cancellation and the
statement follows. �
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Remark 3.9. Example 3.21 shows that the number of anomalous signs in cd(S) can be strictly smaller than
the number of anomalous signs in cfd(S).

If B is the sign pattern associated to the graph G1 of Example 2.5, and S =
[
B −B

]
, then cd(S) has

no anomalous signs, whereas cfd(S) has one anomalous sign. We leave this as an exercise for the interested
reader. �

3.4. Generic matrices and the reduced S-matrix. In this section we introduce some basic definitions
and illustrate them with an example.

Definition 3.10. A matrix A is called weakly generic if its rank r is maximal among all matrices with the
same sign pattern. If, in addition, all r × r submatrices of A are weakly generic, then A is called generic.

The set of all (weakly) generic m×m matrices with a given sign pattern is open and dense in the set of
all m×m matrices with that sign pattern.

Lemma 3.11. The rank r of a generic matrix A with connected graph G(A) is equal to the minimum of the
number of rows or of columns of A. If G(A) has ` components G1, . . . , G` and ri is the minimal number of
column or row nodes in Gi, then r =

∑`
i=1 ri.

Proof. Obvious. �

Definition 3.12. For S ∈ Rd×d′ let Sred denote a reduced S-matrix, i.e., a matrix obtained from S by
removing one column out of every pair of columns which are reverses of each other. Clearly, Sred contains
no reversible columns. The reduced flux pattern Ured is obtained from S and Sred: it is built from the
sign pattern of −STred by setting all entries coming from positive entries in columns nonreversible in S to 0.
In particular, if all columns of S are reversible, then Ured is the sign pattern of −STred. If no column of S is
reversible, then Sred = S and Ured = U .

Example 3.13. Let us revisit Example 3.5. A reduced S-matrix Sred and the reduced flux pattern Ured are

Sred =


a11 0 −a13

a21 a22 0
0 a32 a33

−a41 0 0
0 −a52 0

 , Ured =

 −U11 −U12 0 U14 0
0 −U22 −U23 0 U25

U31 0 0 0 0

 .
In most cases Sred will be generic and hence of rank 3. By a straightforward computation,

SredUred =


−a11U11 − a13U31 −a11U12 0 a11U14 0

−a21U11 −a21U12 − a22U22 −a22U23 a21U14 a22U25

a33U31 −a32U22 −a32U23 0 a32U25

a41U11 a41U21 0 −a41U14 0
0 a52U22 a52U23 0 −a52U25


After a possible renaming of the free variables in Ured, SU = SredUred. This is the key observation we use in
the next sections in order to count or estimate the number of anomalous signs in cd(S). �

Lemma 3.14. If S is a real d×d′ matrix, if Sred is any reduced S-matrix and Ured the corresponding reduced
flux pattern, then

SU = SredUred

after a possible renaming of the free variables in Ured.

Proof. Suppose first that S =
[
Sred −Sred

]
. The corresponding matrix U is of the form

(3.9) U =
[
U0

U1

]
.

The sign pattern of UT0 is the same as that of −Sred. Furthermore, nonzero entries of UT0 coincide with
negative entries of Sred. Similarly, nonzero entries of UT1 coincide with positive entries of Sred.
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Clearly, SU = Sred(U0 − U1) = SredUred (after a possible renaming of the free variables in Ured).

Let us now look at the general case, where some of the columns do not have reverses in S. We ‘expand’
S to S̃ =

[
Sred −Sred

]
by adding reverses of nonreversible columns. We insert rows of zeros at the

appropriate places in U . Again, we write

Ũ =
[
U0

U1

]
.

As before, nonzero entries of UT0 correspond to negative entries of Sred. (Nonzero entries of UT1 correspond
to a subset of the set of all positive entries of Sred.) As U0 − U1 = Ured, this concludes the proof. �

3.5. Counting anomalous signs when Sred is square. Now we give our main theorem for square reduced
S-matrices. The result is strong and effectively reduces the problem to the matrix and graph-theoretic test
of §2.4.

Theorem 3.15. Let S be a real d× d′ matrix and suppose Sred is a generic square invertible matrix. Then:

(1) The number of terms in the core determinant cd(S) equals the number of terms in the determinant
expansion of Ured.

(2) The number of anomalous signs of the core determinant cd(S) is the number of anomalous signs in
the determinant expansion of Ured.

Remark 3.16. Note that the theorem gives a count of positive and negative terms in cd(S) when combined
with Theorem 2.6. The number of (anomalous) signs in the determinant expansion of Ured is bounded above
by the number of (anomalous) signs in the determinant expansion of the sign pattern of Sred. �

Proof of Theorem 3.15. Follows immediately from Lemma 3.14. �

3.6. Rectangular Sred matrices. This section gives results and examples for the case of rectangular re-
duced S-matrices. Our theorem for complicated situations would not easily yield the precise count. On the
other hand, it yields estimates and in various simple cases it is effective.

We can use Lemma 3.14 to provide a Binet-Cauchy expansion with fewer terms than there were in Lemma
3.7, namely:

Lemma 3.17. For S ∈ Rd×d′ having rank r, the core determinant is given by

(3.10) cd(S) = (−1)d−r
∑

|α|,|β|=r

det(Sred[α, β]) det(Ured[β, α]).

Theorem 3.15 and Remark 3.16 tell us how to count the number of positive, negative or anomalous signs
in cd(S) with generic Sred. By the Binet-Cauchy formula (3.10) given in Lemma 3.17 we count the number
of positive and negative terms for each of the det(Ured[β, α]) and take into account the sign of det(Sred[α, β]).
The sum of these will give us a count for the number of positive and negative terms in cd(S). Note: due to
the freeness of entries of U , there is no cancellation between the summands. In particular, this count gives
us a lower bound and upper bound on the number of anomalous signs in cd(S).

Theorem 3.18. Suppose S ∈ Rd×d′ has rank r. Let Sred be a reduced S-matrix and Ured the reduced flux
pattern. Suppose that Sred is generic.

(1) The number of anomalous signs in cd(S) is at least∑
|α|,|β|=r

m(Ured[β, α])

and at most ∑
|α|,|β|=r

t(Ured[β, α])−m(Ured[β, α]).
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(2) The number of terms of sign (−1)d−1 in cd(S) is at least∑
Sred[α,β]∈N

m(Ured[β, α])

and at most ∑
Sred[α,β]∈N

t(Ured[β, α])−m(Ured[β, α]),

where N is the set of all r × r submatrices of Sred that are not SD.

Proof. (1) follows from the explanation given before the statement of the theorem, so we consider (2). For
a SD matrix S0 = Sred[α, β], all terms in the determinant expansion of the sign pattern of S0 have the same
sign. Hence the same holds true for U0 = Ured[β, α] which is the sign pattern of −ST0 with possibly some
entries set to 0. If |α| = |β| = r, then the sign of det(U0) is 0 or (−1)r times the sign of det(S0). Hence by
Lemma 3.17, a term of sign (−1)d−1 in cd(S) cannot come from a r × r SD submatrix of Sred. To conclude
the proof, note that given Si = Sred[α, β] ∈ N , the term det(Sred[α, β]) det(Ured[β, α]) will contribute at
least min{m−(Ui),m+(Ui)} = m(Ui) terms of sign (−1)d−1 in cd(S) and at most max{m−(Ui),m+(Ui)} =
t(Ui)−m(Ui) terms of sign (−1)d−1. (Here Ui := Ured[β, α].) �

These bounds are often tight as the next examples illustrate.

3.6.1. Examples.

Proposition 3.19. Let S be a d× d′ matrix of rank r with generic Sred.

(1) Suppose Sred has no e-cycle interlacing with respect to a perfect matching, then cd(S) has no anomalous
signs.

(2) If cd(S) has no anomalous signs, then G(Ured) has no e-cycles interlacing with respect to a perfect
matching.

Proof. (1) By assumption and Theorem 2.6, any r× r submatrix S0 = Sred[α, β] of Sred is SD. Then N = ∅,
so by Theorem 3.18, cd(S) will have no anomalous signs.

To see why (2) is true, we invoke Theorem 2.6. Such an e-cycle and the perfect matching in G(Ured) pick
out a r × r submatrix Ured[β, α] of Ured. The corresponding summand in (3.10) will then yield at least one
anomalous sign by Theorem 2.6. �

In the fully reversible case this yields a necessary and sufficient condition for cd(S) to have no anomalous
signs.

Remark 3.20. We recall that for cfd(S) what we have just done is known [CF06] in the fully reversible case
S =

[
Sred −Sred

]
. What is shown in [CF06], implies that cfd(S) has no anomalous signs if and only if

G(Sred) has no e-cycles. �

Example 3.21. Suppose Sred is generic, S =
[
Sred −Sred

]
and the graph G(Sred) is:

R1?>=<89:;
�
�
�

C1

�
�
�

C2 R2?>=<89:; C3 ___ R3?>=<89:; · · · Cn ___ Rn?>=<89:;

There are n rows and n columns, so the rank of S (and Sred) is n. G(Sred) supports exactly one rank n
square matrix, Sred itself.

G(Sred) has one cycle with no c-pairs, so it is an e-cycle. G(Sred) admits 2 perfect matchings: the e-cycle
interlaces both matchings. So by Theorem 2.6, we get N = {Sred}.



16 HELTON, KLEP, AND GOMEZ

Theorem 3.18 together with Theorem 2.6 imply

1 = m(Ured) =
∑
N
m(Ui) ≤ m(S) ≤

∑
N

[t(Ui)−m(Ui)] = t(Ured)−m(Ured) = 2− 1 = 1.

Thus generically cd(S) has one anomalous sign (independent of n ≥ 2).

Alternative to Theorem 3.18, since Sred is square, we could have used Theorems 3.15 and 2.6 which tell
us that cd(S) will have 2 terms, one with a positive and one with a negative sign.

On the other hand, the number of anomalous signs in cfd(S) increases rapidly with n.

n 2 3 4 5 6 7 8 9 10
# of anomalous signs in cfd(S) 1 2 5 13 34 89 233 610 1597

This data is consistent with
number of anomalous signs = Fib(2n− 3)

(see the website http://www.research.att.com/~njas/sequences/), where Fib(k) denotes the kth Fi-
bonacci number. We conjecture that the formula is true for all n. �

Example 3.22. Suppose S =
[
Sred −Sred

]
, Sred is generic and G(Sred) is the graph:

R8?>=<89:;
�
�
�

R7?>=<89:; ___ C4

�
�
�

R2?>=<89:;
�
�
�

C1

�
�
�

R3?>=<89:;
�
�
�

R6?>=<89:; C2 R1?>=<89:; C3 ___

�
�
�

R4?>=<89:;

R5?>=<89:;
There are 8 rows and 4 columns, so rank of S and Sred is 4. The graph G(Sred) has one e-cycle.

G(Sred) admits 3 · 3 · 2 = 18 perfect matchings and the e-cycle is interlacing with respect to every one of
those. Each perfect matching selects a 4 × 4 submatrix of Sred (or Ured) with one e-cycle in its graph. In
total there are 9 such submatrices (each in N ) with the graph of each one admitting two perfect matchings.

Theorems 3.18 plus 2.6 imply

9 =
∑
N
m(Ui) ≤ m(S) ≤

∑
N

[t(Ui)−m(Ui)] = 9(2− 1) = 9.

Thus generically cd(S) has 9 anomalous signs. �

3.7. Few Anomalous Signs - An Algorithm. We have just looked at bounds for the number of anomalous
signs in cd(S) for generic Sred. A small number of anomalous signs in the core determinant can be handled
precisely using an algorithm we now describe which obtains necessary and sufficient conditions for cd(S) to
have (zero or) one anomalous sign.

3.7.1. The zero-one anomalous sign algorithm. Suppose S is a d × d′ matrix of rank r. In order for
the algorithm to work with certainty, we assume Sred is generic. Let N be the set of all r× r submatrices of
Sred that are not SD. Given Si ∈ N we use Ui to denote the corresponding submatrix of Ured. We present
the algorithm only for the case when cd(S) has no anomalous signs or the anomalous sign is (−1)d−1. 1

1This assumption is made purely for convenience of exposition. In fact, if Sred has at least two SNS r× r submatrices with
nonsingular corresponding submatrices in Ured, then this will automatically be the case.

http://www.research.att.com/~njas/sequences/
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Case E: N has 0 elements.
Then cd(S) has no anomalous signs.

Case N: N is nonempty.
Subcase (a): All the Ui corresponding to Si ∈ N are SD.

Take det(Si) det(Ui) and look at its sign. If for all Si ∈ N this sign is (−1)r, then cd(S) has no
anomalous signs. Otherwise for some Si ∈ N the sign is (−1)r−1 and the corresponding term
det(Si) det(Ui) contributes t(Ui) terms with sign (−1)r−1 to cd(S). If t(Ui) > 1, then there
is more than one anomalous sign in cd(S). If there is Sj 6= Si with sign(det(Sj) det(Uj)) =
(−1)r−1, then cd(S) will have more than one anomalous sign. Otherwise cd(S) has one anoma-
lous sign.

Subcase (b): There is exactly one S0 ∈ N for which the corresponding U0 is not SD.
If there is Si ∈ N \ {S0} with the sign of det(Si) det(Ui) equal to (−1)r, then cd(S) will have
more than one anomalous sign. Otherwise we use the det sign test (Theorem 2.6) to compute
m(U0).

(i) If m(U0) > 1, then cd(S) will have more than one anomalous sign.
(ii) Suppose m(U0) = 1. If t(U0) = 2, cd(S) will have one anomalous sign. So suppose

t(U0) > 2. Let

ε =
{

+1 | m(U0) = m+(U0)
−1 | otherwise.

Now cd(S) will have one anomalous sign if and only if

(3.11) ε sign det(S0) = (−1)r−1.

(If (3.11) fails, cd(S) will have more than one anomalous sign.)
Subcase (c): There are at least two Si ∈ N for which the corresponding Ui is not SD.

In this case cd(S) will have at least two anomalous signs.

Lemma 3.23. The zero-one anomalous sign algorithm computes whether or not there is one (respectively
no) anomalous sign.

Proof. Case E is described in Proposition 3.19. Case N.(a) follows directly from the Binet-Cauchy formula
(3.10). For Case N.(b).(i), det(S0) det(U0) has more than one anomalous sign, so cd(S) will have more than
one anomalous sign. The proof of Case N.(b).(ii) is essentially contained in the statement itself. Finally, in
the Case N.(c) two different Si contribute two different terms to the Binet-Cauchy expansion 3.10 for cd(S)
each having at least one anomalous sign. �

Remark 3.24. The algorithm simplifies considerably in the fully reversible case, as then Ui is SD if and only
if Si is. Thus Case N.(a) cannot arise. Subcase (b) is equivalent to N having exactly one element and
Subcase (c) is equivalent to N containing at least two elements. �

Example 3.25. Let S =
[
Sred −Sred

]
, where

Sred =


a 1 0
1 1 1
−1 0 1

0 1 0


has rank 3 and a ∈ R>0. Suppose a 6= 2; this makes Sred generic. The graph G(Sred) is given by the
following:

R1?>=<89:;
�
�
�

___ C1

�
�
�

R3?>=<89:;_ _ _

R4?>=<89:; ___ C2 ___ R2?>=<89:; C3_ _ _

The cycle R1−C1−R2−C2−R1 has two c-pairs and is an e-cycle; it is the only e-cycle and it interlaces two
perfect matchings. Both leave out R4 and select the same 3× 3 submatrix S0 of Sred. Hence N = {S0}.
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To count the number of anomalous signs in cd(S) apply the Algorithm 3.7.1. Our situation corresponds
to Case N.(b) and we compute m(U0), where U0 is the 3 × 3 submatrix of Ured corresponding to S0. By
the det sign test, m(U0) = 1 and t(U0) = 3. It is easy to see that m(U0) = m−(U0); thus by the zero-one
anomalous sign algorithm, cd(S) will have one anomalous sign if and only if a− 2 = det(S0) < 0. (If a > 2,
cd(S) will have two anomalous signs.) �

Another class of examples is solipsistic cycles, a notion we now elucidate. A subgraph Γ of G is said to
be solipsistic provided when edges of Γ are removed from G all paths in the remaining graph starting from
a vertex in Γ have length ≤ 1.

Proposition 3.26. Suppose Sred is generic and the graph G(Sred) is connected and contains at most one
cycle which is solipsistic (e.g. Example 3.5 or Example [CF05, Table 1.1.(iii)]). Then the number of anomalous
signs in cd(S) is ≤ 1.

Proof. Without loss of generality, G(Sred) contains a cycle E . If E is not an e-cycle, then we are in Case E
of the algorithm and there are no anomalous signs in cd(S). Thus we assume that E is an e-cycle.

By Lemma 3.11, the rank r of Sred is the minimal number of rows or of columns in Sred. If r is bigger
than the number of columns appearing in the cycle, then we are in Case E of the algorithm because any
perfect matching will include some edge not in the cycle, thus making E not interlace it. Hence cd(S) has
no anomalous signs.

Otherwise r equals the number of columns appearing in the cycle. Then N has only one element S0. The
corresponding submatrix U0 of Ured is either SD or its determinant expansion has two terms of opposite sign.
Now the result follows from Case N.(a). �

Note that results on the core determinant cd(S) given in this section have parallels for the Craciun-
Feinberg determinant expansion cfd(S) which are easy to work out using the techniques in our paper.

4. Chemical Motivation

This matrix theory paper is not directly aimed at producing chemical results but was inspired as an
extension of the striking work of Craciun and Feinberg. We hope these extensions might someday prove
valuable on chemical network problems and some methods they combine with are described in [CHW08] and
a consequence is Theorem 4.1 below.

Now we turn to describing the connection between the core determinant from §3 and chemistry.

A chemical reactor can be thought of as a tank with each chemical species flowing in (assume at a constant
rate) and each species flowing out (assume in proportion to its concentration in the tank). If the reaction
inside the tank satisfies dx

dt = g(x), then when there are inflows and outflows, the total reaction satisfies

dx

dt
= f(x) = g(x) + εxin − δx.

The Craciun-Feinberg determinant is the determinant of the Jacobian f ′ when δ is 1 and it bears on counting
the number of equilibria for this differential equation, cf. [CF05,CF06,CHW08]. There is some discussion of
small outflows vs. no outflows in [CF06iee].

The core determinant bears on a different problem. Assume the differential equation has reaction form
f(x) = Sv(x). Let R (respectively R⊥) denote the range of S (respectively its orthogonal complement);
R is typically called the stoichiometric subspace. Let P be the projection onto R and P⊥ onto R⊥. With
no inflows and outflows, P⊥f(x) = 0 and clearly this implies the solution x(t) to the differential equation
propagates on the affine subspace

(4.1) Mx0 := {x | P⊥x(t) = const = P⊥x0}.
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This reflects quantities (like the number of carbon atoms) being conserved. The flow on Mx0 has dynamics
dPx
dt = d(Px+P⊥x0)

dt = Pf(Px+ P⊥x0). Proposition 3.3 implies that the determinant of the Jacobian of this
dynamics is the core determinant which we studied in this paper, namely, for any ξ in Mx0

(4.2) cd(S)(ξ) = det(Pf ′(ξ)P ).

When cd(S) has no anomalous signs the degree theory arguments in §3 of [CHW08] give a strong result
for numbers of equilibria of the differential equation.

Theorem 4.1. Suppose dx
dt = fb(x) := Svb(x) has reaction form with vb(x) once continuously differentiable

in x and depending continuously on a parameter 0 ≤ b ≤ 1. Suppose each component vbj(x) of vb(x) is
monotone nondecreasing. Suppose Mx0 is compact. Suppose cd(S) has no anomalous signs.

If there are no zeroes fb(x) = 0 for any b and any x on the boundary of Mx0 , then the number of zeroes
for fb in the interior of Mx0 is independent of b.

The hypothesis that cd(S) has no anomalous signs can be weakened to cd(S)(ξ) does not equal 0 for any
ξ in Mx0 .

5. Appendix. A sign pattern times its transpose

This paper derived matrix theoretic results pertaining to a chemistry setup. In this section we describe
similar results in a different mathematical context which some might find more attractive.

Theorem 5.1. Let A be a sign pattern and B its transposed sign pattern. Then AB has a sign pattern if
and only if A does not contain a 2×2 submatrix whose rows and columns can be permuted to obtain a matrix
whose sign pattern is one of

(5.1)
[

+1 −1
−1 −1

]
or

[
−1 +1
+1 +1

]
.

Proof. This is easily proved using a straightforward analysis of (AB)ij =
∑
k AikBkj similar to that found

in the proof of Theorem 3.2.(2). �

Remark 5.2. Note that Theorem 5.1 implies Theorem 3.2.(3) in the case S is fully reversible, i.e., S =[
Sred −Sred

]
. Indeed, by Lemma 3.14, SU = SredUred and Ured is the transpose of the sign pattern of

−Sred. Now apply Theorem 5.1 to Sred.

In a similar vein what we have done bears on the determinant expansions of AB where A is a sign
pattern and B is its transpose pattern. If A is a total signed compound sign pattern, as in §2.2, and B
is its transpose sign pattern, then AB is sign-nonsingular provided it is invertible. This follows from the
Binet-Cauchy formula (similar to §3.3), and the idea is essentially in [CF05, CF06, BDB07]. When AB is
not invertible, then the core determinant expansion introduced here has all coefficients of the same sign.
What we do in this paper is more general in that it gives estimates on the number of anomalous signs in the
expansion of det(AB). However, we specialize to A not actually being a sign pattern but having numerical
entries, and B being the sign pattern which is the transpose of the signs of A.

6. Appendix. Software

The discovering of the results in this paper was considerably facilitated by computer experiments. The
programs we wrote to do this might be of value to a broad community, so we documented them and provided
tutorial examples. They are found on the web site

http://www.math.ucsd.edu/~chemcomp/

The Mathematica files provided contain software for dealing with equations that come from chemical
reaction networks; dx/dt = f(x) = Sv(x) as in (1.2). Some of our commands focus on the the Jacobian, f ′,
of f ; they do the following

 http://www.math.ucsd.edu/~chemcomp/
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(1) compute the Jacobian f ′ of f (given say the stoichiometric matrix S);
(2) compute the Craciun-Feinberg determinant of f ′;
(3) compute the core determinant of f ′;
(4) check existence of a sign pattern for f ′(x) which remains unchanged for all x ≥ 0, using Theorem 5.1 in

this paper;
(5) implement the sign fixing algorithm explained in [HKKprept].

Another part of our Mathematica package deals with deficiency of reaction form differential equations
and various representations for these differential equations. Capability to automatically plot planar graphs
is under development and should be available soon.
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