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DETERMINANT EXPRESSION OF SELBERG ZETA FUNCTIONS (III)
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(Communicated by William Adams)

Abstract. We will prove that for PSL(2, R) and its cofinite subgroup, the

Selberg zeta function is expressed by the determinant of the Laplacian. We will

also give an explicit calculation in case of congruence subgroups, and deduce

that the part of the determinant of the Laplacian composed of the continuous

spectrum is expressed by Dirichlet ¿-functions.

1. Introduction

The first discovery of the relation between the Selberg zeta function and the

determinant of the Laplacian was by physicists [3, 4, 7]. Sarnak [14] and Voros

[ 15] obtained the determinant expression of Selberg zeta functions for compact

Riemann surfaces with torsionfree fundamental groups. In those cases, all the

spectrum of the Laplacians are discrete. The determinant was defined via the

holomorphy at the origin of the spectral zeta function of Minakshisundaram

and Pleijel [13]. For noncompact but finite Riemann surfaces with torsion-

free fundamental groups, these results are generalized by Efrat [5]. In this case

there exist both discrete and continuous spectrum. He constructs the spectral

zeta function composed not only of eigenvalues but some values concerning

continuous spectrum, which are decided by all the poles of the scattering de-

terminant in the Selberg trace formula. The determinant of the Laplacian is

defined by the standard method with the holomorphy of the spectral zeta func-

tion at the origin. The aim of the present paper is to generalize his results to the

case with any fundamental group Y (§3) and to give some arithmetic examples

of the determinant of the Laplacians (§4). In §4, we restrict ourselves to the

case when Y is a congruence subgroup of PSL(2, Z). In this case the partial

spectral zeta function composed of only eigenvalues is also holomorphic at the

origin [11, Theorem 3.3]. Hence we have a decomposition of the determinant

into parts corresponding to the discrete and continuous spectrum. The scatter-

ing determinant is expressed very explicitly by Huxley [8] in terms of Dirichlet

7-functions £(i, x) ■ Almost all the poles of the scattering determinant are de-

scribed by nontrivial zeros of L(s, x) ■ The continuous part of the determinant
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can also be expressed by 7(5, x) > m which the arithmetic information of Y

appears, whereas the geometric information goes into the discrete part.

Another example of this type of the decomposition is in [10, §6], where Y is

some arithmetic subgroup of PSL(2, C) acting on the real three-dimensional

hyperbolic space.

In the general case, the decomposition of the determinant is unknown. We

need more information about the properties of the scattering determinant. The

background and the principle of the theory are described in [9].

2. The theorem of Efrat

We start by reviewing the result of Efrat [5], for torsion-free Y. The Lapla-

cian

for the upper half plane H on 7 (T\H) has both discrete and continuous spec-

trum. The latter is described by the scattering matrix ®(s), whose entries come

from the constant terms of the Eisenstein series. Let tf>(s) be the determinant

of <&(s). Then we list three types of sequences:

(1) The set Sx of sn £ C such that sn(l-sn) = Xn , where Xn is the discrete

spectrum of A.

(2) The set S2 of poles pm = ßm + iym of c/>(s) with ßm < \ .

(3) The set 53 = {nx, ... , nN} of exceptional poles of 4>(s) in (j, 1].

The spectral zeta function Ç,(w, s) is defined by

C(w , s) := ^(er(l - er) - í(1 - s))~w ,

oes

where S — Sx U S2 - S3. The determinant of the Laplacian is defined to be

det(A - 5(1 - 5))2 := exp (-— \w=Q Ç(w , s)) ,

after proving the regularity of Ç(w , s) at w = 0. The Selberg zeta function of

a group T (or of a Riemann surface T\H ) is defined as
oo

Z(s):=Hll(l-N(P)-s-n),
P   n=0

where P runs through all the representatives of primitive hyperbolic conjugacy

classes of Y, and N(P) := a if the eigenvalues of P are a and a (\a\ > 1).

The gamma-factor of Z(s) is the function from the identity term of the trace

formula:
/V < ^2r^   .,\ vo«r\H)/2*

Y2(s) (271)  \
z'{s) - {   m   )

where Y2(s) is the double gamma function of Barnes [1, 2]. Efrat's theorem

gives the relation between the determinant of the Laplacian and the Selberg zeta

function.
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Theorem 2.1. (Efrat [5]).    When Y is torsion free and cofinite, we have the

identity

det2(A - 5(1 - 5)) = (ß(s)Z(s)2Z[(s)2Y (s + X2)~2K (2s - l)A

x exry(B(2s - 1 )2 + C(25 - 1 ) + D),

where K is the number of inequivalent cusps and

A = K-tr(*(l/2)),        5 = -^m,

C = iHog2,        D = VOl(r\H) (2C'(-1) - log V^jr) + 2K log v^ - A log 2.

3. The contribution of elliptic elements

We treat the case when T may have elliptic elements. Also in this case

Ç(w, s) is regular at w — 0. We have the same definition of det(A-5(l -s)) as

that with r torsionfree. The corresponding terms of the Selberg trace formula

have some effects on the gamma-factor of the Selberg zeta function. Their

contribution is computed by Fischer [6, Corollary 2.3.5] and the author [11,

(5.9)] by taking different test functions;

,, _i a+i-»«
/5-r-/

z£w=nnr
R   1=0       v  VR

where vR is the order of R and R runs through all the primitive elliptic

conjugacy classes. We can describe Efrat's theorem in the case when Y may

contain elliptic conjugacy classes.

Theorem 3.1. When Y is cofinite, we have the identity

Í      1 \ ~2K
det2(A - 5(1 - 5)) = <^(5)Z(5)2Z7(5)2Z£(5)2r is + i J

x (25 - l)A exp(B(2s - I)2 + C(2s - 1) + D),

where K, A, B, C are the same constants as in Theorem 2.1, and

D = VOl(r^H)(2C,(-l) - log V2Ü) + 2KlogV2H-A log 2
71

+ 2(^log2 + ^log3

where n2 and «3 denote the number of the elliptic conjugacy classes of order 2

and 3, respectively.

Proof. According to the method of Sarnak [14, §2.2], it suffices to examine the

asymptotic behavior of logZE(s) as s —* oo. Now all the elliptic elements in

T c PSL(2, Z) are of order 2 or 3. From Stirling's formula, the behavior of
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log ZE(s)   is shown to be

r

log ZE(s)2 = 2 (^ + <£l) log 5 - 2 (^ log 2 + ^ log 3) + o(l).

As the constant 7> is the sum of the constant term in this expansion, the con-

tribution of the elliptic factors is

(n 4/2 \
^log2 + yiog3j.   Q.E.D.

4. The contribution of the continuous spectrum

We treat the case when Y is the image of one of the typical congruence

subgroups below in PSL(2, R) :

r°(A°:={(c   J)eSL(2>Z); c = 0(modN)\ ,

i(Ar):={(c   ¿)ero(AO;a = </=l(modtf)}>

r2(A):={(^   J)er,(A);¿ = 0(modvV)}.

These groups have elliptic elements in general. In these cases the scattering

determinant is obtained by Huxley.

Theorem 4.1. (Huxley [8]). The scattering determinant for Y¡(N) (i = 0, 1,2)

is expressed by a product over even Dirichlet characters modulo N ;

where K0 := -tr 0(5), which is equal to the number of x such that L(s, x)

has a pole as s = 1.

In this theorem the conditions on x are described in [8], and the number of

X is equal to K. If x is in the product, so is x • The number F is a positive

integer composed of prime factors of N. Put

7(5) := (F7TV2nr>/2)7(5, *).
x

Then our scattering determinant is expressed as

which leads us to the explicit form of the continuous part of the determinant of

the Laplacian. The set 52 is the sequence of all the nontrivial zeros of 7(25, x)

and S} = {1} with multiplicity A^0. We define the spectral zeta function for
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each sequence by

Ct(w , 5) := £(ff(l - a) - 5(1 - s))~w ,        (i = 1,2,3).

ct€S,

We have the regularity of Çx (w , s) at w - 0 by the following theorem.

Theorem 4.2. The discrete part,

C1(™,5):=X>(l-<7)-5(l-5))-U',

ct€5,

o/7/ze spectral zeta function has the analytic continuation to the whole w-plane

except at the pole at w — 1 of order 1 and the poles at w = \ — n (n =

0, 1,2,...) of order 2.

Proof. As a and 1 - a give the same eigenvalue,

oo

C1(W,5) = 2X>„-5(l-5))-U',
«=0

whose analytic continuation is proved in [11, Theorem 3.3] based on the method

of Kurokawa [12, Theorem 3(1)]. Here we recall the proof briefly. We take the

test function h(r2 + \) in the Selberg trace formula as

h (r2 + I) := exp (-? (r2 + | + s(s - 1))) ,

with 5 > 1, t > 0. It suffices to have the analytic continuation of the Mellin

transformation of the term concerning discrete spectrum in the trace formula.

All we have to do is to examine all the other terms in the trace formula. The

contribution of the continuous spectrum and parabolic conjugacy classes is the

sum of the following three terms:

K r       v  \ í        / i \ 2\

^"W-^-iV-i!^'
X   n=\

CP3(t) = ~ j°° '{y/({ + ir) + yt(l + ir)) exp (-/ (r2 + (s - i)2)) dr,

where A(n) is the vonMangoldt function and \p = YI /Y. The key point is the

treatment of CP}. Its Mellin transformation is

J     (r+(s-l))     (Re(v(l+2ir)) - log 2) dr,

up to gamma-factor.   If we divide this integral into /J        and f™x,2> trie

former is finite for all w £C. The latter is equal to

L'r3/2(y + ir(Re^(l + ^i))-log2)¿,,
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up to constant, by r = (s - j) y  ''   .   The Stirling-Binet formula [16, 12.3,

p. 252] shows that

N

Re(ip-(l + ir)) = log r + £ -£ +RN(r)       (a„ £ R),

n=\

2N+\
with \RN(r)\ < MJr + (r > ¿), where an are constants expressd via

Bernoulli numbers. Moreover, we can apply the binomial expansion formula to

get

(,+1)-=E(-;y
k=0

where
-W\_      [   -M-v-^-u-k+l) (k>l),

h:k   )   '        I   1 (rC = 0).

Then the above integral f™l/2 can be written as

where a0 := log(25 - 1). The remainder term is holomorphic in Re(iu) > -N.

An elementary calculation shows that the integral is entire in the whole w -plane

except at double poles at w = j - k (k = 0, 1, 2, ...). Next we treat all the

other terms in the trace formula. Possible poles of the Mellin transormation

come from the behavior of each term as t —> 0, because h(r2 + |) is exponen-

tially small as t —> oo. The hyperbolic term and CP2 do not make poles, for

they are exponentially small as i-»0. We can expand other terms using the

expansion of the exponential function around the origin. Consequently, their

behavior as t —> 0 is expressed as

oo oo

.«-1/2

n=-\ «=0

The Mellin transformation tells that it has simple poles at w = I, \ , 0, -\,

-1, - \ , ... , among which the poles at nonpositive integers are those of the

gamma-factor.    Q.E.D.

The result of Efrat and Theorem 4.2 show that we can define the discrete

and the continuous part of the determinant of the Laplacian separately. The

continuous part of the determinant of the Laplacian is defined by

,.      „      ,.      det2(A-5(l-5))
detc A -il- 5   := -j-2^-\-.-^ ,cv det3(A-5(l -5))

where

det;(A - 5(1 - 5)) := exp (-— \W=Q Ç^w , s)) .

We deduce the following theorem.
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Theorem 4.3. For the present Y, the continuous part of the determinant of the

Laplacian is expressed by

detc(A - 5(1 - s))2 = ed+d's{s~1]L(2s)L(2 - 2s)(2s - l)2K°,

with some constants d and d! .
is

Proof. The function (25(25-1)) °7(25) is entire and has the following expres-

sion as an infinite product;

))K°L(2s) = peas U (l-(2s(2s-l)f°L(2s)=peas ]J (l - ±) es/
pes2 \

with some constants p and a. Replacing 5 by 1-5 tells us that

((2 - 25)(1 - 25))*°7(2 - 25) =pea{l-s) J] (l - —)

pes2 \ p    '

Now we have the identity

ú?logdet2(A-5(l-5))2

eV-s)/p

ds2s-l ds "5 uvl2V

- — log 7(25)7(2 - 25)(25 - l)2K°(s(s - l)f°.
ds 2s - 1 ds

Indeed, a little calculation shows that both sides are equal to

25- 1-E
^2((p-s)(p-(l-s)))2'

On the other hand, it is easy to compute that

det3(A - 5(1 - 5))2 = (s(s - 1))*°.

Then the proof is accomplished.   Q.E.D.

Proposition 4.4. The constants d and d' in Theorem 4.3 are

vol(r\H)      ■     ,     4v/H     _ r-.      tiK      K-K0   .
d £-\ v   ' +2K log—-— + 2v/ilog^^ + —r—V-7ii + 27iiZ,

4n e 2 F 2

and
,,   voi(r\H)

71

Proof. The discrete part detj  is the same as the discrete part defined in [11],

in which we have the identity

det1(A-5(l-5))7(25)(5-i)"^/+c'l(s_1)

= z(5)z7(5)z£(5)2-*J (i-i)fr(i + \)K ,

where

7 K
+ K log -=- + v^log —jT- + 2niZ,

yjne 2 F
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and
c, = voi(r\H)

71

By comparing the coefficent of s(s - 1) and the constant term in the logarithm

of this and Theorem 2.1 into which we substitute the result of Theorem 4.3, we

get
^_2c,_voi(r\H)

71

and

d-2c£ - vol^\H) ri + logv/27t-2C'(-l))+27:iog2v/27r

+ 2 (^ log 2 + ^ log 3^ + £^&xi + 2niZ.

Hence we get the conclusion.   Q.E.D.
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