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DETERMINANT INEQUALITIES VIA INFORMATION THEORY*

THOMAS M. COVER" AND JOY A. THOMAS

Abstract. Simple inequalities from information theory prove Hadamard’s inequality and some of its gen-
eralizations. It is also proven that the determinant of a positive definite matrix is log-concave and that the ratio
of the determinant of the matrix to the determinant of its principal minor g, I/Ig,- 1 is concave, establishing
the concavity of minimum mean squared error in linear prediction. For Toeplitz matrices, the normalized

determinant g, TM is shown to decrease with n.
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1. Introduction. The entropy inequalities of information theory have obvious in-

tuitive meaning. For example, the entropy (or uncertainty) of a collection of random
variables is less than or equal to the sum of their entropies. Letting the random variables
be multivariate normal will yield Hadamard’s inequality [1], [2]. We shall find many
such determinant inequalities using this technique. We use throughout the fact that if

-(1/2)xtK-lx(1) b/c(x)
(27r)n/21K I/2

e

is the multivariate normal density with mean 0 and covariance matrix K, then the entropy
h(X1, X2, Xn) is given by

(2) h(X1,X, ,X) 4:ln4= In (2re)lKI,

where KI denotes the determinant of K, and In denotes the natural logarithm. This

equality is verified by direct computation with the use of

(3) f K(X)xtK-lx dx , , gij(g-l)o FI In en

j

First we give some information theory preliminaries, then the determinant inequalities.

2. Information inequalities. In this section, we introduce some of the basic infor-
mation theoretic quantities and prove a few simple inequalities using convexity. We
assume throughout that the vector (Xl, X2, "", Xn) has a probability density

f(x,x:z, ,Xn).

We need the following definitions.
DEFINITION. The entropy h(X1, X:,..., Xn), sometimes written h(f), is de-

fined by

(4) h(X,, X2, "", Xn) ff In f
d
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DEFINITION. The functional D(f IIg) f/(x) In (f(x)/g(x)) dx is called the relative
entropy, wherefand g are probability densities.

The relative entropy D(fllg) is also known as the Kullback-Leibler information
number, information for discrimination, and information distance. We also note that
D(f I[g) is the error exponent in the hypothesis test offversus g.

DEFINITION. The conditional entropy h(XIY) ofX, given Y, is defined by

(5) h(Xl -ff(x,y) lnf(xly) dx dy.

We now observe certain natural properties of these information quantities.
LEMMA 1. D(f[]g) >= 0.

Proof Let A be the support of f Then by Jensen’s inequality, -D(fllg)=

faf In (g/f) <= In fa f(g/f) In fA g <= In 0. V1

LEMMA 2. If(X, Y) have a joint density, then h(XI Y) h(X, Y) h(Y).
Proof h(Xl Y) -f f(x, y) lnf(xly) dxd -f f(x, ) In (f(x, y)/f(y)) dx dy

-ff(x, y)lnf(x, y) dx dy + ff y) lnf y) dy h(X, Y) h( Y). E]

LEMMA 3. h(X] Y) <= h(X), with equality ifand only ifX and Y are independent.

Proof

h(X)- h(Xl Y)= f f(x, y) In (f(xly)/f(x)) f f x, y) In (f(x, y)/f(x)f(y))>= O,

by D(f(x, y)llf(x)f(y)) >= O. Equality implies f(x, y) f(x)f(y) almost everywhere by
strict concavity of the logarithm.

LEMMA 4 (Chain Rule). h(X, X2, Xn) ].n

,’]= h(Xi) with equality ifand only ifX, X2, Xn are independent.

Proof The equality is the chain rule for entropies, which we get by repeatedly ap-
plying Lemma 2. The inequality follows from Lemma 3, and we have equality if and
only ifXl, X2, Xn are independent.

LEMMA 5. IfX and Y are independent, then h(X + Y) >= h(X ).
Proof h(X + Y) >-_ h(X + Y[ Y) h(X Y) h(X ). I-]

We will also need the entropy maximizing property of the multivariate normal.

LEMMA 6. Let the random vectorX e R" have zero mean andcovarianceK EXXt,
i.e., K0 EXiX, <= i, j <= n. Then h(X) <- 1/2 In (2 7re)"lK[, with equality ifand only if
f(x) 4/(x).

Proof Let g(x) be any density satisfying f g(x)xixj dx Ko, for all i, j. Then

0 _-< D(gl{ 4tc)

fg In (g/4r)

(6) -h(g) fg In

-h(g)-f 41 In

-h(g) + h(cki),

where the substitution f g In qK f bK In K follows from the fact that g and bK yield
the same moments of the quadratic form In K(X).
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Motivated by a desire to prove Szasz’s generalization of Hadamard’s inequality in

the next section, we develop a new inequality on the entropy rates of random subsets of

random variables. Let (Xl, X2, Xn) have a density and for every S -=_ { 1, 2, n},
denote by X(S) the subset {Xi: S).

DEFINITION. Let

h(X(S))
(7) hn)_ ,

"---"-"s: IsI k

Here h") is the average entropy in bits per symbol ofa randomly drawn k-element subset
of {X, X2, Xn}. The following lemma states that the average entropy decreases
monotonically in the size of the subset.

LEMMA 7.

(8) hn) > h2n)>"" > l(n)
,n

Proof We will first prove the last inequality, i.e., h(n) <
’n-
h(n) We write

h(X, X2, X,,) h(X, X2, Xn 1) -- h(X,,lX,, X2, ..., X,, )

h(X X2 Xn) h(X1, X2 Xn 2, Xn) -- h(Xn X X2 Xn 2, Xn)

<= h(X1, X2 X, 2 Xn) -Jr- h(Xn X X2 Xn 2)

h(X, X:, ...,X) <= h(X_, X3, "", Xn) -- h(X).Adding these n inequalities and using the chain rule, we obtain

(9) nh(X X2 Xn) <= h(X X2 X Xi + Xn) + h(X X2 X,)
i=1

or

h(Xl X2,"" Xi-1Xi+ 1,"" Xn)
o) - h(x, x2 x)=-<

n hi= n-1

which is the desired result t,’ < h’)
,,n ’n- 1.

We now prove that hn) _-< h

_
for all k -< n, by first conditioning on a k-element sub-

set, then taking a uniform choice over its (k 1)-element subsets. For each k-element
(k) < (k)subset, hk hk-l, and hence the inequality remains true after taking the expectation

over all k-element subsets chosen uniformly from the n elements, ff]

COROLLARY. Let r > O, and define

(1 1) gn) ., erhtXtS))/k.
S: ISI k

Then

(12)

Proof Starting from (10) in the proof of Lemma 7, we multiply both sides by r,
exponentiate, and then apply the arithmetic mean geometric mean inequality to obtain
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(13)

exp ( rh(Xl, X2, Xn))-< exp (l_ni=l rh(X1, X2, Xi_ Xi+ l’ Xn))
_-< exp

r/i= n-1

for all r >- 0,

which is equivalent to g) =< g(nn)-- 1. Now we use the same arguments as in Lemma 7,
taking an average over all subsets to prove the result that for all k < n, g(") < g)_ 1.

["]

Finally, we have the entropy power inequality, the only result we do not prove.
LEMMA 8. IfX and Y are independent random n-vectors with densities, then

(14) exp -h(X+Y) >-exp -h(X) +exp h(Y)
n n

Proof See Shannon [3] for the statement and Stam [4] and Blachman [5] for the

Thus

(16) INK, +(1- X)K21 >--IKl Ixlg21 l-x,

as desired.

(15)

3. Determinant inequalities. Throughout we will assume that K is a nonnegative
definite symmetric n n matrix. Let KI denote the determinant of K.

We first prove a result due to Ky Fan [6].
THEOREM 1. In gl is concave.

Proof Let X1 and X2 be normally distributed n-vectors, Xi 4K/(x), 1, 2.
Let the random variable 0 have distribution Pr {0 1) X, Pr {0 2) X, 0 =<
), =< 1. Let 0, X1, and X2 be independent and let Z X0. Then Z has covariance

Kz XK + (1 X)K2. However, Z will not be multivariate normal. By first using
Lemma 6, followed by Lemma 3, we have

1/2 In (2re)n XKI + (1 X)K21 > h(Z) > h(ZlO)

X 1/2 In (2re)" K + (1 X) 1/2 In (2re)n K21.

The next theorem, used in [7], is too easy to require a new proof, but we provide it
anyway.

THEOREM 2. K1 / g21 >- Kll.
Proof Let X, Y be independent random vectors with X 4/q and Y 4r2. Then

X + Y 4r, + :2 and hence 1/2 In (2re)nlK + K2I h(X + Y) >= h(X) 1/2 In (2re)nlKl,
by Lemma 5. V1

We now give Hadamard’s inequality using the proof in [2]. See also [1] for an
alternative proof.

THEOREM 3 (Hadamard). KI --< 1-Igii, with equality ifand only ifKo O, 4: j.

Proof Let X 4/. Then

(17) z In (2re)n KI h(XI ,X2,
z

Xn) <= , h(Xi) In 2relKii l,
i=

with equality if and only ifXl, X2, Xn are independent, i.e., Ko O, 4 j.

proof. Unlike the previous results, the proof is not elementary.
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We now prove a generalization of Hadamard’s inequality due to Szasz [9]. Let
K(i, i2, ik) be the k-rowed principal submatrix ofK formed by the rows and columns
with indices i, i2, ik.

THEOREM 4 (Szasz). IfK is a positive definite n n matrix and Pk denotes the
product ofall the principal k-rowed minors ofK, i.e.,

(18) P: 1"I K(i, iz, ,i,)l,
Ni <i2 <ik_n

then

(19) P >- P/("-?) >- P/(") >- >= Pn.

Proof Let X K. Then the theorem follows directly from Lemma 7, with the
identification h(n) (1/n) In P + 1/2 In 27re.

We can also prove a related theorem.
THEOREM 5. Let K be a positive definite n n matrix and let

(20) S,,) 1
Z K(i,, i2, "", i) ’/.

() - il i: <"" ik - n

Then

(21) sn) .(n) 1In-tr(K)= >Sn)>... > [K[--n
n

Proof This follows directly from the corollary to Lemma 7, with the identification
gn) (2re)Sn), and r 2 in (11) and (12).

We now prove a property ofToeplitz matrices, which are important as the covariance
matrices of stationary random processes. A Toeplitz matrix K is characterized by the
property that Kij Krs if -Jl r s l. Let K denote the principal minor
K(1, 2, k). For such a matrix, the following property can be proved easily from the
properties of the entropy function.

THEOREM 6. Ifthe positive definite n n matrix K is Toeplitz, then

(22) IK, IK_I ’/= IKn-I /(n- ’)>- IKnl 1/n

and glllg_ 1 is decreasing in k.

Proof Let (X1, S2, Sn) )gn. Then the quantities h(SlSk_ , X) are
decreasing in k, since

(23)
h(XlX_ 1, Xl) h(Xk + X, ...,x)

h(Xk + X, ..., x=, x,),
where the equality follows from the Toeplitz assumption and the inequality from the
fact that conditioning reduces entropy. Thus the running averages

(24)
k

h(Xl ,Xk)
i’1Tc h(XilXi- 1, Xl)

are decreasing in k. The theorem then follows from

h(X,X2, ,X,) 1/2 ln(2re)lKl.
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Since h(Xn IXn-l, "’", XI) is a decreasing sequence, it has a limit. Hence by the
Cesfiro Mean Theorem,

h(x ,x, ,x,)
lim

(25)
n-- n

lim -1 h(XlX_ , ,X)
n-- nk=

lim h(Xn IXn- 1, ,X).
n--

Translating this to determinants, we obtain the following result:

(26) lim g=l TM lim
n--- Ig-,l’

which is one of the simple limit theorems for determinants that can be proved using
information theory.

In problems connected with maximum entropy spectrum estimation, we would like
to maximize the value of the determinant of a Toeplitz matrix, subject to constraints on
the values in a band around the main diagonal. Choi and Cover [10] use information
theoretic arguments to show that the matrix maximizing the determinant under these
constraints is the Yule-Walker extension of the values along the band.

The proof ofthe next inequality (Oppenheim 11 ], Marshall and Olkin 12, p. 475])
follows immediately from the entropy power inequality, but because of the complexity
of the proof of the entropy power inequality, is not offered as a simpler proof.

THEOREM 7 (Minkowski inequality [13]).

(27) IK +K)_l’m>= IK I’/"+ IKzl TM.

Proof Let Xl, X2 be independent with X (Ki. Noting that X + X2 (])K1 + K2
and using the entropy power inequality (Lemma 8) yields

(2re) K + g2 TM e(2/n)h(x + x2)

(28) >= e(2/n)h(x) + e(2/n)h(x2)

(2re)Ig TM + (27re) lg21TM. I--I

4. Inequalities for ratios of determinants. We first prove a stronger version ofHad-
amard’s theorem due to Ky Fan [8].

THEOREM 8. For all <= p <= n,

(29)
P IK(i,p+ 1,p+2, ,n)l

IK(p+ 1,p+2,... ,n)l-.= i’-/l-’" ,-i

Proof We use the same idea as in Theorem 3, except that we use the conditional
form ofLemma 3:

(30)

IKIIn (27re)p
IK(p+ 1,p+ 2, ,n)l

<= Z h(XilXp+ l,Xp+ 2, ,Xn)

-i=
In 2re

IK(i,p+ 1,p+2, ,n)l
IK(p+ 1,p+2, ,n)[



390 T. M. COVER AND J. A. THOMAS

Before developing Theorem 9, we make an observation about minimum mean

squared error linear prediction. If (XI, X2, Xn) chic,, we know that the conditional

density of Xn given (X1, X2, Xn-1) is univariate normal with mean linear in XI,
X2, Xn- and conditional variance. Here 2 is the minimum mean squared error

E(Xn 2n)2 over all linear estimators 2n based on X1, X2, Xn_ 1.

LEMMA 9. aZn Ignl/lgn-ll.

Proof Using the conditional normality ofXn, Lemma 2 results in

(31)

1/2 In 2re2n h(SnlX,S2, ,Sn-1)

h(X1, X., X,) h(X1,X, X_ 1)

1/2 In (2re)nlgnl 1/2 In (27re)n-llgn_l

1/2 In 2relgnl/Ig,-1 I.

Minimization of n2 over a set of allowed covariance matrices {Kn} is aided by the

following theorem.
THEOREM 9. In (I gn / g is concave in Kn.
Proof We remark that Theorem cannot be used because In K, I/[ K,_RI

is the difference of two concave functions. Let Z X0, where Xl s,(X), X2
4r,(x), Pr {0 } X Pr {0 2 }, and Xl, X2, 0 are independent. The covariance
matrix K, of Z is given by

(32) K kS -Jr- X)Tn.

The following chain of inequalities proves the theorem"

X In (2re)PlSnl/ISn_l /(1 X) In (2re)P Zl/I Zn-pl

(a)

kh(Xln,Xl,n-1, ,Xl,n-p+ 11Xll, ,Xl,n-p)

+ (1 X)h(X2n, X2,n- 1,

(33) X2,n-p+ lX21, ,X2,n-p)

h(Zn, Z 1, Zn-p+ Zl, Zn-p, O)

(b)

<= h(Zn, Zn- 1, Zn-p+ 11Zl, Zn-p)

5 In (2re)p

where (a) follows from

h(Xn X 1, Xn p + Xl, Xn p) h(Xl Xn) h(Xl, X, p),

(b) follows from the conditioning lemma, and (c) follows from a conditional version of
Lemma 6.

The above theorem for the case p is due to Bergstrom [14]. However, for
p 1, we can prove an even stronger theorem, also due to Bergstrom 14].

THEOREM !0. KI/IKn- 1 is concave in K,.
Proof Again we use the properties of Gaussian random variables. Let us assume

that we have two independent Gaussian random vectors, X A, and Y ,. Let
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Z X + Y. Then

IA,+B,I
In 2re

2 A,-1 +B,-ll

(a)
=h(ZnlZ,-I,Z,,-z, ,Z1)

(b)
_
h(Z, Z,, Zn 2 ZI ,X. ,Xn- 2 ,Xl

Yn-l,Yn-2, ,YI)
(c)

h(Xn"- YnlXn- l,Xn-2, ,X1, Yn- l, gn-2, ,YI)

(d)

E7 In [2re Var (X. + Y. IX.-I,X.-:,
z

(34) Yn- l, Yn- 2, YI)]

(e2-E In [2re(Var (X, IX,-l,Xn-2,

+ Var (YnIY,-, Y,-2, YI))]

(f)_l IA,
+

IB,
=Eln (27re( IAn- IBn-------))
=_1 In (27re( IAn___l +2 IAn-ll INn-I

In the above derivation, (a) follows from Lemma 9, (b) from the fact the conditioning
decreases entropy, and (c) from the fact that Z is a function of X and Y. X, + Y, is
Gaussian conditioned on X, Xz,..., X,_, Y, Yz,..., Y,_, and hence we can
express its entropy in terms of its variance, obtaining (d). Then (e) follows from the
independence of Xn and Yn conditioned on the past XI, X2, Xn-1, Y1, Y2,
Yn-1, and (f) follows from the fact that for a set ofjointly Gaussian random variables,
the conditional variance is constant, independent of the conditioning variables (Lemma
9). In general, by setting A XS and B X T, we obtain

XSn+XTI X I&l +X TI
(35)

I)kSn-1-t-XZn-1 ]- ISn- ITn-l-------’
i.e., KnlIIK,- is concave. Simple examples show that K, IIIKn-I is not necessarily
concave for p >= 2. W!

5. Remarks. Concavity and Jensen’s inequality play a role in all the proofs. The
inequality D(f lie) f fin (f/g) >= 0 is at the root of most of them.
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