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DETERMINANT OF THE NEUMANN OPERATOR

ON SMOOTH JORDAN CURVES

JULIAN EDWARD AND SIYE WU

(Communicated by Barbara L. Keyfitz)

Abstract. Using the method of heat kernel expansion, the determinant of the

Neumann operator on an arbitrary smooth Jordan curve is shown to be equal

to the circumference.

1. Introduction

The definition of determinants of Laplacians in terms of the zeta function

comes up in the study of analytic torsion [5, 6]. It was soon discovered that

the zeta function actually provides a technique of regularizing quadratic path

integrals in quantum field theories [3]. Recently, this subject has been of con-

siderable interest in mathematical physics. For instance, the determinants of

differential operators such as the Laplacians on a compact Riemann surface

were calculated in the first quantized string theory [2]. These determinants are

also related to the inverse spectral problems of the operators [4, 9]. On the

other hand, the zeta function regularization of the determinant depends only

on the spectrum of the operator in question; the operator could be a differential

operator, a pseudodifferential operator, or any other semipositive self-adjoint

operator acting on a Hilbert space whose heat operator is of trace class. In

practice, evaluation of the determinants of operators of more general type may

be useful in the study of effective quantum field theories, where the action need

not be local.

In this paper, we calculate the determinant of the Neumann operator on

an arbitrary smooth Jordan curve. The paper is organized as follows: §2 is a

review of the general properties of the Neumann operator. In particular, there

is a simple relation between Neumann operators of two planar regions related

by a conformai map. In §3, we study the heat kernel expansion and the zeta

function of the Neumann operator. In §4, we calculate the determinant. The
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functional variation of the determinant is related to the behavior of the heat

kernel over small time.

2. The Neumann operator

Let Q be a simply connected bounded region with a smooth boundary in a

finite-dimensional Euclidean space. The Neumann operator is a linear operator

acting on the space of functions on its boundary dQ. A function cp on d il

has a unique harmonic extension cp on Q such that

( Atp = 0 in Q,
(2.1) J

The Neumann operator Naa is defined by

(2-2) "aaV = ^ L ■

More precisely, N9a is the closure of the above linear operation in L (dQ).

It is a first order elliptic pseudodifferential operator.

For simplicity, we use the notation cp for cp unless confusion might result.

Consider the following three equalities derived from Green's theorem:

(2.3) laJx'cTn'(pl ~ (P2thi^1 = i/lA^2 " ^^i;

(2.4) f   <¡>%-<P= [<pAcp + \Vcp\2;
JdQ   ún       Ja

L^v=L<2'5) L^'lA"-
Equation (2.3) implies that Nan is selfadjoint; (2.4) implies that Naa is

semipositive and definite, the kernel being the space of constant functions on

dQ, so that the dimensions of its kernel and cokernel are both 1; (2.5) implies

that the image of NgQ is the set of functions whose integrals over dQ are zero.

Because N9Q is an elliptic and selfadjoint operator on a compact space dQ,

its spectrum is real and discrete. As an example, if Q is the unit disk D = {z €

C: \z\ < 1} , then dD is the unit circle Sx. The functions cpn(6) = e'"e/V2ñ,

0 < 6 <2n, neZ are eigenfunctions of NdD with corresponding eigenvalues

\n\. Therefore, the spectrum of A^^, is the set of nonnegative integers, each

nonzero eigenvalue having multiplicity 2.

In two dimensions, any simply connected bounded region Q can be related

to the unit disk via a conformai map /: D —► Q such that when restricted to the

boundary dD, f is a diffeomorphism onto dQ. The pull-back of the metric

on dQ to dD is ds2 = dd2/g(d)2, where

(2.6) g(6)=       *      ,        0<6<2n
\f'(e'e)\

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DETERMINANT OF THE NEUMANN OPERATOR 359

is a positive function on 3D determined by /. In particular, the circumference

of dQ is

(2.7) Cpfll-jf^».

The induced map /*: C°°(dQ) —<■ C°°(dD) is not in general an isometry under

the standard norms of the two Hilbert spaces L2(dQ) and L2(dD). Instead,

the induced inner product on L (dD) via /* is

(2.8) (<Pl,<P2}f = jon ^ß-/i(ö)<P2(e)de-

If cp isa harmonic function on Q, then f*cp = cp o f is harmonic on D,

because / is conformai. Since the push-forward of the outer normal vector is

l£
i    a

aadD)      g&) dn

the pull-back of the Neumann operator is given by

(2.10) fNgaf-l = gNaD.

Notice that it is self-adjoint only under the induced norm given by (2.8).

3. The heat kernel expansion

Let A be a semipositive self-adjoint elliptic pseudodifferential operator on a

compact manifold M and {cpt} be a complete set of normalized eigenfunctions

of A with corresponding eigenvalues X¡. The heat kernel of the operator A

restricted to the diagonal

(3.1) //,(*,*) = 2>-%;(x)|2,        xgM,  t>0

has an asymptotic expansion at small t

CO

(3.2) Ht(x , x) ~ £ an(x > x)tn'm >    as í - 0+ ,

n=-d

where m is the order of A and d is the dimension of M. The purpose of this

section is to compute a0(x, x) for the Neumann operator Nan on a smooth

Jordan curve dQ.

Note that a0(x, x) is not changed if we replace N9Q by A = N&a + P,

where P is the projection operator onto the kernel of Nm. The latter has

the advantage that its spectrum consists of positive real numbers only. For

such an operator, we can define its complex power As, and the Schwartz kernel

restricted to the diagonal is

(3.3) Ks(x,x) = Y,K\<PiW\2-
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The sum converges absolutely when Res < -d/m and extends meromorphi-

cally in 5 to the complex plane in such a way that it is regular at 5 = 0 [8]. It

is well known that

(3.4) Ks(x, x) = =^y J    ts~XHt(x,x)dt;

i.e., Ks(x, x)T(s) is the Mellin transform of Ht(x, x). Taking the inverse

transform, we get

(3.5) a0(x, x) = K0(x, x).

Since A is a first-order operator and the ray of minimal growth can be chosen

as the negative real axis, the Schwartz kernel at 5 = 0 is, in [8],

(3.6) K0(x,*) = — /      dt [    dtb_2(x,i,-t),
2n J\i\=i      Jo

where
00

(3.7) <W(*>i) = X>_,_;(*,i,A)
7=0

is the total symbol of the parametrix Bk of A - XI. Since the total symbol of

A is a(A)(x, £,) = |£| if x is the arclength parameter, we have

(3.8) a(Bx)(x,cl) = ^—x,

which implies that

(3.9) ÍFt"   J==0'»->.«.«-{*  ¿I:
This shows that K0(x, x) = 0, or equivalently,

(3.10) a0(x,x) = 0

for the Neumann operator Naa .

4. Calculation of the determinant

Recall that the zeta function of a semipositive selfadjoint elliptic pseudodif-

ferential operator A is defined by

(4.1) CA(s) = tr'A-s = J2'^

where prime means summing over the nonzero eigenvalues ki ^ 0 only. The

zetafunction regularization of the determinant is, in [3],

(4.2) det'/i = e"^(0).

As a consequence,

(4.3) det(cA) = c^(0)det'^.
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If A is an elliptic operator of strictly positive spectrum on a compact manifold

M, then

(4.4) ÇA(s)= [ dvxK_s(x,x),
Jm

where dv is the volume form on M. (3.5) implies that

(4.5) CA(0) = aQ,

where

(4.6) an= /  dvxan(x,x)
JM

are the coefficients in the heat kernel expansion

¡. oo

(4.7) tr<ri/4= /   dvxHt{x,x)~ Y] at" , as t - 0+.
JM nt^d

In general, if the kernel of A is nonzero, we have

(4.8) C^(0) = a0-dimker^.

For example, (3.10) implies

(4-9) CjJO)—1.

which does not depend on the shape of the region Q.

The zeta function of the Neumann operator N9D on the unit circle is

oo    2

(4-10) CNJs) = J2¥ = 2C(s),
n=l

where Ç(s) is the Riemann zeta function satisfying Ç(0) = -1/2 and £'(0) =

-(l/2)log27r. This agrees with (4.9). Moreover, the determinant is

(4.11) det'N9D = e~2!-'m = 2n.

In general, the eigenvalue problem is not exactly soluble, but the determinant

can be expressed by the heat kernel [1, 7]:

log det A = coefficient of e   in the asymptotic expansion of

(4-12) rdt.,-tA
e     ,    as e —► 0 .

rdt* '
- /     —tr (

Je        *

If A is an operator like Naa = gf* N9Df , where for simplicity we used

the same notation g for g o f~ , its determinant can be calculated by the

method of functional variation, i.e., by studying how the determinant changes

under a small variation ôg . The eigenvalues and eigenvectors of N9a are not

always fixed under such variations, but the kernel consists of constant functions

only. Since

(4.13) SNdQ = Sgf-x N9Df = 8 log gNan,
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we have

(4.14)

f°°dt, -tNoa f°°dtt ,  ,...
Jc   TtTe      \ =-Je   TtT{-tSN™

dt. , e-th

tr
/oo

Naae        dt

= tr[ôlogg(e £N™-P)],

where P is the projection onto the kernel of Naa, as in §3.  From the heat

kernel expansion (3.2), we get

(4.15)

ó logdet'./Vgrj = coefficient of e   in tr[<5 logg(e e an - P)]

= /   dv S logg(x)[a0(x, x) - \<p0(x)\2],
Jaa

where cp0 is the normalized function in ker;Van , and aQ(x, x) vanishes iden-

tically from (3.10). If we pull the integral back to dD, then since f*dvx =

g(6)~x dO and />o(0) = C[dQ]~x/2, we get

pin    ja i

¿logdetXo = -/o   W)^g(6)-öm]

(4-16) l i2*,«)*      l
= C[dQ]Jo   d6ÔW)
= SlogC[dQ].

The determinant is then evaluated by solving this functional differential equa-

tion. When Q = D, det'N9D = 2n = C[dD]. Hence, for an arbitrary planar

region Q,

(4.17) det'N9a = C[dQ].

In particular, if Q is a disk of radius r, then

(4.18) det'Nda = 2nr.

This agrees with (4.3), since N9n = r~ N9D .
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