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Abstract

We describe matrices whose determinants are the Jack polynomials ex-
panded in terms of the monomial basis. The top row of such a matrix is
a list of monomial functions, the entries of the sub-diagonal are of the form
−(rα + s), with r and s ∈ N

+, the entries above the sub-diagonal are non-
negative integers, and below all entries are 0. The quasi-triangular nature of
these matrices gives a recursion for the Jack polynomials allowing for efficient
computation. A specialization of these results yields a determinantal formula
for the Schur functions and a recursion for the Kostka numbers.
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1 Introduction

The Jack polynomials Jλ[x1, . . . , xN ; α] form a basis for the space of N-variable sym-
metric polynomials. Here we give a matrix of which the determinant is Jλ[x; α]
expanded in terms of the monomial basis. The top row of this matrix is a list of
monomial functions, the entries of the sub-diagonal are of the form −(rα+ s), with r

and s ∈ N
+, the entries above the sub-diagonal are non-negative integers, and below

all entries are 0. The quasi-triangular nature of this matrix gives a simple recursion
for the Jack polynomials allowing for their rapid computation. The result here is a
transformed specialization of the matrix expressing Macdonald polynomials given in
[2]. However, we give a self-contained derivation of the matrix for Jack polynomials.
Since the Schur functions sλ[x] are the specialization α = 1 in Jλ[x; α], we obtain a
matrix of which the determinant gives sλ[x]. A by-product of this result is a recursion
for the Kostka numbers, the expansion coefficients of the Schur functions in terms of
the monomial basis.

Partitions are weakly decreasing sequences of non-negative integers. We use the
dominance order on partitions, defined µ ≤ λ ⇐⇒ µ1 + · · · + µi ≤ λ1 + · · · + λi ∀i.
The number of non-zero parts of a partition λ is denoted ℓ(λ). The Jack polynomials
can be defined up to normalization by the conditions

(i) Jλ =
∑

µ≤λ

vλµmµ , with vλλ 6= 0 ,

(ii) HJλ =

[

N
∑

i=1

(

α

2
λ2

i +
1

2
(N + 1 − 2i)λi

)

]

Jλ , (1)

where H is the Hamiltonian of the Calogero-Sutherland model [7] defined

H =
α

2

N
∑

i=1

(

xi

∂

∂xi

)2

+
1

2

∑

i<j

(

xi + xj

xi − xj

)(

xi

∂

∂xi

− xj

∂

∂xj

)

. (2)

A composition β = (β1, . . . , βn) is a vector of non-negative integral components
and the partition rearrangement of β is denoted β∗. The raising operator Rℓ

ij acts on
compositions by Rℓ

ijβ = (β1, . . . , βi − ℓ, . . . , βj + ℓ, . . . , βn), for any i < j. We will use
n(k) to denote the number of occurrences of k in µ. This given, we use the following
theorem [5] :

Theorem 1. Given a partition λ, we have

H mλ =





ℓ(λ)
∑

i=1

(

α

2
λ2

i +
1

2
(N + 1 − 2i)λi

)



mλ +
∑

µ<λ

Cλµ mµ , (3)
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where if there exists some i < j, and 1 ≤ ℓ ≤ ⌊
λi−λj

2
⌋ such that

(

Rℓ
ijλ

)∗
= µ, then

Cλµ =

{

(λi − λj)
(

n(µi)
2

)

if µi = µj

(λi − λj)n(µi)n(µj) if µi 6= µj

(4)

and otherwise Cλµ = 0.

Example 1: with N = 5,

H m4 = (8 + 8α)m4 + 4 m3,1 + 4 m2,2 H m2,1,1 = (5 + 3α) m3,1 + 12 m1,1,1,1

H m3,1 = (7 + 5α) m3,1 + 2 m2,2 + 6 m2,1,1 H m1,1,1,1 = (2 + 2α) m1,1,1,1

H m2,2 = (6 + 4α) m2,2 + 2 m2,1,1

2 Determinant for the Jack polynomials

We can obtain non-vanishing determinants which are eigenfunctions of the Hamilto-
nian H by using the triangular action of H on the monomial basis.

Theorem 2. If µ(1), µ(2), . . . , µ(n) = µ is a linear ordering of all partitions ≤ µ, then
the Jack polynomial Jµ is proportional to the following determinant;

Jµ
.
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

mµ(1) mµ(2) . . . . . . mµ(n−1) mµ(n)

dµ(1) − dµ(n) Cµ(2)µ(1) . . . . . . Cµ(n−1)µ(1) Cµ(n)µ(1)

0 dµ(2) − dµ(n) . . . Cµ(n)µ(2)

... 0
. . .

...
...

...
. . . . . .

...
0 0 . . . 0 dµ(n−1) − dµ(n) Cµ(n)µ(n−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5)

where dλ denotes the eigenvalue in 1(ii) and Cµ(i)µ(j) is defined by (4).

Note that in the case µ = (a), the matrix Ja contains all possible Cµ(i)µ(j) .
Therefore, the matrices corresponding to J1, J2, . . . determine the entries off the sub-
diagonal for all other matrices. Further, the sub-diagonal entries dµ(i) − dµ(n) do not
depend on the number of variables N , when N ≥ ℓ(µ), since for any partitions µ and
λ where ℓ(µ) ≥ ℓ(λ),

dµ − dλ =

ℓ(µ)
∑

i=1

(α

2
(µ2

i − λ2
i ) − i(µi − λi)

)

. (6)
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It is also easily checked that if µ < λ, then dµ − dλ = −(r + sα) for some r, s ∈ N
+,

showing that the sub-diagonal entries are of this form.

Example 2: The entries of the matrix for J4 are obtained using the action of H on

mµ(i), where µ(1) =(1, 1, 1, 1), µ(2) =(2, 1, 1), µ(3) =(2, 2), µ(4) =(3, 1), µ(5) =(4), given
in Example 1;

J4
.
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m1,1,1,1 m2,1,1 m2,2 m3,1 m4

−6 − 6α 12 0 0 0
0 −3 − 5α 2 6 0
0 0 −2 − 4α 2 4
0 0 0 −1 − 3α 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(7)

We also obtain a determinantal expression for the Schur functions in terms of
monomials using Theorem 2 since sλ[x] is the specialization Jλ[x; 1].

Corollary 3. Given a partition µ, the specialization α=1 in the determinant (5) is
proportional to the Schur function sµ.

Example 3: s4 can be obtained by specializing α = 1 in the matrix (7).

s4
.
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m1,1,1,1 m2,1,1 m2,2 m3,1 m4

−12 12 0 0 0
0 −8 2 6 0
0 0 −6 2 4
0 0 0 −4 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(8)

Proof of Theorem 2. We have from (6) that dλ 6= dµ for λ < µ implying that the
sub-diagonal entries, dµ(i)−dµ, of determinantal expression (5) are non-zero. Since the
coefficient of mµ(n) = mµ is the product of the sub-diagonal elements, this coefficient
does not vanish and by the construction of Jµ, Property 1(i) is satisfied. It thus
suffices to check that (H − dµ) Jµ = 0. Since H acts non-trivially only on the first
row of the determinant Jµ, the first row of (H − dµ)Jµ is obtained from Theorem 1
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and expression (5) gives rows 2, . . . , n.

(

H − dµ

)

Jµ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. . . dµ(j)mµ(j) +
∑

i<j Cµ(j)µ(i)mµ(i) − dµmµ(j) . . .

. . . Cµ(j)µ(1) . . .
...

. . . Cµ(j)µ(j−1) . . .

. . . dµ(j) − dµ . . .

. . . 0 . . .
...

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

mµ(n) appears only in the first row, column n, with coefficient dµ−dµ = 0. Further,
we have that the first row is the linear combination: mµ(1)row2 + mµ(2)row3 + · · · +
mµ(n−1)rown, and thus the determinant must vanish.

3 Recursion for quasi-triangular matrices

We use the determinantal expressions for Jack and Schur polynomials to obtain recur-
sive formulas. First we will give a recursion for Jλ[x; α] providing an efficient method
for computing the Jack polynomials and we will finish our note by giving a recursive
definition for the Kostka numbers. These results follow from a general property of
quasi-triangular determinants [3, 8];

Property 4. Any quasi-triangular determinant of the form

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 b2 · · · bn−1 bn

−a21 a22 · · · a2,n−1 a2,n

0 −a32 · · · a3,n−1 a3,n

...
. . . . . .

...
0 0 0 −an,n−1 an,n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(9)

has the expansion D =
∑n

i=1 cibi , where cn = a21a32 · · ·an,n−1 and

ci =
1

ai+1,i

n
∑

j=i+1

ai+1,j cj for all i ∈ {1, 2, . . . , n − 1} . (10)
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Proof. Given linearly independent n-vectors b and a(i), i ∈ {2, . . . , n}, let c be
a vector orthogonal to a(2), . . . , a(n). This implies that the determinant of a matrix
with row vectors b, a(2), . . . , a(n) is the scalar product (c,b) =

∑n

i=1 cibi, up to a
normalization. In the particular case of matrices with the form given in (9), that is
with a(i) = (0, . . . , 0,−ai,i−1, ai,i, . . . , ai,n), i ∈ {2, . . . , n}, we can see that (c, a(i)) =
0 if the components of c satisfy recursion (10). Since we have immediately that
the coefficient of bn in (9) is cn = a21 · · ·an,n−1, ensuring that

∑n

i=1 cibi is properly
normalized, Property 4 is thus proven.

Notice that we can freely multiply the rows of matrix (9) by non-zero constants
and still preserve recursion (10). This implies that to obtain a matrix proportional
to determinant (9), one would simply multiply the value of cn by the proportionality
constant.

Since the determinantal expression (5) for the Jack polynomials is of the form that
appears in Property 4, we may compute the Jack polynomials, in any normalization,
using recursion (10).

Example: Recall that v(4);(4) = (1+α)(1+2α)(1+3α) in the normalization associated
to the positivity of Jack polynomials [4, 6, 1]. Thus, using

J4
.
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m1,1,1,1 m2,1,1 m2,2 m3,1 m4

−6 − 6α 12 0 0 0
0 −3 − 5α 2 6 0
0 0 −2 − 4α 2 4
0 0 0 −1 − 3α 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (11)

and initial condition c5 = (1 + α)(1 + 2α)(1 + 3α), we get

c4 =
1

1 + 3α
(4c5) = 4(1 + α)(1 + 2α) , c2 =

1

3 + 5α
(2c3 + 6c4) = 12(1 + α) ,

c3 =
1

2 + 4α
(2c4 + 4c5) = 6(1 + α)2 , c1 =

1

6 + 6α
(12c2) = 24 , (12)

which gives that

J4 =(1 + α)(1 + 2α)(1 + 3α)m4 + 4(1 + α)(1 + 2α)m3,1

+ 6(1 + α)2m2,2 + 12(1 + α)m2,1,1 + 24m1,1,1,1 . (13)

If we let µ(1), µ(2), . . . , µ(n) = µ be a linear ordering of all partitions ≤ µ and recall
that the Kostka numbers are the coefficients Kµµ(i) in

sµ[x] =
n

∑

i=1

Kµµ(i)mµ(i) [x] where Kµµ(n) = Kµµ = 1 , (14)
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we can use Property 4 to obtain a recursion for the Kµµ(i) .

Corollary 5. Let µ(1), µ(2), . . . , µ(n) = µ be a linear ordering of all partitions ≤ µ.
Kµµ(i) is defined recursively, with initial condition Kµµ = 1, by

Kµµ(i) =
1

gµ(i) − gµ

n
∑

j=i+1

Cµ(i+1)µ(j)Kµµ(j) for all i ∈ {1, 2, . . . , n − 1}, (15)

where Cµ(i+1)µ(j) is given in (4) and where gµ(i) − gµ is the specialization α = 1 of
dµ(i) − dµ introduced in (4).
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