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Fig 1. Samples of translation invariant point processes in the plane: Poisson (left), determi-

nantal (center) and permanental for K(z,w) = 1
π

ezw− 1
2
(|z|2+|w|2). Determinantal processes

exhibit repulsion, while permanental processes exhibit clumping.

1. Introduction

Determinantal point processes were first studied in 1975 by Macchi [22], who was
motivated by fermions in quantum mechanics. Determinantal processes arise
naturally in several other settings, including eigenvalues of random matrices,
random spanning trees and nonintersecting paths; see, e.g., Burton and Peman-
tle [4], Soshnikov [27], Lyons [20], Lyons and Steif [21], Shirai and Takahashi [25],
Johansson [14], Borodin, Okounkov and Olshanski [3], and Diaconis [8]. A de-
terminantal point process, on a Polish space Λ (assumed locally compact) with
a reference measure (assumed Radon) µ, is determined by a kernel K(x, y): the
joint intensities of the process can be written as det(K(xi, xj)). The kernel de-
fines an integral operator K acting on L2(Λ) that is assumed to be self-adjoint,
non-negative and locally trace class, i.e. for every compact D the eigenvalues,
{

λD
i

}

, of the operator K restricted to D satisfy
∑

i λ
D
i < ∞. Determinantal

point processes have a special property (Shirai and Takahashi [26] Proposition
2.8) that seems to have only been used in special cases ([1], [23]):

In a determinantal process, the number of points that fall in a compact set
D ⊂ Λ, has the same distribution as a sum of independent Bernoulli(λD

i )
random variables.
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The proof is immediate from well known formulas for the generating function
of particle counts. However, we give a proof starting from first principles and
avoid the use of Fredholm determinants.

Permanental processes are defined analogously and are the counterpart of
determinantal processes for modeling bosons (see Macchi [22]). They fall into
the more general class known as Cox processes [6]. In this case we have:

In a permanental process, the number of points that fall in a compact set

D ⊂ Λ, has the same distribution as a sum of independent geometric(
λD

i

λD
i

+1
)

random variables.

For the examples of interest to us, operator theoretic nuances are not essen-
tial. The reader will not miss anything significant by keeping in mind just the
following cases.

1. Λ is a finite set andK is a Hermitian non-negative definite |Λ|×|Λ| matrix,
and µ is the counting measure on Λ.

2. Λ is an open set in Rd, µ is Lebesgue measure and K(x, y) is continuous
function defining a self-adjoint non-negative integral operator K on L2(Λ).

A point process in a locally compact Polish space Λ is a random integer-
valued positive Radon measure X on Λ. (Recall that a Radon measure is a
Borel measure which is finite on compact sets.) If X almost surely assigns at
most measure 1 to singletons, it is a simple point process; in this case X can be
identified with a random discrete subset of Λ, and X (D) represents the number
of points of this set that fall in D.

The distribution of a point process can, in most cases, be described by its
joint intensities (also known as correlation functions).

Definition 1. The joint intensities of a point process X w.r.t. µ are functions
(if any exist) ρk : Λk → [0,∞) for k ≥ 1, such that for any family of mutually
disjoint subsets D1, . . . , Dk of Λ,

E

[

k
∏

i=1

X (Di)

]

=

∫

∏

i
Di

ρk(x1, . . . , xk)dµ(x1) . . . dµ(xk), (1)

Remark 2. For overlapping sets, the situation is more complicated. Restricting
attention to simple point processes, ρk is not the intensity measure of X k, but
that of X∧k, the set of ordered k-tuples of distinct points of X . Indeed, (1)
implies (see [18, 19, 23]) that for any Borel set B ⊂ Λk we have

E#(B ∩ X∧k) =

∫

B

ρk(x1, . . . , xk) dµ(x1) . . . dµ(xk) . (2)

When B =
∏

D⊗ki

i for a mutually disjoint family of subsets D1, . . . , Dr of Λ,
and k =

∑r
i=1 ki, the left hand side becomes

E

[

r
∏

i=1

(X (Di)

ki

)

ki!

]

. (3)
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For a general point process X , observe that it can be identified with a simple
point process X ∗ on Λ×{1, 2, 3, . . .} such that X ∗(D×{1, 2, 3, . . .}) = X (D) for
Borel D ⊂ Λ. Thus, if X (D) has exponential tails for all compact D ⊂ Λ, then
the joint intensities determine the law of X ; see [18, 19]. In particular, Theorems
7 and 10 below imply that this is the case for determinantal and permanental
processes governed by a trace class operator, since a convergent sum of Bernoulli
(or geometric) variables always has exponential tails.

Definition 3. A point process X on Λ is said to be a determinantal process
with kernel K if it is simple and its joint intensities satisfy:

ρk(x1, . . . , xk) = det (K(xi, xj))1≤i,j≤k , (4)

for every k ≥ 1 and x1, . . . , xk ∈ Λ.

Remark 4. We postulate determinantal processes to be simple because we have
adopted equation (1) as the definition of joint intensities. If instead, we start with
the slightly more restrictive definition of joint intensities as explained above in
Remark 2, it follows that the process must be simple. Nevertheless, postulating
simplicity is more in tune with the conventions of Physicists who often consider
a determinantal process with k points, not as a random counting measure but
as a random point in Λk/Diagonals, where “Diagonals” denotes the subset of
points of Λk with at least two co-ordinates equal. This viewpoint together with
a postulate on the behaviour of quantum amplitudes under exchange of particles
leads naturally to Determinantal and Permanental processes (and additionally
to “fractional statistics”, when Λ is two dimensional, see for instance [16]).

Consider a kernel K that defines a self-adjoint trace-class operator K. Mac-
chi [22] and Soshnikov [27] showed that there exists a determinantal point pro-
cess with kernel K if and only if all eigenvalues of K are in the interval [0, 1]. In
Section 2 we shall give a probabilistic proof of this fact.

Remark 5. When we speak of a kernel K on Λ2, a priori it is only defined only
almost everywhere w.r.t. µ × µ and thus quantities like

∫

K(x, x)dµ(x) that
appear in the definition of joint intensities are not defined. This can be made
sense of as follows.

The kernelK defines a self-adjoint integral operatorK that has eigenfunctions
φk and eigenvalues λk, where φk are orthogonal in L2(µ). In particular, there is a
set Λ1 ⊂ Λ such that φk are all defined point-wise on Λ1 and µ(Λc

1) = 0. At least
in the case when K has finite rank, this shows that K(x, y) =

∑

kλkφk(x)φk(y)
is well defined on Λ1×Λ1, and that is sufficient to define

∫

K(x, x)dµ(x) etc. For
more details on this point, see Lemmas 1,2 of the survey paper of Soshnikov [27].

Recall that the permanent of an n× n matrix M is defined as

per(M) =
∑

π∈Sn

n
∏

i=1

Mi,π(i). (5)
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Definition 6. A point process X on Λ is said to be a permanental process
with kernel K if its joint intensities satisfy:

ρk(x1, . . . , xk) = per (K(xi, xj))1≤i,j≤k , (6)

for every k ≥ 1 and x1, . . . , xk ∈ Λ.

For any kernel K that defines a self-adjoint non-negative definite operator
K (i.e., the eigenvalues of K are nonnegative), there exists a permanental point
process with kernel K. We shall give a proof of this known fact in Section 4.

Now we state the main theorems. The most common application of the fol-
lowing theorem is to describe the behavior of a determinantal process already
restricted to a subset.

Theorem 7. Suppose X is a determinantal process with a trace-class kernel K.
Write

K(x, y) =

n
∑

k=1

λkφk(x)φk(y),

where φk are normalized eigenfunctions of K with eigenvalues λk ∈ [0, 1]. (Here
n = ∞ is allowed). Let Ik, 1 ≤ k ≤ n be independent random variables with
Ik ∼ Bernoulli(λk). Set

KI(x, y) =
n
∑

k=1

Ikφk(x)φk(y).

KI is a random analogue of the kernel K. Let XI be the determinantal pro-
cess with kernel KI (i.e., first choose the Ik’s and then independently sample a
discrete set that is determinantal with kernel KI). Then

X d
= XI . (7)

In particular, the total number of points in the process X has the distribution of
a sum of independent Bernoulli(λk) random variables.

In the special case of random spanning trees of a finite graph, Bapat [1]
was the first to observe the last fact stated above. Namely, he proved that the
number of edges of the spanning tree falling in a subset of edges of the given
graph has the distribution of a sum of independent Bernoullis.

When the Di’s are related in a special way, there exists a simple probabilistic
description of the joint distributions of the counts X (Di).

Definition 8. Given an integral kernelK acting on L2(Λ), the subsetsD1, . . . , Dr

of Λ with D = ∪iDi are simultaneously observable if the eigenfunctions of
the restricted kernelK|D×D are also eigenfunctions ofK|Di×Di

acting on L2(Di)
for every 1 ≤ i ≤ r.

The motivation for this terminology comes from quantum mechanics, where
two physical quantities can be simultaneously measured if the corresponding
operators commute.
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Proposition 9. Under the assumptions of Theorem 7, let Di ⊂ Λ, 1 ≤ i ≤ r
be mutually disjoint and simultaneously observable. Let ei be the standard basis
vectors in Rr. Denote by φk, the common eigenfunctions of K on the Di’s and
by λk,i the corresponding eigenvalues. Write λk =

∑

i λk,i and note that λk ≤ 1.
Then

(X (D1), . . . ,X (Dr))
d
=
∑

k

(ξk,1, . . . , ξk,r) , (8)

where ~ξk = (ξk,1, . . . , ξk,r) are independent for different values of k, with P(~ξk =

ei) = λk,i for 1 ≤ i ≤ r and P(~ξk = 0) = 1−λk. In words, (X (D1), . . . ,X (Dr))
has the same distribution as the vector of counts in r cells, if we pick n balls and

assign the kth ball to the ith cell with probability λk,i (there may be a positive
probability of not assigning it to any of the cells).

Theorem 10. Suppose X is a permanental process in Λ with a trace-class kernel
K. Write K(x, y) =

∑n
k=1 λkφk(x)φk(y), where φk are normalized eigenfunc-

tions of K with eigenvalues λk (n = ∞ is allowed). Let ~α = (α1, . . . , αn), where
αi are non-negative integers such that ℓ = ℓ(~α) = α1 + · · ·+αn <∞ and let Z~α

be the random vector in Rℓ with density:

p(z1, . . . , zℓ) =
1

ℓ!α1! · · ·αn!

∣

∣

∣

∣

∣

∣

per





{φ1(z1) · · · φ1(zℓ)}α1

· · · · · · · · ·
{φn(z1) · · · φn(zℓ)}αn





∣

∣

∣

∣

∣

∣

2

, (9)

where the notation {φi(z1) · · ·φi(zℓ)}αi indicates that the row φi(z1) · · ·φi(zℓ) is
repeated αi times. Let X~α be the point process determined by Z~α, i.e., X~α(D) is
the number of j ≤ ℓ such that Z~α

j ∈ D. Let γ1, . . . , γn be independent geometric

random variables with P(γk = s) =
(

λk

λk+1

)s (
1

λk+1

)

, for s = 0, 1, 2, . . . . Then

X d
= X~γ ,

where ~γ = (γ1, . . . , γn). In particular, X (Λ) has the distribution of a sum of
independent geometric( λk

λk+1 ) random variables.

Remark 11. The density given in (9) has physical significance. Interpreting
the functions φk as eigenstates of a one-particle Hamiltonian, (9) gives the dis-
tribution for ℓ non-interacting bosons in a common potential given that αi of
them lie in the eigenstate φi. This density is the exact analogue of the density

p(z1, . . . , zℓ) =
1

ℓ!

∣

∣

∣

∣

∣

∣

det





φi1 (z1) · · · φi1 (zℓ)
· · · · · · · · ·

φin
(z1) · · · φin

(zℓ)





∣

∣

∣

∣

∣

∣

2

, (10)

which appears in Theorem 7 and gives the distribution for ℓ non-interacting
fermions in a common potential given that one fermion lies in each of the eigen-
states φi1 , . . . , φiℓ

. The fact that (10) vanishes if a row is repeated illustrates
Pauli’s exclusion principle, which states that multiple fermions cannot occupy
the same eigenstate. See [9] for more details.
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Theorem 12. Under the assumptions of Theorem 10, suppose D1, . . . , Dr are
simultaneously observable as in definition 8. Denote by φk the common eigen-
functions of K on the Di’s and by λk,i the corresponding eigenvalues. Then

(X (D1), . . . ,X (Dr))
d
=
∑

k

(ηk,1, . . . , ηk,r) , (11)

where (ηk,1, . . . , ηk,r) are independent for different values of k, for each k, the
sum ηk =

∑

i ηk,i has a geometric distribution with mean λk :=
∑

i λk,i and
given

∑

i ηk,i = N ,

(ηk,1, . . . , ηk,r)
d
= Multinomial

(

N ;
λk,1

λk
, . . . ,

λk,r

λk

)

.

2. Determinantal processes

We begin with a few important examples of determinantal processes.

Example 13 (Non-intersecting random walks). Consider n independent
simple symmetric random walks on Z started from i1 < i2 < . . . < in where
all the ij ’s are even. Let Pi,j(t) be the t-step transition probabilities. Karlin
and McGregor [15] show that the probability that the random walks are at
j1 < j2 < . . . < jn at time t and have mutually disjoint paths is

det





Pi1,j1(t) . . . Pi1,jn
(t)

. . . . . . . . .
Pin,j1(t) . . . Pin,jn

(t)



 .

It follows easily that if t is even and we also condition the walks to return to
i1, . . . , in at time t, then the positions of the walks at time t/2 are determinantal
with a Hermitian kernel. See Johansson [14] for this and more general results.

Example 14 (Uniform spanning trees). Let G be a finite undirected graph
and let E be the set of oriented edges (each undirected edge appears in E with
both orientations). Let T be uniformly chosen from the set of spanning trees
of G. For each directed edge e = vw, let χe := 1vw − 1wv denote the unit flow
along e. Define

H = {f : E → R : f(vw) = −f(wv) ∀v, w}
⋆ = span{

∑

w

χvw : where v is a vertex.}

♦ = span{
n
∑

i=1

χei : e1, . . . , en is an oriented cycle}.

It is easy to see that H = ⋆⊕ ♦. Now, define Ie := K⋆
χe, the orthogonal

projection onto ⋆. Then, the set of edges in T forms a determinantal process
with kernel K(e, f) := (Ie, If ) with respect to counting measure on the set of
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edges. This was proved by Burton and Pemantle [4], who represented K(e, f)
as the current flowing through f when a unit of current is sent from the tail to
the head of e. The Hilbert space formulation above is from BLPS [2].

Example 15 (Ginibre ensemble). Let Q be an n × n matrix with i.i.d.
standard complex normal entries. Ginibre [10] proved that the eigenvalues of Q
form a determinantal process in C with the kernel

Kn(z, w) =
1

π
e−

1
2 (|z|2+|w|2)

n−1
∑

k=0

(zw)k

k!
,

with respect to Lebesgue measure. As n → ∞, we get a determinantal process
in the plane with the kernel

K(z, w) =
1

π
e−

1
2 (|z|2+|w|2)

∞
∑

k=0

(zw)k

k!

=
1

π
e−

1
2 (|z|2+|w|2)+zw.

Example 16 (Zero set of a Gaussian analytic function). The power series
f1(z) :=

∑∞
n=0 anz

n where an are i.i.d. standard complex normals, defines a
random analytic function in the unit disk (almost surely). Peres and Virág [23]
show that the zero set of f1 is a determinantal process in the disk with the
Bergman kernel

K(z, w) =
1

π(1 − zw)2
=

1

π

∞
∑

k=0

(k + 1)(zw)k,

with respect to Lebesgue measure in the unit disk.

Determinantal projection processes: motivation and construction

The most general determinantal processes are mixtures of determinantal projec-
tion processes, i.e. processes whose kernel KH defines a projection operator KH

to a subspace H ⊂ L2(Λ) or, equivalently, KH(x, y) =
∑n

k=1 φk(x)φk(y) where
{φk} is any orthonormal basis for H .

Lemma 17. Suppose X is a determinantal projection process on Λ, with kernel
K(x, y) =

∑n
k=1 φk(x)φk(y) where {φk} is an orthonormal set in L2(Λ). Then

the number of points in X is equal to n, almost surely.

Proof. The conditions imply that the matrix (K(xi, xj))1≤i,j≤k has rank at most

n for any k ≥ 1. From (3), we see that E
[

(X (Λ)
k

)

]

= 0 for k > n. This shows
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that X (Λ) ≤ n almost surely. However,

E [X (Λ)] =

∫

Λ

ρ1(x) dµ(x)

=

∫

Λ

K(x, x) dµ(x)

=

n
∑

k=1

∫

Λ

|φk(x)|2dµ(x)

= n.

Therefore X (Λ) = n, almost surely.

Despite the fact that determinantal processes arise naturally and many im-
portant statistics can be computed, the standard Definition 3 is lacking in direct
probabilistic intuition. Below we present an algorithm that is somewhat more
natural from a probabilist’s point of view, and can also be used for modeling
determinantal processes.

In the discrete case, the projection operator KH can be applied to the delta
function at a point, and we have KHδx(·) = K(·, x). In the general case we take
this as the definition of KHδx. Let ‖ · ‖ denote the norm of L2(µ).The intensity
measure of the process is given by

µH(x) = ρ1(x)dµ(x) = ‖KHδx‖2dµ(x). (12)

When µ is supported on countably many points, we have ‖KHδx‖ = dist(δx, H
⊥)

(where ⊥ denotes orthocomplement), giving a natural interpretation of the in-
tensity ρ1 in general.

Note that µH(Λ) = dim(H), so µH/ dim(H) is a probability measure on Λ.
We construct the determinantal process as follows. Start with n = dim(H), and
Hn = H .

Algorithm 18.

• If n = 0, stop.
• Pick a random point Xn from the probability measure µHn

/n.
• Let Hn−1 ⊂ Hn be the orthocomplement of the function KHn

δx in Hn. In
the discrete case,Hn−1 = {f ∈ Hn : f(Xn) = 0}. Note that dim(Hn−1) =
n− 1 a.s.

• Decrease n by 1 and iterate.

Proposition 19. The points (X1, . . . , Xn) constructed by Algorithm 18 are dis-
tributed as a uniform random ordering of the points in a determinantal process
X with kernel K.

Proof. Let ψj = KHδxj
. Projecting to Hj is equivalent to first projecting to H

and then to Hj , and it is easy to check that KHj
δxj

= KHj
ψj . Thus, by (12), the

density of the random vector (X1, . . . , Xn) constructed by the algorithm equals

p(x1, . . . , xn) =

n
∏

j=1

‖KHj
ψj‖2

j
.
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Note that Hj = H ∩ 〈ψj+1, . . . , ψn〉⊥, and therefore V =
∏n

j=1 ‖KHj
ψj‖ is

exactly the repeated “base times height” formula for the volume of the par-
allelepiped determined by the vectors ψ1, . . . , ψn in the finite-dimensional vec-
tor space H ⊂ L2(Λ). It is well-known that V 2 equals the determinant of the
Gram matrix whose i, j entry is given by the scalar product of ψi, ψj , that is
∫

ψiψjdµ = K(xi, xj). We get

p(x1, . . . , xn) =
1

n!
det(K(xi, xj)),

so the random variablesX1, . . . , Xn are exchangeable. Viewed as a point process,
the n-point joint intensity of {Xj}n

j=1 is n!p(x1, . . . , xn), which agrees with that
of the determinantal process X . The claim now follows by Lemma 17.

Example 20 (Uniform spanning trees). We continue the discussion of Ex-
ample 14 Let Gn+1 be an undirected graph on n+ 1 vertices. For every edge e,
the effective resistance when a unit of current is sent along e is R(e) = (Ie, Ie).
To use our algorithm to choose a uniform spanning tree, proceed as follows:

• If n = 0, stop.
• Take Xn to be a random edge, chosen so that P(Xn = ei) = 1

nR(ei).
• Construct Gn from Gn+1 by contracting the edge Xn, and update the

effective resistances {R(e)}.
• Decrease n by one and iterate.

For sampling uniform spanning trees, more efficient algorithms are known,
but for the general case the above procedure is the most efficient we are aware
of.

We shall need the following lemmas.

Lemma 21. Suppose {φk}n
k=1 is an orthonormal set in L2(Λ). Then there exists

a determinantal process with kernel K(x, y) =
∑n

k=1 φk(x)φk(y).

Proof. For any x1, . . . , xn we have (K(xi, xj))1≤i,j≤n = A A∗, where Ai,k =

φk(xi). Therefore, det (K(xi, xj)) is non-negative. Moreover,

∫

Λn

det (K(xi, xj))i,j dx1 . . . dxn

=

∫

Λn

det (φj(xi))i,j det
(

φi(xj)
)

i,j
dx1 . . . dxn

=

∫

Λn

∑

π,τ∈Sn

sgn(π)sgn(τ)
n
∏

k=1

φπ(k)(xk)φτ(k)(xk) dx1 . . . dxn.

In the sum, if π(k) 6= τ(k), then
∫

Λ φπ(k)(xk)φτ(k)(xk)dxk = 0, and when π(k) =
τ(k), this integral is 1. Thus, only the terms with π = τ contribute. We get

∫

Λn

det (K(xi, xj))1≤i,j≤n dx1 . . . dxn = n!,
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which along with the non-negativity of det (K(xi, xj))1≤i,j≤n shows that
1
n! det (K(xi, xj))1≤i,j≤n is a probability density on Λn. If we look at the re-
sulting random variable as a set of unlabeled points in Λ, we get the desired
n-point joint intensity ρn.

Lower joint intensities are got by integrating over some of the xis:

ρk(x1, . . . , xk) =
1

(n− k)!

∫

Λn−k

ρn(x1, . . . , xn)
∏

j>k
dµ(xj). (13)

We caution that (13) is valid only for a point process that has n points almost
surely. In general, there is no way to get lower joint intensities from higher ones.

We now show how to get ρn−1. The others can be found exactly the same
way, or inductively. Set k = n − 1 in (13) and expand ρn(x1, . . . , xn) =
det (K(xi, xj))1≤i,j≤n as we did before to get

ρn−1(x1, . . . , xn−1)

=
∑

π,τ

sgn(π)sgn(τ)
∏n−1

k=1
φπ(k)(xk)φτ(k)(xk)

∫

Λ

φπ(n)(xn)φτ(n)(xn)dµ(xn).

If π(n) 6= τ(n), the integral vanishes. And if π(n) = τ(n) = j, π and τ map
{1, . . . , n − 1} to {1, 2, . . . , n} − {j} (and the product of the signs of these
“permutations” is the same as sgn(π)sgn(τ), because π(n) = τ(n)). This gives
us

ρn−1(x1, . . . , xn−1) =
∑n

j=1
det (φk(xi))1≤i≤n−1,k 6=j det

(

φk(xi)
)

k 6=j,1≤i≤n−1
.

We must show that this quantity is equal to det (K(xi, xj))i,j≤n−1. For this note
that

(K(xi, xj))i,j≤n−1 = (φk(xi))1≤i≤n−1,k≤n

(

φk(xi)
)

k≤n,i≤n−1
,

and apply the Cauchy-Binet formula. Recall that for matrices A,B of orders
m× n and n×m respectively, the Cauchy-Binet formula says

det(AB) =
∑

1≤i1,...,im≤n

det (A[i1, . . . , im]) det (B[i1, . . . , im]) , (14)

where we abuse notation and let A[i1, . . . , im] stand for the matrix formed by
taking the columns numbered i1, . . . , im and B[i1, . . . im] for the matrix formed
by the corresponding rows of B. The identity (14) can be proved by observing
that both sides are multi-linear in the rows of A and in the columns of B.

We now prove Theorem 7. Before that we remark that in many examples the
kernel K defines a projection operator, i.e, λk = 1 for all k. Then Ik = 1 for all
k, almost surely, and the theorem is trivial. The theorem is applicable to the
restriction of the process X to D for any Borel set D ⊂ Λ, as the restricted
process is determinantal with kernel the restriction of K to D ×D.
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Proof of Theorem 7. First assume that K is a finite-dimensional operator-i.e.,
K(x, y) =

∑n
k=1 λkφk(x)φk(y) for some finite n. We show that the processes on

the left and right side of (7) have the same joint intensities. By (3), this implies
that these processes have the same distribution.

Note that the process XI exists by Lemma 21. For m > n, the m-point
joint intensities of both X and XI are clearly zero. Now consider m ≤ n and
x1, . . . , xm ∈ Λ. We claim that:

E
[

det (KI(xi, xj))1≤i,j≤m

]

= det (K(xi, xj))1≤i,j≤m . (15)

To prove (15), note that

(KI(xi, xj))1≤i,j≤m = A B, (16)

where A is the m× n matrix with Ai,k = Ikφk(xi) and B is the n ×m matrix
with Bk,j = φk(xj).

Apply Cauchy-Binet formula (14) to A,B defined above and take expecta-
tions. Observe that B[i1, . . . im] is nonrandom and

E [det (A[i1, . . . , im])] = det (C[i1, . . . , im])

where C is the m × n matrix Ci,k = λkφk(xi). Applying the Cauchy-Binet
formula in the reverse direction to C and B, we obtain (15) and hence also (7).
By Lemma 17, given {Ik}k≥1, XI has

∑

k Ik points, almost surely. Therefore,

X (Λ)
d
=
∑

k

Ik.

So far we assumed that the operator K determined by the kernel K is finite
dimensional. Now suppose K is a general trace class operator. Then

∑

k λk <∞
and hence, almost surely,

∑

k Ik <∞. Therefore, the process XI is well defined
and (16) is valid by the same reasoning. Taking expectations and observing that
the summands in the Cauchy-Binet formula are non-negative, we obtain

E
[

det (KI(xi, xj))1≤i,j≤m

]

=
∑

1≤i1,...,im

det (C[i1, . . . , im]) det (B[i1, . . . , im]) ,

where C is the same as before. To conclude that the right hand side is just
det (K(xi, xj))1≤i,j≤m, we first apply the Cauchy-Binet formula to the finite ap-

proximation (KN (xi, xj))1≤i,j≤m, where KN (x, y) =
∑N

k=1 λkφk(x)φk(y). Let-
ting N → ∞, we see that

E
[

det (KI(xi, xj))1≤i,j≤m

]

= det (K(xi, xj))1≤i,j≤m ,

as was required to show. (In short, the proof for the the infinite case is exactly
the same as before, only we cautiously avoided applying Cauchy-Binet formula
to the product of two infinite rectangular matrices).
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Now we give a probabilistic proof of the following criterion for a Hermitian
integral kernel to define a determinantal process.

Theorem 22 (Macchi [22], Soshnikov [27]). Let K determine a self-adjoint
integral operator K on L2(Λ) that is locally trace class. Then K defines a deter-
minantal process on Λ if and only if all the eigenvalues of K are in [0, 1].

Proof. We can assume that K is trace class, since it suffices to construct a
determinantal process on compact subsets of Λ with kernel the restriction of K.

Sufficiency: If K is a projection operator, this is precisely Lemma 21. If the
eigenvalues are {λk}, then as in the proof of Theorem 7 we construct the process
XI . The proof there shows that XI is determinantal with kernel K.

Necessity: Suppose that X is determinantal with kernel K. Since the joint
intensities of X are non-negative,K must be non-negative definite. Now suppose
that the largest eigenvalue of K is λ > 1. Let X1 be the process obtained by first
sampling X and then independently deleting each point of X with probability
1− 1

λ . Computing the joint intensities shows that X1 is determinantal with kernel
1
λK.

Now X has finitely many points (we assumed that K is trace class) and
λ > 1. Hence, P [X1(Λ) = 0] > 0. However, 1

λK has all eigenvalues in [0, 1], with
at least one eigenvalue equal to 1, whence by Theorem 7, P [X1(Λ) ≥ 1] = 1, a
contradiction.

Example 23 (Non-measurability of the Bernoullis). A natural question
that arises from Theorem 7 is whether, given a realization of the determinantal
process X , we can determine the values of the Ik’s. This is not always possible,
i.e., the Ik’s are not measurable w.r.t. the process X in general.

Consider the graph G with vertices {a, b, c, d} and edges e1 = (a, b), e2 =
(b, c), e3 = (c, d), e4 = (d, a), e5 = (a, c). By the Burton-Pemantle Theorem [4],
the edge-set of a uniformly chosen spanning tree of G is a determinantal process.
In this case, the kernel restricted to the set D = {e1, e2, e3} is easily computed
to be

(K(ei, ej))1≤i,j≤3 =





5 −3 −1
−3 5 −1
−1 −1 −1



 .

This matrix has eigenvalues 1, 7−
√

17
16 , 7+

√
17

16 . Since all measurable events have
probabilities that are multiples of 1

8 , it follows that the Bernoullis cannot be
measurable.

Theorem 7 gives us the distribution of the number of points X (D) in any
subset of Λ. Given several regions D1, . . . , Dr, can we find the joint distribution
of X (D1), . . . ,X (Dr)? It seems that a simple probabilistic description of the
joint distribution exists only when the Di’s are simultaneously observable, as in
Theorem 9.

Proof of Theorem 9. At first we make the following assumptions:

• ∪iDi = Λ.
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• K defines a finite dimensional projection operator-i.e., K(x, y) =
∑n

k=1 φk(x)φk(y) for x, y ∈ Λ, and {φk} is an orthonormal set in L2(Λ).

Note that by our assumption, φk are also orthogonal on Di for every 1 ≤ i ≤ r.
Moreover, it is clear that λk,i =

∫

Di
|φk|2.

We write




K(x1, x1) . . . K(x1, xn)
. . . . . . . . .

K(xn, x1) . . . K(xn, xn)





=





φ1(x1) . . . φn(x1)
. . . . . . . . .

φ1(xn) . . . φn(xn)









φ1(x1) . . . φ1(xn)
. . . . . . . . .

φn(x1) . . . φn(xn)



 . (17)

In particular,

det (K(xi, xj))1≤i,j≤n =

(

∑

σ∈Sn

sgn(σ)
n
∏

i=1

φσi
(xi)

)(

∑

τ∈Sn

sgn(τ)
n
∏

i=1

φτi
(xi)

)

.

(18)
Now if ki are non-negative integers with

∑

i ki = n, note that

{X (Di) ≥ ki for all 1 ≤ i ≤ r} = {X (Di) = ki for all 1 ≤ i ≤ r},
since by Lemma 17, a determinantal process whose kernel defines a rank-n
projection operator has exactly n points, almost surely. Thus, we have

P [X (Di) = ki for all 1 ≤ i ≤ r] = E

[

r
∏

i=1

(X (Di)

ki

)

]

=
1

k1! · · ·kr!

∫

∏

r

i=1
D

ki
i

det (K(xk, xℓ))1≤k,ℓ≤n dx1 . . . dxn

=
1

k1! · · ·kr!

∫

∏

r

i=1
D

ki
i

∑

σ,τ

sgn(σ)sgn(τ)

n
∏

m=1

φσm
(xm)φτm

(xm) dx1 . . . dxn.

Any term with σ 6= τ vanishes upon integrating. Indeed, if σ(m) 6= τ(m) for
some m, then

∫

Dj(m)

φσm
(xm)φτm

(xm) dxm = 0

where j(m) is the index for which

k1 + . . .+ kj(m)−1 < m ≤ k1 + . . .+ kj(m).

Therefore,

E

[

r
∏

i=1

(X (Di)

ki

)

]

=
1

k1! · · · kr!

∑

σ

n
∏

m=1

∫

Dj(m)

|φσm
(x)|2dx

=
1

k1! · · · kr!

∑

σ

n
∏

m=1

λσm,j(m).
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Now consider (8) and set Mi =
∑

k ξk,i for 1 ≤ i ≤ r. Our goal is to compute
P [M1 = k1, . . . ,Mr = kr]. This problem is the same as putting n ball into r
cells, where the probability for the jth ball to fall in cell i is λj,i. To have ki

balls in cell i for each i, we first take a permutation σ of {1, 2, . . . , n} and then
put the σth

m ball into cell j(m) if k1 + . . . + kj(m)−1 < m ≤ k1 + . . . + kj(m).
However, this counts each assignment of balls

∏r
i=1 ki! times. This implies that

P [M1 = k1, . . . ,Mr = kr] =
1

k1! · · · kr!

∑

σ

n
∏

m=1

λσm,j(m).

Thus,

(X (D1), . . . ,X (Dr))
d
= (M1, . . . ,Mr), (19)

which is precisely what we wanted to show.
Now we deal with the two assumptions that we made at the beginning. If

∪iDi 6= Λ, we could restrict the point process to ∪iDi. We still have a determi-
nantal process. Then, if the kernel does not define a projection, apply Theorem 7
to write X as a mixture of determinantal projection processes. Applying (19)
to each component in the mixture we obtain the theorem. The finite rank as-
sumption can be relaxed in the same way as in Theorem 7.

Applications

As an application of Theorem 7 we can derive the following central limit theorem
for determinantal processes due to Costin and Lebowitz [5] in case of the sine
kernel, and due to Soshnikov [28] for general determinantal processes.

Theorem 24. Let Xn be a sequence of determinantal processes on Λ with
kernels Kn. Let Dn be a sequence of measurable subsets of Λ such that
V ar (Xn(Dn)) → ∞ as n→ ∞. Then

Xn(Dn) − E [Xn (Dn)]
√

Var (Xn(Dn))

d→ N(0, 1). (20)

Proof. By Theorem 7, X (Dn) has the same distribution as a sum of indepen-
dent Bernoullis with parameters being the eigenvalues of the integral operators
associated with Kn restricted to D. A straightforward application of Lindeberg-
Feller CLT for triangular arrays gives the result.

Remark 25. Existing proofs of results of the kind of Theorem 24 ([5], [28])
use the moment generating function for particle counts. Indeed, one standard
way to prove central limit theorems (including the Lindeberg-Feller theorem)
uses generating functions. The advantage of our proof is that the reason for
the validity of the CLT is more transparent and a repetition of well known
computations are avoided. Moreover, by applying the classical theory of sums
of independent variables, local limit theorems, large deviation principles and
extreme value asymptotics follow without any extra effort.
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Radially symmetric processes on the complex plane

Theorem 9 implies that when a determinantal process with kernel K has the
form K(z, w) =

∑

n cn(zw)n, with respect to a radially symmetric measure µ,
then the absolute values of the points are independent. More precisely, we have

Theorem 26. Let X be a determinantal process with kernel K with respect to
a radially symmetric measure µ on C. Write K(z, w) =

∑

k λka
2
k(zw)k, where

akz
k, 0 ≤ k ≤ n − 1 are the normalized eigenfunctions for K. The following

construction describes the distribution of {|z|2 : z ∈ X}.
• Let Z be picked from the probability distribution µ/µ(Λ), and let Q0 = |Z|2.
• For 1 ≤ k ≤ n− 1 let Qk be an independent size-biased version of Qk−1

(i.e., Qk has density fk(q) =
a2

k

a2
k−1

q with respect to the law of Qk−1).

• Consider the point process in which each point Qk is included with proba-
bility λk independently of everything else.

When µ has density φ(|z|), then Qk has density

πa2
kq

kφ(
√
q). (21)

Theorem 26 (and its higher dimensional analogues) is the only kind of exam-
ple that we know for interesting simultaneously observable counts.

Proof. Let ν be the measure of the squared modulus of a point picked from µ.
In particular, if µ has density φ(|z|), then we have dν(q) = πφ(

√
q) dq.

For 1 ≤ i ≤ r, letDi be mutually disjoint open annuli centered at 0 with inner
and outer radii ri and Ri respectively. Since the functions zk are orthogonal
on any annulus centered at zero, it follows that the Di’s are simultaneously
observable. To compute the eigenvalues, we integrate these functions against the
restricted kernel; clearly, all terms but one cancel, and we get that for z ∈ Di

zkλk,i =

∫

Di

λka
2
k(zw)kwkdµ(w), and so

λk,i = λka
2
k

∫

Di

|w|2kdµ(w)

= λka
2
k

∫ R2
i

r2
i

qkdν(q).

As ri, Ri change, the last expression remains proportional to the probability
that the k times size-biased random variable Qk falls in (r2i , R

2
i ). When we set

(ri, Ri) = (0,∞), the result is λk because akw
k has norm 1. Thus the constant

of proportionality equals λk. The theorem now follows from Proposition 9.

Example 27 (Ginibre Ensemble revisited). Recall that the nth Ginibre
ensemble described in Example 15 is the determinantal process Gn on C with
kernel Kn(z, w) =

∑n−1
k=0 λka

2
k(zw)k with respect to the complex Gaussian mea-

sure dµ = 1
π e

−|z|2dz, where a2
k = 1/k!, and λk = 1. The modulus-squared of a
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complex Gaussian is a gamma(1, 1) random variable, and its k-times size-biased
version has gamma(k + 1, 1) distribution (see (21)). Theorem 26 immediately
yields the following.

Theorem 28 (Kostlan [17]). The set of absolute values of the points of Gn

has the same distribution as {Y1, . . . , Yn} where Yi are independent and Y 2
i ∼

gamma(i, 1).

All of the above holds for n = ∞ also, in which case we have a determinantal
process with kernel ezw with respect to dµ = 1

π e
− 1

2 |z|
2

dz. This case is also of
interest as G∞ is a translation invariant process in the plane.

Example 29 (Zero set of a Gaussian analytic function). Recall the zero
set of f1(z) :=

∑∞
n=0 anz

n is a determinantal process in the disk with the
Bergman kernel

K(z, w) =
1

π(1 − zw)2
=

1

π

∞
∑

k=0

(k + 1)(zw)k,

with respect to Lebesgue measure in the unit disk. Theorem 26 applies with
a2

k = (k + 1) and λk = 1 (to make K trace class, we first have to restrict it to
the disk of radius r < 1 and let r → 1). From (21) we immediately see that Qk

has beta(k + 1, 1) distribution. Equivalently, we get the following.

Theorem 30 (Peres and Virág [23]). The set of absolute values of the points

in the zero set of f1 has the same distribution as {U1/2
1 , U

1/4
2 , U

1/6
3 , . . .} where

Ui are i.i.d. uniform[0, 1] random variables.

We can of course consider the determinantal process with the truncated
Bergman kernel Kn(z, w) = 1

π

∑n−1
k=0 (k + 1)(zw)k. The set of absolute values

of this process has the same distribution as {U1/2
1 , . . . , U

1/2n
n }.

3. High powers of complex polynomial processes

Rains [24] showed that sufficiently high powers of eigenvalues of a random uni-
tary matrix are independent.

Theorem 31 (Rains [24]). Let {z1, . . . , zn} be the set of eigenvalues of a
random unitary matrix chosen according to Haar measure on U(n). Then for
every k ≥ n, {zk

1 , . . . , z
k
n} has the same distribution as a set of n points chosen

independently according to uniform measure on the unit circle in the complex
plane.

We point out that this theorem holds whenever the angular distribution of the
points is a trigonometric polynomial.

Proposition 32. Let {z1, . . . , zn} be distributed on (S1)⊗n with density
P (z1, . . . , zn, z1, . . . , zn) w.r.t. uniform measure on (S1)⊗n, where P is a poly-
nomial of degree d or less in each variable. Then for every k > d the vector
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(zk
1 , . . . , z

k
n) has the distribution of n points chosen independently according to

uniform measure on S1.

Proof. Fix k > d and consider any joint moment of (zk
1 , . . . , z

k
n),

E

[

n
∏

i=1

(

zkmi

i zi
kℓi

)

]

=

∫

(S1)⊗n

n
∏

i=1

(

zkmi

i zi
kℓi

)

P (z1, . . . , zn, z1, . . . , zn)dλ,

where λ denotes the uniform measure on (S1)⊗n. If mi 6= ℓi for some i then the
integral vanishes. To see this, note that the average of a monomial over (S1)⊗n

is either 1 or 0 depending on whether the exponent of every zi matches that
of zi. Suppose without loss of generality that m1 > ℓ1. Then in each term, we
have an excess of zk

1 which cannot be matched by an equal power of z1 because
P has degree less than k as a polynomial in z1.

We conclude that the joint moments are zero unless mi = ℓi for all i. If
mi = ℓi for all i, then the expectation equals 1. Thus, the joint moments of
(zk

1 , . . . , z
k
n) are the same as those of n i.i.d. points chosen uniformly on the unit

circle. This proves the proposition.

More generally, by conditioning on the absolute values we get the following.

Corollary 33. Let ζ1, . . . , ζk be complex random variables with distribution
given by

P (z1, . . . , zn, z1, . . . , zn)dµ1(z1) · · · dµn(zn),

where P is a polynomial of degree d or less in each variable, and the measures µi

are radially symmetric. Then for every k > d, the angles Arg(ζk
1 ), . . . ,Arg(ζk

n)
are independent, have uniform distribution, and are independent of the moduli
{|ζ1|, . . . , |ζn|}.

Corollary 33 applies to powers of points of determinantal processes with ker-
nels of the form K(z, w) =

∑d
k=0 ck(zw)k w.r.t a radially symmetric measure µ

on the complex plane. Combining this observation with our earlier results on the
independence of the absolute values of the points, we get the following result.

Theorem 34. Let X = {z1, . . . , zn} be a determinantal process on the complex

plane with kernel K(z, w) =
∑d

ℓ=0 ck(zw)ℓ (satisfying # {k ≥ 0 : ck 6= 0} = n)
with respect to a radially symmetric measure µ. Then for every ℓ ≥ d, the
points {zℓ

1, . . . , z
ℓ
n} are distributed as a set of independent random variables with

radially symmetric distribution.

4. Permanental processes

In this section we prove analogous theorems for permanental processes. We begin
with the following known representation of permanental processes, that can be
found in Macchi [22].

Proposition 35. Let F be a complex Gaussian process on Λ. Given F , let X
be a Poisson process in Λ with intensity |F |2. Then X is a permanental process
with kernel K(x, y) = E

[

F (x)F (y)
]

.
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Remark 36. Since any non-negative definite Hermitian kernel is the covariance
kernel of a complex Gaussian process, it follows that all permanental processes
are of the above form.

Proof. Given F , the joint intensities of X are ρ̃k(x1, . . . , xk) =
∏k

i=1 |F (xi)|2.
Hence it follows that the unconditional joint intensities of X are ρk(x1, . . . , xk) =

E
[

∏k
i=1 |F (xi)|2

]

. Now apply the classical Wick formula (see [11] or [23], §2,

Fact 10) to get the result.

Corollary 37. If K determines a self-adjoint non-negative definite locally trace-
class integral operator K, then there exists a permanental process with kernel K.

Now we prove Theorem 10 using the representation in Proposition 35. We
need the following simple fact:

Fact 38. Let Y be a Poisson process on Λ with intensity measure ν. Assume
that ν(Λ) < ∞ and ν is absolutely continuous with respect to µ. Let Y be
the random vector of length Y(Λ) obtained from a uniform random ordering
of the points of Y. For k ≥ 1, the law of Y on the event that Y(Λ) = k is a
subprobability measure on Λk with density

gk(z1, . . . , zk) =
1

k!

[

e−ν(Λ)
∏k

i=1

dν

dµ
(zi)

]

(22)

with respect to µk. We have
∫

gk dµ
k = P [Y(Λ) = k] .

Proof of Theorem 10:. We use the construction in Proposition 35 with F (z) =
∑n

k=1

√
λkakφk(z) where ak are independent standard complex Gaussian ran-

dom variables. Let X be the random vector obtained from a uniform random
ordering of the points of X . If we first condition on F , then by Fact 38 the joint
density of the random vector X on the event {X (Λ) = k} is given by

jF,k(z1, . . . , zk) =
1

k!

[

e
−
∫

Λ
|F (x)|2dµ(x)

∏k

i=1
|F (zi)|2

]

,

which is a subprobability measure with total weight P
[

X (Λ) = k
∣

∣F
]

. Integrat-
ing over the distribution of F we get that on the event {X (Λ) = k} the density
of X is

jk(z1, . . . , zk) =
1

k!
E

[

e
−
∫

Λ
|F (x)|2dµ(x)

∏k

i=1
|F (zi)|2

]

=
1

k!
E

[

e−
∑

m
λm|am|2

∣

∣

∣

∏k

i=1

(

∑

m

√

λmamφm(zi)
) ∣

∣

∣

2
]

, (23)

which is also a subprobability measure with total weight P
[

X (Λ) = k
]

. We now
expand the product inside the expectation (23) as a sum indexed by ordered
set partitions (S1, . . . , Sn) and (T1, . . . , Tn) of {1, 2, . . . , k}. The set partitions
corresponding to a summand q are constructed by letting Sℓ be the set of indices
i for which q contains the term

√
λℓaℓφℓ(zi) and Ti be the set of indices i for



Hough, Krishnapur, Peres and Virág/Determinantal Processes and Independence 225

which q contains the term
√
λℓaℓφℓ(zi). The summand corresponding to the

partitions (Sℓ), (Tℓ) is thus:

E

[

e−
∑

m
λm|am|2

(

∏

ℓ
a
|Sℓ|
ℓ aℓ

|Tℓ|
)(

∏

ℓ

∏

i∈Sℓ

λ
|Sℓ|/2
ℓ φℓ(zi)

)

×
(

∏

ℓ

∏

i∈Tℓ

λ
|Tℓ|/2
ℓ φℓ(zi)

)

]

,

which clearly vanishes unless |Sℓ| = |Tℓ| for every ℓ. Also note that for a standard
complex normal random variable a,

E
[

e−λ|a|2 |a|2m
]

=
m!

(1 + λ)m+1
.

Therefore by fixing an ordered partition of the integer k with n parts (some
of the parts may be zero) and then summing over all ordered set partitions
(Sℓ), (Tℓ) with those sizes, we find that

jk(z1, . . . , zk) =
1

k!

∑

(m1,...,mn):
∑

mi=k

∏n

i=1

λmi

i mi!

(1 + λi)mi+1

×
∣

∣

∣

∑

(Si):|Si|=mi

∏

ℓ≥1

∏

i∈Sℓ

φℓ(zi)
∣

∣

∣

2

. (24)

Now it is easy to see that
∑

(Si):|Si|=mi

∏

ℓ≥1

∏

i∈Sℓ

φℓ(zi)

=

(

∏n

i=1

1

mi!

)

per





{φ1(z1) · · · φ1(zk)}m1

· · · · · · · · ·
{φn(z1) · · · φn(zk)}mn



 .

Recall that the geometric random variables χi in the statement of the theorem

have the distributions P [χi = m] =
λm

i

(1+λi)1+m . Therefore we obtain

jk(z1, . . . , zk) =
∑

(m1,...,mn):
∑

mi=k

∏n

i=1

P [χi = mi]

k!
∏n

i=1mi!

×

∣

∣

∣

∣

∣

∣

per





{φ1(z1) · · · φ1(zk)}m1

· · · · · · · · ·
{φn(z1) · · · φn(zk)}mn





∣

∣

∣

∣

∣

∣

2

. (25)

Now we integrate (25) over all the variables zi. Write the absolute square of the
permanent on the right as

per





{φ1(z1) · · · φ1(zk)}m1

· · · · · · · · ·
{φn(z1) · · · φn(zk)}mn



per





{φ1(z1) · · · φ1(zk)}m1

· · · · · · · · ·
{φn(z1) · · · φn(zk)}mn
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and expand these two factors over permuatations π and σ of {1, 2, . . . , k}. Let-

ting Ij denote the interval of integers {1+
∑j−1

r=1mr, . . . ,
∑j

r=1mr} we get a sum
of terms of the form

(

∏n

j=1

∏

i∈π−1(Ij)
φj(zi)

)(

∏n

j=1

∏

i∈σ−1(Ij)
φj(zi)

)

.

By orthogonality of φjs, this term vanishes upon integration unless π−1(Ij) =
σ−1(Ij) for every 1 ≤ j ≤ n. For a given π, there are

∏n
j=1mj ! choices of σ that

satisfy this. For each such σ, we get 1 upon integration over zis. Summing over
all k! choices for π, we get

∫

Λk

jk dµ = P
[

X (Λ) = k
]

=
∑

(m1,...,mn):
∑

mi=k

∏n

i=1
P [χi = mi]

= P

[

n
∑

i=1

χi = k

]

,

which proves the claim about the number of points in Λ. Thus by (25) X is a
mixture of the processes X~m(D), with weights given by

∏n
i=1P [χi = mi], where

~m = (m1, . . . ,mn) with mi being non-negative integers. This is what we wanted
to prove.

Now we prove Theorem 12. As before, we remark that it is applicable to the
restriction of X to D for any Borel set D ⊂ Λ.

Proof of Theorem 12. Suppose D1, . . . , Dr are simultaneously observable as in
the statement of the theorem. Use Proposition 35 to write X as a Poisson
process with intensity |F (x)|2 where F is a Gaussian process with covariance
kernel K. Explicitly, F (x) =

∑

k ak

√
λkφk(x) for x ∈ ∪r

i=1Di, where ak are
i.i.d. standard complex Gaussians, i.e., the real and imaginary parts of ak are
i.i.d. N(0, 1

2 ). Then given {ak}, we know that X (Di), 1 ≤ i ≤ r are indepen-
dent Poisson(

∫

Di
|F (x)|2dµ(x)). Writing

∫

Di
|F (x)|2dµ(x) =

∑

k λk,i|ak|2, we

see that conditionally given {ak}, the variables X (Di) for 1 ≤ i ≤ r have the
same distribution as

∑

k(ηk,1, . . . , ηk,r), where {ηk,i}1≤i≤r are chosen by sam-

pling ηk according to Poisson(λk|ak|2) distribution and then assigning ηk to the

cells Di multinomially with probabilities
λk,i

λk
.

Now when we integrate over the randomness in {ak}, we see that ηk has a
Geometric distribution with mean λk and given ηk, the vector (ηk,1, . . . , ηk,r) is

still Multinomial(ηk;
λk,1

λk
, . . . ,

λk,r

λk
). This completes the proof.

Generalization: α-determinantal processes

One way to generalize the concept of determinantal and permanental processes
is to consider point processes with joint intensities given by

ρn(x1, . . . , xn) = detα(K(xi, xj))
def
=

∑

π∈Sn

αn−ν(π)
n
∏

i=1

K(xi, xπ(i)), (26)
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where ν(π) is the number of cycles in the permutation π.
Such point processes are called α-determinantal processes and were intro-

duced by Vere-Jones in [29] . The values α = −1 and α = +1 correspond to
determinantal and permanental processes, respectively. It is easy to check that
the proof of Theorem 7 can be modified to get:

Proposition 39. For a point process with joint intensities given by (26) (when
it exists), the number of points that fall in any subregion is:

• a sum of independent Binomial(− 1
α ,−αλk) random variables, if − 1

α is a
positive integer.

• a sum of independent Negative Binomial( 1
α ,

αλk

αλk+1) random variables, if
α > 0.

In fact, if − 1
α is a positive integer, this process is just a union of − 1

α i.i.d. copies
of the determinantal process with kernel −αK. Similarly, if 1

α is a positive in-
teger, this process is a union of 1

α i.i.d. copies of the permanental process with
kernel αK. More generally, the union of m i.i.d. copies of the process corre-
sponding to α and kernel K gives a process distributed according to α

m and
kernel mK. If K is real, then 2

m -determinantal processes also exist [25]. For
α > 0, little is known about the existence of α-determinantal processes beyond
these examples. Shirai and Takahashi [25] conjecture the following:

Conjecture 40. If K is a (real) kernel defining a self-adjoint, non-negative
integral operator on L2(Λ) and 0 ≤ α ≤ 2, then the α-determinantal process
with kernel K exists. However, if α > 2, then there exists such a kernel K for
which there is no corresponding α-determinantal process.

We verify this conjecture for α > 4. Let Λ be a discrete space consisting of
three points, and consider the 3 × 3 matrix

K =





2 −1 −1
−1 2 −1
−1 −1 2



 .

It is easy to check that the eigenvalues of K are 3, 3, 0 and

detα(K(i, j))1≤i,j≤3 = 2(4 − α)(α + 1),

which is negative for α > 4. Since point processes must have non-negative joint
intensities, we conclude that no α-determinantal processes with this kernel can
exist for α > 4.

Remark 41. It was pointed out to us by Steve Evans that this question is
closely related to the question of infinite divisibility of a multivariate version of
Gamma distribution that has been studied by Griffiths [12] and Griffiths and
Milne [13]. In short, knowing that a certain multivariate Gamma distribution is
not infinitely divisible would tell us that α-permanental processes for a related
kernel do not exist for sufficiently large α (but does not give us the smallest α
for which this happens).
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