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Determinantal random point fields

Alexander Soshnikov

Abstract. This paper contains an exposition of both recent and rather old results
on determinantal random point fields. We begin with some general theorems includ-
ing proofs of necessary and sufficient conditions for the existence of a determinantal
random point field with Hermitian kernel and of a criterion for weak convergence of
its distribution. In the second section we proceed with examples of determinantal
random fields in quantum mechanics, statistical mechanics, random matrix theory,
probability theory, representation theory, and ergodic theory. In connection with
the theory of renewal processes, we characterize all Hermitian determinantal random
point fields on R1 and Z1 with independent identically distributed spacings. In the
third section we study translation-invariant determinantal random point fields and
prove the mixing property for arbitrary multiplicity and the absolute continuity of
the spectra. In the last section we discuss proofs of the central limit theorem for the
number of particles in a growing box and of the functional central limit theorem for
the empirical distribution function of spacings.
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1. Definition and general properties
of determinantal random point fields

Let E be a one-particle space and let X be a space of countable configurations
of particles in E. In general, E can be a separable Hausdorff space; however, for
our purposes it suffices to set

E =
m∏
j=1

Ej , where Ej ∼= Rd (or Zd). (1.1)

Unless otherwise stated explicitly, we always assume below that E = Rd because
the arguments and the proofs remain valid in the case of (1.1). We assume that
each configuration ξ = (xi) with xi ∈ E for i ∈ Z1 (or i ∈ Z1

+ for d > 1) is locally
finite, that is, the number #K(ξ) = #(xi ∈ K) of particles in K is finite for any
compact set K ⊂ E. The particles in ξ are ordered in some (natural) way, for
instance, xi ≤ xi+1 for d = 1. For d > 1 we assume that either xi = xi+1 or one of
the following conditions holds:

|xi| =
( d∑
j=1

(
x

(j)
i

)2)1/2

< |xi+1| =
( d∑
j=1

(
x

(j)
i+1

)2)1/2

, (1.2)

where xi =
(
x

(1)
i , . . . , x

(d)
i

)
, or |xi| = |xi+1| and there is an r, 1 ≤ r ≤ d, such that

x
(j)
i ≤ x

(j)
i+1, 1 ≤ j ≤ r − 1, and x

(r)
i < x

(r)
i+1.

To introduce a σ-algebra of measurable subsets of X, we first define so-called
cylinder sets. Let B ⊂ E be a Borel set and let n ≥ 0. We refer to CBn =
{ξ ∈ X : #B(ξ) = n} as a cylinder set and define B as the σ-algebra generated
by all cylinder sets (that is, B is the minimal σ-algebra containing all sets of the
form CBn ).

Definition 1. A random point field is a triplet (X,B,P), where P is a probability
measure on (X,B).

This definition leads to a natural question. Namely, how can one construct pro-
bability measures of this kind? The corresponding theory was developed by Lenard
in [1]–[3] for an arbitrary second countable locally compact Hausdorff space E.
To some extent, the arguments are based on Kolmogorov’s fundamental theo-
rem in the theory of stochastic processes [4] and become especially simple in the
case of (1.1). Let t and s be two vectors in E with rational components, t =(
t(1), . . . , t(d)

)
and s =

(
s(1), . . . , s(d)

)
. By ut,s we denote the open parallelepiped{

x =
(
x(1), . . . , x(d)

)
∈ E : x(j) = t(j) + θj(s

(j) − t(j)), 0 < θj < 1, j = 1, . . . , d
}
,

and by R the family of finite unions of open, closed, and semi-closed parallelepipeds
with rational points t and s. Suppose that a joint distribution of non-negative
integer-valued random variables ηD, D ∈ R, is constructed to be finitely additive
(in what follows, we identify this distribution with #D), that is,

ηD =
n∑
i=1

ηDi (a.e.) (1.3)
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for D =
⊔n
i=1 Di with D,Di ∈ R for i = 1, . . . , n. From (1.3), it is immediate that

this distribution is countably additive, that is,

ηD =
∞∑
i=1

ηDi (a.e.) (1.4)

for D =
⊔∞
i=1 Di with D,Di ∈ R for i = 1, 2, . . . . (Of course, it is essential here

that ηD takes non-negative integral values only!)
Further, one can readily see that the joint distribution of the random variables

#D = ηD, D ∈ R, satisfying condition (1.3) (or (1.4)) uniquely determines a
probability distribution on (X,B).

Since it is often convenient to define a distribution of random variables via their
moments, the next definition is quite reasonable.

Definition 2. A locally integrable function ρk : Ek → R1
+ is called a k-point cor-

relation function of a random point field (X,B,P) if, for any disjoint Borel subsets
A1, . . . , Am of E and for any ki ∈ Z1

+, i = 1, . . . , m, such that
∑m
i=1 ki = k, the

following formula holds:

E
m∏
i=1

(#Ai)!

(#Ai − ki)!
=

∫
A
k1
1 ×···×A

km
m

ρk(x1, . . . , xk) dx1 · · ·dxk, (1.5)

where E stands for the expectation with respect to P.

In particular, ρ1(x) is the one-particle density because

E#A =

∫
A

ρ1(x) dx

for any Borel set A ⊂ E. In the general case k ≥ 1 the function ρk(x1, . . . , xk)
admits the following probabilistic interpretation: if [x1, xi + dxi], i = 1, . . . , k,
are infinitesimal parallelepiped neighbourhoods of xi, then the product
ρk(x1, x2, . . . , xk) dx1 · · ·dxk is the probability of the event that each set
[x1, xi + dxi] contains a particle. The existence and uniqueness problem for a
random point field with given correlation functions was studied in [1]–[3]. It is
not surprising that Lenard’s papers revealed many clear parallels to the classical
moment problem [5], [6]. In particular, a random point field is uniquely deter-
mined by its correlation functions if the distribution of the random variables {#A}
is uniquely determined by its moments. In [1] Lenard obtained the following suffi-
cient condition for the uniqueness:

∞∑
k=0

(
1

(k + j)!

∫
Ak+j

ρk+j(x1, . . . , xk+j) dx1 · · ·dxk+j

)− 1
k

=∞ (1.6)

for any bounded Borel set A ⊂ E and any integer j ≥ 0. In fact, we can readily see
that if the series is divergent for j = 0,

∞∑
k=0

(
1

k!

∫
Ak
ρk(x1, . . . , xk) dx1 · · ·dxk

)− 1
k

=∞, (1.6′)

then so is the series (1.6) for any j ≥ 0. In [2], [3] Lenard obtained the following
necessary and sufficient condition for the existence of a random point field with
prescribed correlation functions.
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Theorem 1. (Lenard) Locally integrable functions ρk : Ek → R1, k = 1, 2, . . .,
can be represented as the correlation functions of a random point field if and only
if the following conditions a) and b) are satisfied:

a) Symmetry condition: Each function ρk is invariant under the action of
the symmetric group Sk, that is,

ρk
(
xσ(1), . . . , xσ(k)

)
= ρk(x1, . . . , xk) (1.7)

for any σ ∈ Sk.
b) Positivity condition: For any finite set of compactly supported measurable

functions ϕk : Ek → R1, k = 0, 1, . . . , N , such that

ϕ0 +
N∑
k=1

∑
i1 6=···6=ik

ϕk(xi1, . . . , xik) ≥ 0 (1.8)

for any ξ = (xi) ∈ X, the following inequality holds:

ϕ0 +
N∑
k=1

∫
Ek
ϕk(x1, . . . , xk)ρk(x1, . . . , xk) dx1 · · ·dxk ≥ 0. (1.9)

The necessity of conditions a) and b) is elementary because both conditions have
obvious probabilistic interpretations. In particular, the positivity condition means
that the expectation must be non-negative for any non-negative random variable
of a certain class. The proof of the sufficiency of conditions a) and b) is much
more elaborate and is based on an analogue of the Riesz representation theorem
and on the Riesz–Krein extension theorem (a distant relative of the Hahn–Banach
theorem). It should be noted once more that Lenard’s results hold for an arbitrary
second countable locally compact Hausdorff space E.

One can obtain a somewhat weaker (but as before hopelessly ineffective!) ver-
sion of the positivity condition by taking upper approximations of the functions
ϕk by step functions. By Pk we denote the class of polynomials in k variables
that take non-negative values on N× · · · × N

←− k times −→
, where N = {0, 1, 2, . . .}. Since the

polynomials { k∏
i=1

mi−1∏
j=0

(xi − j), mi ≥ 0

}
form a linear basis in the vector space of all polynomials in k variables, it follows
that any polynomial q(x1, . . . , xk) ∈ Pk can be represented in the form

q(x1, . . . , xk) =
∑

m1,...,mk≥0

am1,...,mk ·
k∏
i=1

mi−1∏
j=0

(xi − j). (1.10)

Positivity∗ condition. For any q ∈ Pk and any bounded Borel sets A1, . . . ,
Ak ⊂ E, k ≥ 1, the following inequality holds:

a0,...,0 +
∑
m≥1

∑
m1+···+mk=m

am1,...,mk

×
∫
∏k
i=1 A

mi
i

ρm(x1, . . . , xm) dx1 · · ·dxm ≥ 0. (1.11)
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Indeed, the left-hand side in (1.11) is equal to

Eq(#A1 , . . . ,#Ak) = E

[
a0,...,0 +

∑
m≥1

∑
m1+···+mk=m

am1,...,mk

×
∑

i1 6=···6=im

χAm1
1 ×···×A

mk
k

(xi1 , . . . , xim)

]
. (1.12)

It is useful to note that, in a sense, the positivity∗ condition is similar to the
condition on the moments of an integer-valued non-negative random variable.

In this paper we study a special class of random point fields that was introduced
by Macchi in [7] (see also [8]). Let K : L2(Rd)→ L2(Rd) be a non-negative operator
that is locally of trace class. The last condition means that the operator K · χB is
of trace class for any bounded Borel set B ⊂ Rd, where χB(x) is the characteristic
function of B. Thus,

K ≥ 0, Tr(χBKχB) < +∞. (1.13)

An integral kernel K(x, y) of the operator K is defined up to a set of Lebesgue
measure zero in Rd × Rd. For our purposes, it is convenient to choose K(x, y) so
that

Tr
(
(χBKχB)n

)
=

∫
Bn

K(x1, x2) ·K(x2, x3) · . . . ·K(xn, x1) dx1 · · ·dxn (1.14)

for an arbitrary bounded measurable set B and any positive integer n. Lemmas 1
and 2 below show that such a choice is indeed possible.

Lemma 1 ([9], [10], Remark 3.4). Let K be a trace class operator on L2(Rd). Then
an integral kernel of K can be chosen so that the function M(x, y) ≡ K(x, x + y)
is continuous as a function of y with range in L1(Rd). Furthermore, if m(y) =∫
M(x, y) dx, then TrK = m(0) =

∫
K(x, x) dx.

Proof. We present the proof only for the case in which K is non-negative. The
general case is quite similar. Let {λj}j≥1 be the set of non-zero eigenvalues of K
and let {ϕj}j≥1 be the set of corresponding eigenfunctions. The canonical form of
K (regarded as a self-adjoint compact operator) is

K =
∑
j≥1

λj · (ϕj , · ) · ϕj. (1.15)

Let us choose y ∈ Rd and regard M(x, y) =
∑∞
j=1 λj ·ϕj(x) ·ϕj(x+ y) as a function

of x. Since

‖ϕj( · ) · ϕj( · + y) ‖1 =

∫
Rd
|ϕj(x) · ϕj(x+ y)| dx ≤ ‖ϕj‖2 · ‖ϕj‖2 = 1,

it follows that the series defining M( · , y) is convergent in L1(Rd) for any y and
that ‖M( · , y)‖1 ≤

∑∞
j=1 λj = TrK < +∞. Let us consider now the function
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K(x, y) ≡ M(x, y − x); it is well defined a.e. in Rd × Rd and gives a kernel for K.
The L1-continuity of M( · , y) follows from the inequality∥∥∥∥∑

j≥1

λj
(
ϕj( · )ϕj( ·+ y1)− ϕj( · ) · ϕj( · + y2)

)∥∥∥∥
1

≤
N∑
j=1

λj · ‖ϕj‖2 · ‖ϕj( · + y1) − ϕj( · + y2)‖2 +
∑
j≥N

λj .

Choosing N sufficiently large, we obtain
∑
j≥N λj <

ε
2 . Choosing y1 close enough

to y2 to make

‖ϕj( · )− ϕj( · + y2 − y1)‖2 ≤
ε

2
∑N
j=1 λj

for any j, 1 ≤ j ≤ N , we see that the first term is also less than ε
2 .

Using Lemma 1, we obtain the following assertion.

Lemma 2. Let K be a non-negative operator on L2(Rd) that is locally of trace
class. Then an integral kernel of K can be chosen so that the function

M
(k)
B (x, y) =

(
(K · χB) · . . . · (K · χB)

←− k times −→

)
(x, x+ y)

is continuous as a function of y with range in L2(B) for any bounded Borel set
B ⊂ Rd and any positive integer k. Furthermore,

Tr(χBKχB)k =

∫
Bk
K(x1, x2) · . . . ·K(xk, x1) dx1 · · ·dxk.

Proof. Let Kn = χ[−n,n]dKχ[−n,n]d . By Lemma 1, one can choose a kernel Kn(x, y)

such that Kn( · , ·+y) is a continuous function of y with respect to the L1([−n, n]d)-
norm. We write Mn(x, y) = Kn(x, x+ y). Since Kn+1(x, y) = Kn(x, y) for almost
all (x, y) ∈ [−n, n]d× [−n, n]d, it follows that Mn+1(x, y) = Mn(x, y) x-a.e. in the
interval |x| ≤ n−|y| for almost all y with |y| ≤ n. The L1-continuity of Mn+1( · , y)
and Mn( · , y) enables us to replace “for almost all y with |y| ≤ n” by “for all y with
|y| ≤ n”. Therefore, for any y the limit values of Mn(x, y) agree x-a.e. We denote
these limit values by M(x, y). The function M( · , y) inherits local L1-continuity
from {Mn( · , y)}. Furthermore, let B be a bounded Borel subset of Rd as above.
Then by setting KB = χBKχB we obtain∫ ∣∣∣∣(KB · . . . ·KB)

←− k times −→
(x, x+ y1)− (KB · . . . ·KB)

←− k times −→
(x, x+ y2)

∣∣∣∣ dx
≤
∫
|KB(x, x1)| · . . . · |KB(xk−2, xk−1)|

× |KB(xk−1, x+ y1) −KB(xk−1, x+ y2)| dx1 · · ·dxk−1 dx

≤
∫ (k−2∏

i=1

KB(xi, xi)

)
·KB(x, x)1/2 ·KB(xk−1, xk−1)1/2

× |KB(xk−1, x+ y1) −KB(xk−1, x+ y2)| dx1 · · ·dxk−1 dx (1.16)
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(in the last inequality we used the fact that KB(x, y) is positive definite). Integra-
ting with respect to x1, . . . , xk−2, we obtain

(TrKB)k−2·
∫
KB(x, x)1/2 ·KB(xk−1, xk−1)1/2

× |KB(xk−1, x+ y1) −KB(xk−1, x+ y2)| dx dxk−1. (1.17)

We note that the integrand in (1.17) is bounded above by the quantity

KB(x, x)1/2 ·KB(xk−1, xk−1)1/2 ·
(
KB(xk−1, xk−1)1/2 ·KB(x+ y1, x+ y1)1/2

+KB(xk−1, xk−1)1/2 ·KB(x+ y2, x+ y2)1/2

)
≤KB(xk−1, xk−1) ·

(
1

2
KB(x, x) +

1

2
KB(x+ y1, x+ y1)

+
1

2
KB(x, x) +

1

2
KB(x+ y2, x+ y2)

)
= KB(xk−1, xk−1) ·KB(x, x) +

1

2
KB(xk−1, xk−1) ·KB(x+ y1, x+ y1)

+
1

2
KB(xk−1, xk−1) ·KB(x+ y2, x+ y2). (1.18)

Let us choose an arbitrarily large N . The integral in (1.17) can be represented as
the sum of two integrals, the first over the set{

(x, xk−1) : KB(x, x)1/2 ·KB(xk−1, xk−1)1/2 ≤ N
}

and the second over the complement of this set. The first integral is not greater
than

(TrKB)k−2 ·N ·
∫ ∣∣KB(xk−1, xk−1 + (x− xk−1) + y1)

−KB(xk−1, xk−1 + (x− xk−1) + y2)
∣∣ dxk−1 dx. (1.19)

Since KB( · , · + y) is uniformly continuous with respect to the L1-norm as y
varies over a compact set B, it follows that (1.19) tends to zero as y1 → y2. The
second integral is bounded above by the value of the expression on the right-hand
side of (1.18) integrated over the set{

(x, xk−1) : KB(x, x)1/2 ·KB(xk−1, xk−1)1/2 > N
}
. (1.20)

For sufficiently large N the Lebesgue measure of the set in (1.20) is arbitrarily
small. Since KB(x, x) ·KB(xk−1, xk−1) is integrable, the second integral also tends
to zero. By Remark 2 below, (1.14) follows from the L1-continuity of the kernel
near the diagonal.
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Definition 3. A random point field on E is said to be determinantal (or fermion)
if its n-point correlation functions are of the form

ρn(x1, . . . , xn) = det
(
K(xi, xj)

)
1≤i≤n. (1.21)

In the case E =
⊔m
j=1Ej with Ej ∼= Rd the definition takes the following form. Let

K be an integral operator of trace class that acts on L2(Rd) ⊕ · · · ⊕ L2(Rd)
←− m times −→

. Then

K has a matrix-valued kernel
(
Krs(x, y)

)
1≤r,s≤m, x, y ∈ Rd.

Definition 3′. A random point field on E is said to be determinantal (or fermion)
if its n-point correlation functions are of the form

ρn(x11, x12, . . . , x1i1, . . . , xm1, xm2, . . . , xmim)

= det
(
Krs(xri, xsj)

)
1≤j≤is, s=1,...,m
1≤i≤ir, r=1,...,m

, (1.21′)

where n = i1 + i2 + · · ·+ im, xri ∈ Er, 1 ≤ r ≤ m, 1 ≤ i ≤ ir .
Remark 1. If the kernel is Hermitian-symmetric and if the n-point correlation func-
tions are non-negative, then the kernel K(x, y) is non-negative definite, and hence
K is a non-negative operator. However, it should be noted that there are determi-
nantal random point fields corresponding to non-Hermitian kernels (see the remark
after (1.36) and examples in §§ 2.2 and 2.5).

Remark 2. Condition (1.13) holds for all continuous kernels that are non-negative
definite (see [11], § III.10 and [12], vol. 3, § XI.4). In the general situation (in
which K(x, x) is locally integrable), it follows from the assumption that K(x, y)
is non-negative definite that KB is a Hilbert–Schmidt operator, and we can apply
the Gokhberg–Krein theorem [11], § III.10, Theorem 10.1, which claims that a
non-negative Hilbert–Schmidt operator A is of trace class if and only if

lim
h→0

1

(2h)2d

∫ d∏
j=1

[
2h− |xj − yj |

]
+
A(x, y) dx dy <∞, (1.22)

where t+ = max(t, 0), x = (x1, . . . , xd), and y = (y1, . . . , yd), and if this condition
holds, then the trace TrA is given by (1.22). One can readily see that the L1-
continuity of A( · , ·+y) implies that TrA =

∫
A(x, x) dx. By the classical Fredholm

formula (see, for instance, [13], Chapter 3), the following formula holds for a trace-
class operator A with continuous kernel (in the usual sense):

Tr
(
∧n(A)

)
=

1

n!

∫
det
(
A(xi, xj)

)
1≤i,j≤n dx1 · · ·dxn. (1.23)

The kernel K(x, y) can be discontinuous in general. However, it follows from (1.14)
and Lidskii’s theorem (see, for instance, [12], vol. IV, § XIII.17 or [13], Theorem 3.7)
that ∫

Bn
K(x1, x2) · . . . ·K(xn, x1) dx1 · · ·dxn =

∞∑
j=1

λnj (KB), (1.24)

Tr
(
∧n(KB)

)
=

∑
j1<···<jn

λj1(KB) · . . . · λjn(KB). (1.25)
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Combining (1.24) and (1.25), we obtain

Tr
(
∧n(KB)

)
=

1

n!

∫
Bn

det
(
K(xi, xj)

)
1≤i,j≤n dx1 · · ·dxn. (1.26)

Since it also follows from the L1(B)-continuity of K( · , ·+ y) that

Tr(K · χB1) · . . . · (K · χBn) =

∫
B1×···×Bn

K(x1, x2) · . . . ·K(xn, x1) dx1 · · ·dxn

(the proof is similar to that of Lemma 2), we also have

Tr
(
(K · χB1) ∧ · · · ∧ (K · χBn)

)
=

1

n!

∫
det
(
K(xi, xj) · χBj(xj)

)
1≤i,j≤n dx1 · · ·dxn. (1.27)

Definition 4. Let the kernel K satisfy the conditions of Lemma 2. We say that
this kernel defines a determinantal random point field (X,B,P) if (1.21) holds.

Theorem 2. Let (X,B, P ) be a determinantal random point field with kernel K.
For finitely many disjoint bounded Borel sets Bj ⊂ E, j = 1, . . . , n, the generating
function of the probability distribution of #Bj = #{xi ∈ Bj} is given by

E
n∏
j=1

z
#Bj

j = det

(
Id +χB

n∑
j=1

(zj − 1) ·K · χBj
)
. (1.28)

Remark 3. The formula (1.28) means that two entire functions coincide. The right-
hand side of (1.28) is well defined as the Fredholm determinant of a trace-class
operator (see, for instance, [12], vol. IV, § XIII.17 or [13], § 3).

We recall that

E
n∏
j=1

z#Bj =
∞∑

k1,...,kn=0

P
(
#Bj = kj, j = 1, . . . , n

)
·
n∏
j=1

z
kj
j (1.29)

and

det

(
Id +χB

n∑
j=1

(zj − 1) ·K · χBj
)

= 1 +
∞∑
m=1

n∑
j1,...,jm=1

m∏
`=1

(zj` − 1) · Tr
(
χB ·K · χBj1 ∧ · · · ∧ χB ·K · χBjm

)
(1.30)

by definition.

Proof of Theorem 2. The Taylor expansion of the generating function in a neigh-
bourhood of the point (z1, . . . , zn) = (1, . . . , 1) is given by

E
n∏
j=1

z
#Bj

j = 1 +
∞∑
m=1

∑
m1+···+mn=m

E
n∏
j=1

(#Bj)!

(#Bj −mj)! (mj)!
·
n∏
j=1

(zj − 1)mj . (1.31)
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The radius of convergence of the series (1.30) is infinite because

Tr
(
K · χBj1 ∧ · · · ∧K · χBjm

)
≤ 1

m!
Tr(K · χB)m, where B =

n⊔
j=1

Bj . (1.32)

Therefore, it suffices to show that the coefficients in the series (1.30) and (1.31)
coincide. In the case n = 1 this follows from (1.5), (1.21), and (1.26). Using (1.27)
instead of (1.26), we can prove the assertion for n ≥ 1 as well.

Remark 4. Theorem 2 is well known in the theory of random point fields (see [8],
p. 140, Exercise 5.4.9) and in random matrix theory [14].

As noted above, if an operator K defines a determinantal random point
field, then it is non-negative because its correlation functions are. It also
follows from Theorem 2 (see (1.28)) that K is bounded above by the identity
operator, that is, K ≤ 1. Indeed, suppose the contrary, and let ‖K‖ > 1.

Then there is a bounded Borel subset B ⊂ E such that ‖KB‖ > 1 + ‖K‖−1
2

> 1.
Let λ1(KB) ≥ λ2(KB) ≥ λ3(KB) ≥ · · · be the eigenvalues of KB . We

choose 0 < z0 < 1 so that 1 + (z0 − 1) · λ1(KB) = 0. Then Ez#B

0 =∑∞
k=1 P(#B = k)zk0 = det(Id +(z0 − 1) · KB) = (by Theorem XIII.106 in [12])

=
∏
j≥1(1 + (z0 − 1) · λj(KB)) = 0. Therefore, P(#B = k) = 0 for any k,

a contradiction. On the other hand, we assume that 0 ≤ K ≤ 1 and that
(1.28) defines something which is a distribution (we hope) of non-negative integer-
valued random variables {#B}.

Lemma 3. Let 0 ≤K ≤ 1 and let K be a locally trace-class operator. Then (1.28)
defines a distribution of non-negative integer-valued random variables {#B} such
that

#B =
n∑
i=1

#Bi (a.e.) (1.33)

for B =
⊔n
i=1 Bi.

We must prove three assertions. Let us show first that (1.28) defines some finite-
dimensional distributions, second, that the finite-dimensional distributions satisfy
the additivity property (1.33), and, third, that the finite-dimensional distributions
are consistent, and therefore we can apply Kolmogorov’s fundamental theorem to
prove the existence of a distribution of {#B}. Since the Fredholm determinant in
(1.28) is equal to 1 for zi = 1, i = 1, . . . , n, it follows that the first statement
will be established provided that the coefficients of the Taylor expansion of the
Fredholm determinant at zi = 0, i = 1, . . . , n, are non-negative. Let 0 ≤ zi ≤ 1,
i = 1, . . . , n; we assume first that ‖K‖ < 1 (in the case ‖K‖ = 1, the assertion will
be obtained below by passage to the limit). Let B =

⊔n
i=1 Bi. Then ‖KB‖ < 1, and

(Id−KB)−1 is a bounded linear operator such that the difference (Id−KB)−1−Id =
KB · (Id−KB)−1 is of trace class. Applying Theorem XIII in [12], vol. 4, p. 105,
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we obtain

det

(
Id +χB

n∑
j=1

(zj − 1) ·K · χBj
)

= det

(
(Id−KB) ·

(
Id +

n∑
j=1

zj · (Id−KB)−1 · χB ·K · χBj
))

= det(Id−KB) · det

(
Id +

n∑
j=1

zj · (Id−KB)−1 · χB ·K · χBj
)

= det(Id−KB) ·
∞∑
k=1

Tr

(
∧k
( n∑
j=1

zj · (Id−KB)−1 · χB ·K · χBj
))

=
∑

k1,...,kn≥0

(k1 + · · ·+ kn)!

k1! · · ·kn!

n∏
j=1

z
kj
j · det(Id−KB)

×Tr
(
∧nj=1

(
∧kj
(
χBj · (Id−KB)−1 · χB ·K · χBj

)))
. (1.34)

It follows from (1.34) that up to positive factors the Taylor coefficients are traces of
exterior products of non-negative operators, and therefore are non-negative. Hence,
(1.28) defines some finite-dimensional distributions.

The second assertion is a simple consequence of Theorem 2 because

E
n∏
i=1

z#Bi = det

(
Id +χB

n∑
i=1

(z − 1)KχBi

)
= det(Id +(z − 1) ·KB) = Ez#B ,

and hence #B =
∑n
i=1 #Bi (a.e.). The formula (1.28) determines the finite-

dimensional distributions of #Bi for disjoint compact sets Bi. If the intersections
of distinct sets Bi are non-empty, then we represent Bi as unions tCki of dis-
joint sets {Ck}, determine the distributions of #Ck , and then apply the additivity
property (1.33) to determine the distributions of the random variables #Bi .

Let us prove now that the distributions of the random variables #Bi are consis-
tent. By the additivity property (1.33), it suffices to prove the desired consistency
for disjoint sets B1, . . . , Bn+1. The last assertion obviously follows from the relation

det

(
Id +χB

n∑
j=1

(zj − 1) ·K · χBj + χB(1− 1) ·K · χBn+1

)

= det

(
Id +χB

n∑
j=1

(zj − 1) ·K · χBj
)
.

This completes the proof of Lemma 3 in the case ‖K‖ < 1. We now assume that

‖K‖ = 1. Let K(ε) := K · (1− ε) for ε > 0, and let #
(ε)
B be the random variables

corresponding to the kernel K(ε). Since ‖K(ε)‖ < 1, the above arguments prove
Lemma 3 for K(ε). We can readily see that

E
n∏
i=1

z
#

(ε)
Bi

i = 1 +
∞∑
m=1

∑
m1+···+mn=m

E
n∏
j=1

(#
B

(ε)
j

)!

(#
B

(ε)
j
−mj)! · (mj)!

·
n∏
j=1

(z1 − 1)mj
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is uniformly convergent to E
∏n
i=1 z

#Bi

i (together with all derivatives) on any com-
pact set as ε→ 0. This proves Lemma 3.

The above results imply the following assertion.

Theorem 3. Let K be a Hermitian, locally trace-class operator on L2(E). Then K
determines a determinantal random point field on E if and only if 0 ≤ K ≤ 1. If
this random point field exists, then it is unique.

A necessary and sufficient condition for the existence of the field was established
above. Uniqueness follows from the general criterion (1.6′) because

1

k!

∫
Ak
ρk(x1, . . . , xk) dx1 · · ·dxk = Tr(∧k(KA)) ≤ Tr(KA)k

k!
≤ 1

k!
.

Let us consider an arbitrary bounded Borel set B ⊂ E. Then Tr(KB) =
E#B < ∞, and the number of particles in B is finite with probability 1.
Let us write X =

⊔
0≤k<∞C

B
k , where CBk = {ξ ∈ X : #B(ξ) = k} as above.

By Lemma 1, we can choose a kernel of the operator χB ·K · χB so that

(χB ·K · χB)(x, x+ y) =
∞∑
i=1

λi(B) · ϕi(x) · ϕi(x+ y)

is a continuous function of y in the L1(B)-norm. We first assume that KB < 1.
Then

LB(x, x+ y) =
∞∑
i=1

λi(B)

1− λi(B)
· ϕi(x) · ϕi(x + y) (1.35)

is also a continuous function of y with respect to the L1(B)-norm, and it defines a
kernel of the operator LB = (Id−KB)−1KB . Taking infinitesimal parallelepipeds
Bj in (1.34), we can show that for each set CBk the distribution of k particles
x1 ≤ x2 ≤ · · · ≤ xk in B is absolutely continuous with respect to Lebesgue measure.
We denote the corresponding density by pk(x1, . . . , xk) and obtain

pk(x1, . . . , xk) = det(Id−KB) · det
(
LB(xi, xj)

)
1≤i,j≤k. (1.36)

(It should be noted that (1.36) can be non-negative even for a non-Hermitian kernel
K; we can readily see that such kernels K must have non-negative minors.) It
follows from the definition of k-point correlation functions that

ρk(x1, . . . , xk)

=
∞∑
j=1

1

j!

∫
Bj
pk+j(x1, . . . , xk, xk+1, . . . , xk+j) dxk+1 · · ·dxk+j. (1.37)

This system of equations can be inverted as follows:

pk(x1, . . . , xk)

=
∞∑
j=0

(−1)j

j!

∫
Bj
ρk+j(x1, . . . , xk, xk+1, . . . , xk+j) dxk+1 · · ·dxk+j. (1.38)
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The functions pk(x1, . . . , xk) are referred to as Janossy probability densities (see [8],
p. 122) or as exclusion probability densities [7]. We easily see that

∞∑
j=0

1

j!

∫
Bj

pj(x1, . . . , xj) dx1 · · ·dxj = 1. (1.39)

The right-hand side of (1.36) still makes sense for ‖KB‖ = λ1(B) = 1 (and thus
the probability densities pk(x1, . . . , xk) are also well defined in this case). Indeed,
the determinant det(Id−KB) =

∏∞
j=1(1 − λj(B)) can be regarded as a function

of λ1, and this function has a first-order zero at the point λ1 = 1. We claim that
det(L(xi, xj))1≤i,j≤k has a pole also of first order at λ1 = 1. To prove this, we write

L = L̃+
˜̃
L, where

L̃i,j =
λ1(B)

1− λ1(B)
· ϕ1(xi) · ϕ1(xj),

˜̃L =
∑
`≥2

λ`(B)

1− λ`(B)
· ϕ`(xi) · ϕ`(xj).

Then
det
(
L(xi, xj)

)
1≤i,j≤k = ∧k

(
L(xi, xj)1≤i,j≤k

)
,

and we can use the fact that rank(L̃) = 1. If 1 is a multiple eigenvalue of KB , say,
if λ1(B) = λ2(B) = · · · = λm(B) = 1 > λm+1(B), the we can set

L̃i,j =
m∑
`=1

λ`(B)

1− λ`(B)
ϕ`(xi) · ϕ`(xj)

and repeat the above reasoning.

Remark 5. Following Macchi, we say that a random point field is regular if, for any
Borel B ⊂ E satisfying #B <∞ (P-a.e.), the generating function Ez#B is entire. It
follows from our results (see also Theorem 4 below) that any determinantal random
point field is regular.

Remark 6. In fact, in [7], Theorem 12, p. 113 (see also [8], p. 138), Macchi claimed
in fact that the condition 0 ≤ K < 1 is necessary and sufficient for an integral
operator K that is locally of trace class to determine a regular random point field
which is fermion (= determinantal in our terminology). As follows from Theorem 3
above, this condition is sufficient but not necessary (as claimed in our Theorem 3,
a necessary and sufficient condition is that 0 ≤ K ≤ 1). For completeness of our
exposition, it should be noted that Macchi studied the case of a continuous kernel
K(x, y) with TrK <∞.

Remark 7. (1.36) was established in [7], p. 113 (see also [8], p. 138 and [14], p. 820).
In concluding § 1 we prove two general results concerning determinantal random

point fields.

Theorem 4.

a) The probability that the total number of particles is finite is either 0 or 1,
depending on whether TrK is finite or not.
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b) The number of particles is less than or equal to n with probability 1 if and
only if K is a finite-rank operator with rank(K) ≤ n.

c) The number of particles is n with probability 1 if and only if K is an orthog-
onal projection of rank(K) = n.

d) For any determinantal random point field, the event that no two particles
coincide has probability 1.

e) For the results of the theorem to be valid for B ⊂ E, K must be replaced
by KB.

Proof.
a) One implication is obvious. Indeed, if TrK = E#E < +∞, then #E < +∞

with probability 1. We assume that TrK = +∞ and consider a monotone absorbing
family of compact sets {Bj}∞j=1 (that is, compact subsets such that Bi ⊂ Bi+1 and⋃∞
i=1Bi = E). Then TrKBj −→

j→∞
+∞. Choose an arbitrarily large N . By the

construction of {Bj},

P(#E ≤ N) = lim
j→∞

P(#Bj ≤ N).

Since

P(#Bj ≤ N) ≤ 2N · E2−#Bj = 2N · det

(
Id−1

2
·KBj

)
≤ 2N · e−

1
2 Tr(KBj )−→

j→∞
0,

we obtain the desired assertion.
b) If rank(K) = n, then, representing the kernel in the form K(x, y) =

∑n
i=1 λi ·

ϕi(x) · ϕi(y) (a.e.) and setting ρn(x1, . . . , xn) = det(K(xi, xj))1≤i,j≤n, we see that
ρm(x1, . . . xm) = 0 (a.e.) for any m > n. Therefore,

E#E · (#E − 1) · . . . · (#E − n) =

∫
ρn+1(x1, . . . , xn+1) dx1 · · ·dxn+1 = 0,

and hence #E ≤ n with probability 1.
Conversely, if #E ≤ n (a.e.), then∫

Bn+1

ρn+1(x1, . . . , xn+1) dx1 . . . dxn+1 = 0

for an arbitrary bounded Borel B ⊂ E, and therefore Tr(∧n+1(KB)) = 0. Since
K ≥ 0, it follows that rank(KB) ≤ n for an arbitrary compact set B, and hence
rank(K) ≤ n.

c) This assertion follows from b) and from the formula

D(#E) = Tr(K −K2) =
n∏
i=1

λi · (1− λi).

d) Let Bn = [−n, n]d. It suffices to show that for any n the probability is 1 that
no two particles interior to Bn can coincide. Let ε be arbitrarily small. Then

P
{
∃ i 6= j : xi = xj ∈ Bn

}
≤ P

{
∃ i 6= j : |xi − xj | < ε, xi ∈ Bn, xj ∈ Bn

}
≤
∫
Bn

(∫
|x−y|<ε

ρ2(x, y) dx

)
dy.
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Since ρ2(x, y) is locally integrable, it follows that the last integral can be made
arbitrarily small as ε→ 0.

The next result gives a criterion for weak convergence of the distributions of
determinantal random point fields.

Theorem 5. Let P and Pn, n = 1, 2, . . . , be probability measures on (X,B) corre-
sponding to determinantal random point fields determined by Hermitian kernels K
and Kn. Let Kn converge to K in the weak operator topology and let

Tr(χBKnχB) −→
n→∞

Tr(χBKχB)

for any bounded Borel B ⊂ E. Then the probability measures Pn converge weakly
to P on cylinder sets.

Proof of Theorem 5. It follows from [13], Theorem 2.20, p. 40, that the assumptions
of our theorem imply the relation

Tr |(Kn −K)B | = ‖(Kn −K)B‖1 −→
n→∞

0. (1.40)

As a consequence of (1.40), we obtain

Tr(Kn · χB1 · . . . ·Kn · χBm) −→
n→∞

Tr(K · χB1 · . . . ·K · χBm) (1.41)

for any compact sets B1, . . . , Bm.
It follows from (1.26) and (1.27) that the joint moments of {#B} with respect to

the measure Pn are convergent to the joint moments with respect to P. Since the
moments of #B define the distribution of #B uniquely in the case of determinantal
random point fields, we can readily prove also the convergence of the probability
distributions on cylinder sets (exercise for the reader).

The remaining sections of the paper are organized as follows. § 2 is devoted to
various examples of determinantal random point fields arising in quantum mechan-
ics, statistical mechanics, random matrix theory, representation theory, and proba-
bility theory. In § 3 we discuss ergodic properties of translation-invariant deter-
minantal random point fields. We indicate the special role of the sine kernel

K(x, y) = sinπ(x−y)
π(x−y)

. In § 4 we discuss the central limit theorem for counting

functions and the functional central limit theorem for the empirical distribution
function of spacings.

It is a great pleasure to thank Ya. Sinai for encouraging me to write this paper,
B. Simon for explaning the result of Lemma 1, G. Olshanski for many valuable
remarks, and A. Borodin, B. Khoruzhenko, R. Killip, and Yu. Kondratiev for useful
conversations.

2. Examples of determinantal random point fields

2.1. Fermion gas. Let H = − d2

dx2 + V (x) be a Schrödinger operator with
discrete spectrum acting on L2(E) and let {ϕ`}∞`=0 be an orthonormal basis of
eigenfunctions, Hϕ` = λ` · ϕ`, where λ0 < λ1 ≤ λ2 ≤ · · · . Let us consider
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the nth exterior power ∧n(H) of H acting from ∧n(L2(E)) to ∧n(L2(E)), where
∧n(L2(E)) = AnL

2(En)) is the space of square-integrable antisymmetric functions

of n variables and ∧n(H) =
∑n
i=1(− d2

dx2
i

+ V (xi)). In quantum mechanics, ∧n(H)

describes a Fermi gas with n particles. The ground state of the Fermi gas is given
by

ψ(x1, . . . , xn) =
1√
n!

∑
σ∈Sn

(−1)σ
n∏
i=1

ϕi−1(xσ(i))

=
1√
n!

det
(
ϕi−1(xj)

)
1≤i,j≤n. (2.1)

(It should be noted that ψ(x1, . . . , xn) coincides, up to a sign ε(x1, . . . , xn), with

the ground state of the operator
∑n
i=1(− d2

dx2
i

+V (xi)) acting on SnL
2(En) with the

boundary conditions ψ
∣∣
xi=xj

= 0.) According to the principal postulate of quantum

mechanics, the squared absolute value of the ground state defines the probability
distribution of n particles. In our case,

p(x1, . . . , xn) = |ψ(x1, . . . , xn)|2

=
1

n!
det
(
ϕi−1(xj)

)
1≤i,j≤n · det

(
ϕj−1(xi)

)
1≤i,j≤n

=
1

n!
det
(
Kn(xi, xj)

)
1≤i,j≤n, (2.2)

where Kn(x, y) =
∑n−1
i=0 ϕi−1(x)ϕi−1(y) stands for the kernel of the orthogonal pro-

jection onto the subspace spanned by the first n eigenfunctions of H. We claim that
(2.2) defines a determinantal random point field. Indeed, the k-point correlation
functions are given by

ρ
(n)
k (x1, . . . , xn) =

n!

(n− k)!

∫
pn(x1, . . . , xn) dxk+1 · · ·dxn

= det
(
Kn(xi, xj)

)
1≤i,j≤k. (2.3)

The last equality in (2.3) follows from the next lemma, which is well known in
random matrix theory.

Lemma 4 ([15],p. 89). Let (E, dµ) be a measurable space and let a kernel K:E2→R1

satisfy the conditions ∫
E

K(x, y) ·K(y, z) dµ(y) = K(x, z), (2.4)∫
E

K(x, x) dµ(x) = const . (2.5)

Then∫
E

det
(
K(xi, xj)

)
1≤i,j≤ndµ(xn) = (const−n+ 1) · det

(
K(xi, xj)

)
1≤i,j≤n−1

. (2.6)
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Let us consider two special cases in more detail. The first concerns the harmonic
oscillator.

a) H = − d2

dx2 + x2, E = R1. In this case, the functions

ϕ`(x) =
(−1)`

π
1
4 · (2` · `!)1/2

exp

(
x2

2

)
d`

dx`
(
exp(−x2)

)
(2.7)

are known as Weber–Hermite functions. To pass to the thermodynamic limit as
n→∞, we make a proper rescaling

xi =
π

(2n)1/2
yi, i = 1, . . . , n. (2.8)

Then it follows from the Christoffel–Darboux formula and from the Plancherel–
Rotach asymptotics of the Hermite polynomials [16] that the kernel

Kn(x1, x2) =
n−1∑
`=0

ϕ`(x1)ϕ`(x2) =

(
n

2

)1/2[
ϕn(x1)ϕn−1(x2) − ϕn(x2)ϕn−1(x1)

x1 − x2

]
has a limit as n→ +∞,

Kn(x1, x2) −→
n→∞

K(y1, y2) =
sinπ(y1 − y2)

π(y1 − y2)
. (2.9)

The convergence of the kernels implies convergence of the k-point correlation func-
tions, which, in turn, implies weak convergence of the distribution(

π

(2n)1/2

)n
pn

(
π

(2n)1/2
y1, . . . ,

π

(2n)1/2
yn

)
dy1 · · ·dyn

to the translation-invariant determinantal random point field with the ‘sine kernel’

K(y1, y2) =
sinπ(y1 − y2)

π(y1 − y2)
.

b) For another example we take E = S1 = {z = eiθ, 0 ≤ θ < 2π} and H = − d2

dθ2 .
Then

ϕ`(θ) =
1√
2π

ei`θ,

pn(θ1, . . . , θn) =
1

n!
det

(n−1∑
`=0

1

2π
ei`(θj−θk)

)
1≤j,k≤n

=
1

n!
det
(
Kn(θi, θj)

)
1≤i,j≤n,

(2.10)

where

Kn(θ1, θ2) =
1

2π

sin
(
n
2 · (θ2 − θ1)

)
sin
(
θ2−θ1

2

) . (2.11)

After the rescaling n
2πθi = yi, i = 1, . . . , n, the rescaled correlation functions have

the same limit as in (2.9), in particular,

lim
n→∞

2π

n
Kn

(
2π

n
y1,

2π

n
y2

)
=

sinπ(y2 − y1)

π(y2 − y1)
.

For additional information, we refer the reader to [17]–[22].
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2.2. Coulomb gas with β = 2β = 2β = 2. Examples a) and b) in § 2.1 can be interpreted
as the equilibrium distributions of n unit charges confined to the one-dimensional
line (Example 2.1a)) or to the unit circle (Example 2.1b)) repelling one another
according to the Coulomb law of two-dimensional electrostatics. Representing the
potential energy in the form

H(z1, . . . , zn) = −
∑

1≤i<j≤n
log |zi − zj |+

n∑
i=1

V (zi),

where V is an external potential, we see that the Boltzmann factor

1

Z
exp
(
−βH(z1, . . . , zn)

)
, β = 2,

is exactly the function pn(z1, . . . , zn) in Example 2.1a) for the case in which
V (z) = 1

2z
2, and pn(θ1, . . . , θn) in Example 2.1b) for V (z) = 0, where zj = eiθj for

j = 1, . . . , n.
The one-component two-dimensional Coulomb gas (a two-dimensional one-com-

ponent plasma) has been studied in a number of papers including [23]–[28]. This
topic is closely related to the theory of non-Hermitian Gaussian random matrices
(to be discussed in § 2.3d). The two-component two-dimensional Coulomb gas
(that is, a system of positively and negatively charged particles) has been studied
in [29]–[34]. Let us begin with a neutral system formed by n positively charged and
n negatively charged particles. Denoting the complex coordinates of these particles
by uj and vj, j = 1, . . . , n, we represent the Boltzmann factor for β = 2 in the form

exp

(
2

∑
1≤i<j≤n

(
log |ui − uj|+ log |vi − vj |

)
− 2

∑
log |ui − vj |

)

=

∏
1≤i<j≤n |ui − uj |2 · |vi − vj |2∏

i,j |ui − vj|2
=

∣∣∣∣ det

(
1

ui − vj

)
1≤i,j≤n

∣∣∣∣2.
In the discrete case, one allows the positive particles to occupy only the sites of the
sublattice γ ·Z2 and the negative particles to occupy only the sites of the sublattice
γ ·
(
Z2 +(1

2
, 1

2
)
)
. The grand canonical ensemble is defined by the partition function,

which has the following form for γ = 1:

Z = 1 +
∑
u,v

λ+(u)λ−(v) · 1

|u− v|2

+

(
1

2!

)2 ∑
u1,u2,v1,v2

λ+(u1)λ+(u2)λ+(v1)λ+(v2) ·
∣∣∣∣ det

(
1

ui − vj

)
1≤i,j≤2

∣∣∣∣2 + · · · ,

where λ+(u) = e−V (u) and λ−(u) = eV (u) are the fugacities (V stands for the
external potential). One can rewrite the last formula as follows:

Z = det

(
Id +

(
λ+

1 + σz

2
+ λ−

1− σz
2

)
×
(
σx + iσy

2
· 1

z − z′ +
σx − iσy

2
· 1

z̄ − z′

))
,
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where σx, σy, and σz are the 2 × 2 Pauli matrices. In particular, we see that the
grand canonical ensemble is a discrete fermion random point field. (The appearance
of a matrix-valued kernel reflects the fact that E = Z2

⊔(
Z2 + (1

2 ,
1
2 )
)
.) Passing

to the continuous limit (γ = 0), one can see that for k ≥ 2 the k-point correlation
functions have finite limits, and the limit kernel K can be expressed in terms of the
Green function of the Dirac differential operator, namely,

K =

(
m+ ·

1 + σz

2
+m− ·

1− σz
2

)
×
(
σx∂x + σy∂y +m+ ·

1 + σz
2

+m− ·
1− σz

2

)−1

,

where m+ and m− are the rescaled fugacities. In the special case m+ = m− ≡ const

(that is, V ≡ 0), the kernel K =

(
K + +, K +−
K −+, K −−

)
can be expressed in terms of

modified Bessel functions (for details, see, for instance, [32]).

2.3. Random matrix models.
a) Unitary invariant ensembles of random matrices. The probability distri-
bution in Example 2.1a) (formulae (2.2) and (2.7)) admits another interpretation.
This distribution is known in random matrix theory as the distribution of eigen-
values in the Gaussian unitary ensemble (G.U.E.). We recall the definition of the
G.U.E. Let us consider the space of n× n Hermitian matrices{

A = (Aij)1≤i,j≤n, Re(Aij) = Re(Aji), Im(Aij) = − Im(Aji)
}
.

A G.U.E. random matrix is defined by its probability distribution

P(dA) = constn · exp(−TrA2) dA, (2.12)

where dA stands for the flat (Lebesgue) measure, that is,

dA =
∏
i<j

dRe(Aij) d Im(Aij)
n∏
k=1

dAkk.

The definition of a G.U.E. random matrix is equivalent to the assumption that the
set

{
Re(Aij), Im(Aij), 1 ≤ i < j ≤ n,Akk, 1 ≤ k ≤ n

}
is formed by mutually

independent random variables and Re(Aij) ∼ N(0, 1
4), Im(Aij) ∼ N(0, 1

4), and

Akk ∼ N(0, 1
2
). The eigenvalues of a random Hermitian matrix are real-valued

random variables. For the derivation of their joint distribution, we refer the reader
to [35], §§ 5.3–5.4, and [15], Chapters 3 and 5. It turns out that the density of the
joint distribution with respect to the Lebesgue measure is given exactly by (2.2)
and (2.7).

We note that the distribution of a G.U.E. random matrix is invariant under any
unitary transformationA→ UAU−1, U ∈ U(n). A natural generalization of (2.12)
that preserves the unitary invariance is given by the formula

P(dA) = constn · exp(−2 ·TrV (A)) dA, (2.13)
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where V (x) can be, for instance, a polynomial of even degree with positive leading
coefficient (see [35], §5). The derivation of the formula for the joint distribution of
the eigenvalues is very similar to the G.U.E. case. The density pn(λ1, . . . , λn) is

given by (2.2), where
{
ϕ`(x) · e−V (x)

}n−1

`=0
are the first n orthonormal polynomials

with respect to the weight exp(−2V (x)). In this case, Kn(x, y) is again a kernel of
a projection, and hence satisfies the conditions of Lemma 4.

b) Random unitary matrices. Let us consider the group U(n) of n× n unitary
matrices. There is a unique translation-invariant probability measure on U(n) (see
[36]), the so-called Haar measure, and we denote it by µHaar. The probability
density of the induced distribution of the eigenvalues is given by the formula

pn(θ1, . . . , θn) = (2π)−n · 1

n!
·

∏
1≤k<`≤n

|eiθk − eiθ` |2,

which coincides with (2.10) and (2.11) (see [15], Chapters 9 and 10 and [17]–[19]).
In the last formula we used the notation

λ1 = eiθ1 , . . . , λn = eiθn .

If one starts from a probability measure constn ·e−Tr V (U)dµHaar(U) on the unitary
group (instead of Haar measure) and replaces the monomials 1√

2π
ei`θ by ψ`(θ) ·

e−
1
2V (θ), where {ψ`}n−1

`=0 are the first n orthonormal polynomials in eiθ with respect

to the weight e−V (θ) dθ, then one still obtains an analogue of the formula (2.10) for
the k-point correlation functions.

c) Random orthogonal and symplectic matrices. The distribution of the
eigenvalues of a random orthogonal or symplectic matrix (distributed in accordance
with Haar measure) has the form of a determinantal random point field with fixed
number of particles. For convenience of the reader, we present below a table of
kernels occurring in the ensembles of random matrices for classical compact groups.

Kn(x, y)

U(n) 1
2π ·

sin(n2 ·(x−y))
sin(x−y2 )

; E = [0, 2π]

SO(2n) 1
2π ·

(
sin( 2n−1

2 ·(x−y))
sin(x−y2 )

+
sin( 2n−1

2 ·(x+y))
sin(x+y

2 )

)
; E = [0, π]

SO(2n+ 1) 1
2π ·

(
sin(n·(x−y))

sin(x−y2 )
− sin(n·(x+y))

sin(x+y
2 )

)
; E = [0, π]

Sp(n) 1
2π ·

(
sin( 2n+1

2 ·(x−y))

sin( x−y2 )
− sin( 2n+1

2 ·(x+y))

sin(x+y
2 )

)
; E = [0, π]

O−(2n+ 2) the same as for Sp(n)

For additional information, we refer the reader to [37]–[42].
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d) Complex non-Hermitian Gaussian random matrices. In [23], Ginibre
considered the ensemble of complex non-Hermitian random n × n matrices whose
2n2 parameters

{
ReAij, ImAij, 1 ≤ i, j ≤ n

}
are independent Gaussian random

variables with mean zero and variance 1
2 . The joint probability distribution of the

matrix entries is then given by the formula

P(dA) = constn · exp
(
−Tr(A∗ · A)

)
dA,

dA =
∏

1≤j,k≤n
dReAjk · d ImAjk.

(2.14)

An equivalent definition of (2.14) is that A = Ã+ i · ˜̃
A, where Ã and

˜̃
A are matri-

ces belonging to two independent Gaussian unitary ensembles. The eigenvalues
λ1, . . . , λn of A are complex random variables. It was shown that their joint distri-
bution is given by a determinantal random point field on R2 with fixed number of
particles (# = n) and with the correlation functions

ρ
(n)
k (z1, . . . , zk) = det

(
Kn(zj , z̄m)

)
1≤j,m≤n, (2.15)

where

Kn(z1, z̄2) =
1

π
exp

(
−|z1|2

2
− |z2|2

2

)
·
n−1∑
`=0

z`1z̄
`
2

`!
.

We mention in passing that the kernel Kn(z1, z2) is convergent to the kernel

K(z1, z̄2) =
1

π
exp

(
−|z1|2

2
− |z2|2

2
+ z1 · z̄2

)
, (2.16)

which defines the limit random point field. The problem of generalizing (2.14) was

studied in [43]–[47]. Let A = Ã + i · v · ˜̃A, where Ã and ˜̃A are two independent
G.U.E. matrices as above and v is a real parameter (it suffices to consider the case

in which 0 ≤ v ≤ 1). Let us introduce a new parameter τ = 1−v2

1+v2 . The distribution
of the matrix entries is

P(dA) = constn · exp

(
− 1

1− τ2
Tr
(
A∗A − τ Re(A2)

))
dA. (2.17)

This formula induces the distribution of the eigenvalues,

pn(z1, . . . , zn)
n∏
j=1

dzj dz̄j = constn · exp

[
− 1

1− τ2
·
n∑
j=1

(
|zj |2 −

τ

2
(z2
j + z̄2

j )

)]

×
∏
j<k

|zj − zk|2 ·
n∏
j=1

dzj dz̄j. (2.18)

It should be noted that (2.18) was obtained also in the papers [27] and [28] as
the Boltzmann factor for the two-dimensional one-component plasma. For the
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calculation of the corresponding correlation functions, we refer the reader to [27],
[28], [46], and [47]. In these calculations the crucial role is played by the introduction
of the orthonormal polynomials in the complex plane with weight

w2(z) = exp

[
− 1

1− τ2

(
|z|2 − τ

2
(z2 + z̄2)

)]
. (2.19)

These orthonormal polynomials can be represented in terms of Hermite polynomi-
als,

ψ`(z) =
τ
`
2

π1/2 · (`!) 1
2 · (1− τ2)

1
4

H`

(
z√
τ

)
, ` = 0, 1, . . . , (2.20)

where
∞∑
n=0

Hn(z) · t
n

n!
= exp

(
zt − t2

2

)
.

We also note that ψ`(z) =
(
π1/2 · (`!)1/2

)−1 · z` for τ = 0 (this case corresponds
to the Ginibre ensemble). The corresponding formula for the correlation functions
(for arbitrary τ) is a generalization of (2.15),

ρ
(n)
k = det

(
Kn(zi, z̄j)

)
1≤i,j≤k,

Kn(z1, z̄2) = w(z1)w(z̄2) ·
n−1∑
`=0

ψ`(z1)ψ`(z̄2).
(2.21)

In the limit as n→∞ the kernel Kn(z1, z2) is convergent to

K(z1, z̄2) = lim
n→∞

Kn(z1, z̄2)

=
1

π(1− τ2)
exp

(
− 1

1 − τ2

(
|z1|2

2
+
|z2|2

2
− z1z̄2

))
. (2.22)

We note that the last formula differs from (2.16) only by the trivial change of

coordinates z → z ·
√

1− τ2. A special regime (known in the physics literature
as the regime of weak non-Hermiticity) was discovered for the model (2.17) by
Fyodorov, Khoruzhenko, and Sommers in [46] and [47]. Let

Re(z1) = n1/2 · x+ n−
1
2x1,

Re(z2) = n1/2 · x+ n−
1
2x2,

Im(z1) = n−
1
2 · y1,

Im(z2) = n−
1
2 · y2.

We assume that the parameters x, x1, x2, y1, and y2 are fixed and consider the

limit as n→∞ under the assumption that limn→∞ n · (1− τ) = α2

2 . Then

lim
n→∞

1

n
Kn(z1, z2) =

1

πα
· exp

[
−y

2
1 + y2

2

α2
+ i · x · y1 − y2

2

]
× gα

(
y1 + y2

2
− i · x1 − x2

2

)
, (2.23)
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where

gα(y) =

∫ √
1−x2

4

−
√

1−x2

4

du√
2π

exp

[
−α

2u2

2
− 2uy

]
(2.24)

(for x > 2, the limit in (2.23) vanishes). The formulae (2.23) and (2.24) define a
determinantal random point field on R2 distinct from (2.16).

e) Positive Hermitian random matrices. Following Bronk [48], we define the
Laguerre ensemble of positive Hermitian n × n matrices. Any positive Hermitian
matrix M can be represented in the form M = A∗A, where A is a complex matrix.
The probability distribution of a random matrix M is given by

constn · exp(−TrA∗A) · [det(A∗A)]α dA, (2.25)

where dA is defined as in (2.14) and α > −1 (the values ±1
2 , 0 of the parameter

α are of special interest). The induced probability distribution of the (positive)
eigenvalues is given by

constn · exp

(
−

n∑
i=1

λi

)
·
n∏
i=1

λαi ·
∏

1≤i<j≤n
(λi − λj)2 dλ1 · · ·dλn. (2.26)

Employing the associated Laguerre polynomials

Lαm(x) ≡ 1

m!
exx−α

dm

dxm
(
e−xxm+α

)
, m = 0, 1, . . . ,

one can rewrite (2.26) as

1

n!
det
(
Kn(xi, xj)

)
1≤i,j≤n, (2.27)

where

Kn(x, y) =
n−1∑
`=0

ϕ
(α)
` (x) · ϕ(α)

` (y), (2.28)

and {
ϕ

(α)
` (x) =

(
Γ(α+ 1) ·

(
n+ α

n

))− 1
2

Lα` (x)

}∞
`=0

is an orthonormal basis with respect to the weight e−x · xα on the positive semi-
axis. Applying Lemma 4 again, we can explicitly evaluate the k-point correlation
functions and show that they are given by the determinants of k× k matrices with
kernel (2.28).

f ) Chain of correlated Hermitian matrices. Let A1, . . . , Ap be complex
Hermitian random n× n matrices with joint probability density

constn · exp

[
−Tr

(
1

2
V1(A1) + V2(A2) + · · ·+ Vp−1(Ap−1) +

1

2
Vp(Ap)

+ c1A1A2 + c2A2A3 + · · ·+ cp−1Ap−1Ap

)]
. (2.29)
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We denote the real eigenvalues of Aj by λ̃j = (λj1, . . . , λjn), j = 1, . . . , p. The
induced probability density of the eigenvalues is then given by

pn(λ̃1, . . . , λ̃p) = constn ·
[ ∏

1≤r<s≤n
(λ1r − λ1s)(λpr − λps)

]

×
[ p−1∏
k=1

det
[
wk(λkr, λk+1,s)

]
r,s=1,...,n

]
, (2.30)

where

wk(x, y) = exp

(
−1

2
Vk(x) − 1

2
Vk+1(y) + ckxy

)
. (2.31)

Eynard and Mehta established [49] that the correlation functions of this model,

ρk1,...,kp(λ11, . . . , λ1k1; . . . ; λp1, . . . , λpkp)

=

p∏
j=1

n!

(n− kj)!

∫
pn(λ̃1, . . . , λ̃p) ·

p∏
j=1

n∏
rj=kj+1

dλjrj ,

can be written as a k × k determinant with k = k1 + · · ·+ kp,

det
[
Kij(λir , λjs)

]
r=1,...,ki; s=1,...,kj; i,j=1,...,p

. (2.32)

For the explicit formulae for the kernels Kij(x, y), we refer the reader to [49] (see
also [50]). We note that (2.32) defines a determinantal random point field with
one-particle space E which is the union of p copies of R1.

g) Universality in random matrix models. Airy, Bessel, and sine random
point fields. We begin with a general class of kernels of the form

K(x, y) =
ϕ(x)ψ(y) − ϕ(y)ψ(x)

x− y , (2.33)

where
m(x)ϕ′(x) = A(x)ϕ(x) + B(x)ψ(x),

m(x)ψ′(x) = −C(x)ϕ(x)−A(x)ψ(x),
(2.34)

and m(x), A(x), B(x), and C(x) are polynomials. It was shown by Tracy and
Widom [51] that the Fredholm determinants of integral operators with kernels (2.33)
and (2.34) restricted to a finite union of intervals satisfy certain partial differential
equations. Airy, Bessel, and sine kernels are special cases of (2.33) and (2.34). To
define the sine kernel, we set

ϕ(x) ≡ 1

π
sin(πx), ψ(x) ≡ ϕ′(x)(

m(x) ≡ 1, A(x) ≡ 0, B(x) ≡ 1, C(x) ≡ π2
)
;
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for the Airy kernel we set

ϕ(x) ≡ Ai(x), ψ(x) ≡ ϕ′(x)(
m(x) ≡ 1, A(x) ≡ 0, B(x) ≡ 1, C(x) ≡ −x

)
;

finally, for the Bessel kernel we set

ϕ(x) ≡ Jα(
√
x ), ψ(x) ≡ xϕ′(x)(

m(x) ≡ x, A(x) ≡ 0, B(x) ≡ 1, C(x) ≡ 1

4
(x− α2)

)
.

Here Ai(x) is the Airy function and Jα(x) is the Bessel function of order α (see [16]).
For the corresponding kernels, the following exact representations hold [51]–[53]:

Ksine(x, y) =
sinπ(x − y)
π(x − y) , (2.35)

KAiry(x, y) =
Ai(x) ·A′i(y) −Ai(y) ·A′i(x)

x− y

=

∫ ∞
0

Ai(x+ t) ·Ai(y + t) dt, (2.36)

KBessel(x, y) =
Jα(
√
x) · √y · J ′α(

√
y ) −

√
x · J ′α(

√
x ) · Jα(

√
y )

2 · (x− y)

=

√
x · Jα+1(

√
x ) · Jα(

√
y )− Jα(

√
x )
√
y · Jα+1(

√
y )

2 · (x− y) . (2.37)

As mentioned above, the sine kernel arises as a scaling limit in the bulk of the
spectrum in the G.U.E. ([15], Chapter 5). In turn, the Airy kernel arises as a
scaling limit at the edge of the spectrum in the G.U.E. and at the (soft) right edge
of the spectrum in the Laguerre ensemble, while the Bessel kernel arises as a scaling
limit at the (hard) left edge in the Laguerre ensemble; see [54], [52], and [53]. The
universality conjecture in random matrix theory asserts that such limits should be
universal for a broad class of Hermitian random matrices. This conjecture was
recently proved for unitary invariant ensembles (2.13) in the bulk of the spectrum
([55]–[57] and [35]) and for some classes of Wigner matrices in the bulk of the
spectrum [58] and at the edge [59].

In the next subsection we completely characterize the determinantal random
point fields on R1(Z1) with independent identically distributed spacings.

2.4. Determinantal random point fields with independent identically
distributed spacings. Renewal processes. We begin with some basic facts of
the theory of renewal processes (see, for instance, [60] and [8]). Let {τk}∞k=1 be a
sequence of independent identically distributed non-negative random variables and
let τ0 be a non-negative random variable independent of {τk}∞k=1 (in general, the
distribution of τ0 is different). We set

xk =
k∑
j=0

τj, k ≥ 0. (2.38)
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This gives us a random configuration {xk}∞k=0 in R1
+. In probability theory, a

random sequence {xk}∞k=0 is known as a delayed renewal process. We assume that
the distribution of the random variables τk, k ≥ 1, has a density f(x), the so-called
interval distribution density, and a finite expectation Eτ1 =

∫∞
0
xf(x) dx. The

renewal density is then defined as follows:

u(x) =
∞∑
k=1

fk∗(x) = f(x) +

∫ x

0

f(x− y)f(y) dy

+

∫ x

0

∫ x−y2

0

f(x − y1 − y2)f(y1)f(y2) dy1 dy2 + · · · . (2.39)

One can express higher-order correlation functions of the renewal process via the
corresponding one-point correlation function and the renewal density. Indeed (see
[8], p. 136), the following formula holds for t1 ≤ t2 ≤ · · · ≤ tk, where k > 1:

ρk(t1, . . . , tk) = ρ1(t1) · u(t2 − t1) · u(t3 − t2) · . . . · u(tk − tk−1). (2.40)

It follows immediately from the above definitions that a random point field on R1
+

has independent identically distributed nearest spacings if and only if it is a renewal
process (2.38). To make this process translation invariant, the probability density
of τ0 must be given as

1

Eτ1

∫ +∞

x

f(t) dt ([8], p. 72 and [60], § XI.3). (2.41)

In this case, the one-point correlation function is identically constant, ρ1(x) ≡ ρ>0,
and thus it follows from (2.40) that the distribution of the process is uniquely deter-
mined by the renewal density (in particular, one can recover ρ from the function
u(x) because ρ = (Eτ1)−1, and the Laplace transforms of f and u admit a simple
relationship). Macchi [7] treated a special class of translation-invariant renewal
processes with interval distribution density given by the formula

f(x) = 2ρ(1− 2ρα)−
1
2 · e− x

α · sinh

(
(1− 2ρα)

1
2 ·
(
x

α

))
, (2.42)

where

2ρα ≤ 1, ρ > 0, α > 0, (2.43)

and showed that it is a determinantal random point field with kernel

K(x, y) = ρ · exp(−|x− y|/α) (2.44)

(conditions (2.43) mean exactly that 0 < K ≤ Id).
In the next theorem, we classify all delayed renewal processes that are also

determinantal random point fields on R1
+.
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Theorem 6. A determinantal random point field on R1
+ with Hermitian kernel has

independent identically distributed spacings if and only if the corresponding integral
operator, which is locally of trace class, satisfies the following two conditions in
addition to the condition 0 ≤ K ≤ Id:

a)

K(x1, x2) ·K(x2, x3) = K(x1, x3) ·K(x2, x2) (2.45)

for almost all x1 ≤ x2 ≤ x3;

b) the function

K(x2, x2)− K(x1, x2) ·K(x2, x1)

K(x2, x1)
(2.46)

depends only on the difference x2 − x1 for almost all x1 ≤ x2. Moreover, if the
determinantal random point field is translation invariant, then it is given by the
formulae (2.42)–(2.44).

Remark 8. Of course, a translation-invariant determinantal random point field on
R1

+ can be uniquely extended to a translation-invariant determinantal random point
field on R1.

Proof of Theorem 6. Let us first prove the “only if” part of the theorem. Suppose
that a determinantal random point field with kernel K(x, y) is a delayed renewal
process. It follows from (2.40) with k = 2, 3 that the renewal density satisfies the
formula

u(y − x) = K(y, y) − K(x, y) ·K(y, x)

K(x, x)
, y ≥ x, (2.47)

and the expression for ρ3(x1, x2, x3), x1 ≤ x2 ≤ x3, becomes

ρ3(x1, x2, x3) = K(x1, x1) · u(x2 − x1) · u(x3 − x2)

= K(x1, x1) ·
(
K(x2, x2)− K(x1, x2) ·K(x2, x1)

K(x1, x1)

)
×
(
K(x3, x3) − K(x2, x3) ·K(x3, x2)

K(x2, x2)

)
. (2.48)

Since the particles are in the set A = {x : K(x, x) > 0} with probability 1, we can
always consider the random point field restricted to A.

Comparing

ρ3(x1, x2, x3) = det
(
K(xi, xj)

)
1≤i,j≤3

(2.49)

with (2.48), we see that

K(x1, x2) ·K(x2, x1) ·K(x2, x3) ·K(x3, x2) · 1

K(x2, x2)

= −K(x1, x3) ·K(x3, x1) ·K(x2, x2) +K(x1, x2) ·K(x2, x3) ·K(x3, x1)

+K(x1, x3) ·K(x3, x2) ·K(x2, x1),
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which is equivalent to

1

K(x2, x2)
·
(
K(x1, x2) ·K(x2, x3) −K(x2, x2) ·K(x1, x3)

)
×
(
K(x3, x2) ·K(x2, x1)−K(x3, x1) ·K(x2, x2)

)
= 0.

The third factor in the last formula is the complex conjugate of the second factor,
and hence we obtain relation (2.45). Condition b) of the theorem has already been
established in (2.47). For a translation-invariant determinantal random point field,
the kernel K(x, y) depends only on the difference x − y, and therefore K(x, y) =
ρ·e−|x−y|/α ·eiβ(x−y), and the unitary equivalent kernel e−iβxK(x, y) ·eiβy coincides
with (2.44). Let us now prove the “if” part of the theorem. If a kernel satisfies
conditions (2.45) and (2.46), then the renewal density must satisfy

u(x2 − x1) = K(x2, x2) − K(x1, x2) ·K(x2, x1)

K(x1, x1)

for almost all x1 ≤ x2. Let x1 ≤ x2 ≤ · · · ≤ xk. Our goal is to derive the algebraic
identity

det
(
K(xi, xi)

)
1≤i,j≤k

= K(x1, x1) ·
k−1∏
i=1

(
K(xi+1, xi+1)− K(xi, xi+1) ·K(xi+1, xi)

K(xi, xi)

)
(2.50)

from the basic identities for the commuting variablesK(xi, xj) andK(xi, xj), which
satisfy the following equations:

K(xi, xj) ·K(xj , x`) = K(xi, x`) ·K(xj , xj), 1 ≤ i ≤ j ≤ ` ≤ k,
K(xi, xj) = K(xj , xi).

Let us introduce the functions a(x) = K(x, x) · K(0, x)−1 and b(x) = K(0, x)−1.
Then for i ≤ j

K(xi, xj) = a(xi) · b(xj)−1,

K(xj , xi) = a(xi) · b(xj)
−1
.

This enables us to rewrite the determinant in the form∣∣∣∣∣∣∣∣∣
a(x1) · b(x1)−1, a(x1) · b(x2)−1, . . . , a(x1) · b(xn)−1

a(x1) · b(x2)
−1
, a(x2) · b(x2)−1, . . . , a(x2) · b(xn)−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a(x1) · b(xn)
−1
, a(x2) · b(xn)

−1
, . . . , a(xn) · b(xn)−1

∣∣∣∣∣∣∣∣∣ = a(x1) · b(x1)−1

×
n−1∏
i=1

(
b(xi+1)−1 · b(xi+1)

−1 ·
(
a(xi+1) · b(xi+1) − a(xi) · b(xi)

))
, (2.51)
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which is exactly the right-hand side of (2.50). Since the relation

ρk(x1, . . . , xk) = ρ1(x1) ·
n−1∏
i=1

u(xi+1 − xi), x1 ≤ x2 ≤ · · · ≤ xk,

is thus established, we see that the remaining part of the proof is quite easy. Let
pk(x1, . . . , xk) be the Janossy density, that is, the probability density of there being
particles at the points x1, . . . , xk and none in between. We recall that

pk(x1, . . . , xk) =
∞∑
j=1

(−1)j

j!
·
∫
ρk+j(x1, . . . , xk; yk+1, . . . , yk+j) dyk+1 · · ·dyk+j,

where the jth term is integrated over the domain (x1, xk)× · · · × (x1, xk)
←− j times −→

. We claim

that

pk(x1, . . . , xk) = ρ1(x1) ·
k−1∏
i=1

f(xi+1 − xi), (2.52)

where the interval distribution density f and the renewal distribution density u are
related via the convolution equation

u = f + u ∗ f. (2.53)

This completes the proof of Theorem 6.

Remark 9. An analogue of Theorem 6 holds in the discrete case as well. The proof is
the same. One has only to replace (2.42) by the solution of the discrete convolution
equation (2.53) with u(n) = 1 − ρ · e−2βn and K(n1, n2) = ρ · e−β|n1−n2|, where
0 < ρ ≤ 1 and β > 0, so that

f̂(t) =
∞∑
n=0

f(n)eint =
(1− ρ)− (e−2β − ρ) · eit

(2− ρ) − (2e−2β − ρ+ 1) · eit + e−2βe2it
. (2.54)

Remark 10. Theorem 6 admits a generalization to the case in which the multipli-
cative identity (2.45) still holds but the renewal density

u(x1, x2) = K(x2, x2) − K(x1, x2) ·K(x2, x1)

K(x1, x1)

is no longer a function depending only on the difference of x1 and x2. These pro-
cesses have independent spacings that need not be identically distributed because
the distribution f(x, y)dy of the spacings depends on the coordinate x of the left
particle. Thus,

u(x1, x2) = f(x1, x2) +

∫ x2

x1

f(x1, y1) · f(y1, x2) dy1

+

∫ x2

x1

∫ y2

x1

f(x1, y1) · f(y1, y2) · f(y2, x2) dy1 dy2 + · · · , (2.55)
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where f(x, y) is a one-parameter family of probability densities such that

supp f(x, · ) ⊂ [x,+∞], f ≥ 0,

∫
f(x, y) dy = 1.

Let us recall the inversion formula for equation (2.55),

f(x1, x2) = u(x1, x2)−
∫ x2

x1

u(x1, y1)u(y1, x2) dy1

+

∫ x2

x1

∫ y2

x1

u(x1, y1) · u(y1, y2) · u(y2, x2) dy1 dy2 − · · · . (2.56)

Writing K(x, y) = a(x)b(y)−1, x ≤ y, where a(x) =
K(x,x)
K(0,x) , b(y) = 1

K(0,y) , and

u(x, y) = 1
|b(y)|2 · (a(y)b(y)− a(x)b(x)), we see that in principle (2.56) describes the

class of corresponding interval distribution densities u(x, y).

2.5. Plancherel measure on partitions and its generalizations, namely,
zzz-measures and Schur measures. By a partition of n = 1, 2, . . . we mean a
set of non-negative integers λ = (λ1, . . . , λm) such that λ1 + · · · + λm = n and
λ1 ≥ λ2 ≥ · · · ≥ λm. By Par(n) we denote the set of all partitions of n. For
the basic facts about partitions we refer the reader to [61]–[64]. In particular, we
recall that any partition λ of n (we use the notation λ ` n) can be identified with
a Young diagram with |λ| = n boxes. Let λ′ be the partition corresponding to
the transposed diagram. Let d be the number of diagonal boxes in λ (that is, the
number of diagonal boxes in the Young diagram corresponding to λ). We denote
by (p1, . . . , pd | q1, . . . , qd) the Frobenius coordinates of λ, where pj = λj − j and
qj = λ′j − j for j = 1, . . . , d. The important role of partitions in representation
theory is easy to see from the fact that the elements of Par(n) can be put in a
one-to-one correspondence with the irreducible representations of the symmetric
group Sn (see, for instance, [64] and [62]). The Plancherel measure Mn on the set
Par(n) of all partitions of n is given by the formula

Mn(λ) =
(dimλ)2

n!
, (2.57)

where dimλ is the dimension of the corresponding representation of Sn. The dimen-
sion dimλ can be expressed in terms of the Frobenius coordinates via the determi-
nantal formula

dimλ

n!
= det

[
1

(pi + qj + 1) · pi! · qi!

]
1≤i,j≤d

, |λ| = n (2.58)

([65], Proposition 2.6, (2.7)). Let Par =
⊔∞
n=0 Par(n) and consider the following

measure Mθ on Par, which can be referred to as the grand canonical ensemble by
analogy with statistical mechanics:

Mθ(λ) = e−θ · θ
n

n!
Mn(λ) for λ ∈ Par(n), n = 0, 1, 2, . . ., 0 ≤ θ <∞. (2.59)
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The measure Mθ is also said to be the poissonization of the measure Mn. It follows
from (2.59) that |λ| is distributed by the Poisson law with mean θ, and Mn is
the conditional measure of Mθ under the condition |λ| = n. Using the Frobenius
coordinates, we can represent the measures Mθ and Mn as random point fields on
the lattice Z1. It was recently proved by Borodin, Okounkov, and Olshanski [66]
and independently by Johansson [67] that Mθ is a determinantal random point
field (we note to be exact that in [67] only the restriction of Mθ to the first half(
p1, . . . , pd(λ)

)
of the Frobenius coordinates was studied and, as a result, only the

part of (2.60) corresponding to xy > 0 was obtained). To formulate the results of
[66] and [67], we define the modified Frobenius coordinates of the partition λ as
follows:

Fr(λ) :=

{
p1 +

1

2
, . . . , pd +

1

2
,−q1 −

1

2
, . . . ,−qd −

1

2

}
.

Let ρθk(x1, . . . , xk) be the k-point correlation function of Mθ in the modified Frobe-
nius coordinates, where

{x1, . . . , xk} ⊂ Z1 +
1

2
.

Then

ρθk(x1, . . . , xk) = det
[
K(xi, xj)

]
1≤i,j≤k,

where K is the so-called discrete Bessel kernel,

K(x, y) =



√
θ ·

J|x|− 1
2
(2
√
θ ) · J|y|+ 1

2
(2
√
θ )− J|x|+ 1

2
(2
√
θ ) · J|y|−1

2
(2
√
θ )

|x| − |y|
for x · y > 0,

√
θ ·

J|x|− 1
2
(2
√
θ ) · J|y|− 1

2
(2
√
θ )− J|x|+ 1

2
(2
√
θ ) · J|y|+ 1

2
(2
√
θ )

x− y
for x · y < 0,

(2.60)
and Jx( · ) is the Bessel function of order x. We note that the kernel K(x, y) is not
Hermitian symmetric; however, the restrictions of this kernel to the positive and
negative semiaxes are Hermitian. The formula (2.60) can be regarded as a limit
case of a more general theorem obtained by Borodin and Olshanski for the so-called
z-measures (see Theorem 3.3 in [68], and also [69]–[71] and the references therein).
Let z and z′ be complex numbers such that either

z′ = z̄ ∈ C \ Z (2.61)

or

[z] < min(z, z′) ≤ max(z, z′) < [z] + 1,

where z and z′ are real and [z] stands for the integral part of z. Let (x)j =
x · (x+1) · . . . · (x+j−1) and (x)0 = 1. Below we introduce a 2-parameter family of

probability measures M
(n)
z,z′ on Par(n). These measures arose in harmonic analysis
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on the infinite symmetric group; see [71] and [65]. By definition,

M
(n)
z,z′(λ) =

(z · z′)d(λ)

(z · z′)n
·
d(λ)∏
i=1

(z + 1)pi · (z′ + 1)pi

× (−z + 1)qi · (−z′ + 1)qi ·
dim2 λ

|λ|! . (2.62)

The above conditions on z and z′ are equivalent to the assumption that the products

(z)j · (z′)j and (−z)j · (−z′)j are positive for any j = 1, 2, . . . . We note that M
(n)
z,z′

is convergent to the Plancherel measure Mn as z, z′ → ∞. The measure M
(n)
z,z′ is

referred to as the z-measure of level n. Let us consider now the negative binomial
distribution on non-negative integers,

(1 − ξ)z·z
′
· (z · z′)n

n!
ξn, n = 0, 1, . . .,

where ξ is an additional parameter, 0 < ξ < 1. The corresponding mixture of the
z-measures of levels n = 0, 1, 2, . . . defines a measure Mz,z′,ξ on Par. We note that
Mz,z′,ξ degenerates into Mθ as z, z′ →∞ and ξ → 0 in such a way that zz′ξ → θ.
As shown in [68], the measure Mz,z′,ξ is a determinantal random point field on Z1+ 1

2
in the modified Frobenius coordinates. The corresponding kernel can be expressed
in terms of the Gauss hypergeometric function; this is the so-called hypergeometric
kernel. It turns out that many known kernels can be obtained as degenerations of
the hypergeometric kernel: in particular, the Hermite kernel ((2.2), (2.3), (2.7)), the
Laguerre kernel ((2.2), (2.28)), the Meixner kernel ((2.67) below), and the Charlier
kernel. For the hierarchy of degenerations of the hypergeometric kernel, we refer
the reader to [69], §9. Recently, Okounkov [72] showed that the measures Mz,z′,ξ

are special cases of an infinite-parameter family of probability measures on Par, the
so-called Schur measures, which are defined as follows:

M(λ) =
1

z
sλ(x) · sλ(y), (2.63)

where sλ are the Schur functions (for the definition of the Schur functions, see [61]
or [63]), and x = (x1, x2, . . . ) and y = (y1, y2, . . . ) are sets of parameters such that
the value

Z =
∑
λ∈Par

sλ(x) · sλ(y) =
∏
i,j

(1− xiyj)−1 (2.64)

is finite, and {xi}∞i=1 = {yi}∞i=1. The measures Mz,z′,ξ formally correspond to the
case in which

∑∞
i=1 x

m
i = ξ

m
2 · z and

∑∞
i=1 y

m
i = ξ

m
2 · z′, m = 1, 2, . . . . To be

precise, one must regard the Newton power sums as real parameters and express
the Schur functions as polynomials in the power sums. The reader probably would
not be too surprised to learn that the Schur measures can also be regarded as
determinantal random point fields ([72], Theorems 1 and 2)!
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2.6. Two-dimensional random growth model. For the last example we take
the following two-dimensional random growth model [73]. Let {aij}i,j≥1 be a family
of independent identically distributed random variables with a geometric law

p(aij = k) = p · qk, k = 0, 1, 2, . . ., (2.65)

where 0 < q < 1 and p = 1 − q. The distribution (2.65) can be regarded as the
distribution of the instant of first success in a series of Bernoulli trials. We set

G(M,N) = max
π

∑
(i,j)∈π

aij, (2.66)

where the maximum is taken over all ‘up/right’ paths π from (1,1) to (M,N), or,
in other words, over the paths

π =
{

(i1, j1) = (1, 1), (i2, j2), (i3, j3), . . . , (iM+N−1, jM+N−1) = (M,N)
}

such that (ik+1, jk+1) − (ik, jk) ∈
{

(0, 1), (1, 0)
}
. We mention in passing that the

distribution of the random variables {G(M,N)} can be interpreted in terms of
randomly growing Young diagrams and totally asymmetric exclusion processes with
discrete time (for details, see [73]). Without loss of generality we can assume
that M ≥ N ≥ 1. To state the connection with determinantal random point
fields more explicitly, we introduce the discrete weight wqK(x) =

(
x+K−1

x

)
· qx,

K = M − N + 1, on the set of non-negative integers x = 0, 1, 2 . . . . Normalized
orthogonal polynomials {Mn(x)}n≥0 with respect to the weightwqK are proportional
to the classical Meixner polynomials [74]. The kernel

KM,N (x, y) =
N−1∑
j=0

Mj(x)Mj(y)
(
wqK(x)wqK(y)

)1/2
(2.67)

satisfies the conditions of Lemma 4 with respect to the counting measure on the
non-negative integers. Therefore, the function

pN (x1, . . . , xN) =
1

N !
det
(
KM,N (xi, xj)

)
1≤i,j≤N (2.68)

defines a discrete determinantal random point field. It was shown by Johansson
that the distribution of the random variable G(M,N) coincides with the distri-
bution of the rightmost particle in (2.68). After an appropriate rescaling, this
distribution is convergent as N → ∞, M → ∞, and M

N → const to the distri-
bution of the rightmost particle in the Airy random point field (2.36). Additional
information on the topic of the last two subsections can be found in the recent
papers/preprints [75]–[88].

3. Translation-invariant determinantal random point fields

As above, let (X,B,P) be a random point field with one-particle space E (so
that X is a space of locally finite configurations of particles in E), let B be the
Borel σ-algebra of measurable subsets of X, and let P be a probability measure on
(X,B). Throughout the section, we always assume that E = Rd or Zd. We define
a continuous action {T t}t∈E of the additive group E on X in the following natural
way:

T t : X → X, (T tξ)i = (ξ)i + t. (3.1)
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Definition 5. A random point field (X,B,P) is said to be translation invariant if

P(T−tA) = P(A)

for any A ∈ B and any t ∈ E.

Translation invariance of a random point field implies translation invariance of
the k-point correlation functions,

ρk(x1 + t, . . . , xk + t) = ρk(x1, . . . , xk) a.e., k = 1, 2, . . ., t ∈ E. (3.2)

Conversely, if {ρk} are invariant under {T t}, then there is a corresponding random
point field that is translation invariant [3]. In particular, if translation-invariant
correlation functions determine the measure P uniquely, then the random point
field is translation invariant. In the case of a determinantal random point field, this
implies the following criterion: a determinantal random point field is translation
invariant if and only if the kernel K is translation invariant, that is, K(x, y) =
K(x − y, 0) =: K(x − y). In this section we restrict our attention to translation-
invariant determinantal random point fields. We are interested in the ergodic
properties of the dynamical system (X,B,P, {T t}). For convenience of the reader,
we recall basic definitions of ergodic theory [89].

• A dynamical system is said to be ergodic if the measure P(A) of any invariant
set A is either 0 or 1.

• A dynamical system has the mixing property of multiplicity r ≥ 1 if

lim
t1,...,tr→∞

∫
X

f0(ξ)f1(T t1ξ) : · · · : fr(T t1+···+trξ) dF =
r∏
i=0

∫
X

fi(ξ) dP (3.3)

for any functions f0, f1, . . . , fr ∈ Lr+1(X,B,P).
• A dynamical system has absolutely continuous spectrum if∫

X

f(ξ)f(T tξ) dP =

∫
ei(t·λ)hf (λ) dλ (3.4)

for any f ∈ L2(X,B,P) orthogonal to the constants, where the integration
on the right-hand side of (3.4) is over Rd in the continuous case and over
[0, 2π]d in the discrete case, and hf (λ)dλ is a finite measure absolutely
continuous with respect to Lebesgue measure. One can interpret (3.4) as
follows. Let us introduce a d-parameter group {U t}t∈E of unitary operators
on the space L2(X,B,P) by the formula

(U tf)(ξ) = f(T tξ).

Usually, this family of unitary operators is said to be associated with the
dynamical system. We can readily see that the operators in {U t} commute
with each other. Since L2(X,B,P) is separable and (U tψ, ϕ) is a measur-
able function of t for any ψ, ϕ ∈ L2(X,B,P), it follows by von Neumann’s
theorem ([12], vol. 1, Theorem VIII.9) that U t is strongly continuous.
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In the case E = Rd one has hf(λ)dλ = d(f, Qλf), where dQλ is a projection-
valued measure, namely,

Qλ = Q(−∞,λ1)×···×(−∞,λd) =
d∏
j=1

χ(−∞,λj)(Aj),

where {Aj}dj=1 are the infinitesimal generators of the one-parameter groups

U (0,...,tj,0,...,0), and χ(−∞,t) is the characteristic function of the set (−∞, t)
([12], vol. 1, Theorem VIII.12). In the discrete case E = Zd, and dQλ is a
projection-valued measure on the d-dimensional torus,

Q[1,eiλ1 ]×···×[1,eiλd ] =
d∏
j=1

χ[1,eiλj ](Uj), Uj = U (0,...,tj=1,...,0).

Theorem 7. Let (X,B,P) be a translation-invariant determinantal random point
field. Then the dynamical system (X,B,P, {T t}) is ergodic, it has the mixing prop-
erty of any multiplicity, and its spectrum is absolutely continuous.

Remark 11. Recall that absolute continuity of the spectrum implies the mixing
property of multiplicity 1, and, in turn, ergodicity follows from the latter prop-
erty [89].

Proof of Theorem 7. We note that the linear combinations of the functions

f(ξ) =
N∏
j=1

Sgj (ξ), N ≥ 1, Sg(ξ) =
∑
i

g(xi), gj ∈ C∞0 (Rd), j = 1, . . .N, (3.5)

are dense in L2(X,B,P). Therefore, it suffices to establish (3.3) and (3.4) for the
functions of this form. We begin with a lemma calculating the expectation of (3.5).

Lemma 5. a)

EP

N∏
j=1

Sgj (ξ) =
N∑
m=1

∑
over the partitions⊔m
`=1

C`={1,...,N}

m∏
`=1

[#(C`)∑
k`=1

∑
over the partitions⊔k`

i=1
B`i=C`{ ∑

σ∈Sk`

(−1)σ

k`
·
∫ k∏̀

i=1

gB`i (xσ(i)) ·K(xσ(i+1) − xσ(i)) dx1 · · ·dxk`
}]
, (3.6)

where gB`i (x) =
∏
j∈B`i gj(x).

b) E
∏N1+···+Nr+1

j=1 Sgj (ξ)−
∏r+1
s=1

(
E
∏N1+···+Ns
N1+···+Ns−1+1 Sgj (ξ)

)
is equal to an expre-

ssion similar to (3.6) with the only difference that the partitions

m⊔
`=1

C` =

{
1, 2, . . . ,

r+1∑
s=1

Ns

}
(3.7)
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satisfy the following condition (*):
(*) There is at least one element C` of the partition such that the intersections

of C` with at least two of the sets {1, . . .N1}, . . . , {N1 + · · · + Ns−1 + 1, . . . ,
N1 + · · ·+Ns}, . . . , {N1 + · · ·+Nr + 1, . . . , N1 + · · ·+Nr+1} are non-empty.

Proof of Lemma 5. The proof of part a) is rather straightforward and quite similar
to that given at the beginning of [42], § 2 (see (2.1)–(2.7) in [42]). The proof of
part b) follows from a).

To derive the mixing property (3.3), we replace gj( · ) for N1 + · · ·+Ns−1 + 1 ≤
j ≤ N1 + · · ·+Ns, s = 1, . . . , r + 1, in (3.7) by gj(· + t1 + · · ·+ ts−1). Choose a
partition

⊔m
`=1 C` = {1, 2, . . . , N1 + · · ·+Nr+1}. Since {gj} are bounded functions

with compact support, it follows that each of the m factors on the right-hand side
of (3.6) is bounded. We claim that the `th factor (corresponding to C`, where ` is
the same index as in (*)) tends to zero. To show this, we fix an arbitrary partition⊔k`
i=1B`i = C` of C`. By assumption, C` contains indices u and v, 1 ≤ u < v ≤

N1 + · · ·+Nr+1, that belong to different subsets in the list {1, . . . , N1}, . . . , {N1 +
· · ·+Ns−1 + 1, . . . , N1 + · · ·+Ns}, . . . , {N1 + · · ·+Nr + 1, . . . , N1 + · · ·+Nr+1}.
We claim that ∫ k∏̀

i=1

gB`i(xσ(i)) ·K(xσ(i+1) − xσ(i)) dx1 · · ·dxk` (3.8)

tends to zero as min{ts, 1 ≤ s ≤ r} → ∞. Indeed, if min{ts, 1 ≤ s ≤ r} is
sufficiently large, then the indices u and v belong to different sets B`i, or, in other
words, the corresponding quantity gB`i is zero (the supports of the factors in gB`i
are disjoint). However, if u and v belong to different sets B`i, then the argument
in K(xσ(i+1) − xσ(i)) is greater than min{ts, 1 ≤ s ≤ r} for some i. Since the

Fourier transform K̂(t) = 1
2π

∫
eixtK(x) dx of K(x) is a non-negative integrable

function (bounded above by 1), it follows that K(xσ(i+1) − xσ(i)) tends to zero by
the Riemann–Lebesgue lemma. Since the other factors in (3.8) are bounded, and
the integration is over a bounded set, it follows that (3.8) tends to zero, which
implies the mixing property.

To establish the absolute continuity of the spectrum, we apply (3.7) to the case

r = 2, N1 = N2 = N , gN+j(x) = gj(x+ t), j = 1, . . . , N , f(ξ) =
∏N
j=1 Sgj (ξ),

f(T tξ) =
∏N
j=1 Sgj (T

tξ) =
∏2N
j=N+1 Sgj (ξ). We have

E(f(ξ) − Ef) · (f(T tξ)− Ef) =
2N∑
m=1

∑∗

over the partitions⊔m
`=1

C`={1,...,2N}

m∏
`=1

[#(C`)∑
k`=1

∑
over the partitions⊔k`

i=1
B`i=C`{ ∑

σ∈Sk`

(−1)σ

k`
·
∫ k∏̀

i=1

gB`σ(i)
(xi) ·K(xi+1 − xi) dx1 · · ·dxk`

}]
, (3.9)

where it is assumed that xk`+1 = x1 in the integral, and the sum in
∑∗ is

taken over the partitions {C1, . . . , Cm} such that both C` ∩ {1, 2, . . . , N} and
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C` ∩ {N + 1, . . . , 2N} are non-empty for at least one element C` of the partition
(that is, the property (*) holds). The factors in the product

∏m
`=1 that correspond

to the values of ` for which (*) fails are constants as functions of t. Let us now
choose an index ` satisfying (*). We claim that

∫ k∏̀
i=1

gB`σ(i)
(xi) ·K(xi+1 − xi) dx1 · · ·dxk`

=

(
1

2π

)k` k∏̀
i=1

ĝB`σ(i)
(yi+1 − yi) · K̂(yi+1) dy1 · · ·dyk` (3.10)

can be represented as
∫
ei(t·λ)h(λ) dλ, where h(λ) is an integrable function. The

verification is rather straightforward, and we leave the details to the reader. We
conclude that (3.9) is a linear combination of products of Fourier transforms of
integrable functions. Since a product of Fourier transforms is a Fourier transform of
the corresponding convolution, it follows that the spectrum is absolutely continuous.
This proves Theorem 7.

We can readily calculate the spectral density of the centralized linear statistics

Sg(ξ) = ESg =
∑
i

g(xi)− E
∑
i

g(xi).

Namely,

E(Sg − ESg)(Sg(T t·)− ESg) =

∫
ei(tλ) ·

(
K(0)− ̂|K|2(λ)

) 1

2π
|ĝ(λ)|2 dλ,

hSg(λ) = (K(0) − ̂|K|2(λ)) · 1

2π
|ĝ(λ)|2. (3.11)

We thus conclude that

µ(dλ) =
(
K(0)− ̂|K|2(λ)

)
dλ (3.12)

is the spectral measure of the restriction of {U t} to the subspace of centralized

linear statistics. Since 0 ≤ K̂(λ) ≤ 1 and K(0) = 1
2π

∫
K̂(λ) dλ, it follows that

0 ≤ dµ

dλ
= K(0)− ̂|K|2(λ) = K(0) − 1

2π

∫
K̂(y)K̂(y − λ) dy ≤ K(0).

We note that dµ
dλ
> 0 for λ 6= 0, and dµ

dλ
(0) = 0 if and only if K̂(λ) is a characteristic

function. In particular, the spectral measure µ is equivalent to Lebesgue measure.
Before formulating the next lemma, we recall that #[−L,L]d(ξ) denotes the num-

ber of particles in [−L, L]d.

Lemma 6.

D(#[−L,L]d) = Vol([−L, L]d) ·
(
dµ

dλ
(0) + o(1)

)
as L→∞. (3.13)
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Proof of Lemma 6. Probabilists are familiar with the following analogue of this
result in the theory of random processes. Let {ηn} be an L2-stationary random
sequence and let h(λ) be its spectral density, that is,

Eηnηm = b(n−m) =
1

2π

∫ 2π

0

eiλ·(n−m)h(λ) dλ;

then D(ηn + · · ·+ ηn) = (h(0) + o(1)) ·n ([90], § XVIII.2). To prove the lemma, we
write

D(#[−L,L]d) =

∫
[−L,L]d

∫
[−L,L]d

(
ρ2(x, y) − ρ1(x)ρ1(y)

)
dx dy+

∫
[−L,L]d

ρ1(x) dx

= −
∫

[−L,L]d

∫
[−L,L]d

|K|2(x− y) dx dy+K(0) Vol([−L, L]d)

=

(
K(0) −

∫
Rd
|K|2(x) dx+ o(1)

)
· Vol([−L, L]d)

=
(
K(0)− ̂|K|2(0) + o(1)

)
·Vol([−L, L]d).

The lower-order terms in (3.13) also depend on the behaviour of dµ
dλ

near the

origin. For example, let K̂(λ) be a characteristic function, K̂(λ) = χB(λ), where

B ⊂ Rd. As proved above, this is equivalent to the condition dµ
dλ (0) = 0. For

simplicity we assume that d = 1. If B is a union of m disjoint intervals, then

dµ

dλ
(λ) = K(0)− 1

2π

∫
K̂(y) · K̂(y − λ) dy

=
1

2π
·
[
length(B) − length(B ∩ (B + λ))

]
=
m

2π
· |λ| ·

(
1 + o(1)

)
, λ→ 0, (3.14)

and a more exact estimate of the asymptotics of the expression∫ L

−L

∫ L

−L
|K|2(x− y) dx dy =

1

2π
·
∫ ∞
−∞

̂|K|2(λ) ·
(

2 sin(L · λ)

λ

)2

dλ

shows that
D(#[−L,L]d) =

m

π2
logL ·

(
1 + o(1)

)
. (3.15)

Choosing m = 1 and K̂(λ) = X[−π,π](λ), one obtains the sine kernel K(x − y) =
sin π(x−y)
π(x−y) . The special role played by the sine kernel can be demonstrated by the

fact that the rate of growth of the expression D(#[−L,L]), which is equal to 1
π2 logL,

is minimal among the translation-invariant kernels. If B =
⊔
n≥1[n, n + 1

nγ
] and

γ > 1, then dµ
dλ ∼ |λ|

1− 1
γ and D(#[−L,L]) ∼ L

1
γ . More generally, if dµ

dλ ∼ |λ|
α for

0 < α < 1, then D(#[−L,L]) ∼ L1−α.
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4. Central limit theorem for the counting function and
for the empirical distribution function of spacings

In [91], Costin and Lebowitz proved the central limit theorem for #[−L,L] in the
case of the sine kernel. The paper contains a remark on p. 71, due to Widom, that
the result holds for a larger class of random matrix models. In the general form,
the theorem was published in [41].

Theorem 8. Let E be defined as in (1.1), let {0 < Kt ≤ 1} be a family of locally
trace-class operators on L2(E), let {(X,B,Pt)} be a family of corresponding deter-
minantal random point fields on E, and let {It} a family of measurable subsets of
E such that

Dt#It = Tr(Kt · χIt − (Kt · χIt)2)→∞ as t→∞. (4.1)

Then the distribution of the normalized number of particles in It (with respect to
Pt) is convergent to the normal law, that is,

#t − E#It√
Dt#t

w−→ N(0, 1).

Remark 12. As shown in [41], condition (4.1) in Theorem 8 (on the growth of the
variance) is satisfied for the Airy kernel (Kt ≡ K in (2.36), with expanding It),
for the Bessel kernel (Kt ≡ K in (2.37), with expanding It), and for the families
{Kn} of kernels corresponding to random matrices for the classical compact groups
(see § 2.3b and § 2.3c)). In all these cases, the growth of Dt#It is logarithmic with
respect to Et#It.

Remark 13. To construct an example of a kernel defining an operator K, 0 ≤
K ≤ Id, such that E#[−n,n] = TrK · χ[−n,n] → ∞ as n → ∞ and the quantity
D#[−n,n] = Tr(K · χ[−n,n] − (K · χ[−n,n])

2) remains bounded, we consider a set
{ϕn(x)}∞n=−∞ of functions satisfying the following conditions:

a) suppϕn ∈ (n, n+ 1),
b) ‖ϕn‖L2 = 1.
Then

K(x, y) =
∞∑

n=−∞

(
1− 1

n2 + 1

)
· ϕn(x) · ϕn(y)

is the desired kernel. Indeed,

E#[−n,n] =
n∑

k=−n

(
1− 1

k2 + 1

)
−→
n→∞

∞,

D#[−n,n] =
n∑

k=−n

(
1− 1

k2 + 1

)
· 1

k2 + 1
−→
n→∞

∞∑
−∞

(
1− 1

k2 + 1

)
· 1

k2 + 1
<∞.

On the other hand, if 0 ≤ K ≤ Id and K is compact and locally of trace class, and
TrK · χ[−n,n] → +∞, then TrK · χ[−n,n] − (K ·X[−n,n])

2 → +∞.
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The result of Theorem 8 can be generalized to the case of finitely many intervals.

Namely, if I
(1)
t , . . . , I

(m)
t are disjoint subsets such that Covt(#I

(i)
t
,#

I
(j)
t

)/Vt → bij

as t→∞ for 1 ≤ i, j ≤ m, where Vt is a function of t that is infinitely increasing,

then the distribution of the vector
(
(#

I
(k)
t
−Et#I

(k)
t
/V

1/2
t )k=1,...,m

)
is convergent to

anm-dimensional centralized normal vector with covariance matrix (bij)1≤i,j≤m [41].
Finally, we turn our attention to the problem of global distribution of spacings.

Let E = Rd or Zd, let {Bj}kj=1 be bounded measurable subsets of E, and let {nj}kj=1

be non-negative integers. We are interested in counting statistics of the following
type:

ηL(B1, . . . , Bk;n1, . . . , nk) := #(xi ∈ [−L, L]d : #xi+Bj = nj, j = 1, . . . , k). (4.2)

We can assume without loss of generality that the sets {Bj} are disjoint and do not
contain the origin. If d = 1, k = 1, and B1 = (0, s], then ηL((0, s], 0) is the number
of spacings in [−L, L] with length greater than s, ηL((0, s], 0) = #{xi ∈ [−L, L] :
xi+1 − xi > s}, and ηL((0, s], n) is the number of n-spacings with length greater
than s, ηL((0, s], n) = #{xi ∈ [−L, L] : xi+n+1 − xi > s}. In [40] we proved the

convergence in law of the process
ηL((0,s],0)−EηL((0,s],0)

L1/2 to a limit Gaussian process

in the case K(x, y) = sin π(x−y)
π(x−y) . We recall that convergence in law (the functional

central limit theorem) implies not only convergence of the finite-dimensional distri-
butions but also convergence of all functionals that are continuous in an appropri-
ate topology (for instance, in the locally uniform topology) on the space of sample
paths. The proof of the central limit theorem for the finite-dimensional distribu-
tions of ηL((0, s], 0) can be carried over more or less literally to the case of an
arbitrary kernel K(x, y) (not necessarily translation-invariant) and of dimension
d ≥ 1 under the assumption that conditions (4.33), (4.34), and (4.35) are satisfied.
One can also replace the interval (0, s] by an arbitrary measurable bounded set
B ⊂ E. For convenience of the reader, we sketch the main ideas of the proof of the
central limit theorem in the finite-dimensional case. Let us fix sets B1, . . . , Bk and
indices n1, . . . , nk. We construct a new (the so-called modified) random point field
such that ηL(B1, . . . , Bk;n1, . . . , nk) is equal to the number of all particles of the
modified random point field on [−L, L]d. Namely, we keep only the particles of the
original random point field for which

#xi+Bj = nj , j = 1, . . . , k, (4.3)

and we remove the particles for which condition (4.3) is violated. The modified
random point field is no longer a determinantal random point field in general.
However, it is of importance that, for this field, the correlation functions and clus-
ter functions (see Definition 6 below) can be expressed in terms of the correla-
tion functions of the original determinantal random point field. Let us denote by
ρ`(x1, . . . , x`;B1, . . . , Bk;n1, . . . , nk) the `-point correlation function of the modi-
fied random point field. Suppose that

xi /∈ xj + Bp, 1 ≤ i 6= j ≤ `, 1 ≤ p ≤ k. (4.4)
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Then by the inclusion-exclusion principle,

ρ`(x1, . . . , x`;B1, . . . , Bk;n1, . . . , nk)

=
∞∑
m=0

(−1)m

m!

∫
(x1+B1)n1×···×(x1+Bk)nk

· · ·
∫

(x`+B1)n1×···×(x`+Bk)nk

←− ` times −→∫
((x1+

⊔
k
j=1 Bj)t···t(x`+

⊔
k
j=1 Bj))

m

ρ`+`·n+m(x1, . . . , x`;

x11, . . . , x1n, x21, . . . , x2n, . . . , x`1, . . . , x`n, y1, . . . , ym)

× dy1 · · ·dym dx`1 · · ·dx`n · · ·dx11 · · ·dx1n, (4.5)

n = n1 + · · ·+ nk.

If (4.4) is violated, then the formula is quite similar, and the only difference is that
the exponent nj in (xi+Bj )

nj = (xi +Bj) × · · · × (xi + Bj)
←− nj times −→

, 1 ≤ i ≤ `, 1 ≤ j ≤ k,

must be replaced by the difference nj −#(1 ≤ r 6= i ≤ k : xr ∈ xi +Bj). Although
the formulae (4.5) seem to be cumbersome and lengthy, they still turn out to be
quite useful when calculating the asymptotics of the moments of the distribution
ηL(B1, . . . , Bk;n1, . . . , nk). (Of course, the key role is played by the assumption
that the correlation functions of the original random point field are determinants.)
Let us recall the definition of cluster functions.

Definition 6. The `-point cluster functions r`(x1, . . . , x`), ` = 1, 2, . . ., of a ran-
dom point field are defined by the formula

r`(x1, . . . , x`) =
∑
G

(−1)m−1(m− 1)! ·
m∏
j=1

ρ|Gj |(x̄(Gj)), (4.6)

where the sum is taken over all partitionsG of the set [`] = {1, 2, . . . , `} into subsets
G1, . . . , Gm, where m = 1, . . . , `, x̄(Gj) = {xi : i ∈ Gj}, and |Gj| = #(Gj).

Cluster functions are also known in statistical mechanics as truncated corre-
lated functions and Ursell functions. In the literature the right-hand sides of (4.6)
are sometimes regarded as definitions of the functions (−1)`−1r`. The correlation
functions can be obtained from cluster functions by the following inversion formula:

ρ`(x1, . . . , x`) =
∑
G

m∏
j=1

r|Gj|(x̄(Gj)). (4.7)

((4.6) is just the Möbius inversion formula applied to (4.7).) The integrals of
the cluster functions r`(x1, . . . , x`) over the parallelepipeds of the form
[−L, L]d × · · · × [−L, L]d

←− ` times −→
= [−L, L]`d are closely related to the cumulants Cj(L)
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of the number of particles in [−L, L]d,

V1(L) =

∫
[−L,L]d

r1(x1) dx1 = C1(L) = E#[−L,L]d ,

V2(L) : =

∫
[−L,L]d

∫
[−L,L]d

r2(x1, x2) dx1 dx2

= C2(L) −C1(L) = D#[−L,L]d − E#[−L,L]d ,

V3(L) : =

∫
[−L,L]d

∫
[−L,L]d

∫
[−L,L]d

r3(x1, x2, x3) dx1 dx2 dx3

= C3(L) − 3C2(L) + 2C1(L).

In general,
∞∑
n=1

Cn(L)

n!
zn =

∞∑
n=1

Vn(L)

n!
(ez − 1)n (4.8)

(see [91] and [40]). For determinantal random point fields,

r`(x1, . . . , x`) = (−1)`−1
∑

cyclic σ∈S`

K(x1, x2) ·K(x2, x3) · . . . ·K(x`, x1), (4.9)

where the sum is taken over all cyclic permutations, and the expression under the
symbol of the sum corresponds to σ = (1 2 3 . . . `). One can also rewrite (4.9) as

r`(x1, . . . , x`) = (−1)`−1 · 1

`

×
∑
σ∈S`

K(xσ(1), xσ(2)) ·K(xσ(2), xσ(3)) · . . . ·K(xσ(`), xσ(1)). (4.10)

We note that the difference between the formula

ρ`(x1, . . . , x`) =
∑
σ∈S`

(−1)σK(x1, xσ(1)) ·K(x2, xσ(2)) · . . . ·K(x`, xσ(`)) (4.11)

for the `-point correlation functions and the formula (4.9) is that the summation
in (4.9) is taken over cyclic permutations only. It turns out that the relationship
between ρ`(x1, . . . , x`;B1, . . . , Bk;n1, . . . , nk) and r`(x1, . . . , x`;B1, . . . , Bk;
n1, . . . , nk) is of a similar nature.

Lemma 7. Let condition (4.4) hold. Then

r`(x1, . . . , x`;B1, . . . , Bk;n1, . . . , nk)

=
∞∑
m=0

(−1)m

m!

∫
(x1+B1)n1×···×(x1+Bk)nk

· · ·
∫

(x`+B1)n1×···×(x`+Bk)nk

←− ` times −→∫
((x1+

⊔k
j=1 Bj)t···t(x`+

⊔k
j=1 Bj))

m

ρ`+`·n+m,`(x1, . . . , x`;

x11, . . . , x1n, x21, . . . , x2n, . . . , x`1, . . . , x`n, y1, . . . , ym)

× dy1 · · ·dym dx`1 · · ·dx`n · · ·dx11 · · ·dx1n, (4.12)

where the function ρ`+`·n+m,` is defined below in (4.13).
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To define ρ`+`·n+m,` we recall that

ρ`+`·n+m(x1, . . . , ym) =
∑

σ∈S`+`·n+m

(−1)σK(x1, σ(x1)) · . . . ·K(ym, σ(ym)),

where σ is a permutation on the set of variables (x1, . . . , x`, x11, . . . , x`n, y1, . . . , ym).
We write

ρ`+`·n+m,`(x1, . . . , ym) =
∑∗

σ∈S`+`·n+m

(−1)σK(x1, σ(x1)) · . . . ·K(ym, σ(ym)), (4.13)

where the summation in
∑∗

is taken over all permutations σ satisfying the following
condition.

Let τ be the multivalued map from {1, . . . , `} to {1, . . . , `} defined by

τ(i) =

{
j : σ

(
{xi, xi1, . . . , xin} t

(
{y1, . . . , ym} ∩

(
xi +

k⊔
p=1

Bp

)))
⋂(
{xj, xj1, . . . , xjn} t

(
{y1, . . . , ym} ∩

(
xj +

k⊔
p=1

Bp

)))
6= ∅

}
. (4.14)

Then, for any 1 ≤ i, j ≤ `, there is an N = N(i, j) such that

τN(i) 3 j. (4.15)

Remark 14. The proof of Lemma 7 in the case d = 1, K(x, y) = sin π(x−y)
π(x−y)

, B1 =

(0, s], n1 = 0 was given in § 3 of [40]. In the general case the argument is absolutely
the same. As a consequence of Lemma 7, we obtain the following result.

Lemma 8. Let
|K(x, y)| ≤ ψ(x − y), (4.16)

where ψ is a bounded function, and let (4.4) hold for an `-tuple (x1, . . . , x`). Then
for any δ > 0 the following estimate holds:

|r`(x1, . . . , x`;B1, . . . , Bk;n1, . . . , nk)|

≤ const(`, δ)
∑

cyclic σ∈S`

(
ψ(x2 − x1) · ψ(x3 − x2) · . . . · ψ(x1 − x`)

)1−δ
. (4.17)

For the proof of Lemma 8 we refer the reader to § 3 of [40]. The key point of the
proof is to show that an expression of the form

const1(n, `) · 1

m!
constm2 ·min

{
const3(n, `); (`+ `n +m)!

×
∑

cyclic σ∈S`

(
ψ(x2 − x1) · ψ(x3 − x2) · . . . · ψ(x1 − x`)

)}
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is an upper bound for the absolute value of the mth term of the series (4.12). If
ψ1−δ ∈ L2(E) for some δ with 0 < δ < 1, then∫

[−L,L]d
· · ·
∫

[−L,L]d
ψ(x2 − x1)1−δ · . . . · ψ(x1 − x`)1−δ dx1 · · ·dx`

≤ const(ψ) ·
∫

[−L,L]d
ψ(x − y)2−2δ dx dy = O(Ld),

and therefore it follows from Lemma 8 that∫
[−L,L]d`∩(4.4)

r`(x1, . . . , x`;B1, . . . , Bk;n1, . . . , nk) dx1 · · ·dx` = O(Ld). (4.18)

for ` = 1, 2, . . . . In particular,

EηL(B1, . . . , Bk;n1, . . . , nk)

= V1(L) =

∫
[−L,L]d

r1(x;B1, . . . , Bk;n1, . . . , nk) dx = O(Ld). (4.19)

Suppose that one could show that

DηL(B1, . . . , Bk;n1, . . . , nk) = V1(L) + V2(L)

=

∫
[−L,L]d

r1(x;B1, . . . , Bk;n1, . . . , nk) dx

+

∫
[−L,L]d

∫
[−L,L]d

r2(x1, x2;B1, . . . , Bk;n1, . . . , nk) dx1 dx2

= const ·Ld
(
1 + o(1)

)
, (4.20)∫

[−L,L]`d\(4.4)

r`(x1, . . . , x`;B1, . . . , Bk;n1, . . . , nk) dx1 · · ·dx`

= o
(
L
`d
2
)
, ` > 2. (4.21)

The `th cumulant of ηL is a linear combination of Vi(L), i = 1, 2, . . . ` (see (4.8)).
Hence, the estimates (4.18)–(4.21) would imply that the `th cumulant of ηL behaves

like const ·L · (1 + ō(1)) for ` = 2 and increases slower than L
`d
2 for ` > 2. In turn,

this would imply that the second cumulant of ηL−EηL√
DηL

is equal to 1 and the other

cumulants of ηL−EηL√
DηL

tend to zero as L→ +∞, which is equivalent to the assertion

that the moments of ηL−EηL√
DηL

converge to the corresponding moments of the normal

distribution, and, in particular,

ηL − EηL√
DηL

w−→ N(0, 1).

However, a more detailed consideration faces complications. Apparently, there are no
convenient expressions for the formulae (4.12) and (4.13) in the case when (4.4) fails.
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Below we show how to overcome these difficulties in the case of ηL(B; 0) (that is,
for k=1 and n1 =0). We introduce the centralized `-point correlation functions by
the formula

ρ
(c)
` (x1, . . . , x`) =

∑∗∗

G

m∏
j=1

r|Gj|(x(Gj)), (4.22)

where the sum
∑∗∗

is taken over all partitions G = {G1, . . . , Gm}, m = 1, 2, . . . ,
of the set {1, . . . , `} into at least two-element subsets (that is, |Gj| > 1 for j =
1, . . . , m). It follows from (4.7) and (4.22) that

ρ
(c)
` (x1, . . . , x`) = ρ`(x1, . . . , x`)

+
∑̀
p=1

(−1)p
∑

1≤i1<···<ip≤`

p∏
s=1

ρ1(xis) · ρ`−p
(
(x1, . . . , x`) \ (xi1 , . . . , xip)

)
= ρ`(x1, . . . , x`)

−
∑̀
p=1

∑
1≤i1<···<ip≤`

p∏
s=1

ρ1(xis)ρ
(c)
`−p
(
(x1, . . . , x`) \ (xi1 , . . . , xip)

)
. (4.23)

Let us denote by M
(c)
(`) (L) the integral of the centralized `-point correlation function

of the modified random point field over [−L, L]`d,

M
(c)
(`) (L) =

∫
[−L,L]d

· · ·
∫

[−L,L]d
ρ

(c)
` (x1, . . . , x`;B1; 0) dx1 · · ·dx`. (4.24)

We have

∞∑
`=0

t`

`!
E(ηL − EηL)`

= e−tEηL ·
∞∑
`=0

t`

`!
Eη`L

= e−tEηL ·
∞∑
`=0

(et − 1)`

`!
EηL · (ηL − 1) · . . . · (ηL − `+ 1)

= e−tEηL · e(et−1)EηL ·
∞∑
`=0

(et − 1)`

`!
M

(c)
(`) (L). (4.25)

If we were able to show that

M
(c)
` (L) =

{
(2n− 1)!! constn1 ·Lnd ·

(
1 + o(1)

)
for ` = 2n,

o
(
L
`d
2

)
for ` = 2n+ 1,

(4.26)

and
EηL = const2 ·Ld ·

(
1 + o(1)

)
, (4.27)
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then (4.25) would imply that

E(ηL − EηL)` =


(2n− 1)!! (const1 + const2)nLnd ·

(
1 + o(1)

)
for ` = 2n,

o
(
L
`d
2

)
for ` = 2n+ 1,

(4.28)

and
ηL − EηL
Ld/2

w−→ N(0, const1 + const2).

In principle, one can calculate M
(c)
` (L) by using (4.12) and (4.13). Indeed, if

xi − xj /∈ B (4.29)

(we note that the condition (4.29) is exactly the condition (4.4) in the case k = 1,

n1 = 0), then the expression for ρ
(c)
` (x1, . . . , x`;B; 0) can be obtained from (4.22),

(4.12), and (4.13). Otherwise ρ`(x1, . . . , x`;B; 0) = 0, and it follows from (4.23)
that

ρ
(c)
` (x1, . . . , x`;B; 0) =

∑̀
p=1

(−1)p ·
∑

1≤i1<···<ip≤`

p∏
s=1

r1(xis;B; 0)

× ρ`−p
(
(x1, . . . , x`) \ (xi1 , . . . , xip)

)
. (4.30)

If (4.29) fails for an (`− p)-tuple (x1, . . . , x`) \ (xi1 , . . . , xip), then the correspond-
ing factor ρ`−p((x1, . . . , x`) \ (xi1, . . . , xip)) in (4.30) vanishes. If (4.29) holds for
(x1, . . . , x`) \ (xi1 , . . . , xip), then we iterate (4.23) again,

ρ`−p
(
(x1, . . . , x`) \ (xi1, . . . , xip)

)
= ρ

(c)
`−p
(
(x1, . . . , x`) \ (xi1 , . . . , xip)

)
+
∑
· · · .

We thus obtain the following assertion.

Lemma 9. Let (4.29) fail for an `-tuple (x1, . . . , x`). Then

ρ
(c)
` (x1, . . . , x`;B; 0) =

∑
∅⊆D⊂{1,...,`}

CD ·
∏
i/∈D

r1(xi;B; 0) · ρ(c)
|D|(x̄(D)), (4.31)

where

CD =
∑
A⊇D

(4.29) holds for x̄(A)

(−1)|A|. (4.32)

In particular, CD = 0 if (4.29) fails for x̄(D), and also if there is an i such that
1 ≤ i ≤ `, i 6∈ D, and xi − xj 6∈ B ∪ (−B) for any 1 ≤ j ≤ `.

The proof readily follows from the above considerations.
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Theorem 9. Let (X,B,P) be a determinantal random point field with kernel

|K(x, y)| ≤ ψ(x − y), (4.33)

where ψ is a bounded non-negative function such that ψ · (log(ψ+1
ψ ))n ∈ L2(E) for

any n > 0. Let the estimate

DηL(B; 0) = σ2 · Ld ·
(
1 + o(1)

)
(4.34)

be valid for ηL(B; 0) = #(xi ∈ [−L, L]d : #(xi + B) = 0). Then the central limit
theorem holds,

ηL(B, 0)− EηL(B; 0)

Ld/2
w−→ N(0, σ2).

Remark 15. If Cov(ηL(Bi; 0), ηL(Bj ; 0)) = bij · Ld · (1 + o(1)), 1 ≤ i, j ≤ p, then(
ηL(Bi; 0)− EηL(Bi; 0)

Ld/2

)
1≤i≤p

w−→ N(0, (bij)1≤i,j≤p). (4.35)

We recall that

Cov
(
ηL(Bi; 0); ηL(Bj ; 0)

)
= E

(
ηL(Bi; 0)− EηL(Bi, 0)

)
·
(
ηL(Bj ; 0)− EηL(Bj ; 0)

)
=

∫
[−L,L]2d∩{x1−x2 /∈Bi∪(−Bj)}

( ∞∑
m=0

(−1)m

m!

×
∫

((x1+Bi)t(x2+Bj))m
ρ2+m,2(x1, x2; y1, . . . , ym) dy1 · · ·dym

)
dx1 dx2

−
∫

[−L,L]d
r1(x1;Bi; 0) ·

∫
(x1+Bi)∪(x1−Bj)

r1(x2;Bj ; 0) dx2 dx1

+

∫
[−L,L]d

r1(x;B1 ∪B2, 0) dx.

Remark 16. Lemma 8 assumes a slightly more restrictive condition on ψ, namely,
ψ1−δ ∈ L2(E) for some 0 < δ < 1. However, looking at the proof of Lemma 6, we

can readily see that ψ1−δ in (4.17) can be replaced by ψ · (log(ψ+1
ψ ))n with n > 3`.

Proof of Theorem 9. From (4.25)–(4.28), it suffices to prove that∫
[−L,L]2nd

ρ
(c)
2n (x1, . . . , x2n;B; 0) dx1 · · ·dx2n

= (2n− 1)!!

(∫
[−L,L]2d∩{x−y /∈B∩(−B)}

r2(x, y;B; 0) dx dy

−
∫

[−L,L]d
r1(x;B; 0)

∫
(x+B)∪(x−B)

r1(y;B; 0) dy dx

)n
+ o(Lnd), (4.36)

n = 1, 2, . . .,∫
[−L,L](2n+1)d

ρ
(c)
2n+1(x1, . . . , x2n+1;B; 0) dx1 · · ·dx2n+1 = o

(
L

2n+1
2 d
)
, (4.37)

n = 1, 2, . . . .
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Lemma 10.∫
[−L,L]2nd∩(4.29)

ρ
(c)
2n (x1, . . . , x2n;B; 0) dx1 · · ·dx2n

= (2n− 1)!!

(∫
[−L,L]2d∩{x−y /∈B∪(−B)}

r2(x, y;B; 0) dx dy

)n
+ o(Lnd), (4.38)∫

[−L,L](2n+1)d∩(4.29)

ρ
(c)
2n+1(x1, . . . , x2n+1;B; 0) dx1 · · ·dx2n+1 = o(L

2n+1
2 d). (4.39)

We recall that all functions r`(x1, . . . , x`;B; 0) are bounded (see (4.17)). Let us
rewrite relation (4.22) as

ρ
(c)
` (x1, . . . , x`) =

∑′

G

m∏
j=1

r|Gj|(x̄(Gj)) +
∑′′

G

m∏
j=1

r|Gj|(x̄(Gj)),

where
∑′

is the sum over all partitions of {1, . . . , `} into pairs, and the sum in
∑′′

is taken over all other partitions (into sets with at least two elements). Let ` be
even, ` = 2n. Integrating the sum

∑′
G over [−L, L]2nd ∩ (4.29), we obtain exactly

the right-hand side of (4.38) (there are precisely (2n− 1)!! partitions of {1, . . . , 2n}
into two-element sets). It follows from (4.17) and the estimates after Lemma 8 that∫

[−L,L]`d
|r`(x1, . . . , x`;B; 0)| dx1 · · ·dx` = O(Ld).

Therefore, the integral of
∑′′
G over [−L, L]2nd ∩ (4.29) is of order o(Lnd). The

formula (4.39) can be proved in a similar way.
To estimate the integral∫

[−L,L]2nd\(4.29)

ρ
(c)
2n (x1, . . . , x2n;B; 0) dx1 · · ·dx2n, (4.40)

we introduce an equivalence relation on {x1, . . . , x2n}; namely, we say that xi and
xj are ‘neighbours’ if there is a sequence of indices 1 ≤ i0, i1, . . . , iu ≤ 2n, 1 ≤
u ≤ 2n, such that i0 = i, iu = j, and xis+1−xis ∈ B ∪ (−B) for s= 0, . . . , u− 1.

We claim that contributions of order O(Lnd) can occur in (4.40) only from sets of
points (x1, . . . x2n) for which any equivalence class of ‘neighbours’ contains either
one or two indices. For example, let us consider the case of k two-element equiva-
lence classes {x1, x2}, . . . , {x2k−1, x2k} and 2n−2k one-element equivalence classes
{x2k+1}, . . . , {x2n}. By calculations similar to those in [40], pp. 596–597, we can

see that the integral of ρ
(c)
2n (x1, . . . , x2n;B; 0) over the subset of [−L, L]2nd corre-

sponding to the above partition is equal to

(2n − 2k − 1)!!

(
−
∫

[−L,L]d
r1(x;B; 0)

∫
(x+B)∪(x−B)

r1(y;B; 0) dy dx

)k
×
(∫

[−L,L]2n∩{x−y /∈B∩(−B)}
r2(x, y;B; 0) dx dy

)n−k
+ o(Lnd). (4.41)
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After summation over all partitions into one- and two-element equivalence classes of
‘neighbours’ (we note that (4.38) corresponds to the partition into singletons), we
obtain exactly the asymptotic relation (4.36). It follows from Lemma 7 and (4.17)
that all other partitions into equivalence classes give negligible contributions. The
estimate (4.37) can be proved in a similar way.

The conditions of Theorem 9 are quite non-restrictive in the case of translation-
invariant kernels. In this case, the covariance function of the limit Gaussian process

w-lim
ηL((0,s̄],0)−EηL((0,s̄];0)

Ld/2
is given by d-dimensional analogues of the formulae (37),

(38), and (26) in [40] (of course, one has to replace the kernel sin π(x−y)
π(x−y) by K(x−y)).

Here and henceforth, we denote by (0, s̄] the parallelepiped (0, s1] × · · · × (0, sd],
where s̄ = (s1, . . . , sd). In particular, if K(x) is continuously differentiable, then the
limit Gaussian process is Hölder continuous with any exponent less than 1

2 . Among
other characteristics of a modified random point field (with respect toB = (0, s̄] and
n = 0), the spectral measure of the restriction of the group {U t} to the subspace of
centralized linear statistics is of special interest. We denote this spectral measure
by µ(s)(dλ). Let us recall that the spectral measure µ(0)(dλ) = µ(dλ) of the original
determinantal random point field is given by the formula (3.12). In particular, for
the sine kernel we obtain

dµ

dλ
=


|λ|
2π

, |λ| ≤ 2π,

1, |λ| > 2π.

For the sine kernel we can see after cumbersome but rather straightforward calcu-
lations that

dµ(s)

dλ
=
π2s3

9
+
|λ|
2π
·
(

1− 4

3
π2s3

)
+ O(s4) + O(|λ| · s4) +O(|λ2| · s2). (4.42)

We note that dµ(s)

dλ (0) 6= 0 for small s 6= 0, which is consistent with the estimate

DηL((0, s]; 0) ∼ L.

For the proof of the functional central limit theorem, we refer the reader to [40],
p. 577. Suppose that the functions

L−d
∂

∂s
ηL
(
(0, s̄]; 0

)
, L−d

∂

∂s
Cov(ηL

(
(0, s̄]; 0

)
; ηL
(
(0, t̄ ]; 0

))
(4.43)

are uniformly bounded with respect to L, s̄, and t̄, where s̄ and t̄ belong to compact
subsets of Rd+ (of Zd+). By smoothing the δ-function by a C∞ approximating
function, one can construct a continuous approximation η̃L((0, s̄]; 0) of ηL((0, s̄]; 0)
such that

|η̃L((0, s̄]; 0)− ηL((0, s̄]; 0)| ≤ 1.

As a result,
η̃L((0, s̄]; 0)− Eη̃L((0, s̄]; 0)

Ld/2
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is a random continuous function of s̄, and∣∣∣∣ η̃L((0, s̄]; 0)− Eη̃L((0, s̄]; 0)

Ld/2
− ηL((0, s̄]; 0)− EηL((0, s̄]; 0)

Ld/2

∣∣∣∣ ≤ 2

Ld/2
. (4.44)

The distribution of the random process
η̃L((0,s̄];0)−Eη̃L((0,s̄];0)

Ld/2
defines a probability

measure on C([0,∞)d). By convergence in law of random processes we mean weak
convergence of the induced probability measures on C([0,∞)d) (see [92]; in the
general case, one can consider other spaces of sample paths, for instance, the space
of functions with jump discontinuities).

Theorem 10. Let (4.33), (4.34), (4.35), and (4.43) be satisfied. Then the random
process

η̃L((0, s̄]; 0)− Eη̃L((0, s̄]; 0)

L1/2

is convergent in law to a Gaussian process.
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Math. Phys. 207 (1999), 665–685.

[88] C. A. Tracy and H. Widom, “On the distribution of the lengths of the longest monotone
subsequences in random words”, http://xxx.lanl.gov/abs/math/9904042.

[89] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic theory, Nauka, Moscow 1980; English
transl., Springer-Verlag, New York-Heidelberg-Berlin 1982.

[90] I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random
variables, Nauka, Moscow 1965; English transl., Wolters–Noordhoff, Groningen 1971.

[91] O. Costin and J. Lebowitz, “Gaussian fluctuations in random matrices”, Phys. Rev. Lett. 75
(1995), 69–72.

[92] P. Billingsley, Convergence of probability measures, Wiley, New York 1968; Russian transl.,

Nauka, Moscow 1977.

Caltech, Department of Mathematics;
University of California, Davis1

E-mail: sashas@gibbs1.caltech.edu,
E-mail: soshniko@math.ucdavis.edu

Received 11/APR/00

Typeset by AMS-TEX

1permanent address

http://xxx.lanl.gov/abs/math/9904042
http://xxx.lanl.gov/abs/cond-mat/9912264
http://xxx.lanl.gov/abs/cond-mat/9910273
http://xxx.lanl.gov/abs/math/9903176
http://xxx.lanl.gov/abs/math/9909104
http://xxx.lanl.gov/abs/math/9909169
http://xxx.lanl.gov/abs/math/9902001
http://xxx.lanl.gov/abs/math/9910019
http://xxx.lanl.gov/abs/math/9905084
http://xxx.lanl.gov/abs/math/9905083
http://xxx.lanl.gov/abs/math/9901118
http://xxx.lanl.gov/abs/math/9907127
http://xxx.lanl.gov/abs/math/9903134

