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Abstract

Starting from known determinantal representation of outer inverses we derive their determinan-
tal representation in terms of the inner product in the Euclidean space. Subsequently, we define
the double inner product of two miscellaneous tensors of rank 2 in a Riemannian space. Corre-
sponding determinantal representation as well as the general representation of outer inverses in the
Riemannian space is derived. A nonzero {2}-inverse X of a given tensor A obeying ρ(X) = s,
1≤s≤r=ρ(A) is expressed in terms of the double inner product involving compound tensors with
minors of the order s, extracted from A and appropriate tensors.
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1 Introduction and preliminaries

The set of m× n matrices of rank r with entries in the set of complex numbers C is denoted by Cm×n
r .

Also, O (resp. Ip) denote an appropriate zero matrix (resp. p×p identity matrix). By Tr(A) we denote
the trace of a square matrix, evaluated by summing the diagonal components of A. Later, |A| (resp.
adj(A)) denotes the determinant of A (resp. the classical adjoint matrix of A). The determinantal
rank (or matrix rank) of A is denoted by ρ(A) and denotes the largest k ≥ 0 for which there exists α, β
satisfying |α| = |β| = k and

∣∣Aαβ

∣∣ 6= 0. For any complex matrix A consider the following equations in
X

(1) AXA=A, (2) XAX =X, (3) (AX)∗=AX, (4) (XA)∗=XA.

where ∗ denotes the conjugate and transpose. If A is a square matrix we also consider the following
equations:

(5) AX = XA, (1k) Ak+1X = Ak.

For a sequence S of elements from the set {1, 2, 3, 4, 5}, the set of matrices satisfying the equations
represented in S is denoted by A{S}. A matrix from A{S} is called an S-inverse of A and denoted
by A(S). The Moore-Penrose inverse A† of A is the unique {1, 2, 3, 4}-inverse of A. The group inverse,
denoted by A#, is the unique {1, 2, 5}-inverse of A, and it exists if and only if ind(A) = min{k :
ρ(Ak+1)=ρ(Ak)}=1. A matrix X = AD is said to be the Drazin inverse of A if (1k) (for some positive
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integer k), (2) and (5) are satisfied. The weighted Moore-Penrose inverse is the unique pseudoinverse
satisfying (1), (2) together with the following two equations

(3M) (MAX)∗=MAX, (4N) (NXA)∗=NXA,

where M and N are Hermitian positive definite matrices of dimensions m and n respectively, and it is
represented by the general representation

A†M,N = N−1Q∗ (
P ∗MAN−1Q∗

)−1
P ∗M,

and A = PQ is a full-rank factorization of A (see, for example [29]).
As usual, R(A) and N (A) denote the range and the null space of A, respectively.
If A ∈ Cm×n

r , T is a subspace of Cn of dimension t ≤ r and S is a subspace of Cm of dimension
m− t, then A has a {2} inverse X such that R(X) = T and N (X) = S if and only if

AT ⊕ S = Cm,

in which case X is unique and it is denoted by A
(2)
T,S .

We use the following notations from [14] and [26]. Let A be an m× n matrix of matrix rank r.
Denote the collection of strictly increasing sequences of p integers chosen from {1, . . . , n} by

Qp,n = {α : α = (α1, . . . , αp), 1 ≤ α1 < · · · < αp ≤ n} .

For any integer q satisfying 1≤q≤ρ(A) we define the set Nq =Qq,m ×Qq,n. For fixed α, β ∈ Qq,n, let

Iq(α) = {I : I ∈ Qq,m, I ⊇ α} , Jq(β) = {J : J ∈ Qq,n, J ⊇ β} ,

Nq(α, β) = Iq(α)× Jq(β).

By Aα
β we denote the q × q submatrix of A determined by the entries in rows indexed by α and in

columns indexed by β. If A is a square matrix, then the coefficient of |Aα
β | in the Laplace expansion

of |A| is denoted by ∂
∂|Aα

β | |A|. In the particular case α = {i}, β = {j}, we have the cofactor ∂
∂aij

|A| of

aij . By Cq(A) we denote the qth compound matrix of A with rows indexed by q-element subsets of
{1, . . . ,m}, columns indexed by q-element subsets of {1, . . . , n}, and the (α, β) entry defined by |Aα

β |.
As it is observed in [8], the determinantal representation for matrix generalized inverse and extension

of Cramer rule are primary subjects of generalized inverse theory, which play an important role in
computing generalized inverses and finding the solution of singular linear equations. For the sake of
completeness, we restate here main results concerning the determinantal representation of generalized
inverses.

A determinantal formula for arbitrary non-zero outer inverse X = (xij) of a given complex matrix
A ∈ Cm×n

r is investigated in [27]. This representation is based on the usage of minors of the order
s ≤ r, selected from the matrix A and the matrix product FG, where F ∈ Cn×s and G ∈ Cs×m are
appropriate full-rank matrices:

xij = (Tr(Cs(FGA)))−1
∑

(α,β)∈Ns(j,i)

|(FG)β
α|

∂

∂aji
|Aα

β |. (1.1)

Corresponding implementation is described in [28].

Recently, the determinantal and full-rank representation of the generalized inverse A
(2)
T,S is investigated

in the papers [8, 23, 33, 34]. For the sake of completeness, we restate the following representation from
[23, 34]

(A(2)
T,S)ij = ( Tr(Cs(GA)))−1

∑

(α,β)∈Ns(j,i)

|Gβ
α|

∂

∂aji
|Aα

β |, (1.2)



Determinantal representation of outer inverses in Riemannian space 3

where it is assumed that T is a subspace of Cn of dimension t ≤ r, S is a subspace of Cm of dimension
m − t and G ∈ Cn×m satisfies R(G) = T , N (G) = S and ind(AG) = ind(GA) = 1. The (p, q) outer
generalized inverse in Banach algebra is considered in [9].

In the particular case EF = Ak of (1.1) as well as in the case G = Ak of (1.2), k ≥ ind(A), we get
known determinantal representation of the Drazin inverse from [26]. Furthermore, representations and
characterizations of {1, 2}-inverses for matrices over an integral domain are investigated in [2], [14] and
[25]. These results can be considered as the partial case s = r of corresponding results concerning outer
inverses.

In the particular cases G = A∗, G = A and G = (MAN−1)∗ analogous representations and char-
acterizations for the Moore-Penrose inverse, the group inverse and the weighted Moore-Penrose inverse
can be derived. These results are introduced in [1, 15] and [16, 17], respectively.

The following additional characterization of {1, 2}-inverses for matrices over an integral domain is
restated from [14]. For A ∈ Zm×n

r , the matrix X = (xij) ∈ Zn×m is a reflexive g-inverse of A if and
only if

xij =
∑

(α,β)∈N (j,i)

bβα
∂

∂aji

∣∣Aα
β

∣∣ , 1 ≤ i ≤ n, 1 ≤ j ≤ m. (1.3)

where the matrix B = (bαβ), (α, β) ∈ N of the order
(
n
r

)× (
m
r

)
satisfies the following conditions:

∑

(α,β)∈N
bβα

∣∣Aα
β

∣∣ = Tr(BCr(A)) = 1,

ρ(B) = 1.

(1.4)

In the papers [18, 19, 20] D.W. Robinson introduced the adjoint mapping for matrices over a commu-
tative ring < with identity 1. The adjoint mapping of A of the order s is denoted by A•,s : <(n

s)×(m
s ) 7→

<n×m and defined by

A•,s : B 7→ AB,s =AB =





∑
α∈Qs,m

∑
β∈Qs,n

bβα

(
Tβ ad(Aα

β) Sα

)
, s>1

B, s = 1
(1.5)

where A is m × n matrix of rank r over <, s ≤ min{m,n}, Sα is s × m matrix with 1 in positions
(1, α(1)), · · · , (s, α(s)) and 0 elsewhere, Tβ is n×s matrix with 1 in positions (β(1), 1), · · · , (β(s), s) and 0
elsewhere, B=(bβα)∈<(n

s)×(m
s ) and ad(Aα

β ) denotes the usual adjoint matrix of Aα
β . A characterization

of the outer inverses of A in terms of adjoint images under A is considered in [21].

Robinson in [22] provided a historical background and extended role of the adjoint. Recently, in
[13] authors investigated determinantal representation of various weighted generalized inverses using a
lemma from [22].

In [10] the authors considered determinantal representation of generalized inverses for matrices whose
elements are polynomials and estimated upper bounds for the degrees of the elements involved in their
generalized inverses.

Determinantal representations of generalized inverses are useful for theoretical analysis, see for
example [30, 31]. As applications of the determinantal representation of the generalized inverses A

(2)
T,S , on

the one hand it is possible to derive particular representations for many common important generalized
inverses; on the other hand, this representation is used to solve restricted linear equations [36].

In the present article we consider results related to the determinantal and full-rank representation
as well as the characterization of generalized inverses in the Riemannian space from a new point of
view. Our motivation is based on the following sources.
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(1) First, we observed that the determinantal representations (1.1) and (1.2) as well as the represen-
tation (1.3), (1.4) can be expressed in terms of the inner product in the Euclidean vector space.

(2) Our intention in the present article is to investigate influence of different inner products on the
full-rank and determinantal representation of outer inverses, generally, into the Riemannian space.
On the basis of derived inner product representations of generalized inverses in the Euclidean
vector space, we give analogous determinantal representations in the Riemannian space. The
determinantal representation is so far investigated in commutative rings, over integral domains
or in the set of complex matrices, where the Euclidean metric with Cartesian coordinates is
actual. In this way, we replaced the underlying Euclidean space with an arbitrary Riemannian
manifold and extended the notion of the determinantal representation into the Riemannian space.
Consequently, we got possibility to derive outer inverses by means of symmetric invertible matrices
whose elements are functions. The Euclidean traditions are too strong to be rejected, and probably
few generations of mathematicians are necessary to work off its influence. Why the Euclidean
geometry has lived through 2 millenniums? The reason is that the square root of a quadratic form
is used to define length and vectors. The length is the fundamental concept either in theoretical or
applied science. In the Riemannian spaces the length is introduced by the general definition that
enables it to be defined by functions of a rather wide range of classes with minimum conditions on
smoothness. We hope that our representations of generalized inverses in Riemannian space will
initiate investigations from that new point of view and be helpful and relevant in future studies
of generalized inverses.

(3) In the scientific literature we found a germ of our main ideas. It is known that the Moore-Penrose
inverse A† transforms into the weighted Moore-Penrose inverse A†M,N after the replacement of the
usual vector inner product in Cm and Cn by the following weighted inner products

〈x, y〉M = y∗Mx, x, y ∈ Cm, 〈x, y〉N = y∗Nx, x, y ∈ Cn,

where M and N are Hermitian positive definite matrices (see, for example [29]). The equivalence
of a weighted generalized inverse and the Moore-Penrose inverse in an indefinite inner product
space is studied in [12]. The notion of the generalized weighted Moore-Penrose inverse A†M,N over
the set Fn with the indefinite scalar product [x, y] = 〈Hx, y〉, where F is the real field R or the
complex field C and H is an invertible Hermitian matrix, is introduced in [24]. The authors in
[24] assume that M and N are invertible and Hermitian.

In the second section we consider the double inner product of two tensors of rank 2. The determi-
nantal representations of outer inverses and A

(2)
T,S inverse of a complex matrix are generalized in terms

of the double inner product of two tensors of rank 2 acting between Riemannian spaces in Section
3. In addition, a few necessary and sufficient conditions for the existence and corresponding full-rank
representations of non-zero outer inverses are derived. A nonzero {2}-inverse X of A obeying ρ(X) = s,
1≤ s≤ r =ρ(A) is expressed in terms of the double inner product involving compound tensors of rank
2 whose elements are minors of the order s, extracted from the matrix A and appropriate tensors. In
this way, we continue and extend results from [27]. Analogous results for the generalized inverse A

(2)
T,S

are also derived, as a continuation of the papers [8] and [23]. Restrictions to the set of {1,2}-inverses
continue results from [1, 2, 14, 25]. Also, in a particular case we get a generalization of known results
from [26], relative to the Drazin inverse. The volume associated with complex matrices as well as the
image of the adjoint mapping are extended in terms of the double inner product in Riemannian space.
Several illustrative examples are presented in the last section.
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2 Double inner product of miscellaneous tensors of rank 2

In the rest of the paper we assume the Einstein summation convention. The repetition of an index
(whether contravariant or covariant) in a term will denote a summation with respect to that index over
its range.

Riemannian space Rm is a differentiable manifold in which a symmetric basic tensor gij(x1, ..., xm)
is introduced, that is in generally

gij(x) = gji(x), i = 1, . . . ,m. (2.1)

The lowering and the raising of indices one defines by the tensors gij and gij respectively, where gij

is defined by the equation
gijg

jk = δk
i , i, k = 1, . . . ,m, (2.2)

where δk
i is the Kronecker symbol (which is 0 for i 6= j and 1 for i = j). Therefore, the matrix [gij ] is

the inverse of [gij ].

Definition 2.1 For given coordinates xi, i = 1, . . . , m in Rm a subspace Rn ⊂ Rm is determined by
the equations

xi = xi(u1, . . . , un), (n < m),

where

ρ

([
∂xi

∂uj

])
= n, i = 1, . . . , m, j = 1, . . . , n.

Assume that H = {hij}, i, j = 1, . . . , n is the metric tensor induced in Rn by the following system of
constraints:

hij = xi
sx

j
tg

st = hji, i, j = 1, . . . , n, s, t = 1, . . . , m,

where xi
s = ∂xi

∂us
. The inverse tensor for H = {hij} is equal to H−1 = {hij}, i, j = 1, . . . , n, i.e.

hijh
jk = δk

i , i, k = 1, . . . , n.

In Cartesian coordinates, the covariant and the contravariant components are one and the same, and
the fundamental tensor is merely the identity tensor.

Definition 2.2 A system of objects whose elements are defined in the Riemannian subspace Rn ⊂ Rm,
where certain indices are related to Rm and another to Rn and where transformations of these objects
are defined by the tensor rules separately in Rn and in Rm

ai
j(x1(u1, . . . , un), . . . , xn(u1, . . . , un)) ≡ ai

j(u1, . . . , un) ≡ ai
j , i = 1, . . . , m, j = 1, . . . , n,

is called the miscellaneous tensor.

In this way, it is possible to use miscellaneous tensors of rank 2 and dimensions m× n, m 6= n. The
standard conventions are assumed. In the case when a tensor is of the type (1, 1), then an upper index
denotes row and the lower index corresponds to a column. If a tensor is of type (0, 2) or (2, 0) then the
first index determines row and the second one determines column.

The inner product of two 2nd rank tensors corresponds to the usual matrix multiplication while the
double inner product of 2nd rank tensors is an analogy for the inner product of two matrices.
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Definition 2.3 The inner product of two 2nd rank tensors Akj and Bkj of (0, 2)-type with covariant
components of dimensions m× k and k × n, respectively, is denoted as A·B = C, where

Ci
l = Ai

jB
j
l = δikAkjδ

jsBsl, i, k = 1, . . . , m, j, s = 1, . . . , k, l = 1, . . . , n

Ci
l = Ai

jB
j
l = gikAkjh

jsBsl, i, k = 1, . . . , m, j, s = 1, . . . , k, l = 1, . . . , n

are corresponding definitions in the Euclidean and Riemannian spaces, respectively.

The double inner product of A = [aij ] and B = [bij ], denoted by A:B, in the Euclidean space is a
0th rank tensor C defined as

C = Ai
j(B

T )j
i = δikAkjδ

js(BT )si, i, k = 1, . . . , m; j, s = 1, . . . , n.

Because of visibility and connectivity with the traditional notation of the matrix inner product, we use
the notation C = 〈A,B〉 instead of A : B for the double inner product. The double inner product in the
Euclidean space may be expressed by means of the trace of the inner product (see, for example [11]):

C = 〈A,B〉 = Tr(A·BT ) = Tr(AT ·B). (2.3)

In the Riemannian space we have (see, for example [32])

Ai
j = gikAkj , (BT )j

i = hjs(BT )si, i, k = 1, . . . , m; j, s = 1, . . . , n, (2.4)

where A = [aij(x)], B = [bij(x)], x ∈ Rn ⊂ Rm. Taking into account previous considerations, in the
following definition we introduce the double inner product between two miscellaneous tensors of the
rank 2 in the Riemannian subspace Rn ⊂ Rm.

Definition 2.4 The double inner product of two tensors A = [aij(x)], B = [bij(x)], x ∈ Rn ⊂ Rm of
rank 2 and dimensions m× n, denoted as 〈A, B〉G,H, can be defined in the following manner:

〈A,B〉G,H = gikAkjh
jsBis, i, k = 1, . . . , m; j, s = 1, . . . , n. (2.5)

where G is given metric tensor in Rm and H is the metric tensor induced in Rn.

The following property of the double inner product will be useful in deriving the determinantal
representation.

Lemma 2.1 The double inner product of second rank tensors A= [aij(x)], B = [bij(x)], x∈Rn⊂Rm,
defined by (2.5), satisfies the following properties:

(a) The usual inner product of two matrices A = [aij ], B = [bij ], of the order m× n in the Euclidean
space can be represented as a particular case of the double inner product:

〈A,B〉 = 〈A,B〉Im,In . (2.6)

(b) If G is given metric matrix in Rm and H is the metric tensor induced in Rn, we have

〈A,B〉G,H = 〈G·A·H, B〉 = 〈G·A,B ·H〉. (2.7)

(c) If G is given metric matrix in Rm and H is the metric tensor induced in Rn the following holds

〈A,B〉G,H = hkjAikgsiBsj , i, s = 1, . . . , m; j, k = 1, . . . , n. (2.8)
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Proof. Part (a) is evident. Taking into account (2.3) the part (b) follows from

gikAkjh
jsBis, i, k = 1, . . . ,m; j, s = 1, . . . , n

= (G·A·H)is(BT )si, i = 1, . . . , m; s = 1, . . . , n

= Tr((G·A·H)·BT ) = 〈G·A·H, B〉
and

gikAkjh
jsBis = gikAkjh

js(BT )si, i, k = 1, . . . ,m; j, s = 1, . . . , n

= (G·A)i
j(H·BT )j

i , i = 1, . . . ,m; j = 1, . . . , n

= Tr((G·A)·(H·BT )) = 〈G·A,B ·H〉.
Part (c) is derived from (2.3) and

Tr((G·A·H)·BT ) = Tr((G·A·H)T ·B) = Tr(H·AT ·G ·B)

= hkj(AT )kig
siBsj , i, s = 1, . . . , m; j, k = 1, . . . , n.

(2.9)

Definition 2.5 Magnitude (or the norm) of given tensor A = [aij(x)], x ∈ Rn ⊂ Rm of rank 2 and of
dimensions m× n is equal to

||A||G,H =
√
〈A,A〉G,H =

√
gikAkjhjsAis =

√
gikAkjAishsj , i, k = 1, . . . , m; j, s = 1, . . . , n,

=
√

hkjAikgsiAsj , i, s = 1, . . . , m; j, k = 1, . . . , n,
(2.10)

where G and H are the metric tensors in Rm and Rn, respectively.

Analogy of the full-rank factorization of a non-null matrix we will denominate as full-matrix rank
factorization. It is clear that if the fundamental tensors are identity matrices then the full-matrix rank
factorization reduces to the full-rank factorization.

3 Outer inverses in Riemannian spaces

In this section double inner product is presented in the general form (2.5) and possesses properties from
Lemma 2.1. By help of Definition 2.2 we enable that miscellaneous tensors A = [aij(x)], x ∈ Rn ⊂ Rm

of rank 2 can be of dimensions m × n or n × m. The set of tensors of determinantal rank r in the
Riemannian manifold Rn we denote by Rr

n.

Definition 3.1 Let there be given A = [aij(x)], x ∈ Rr
n ⊂ Rm of dimensions m × n, an arbitrary

integer s, 1 ≤ s ≤ r, and two integers 1 ≤ i ≤ n, 1 ≤ j ≤ m. By ∂Cs

∂aji
(A) we denote

(
m
s

)× (
n
s

)
matrix,

defined by

(
∂Cs

∂aji
(A)

)

α,β

=
∂

∂aji

∣∣Aα
β

∣∣=
∣∣∣
(
ad(Aα

β )
)

ij

∣∣∣=
{

(−1)pj+qi

∣∣∣Aα\{j}
β\{i}

∣∣∣ , (α, β)j ∈ Ns(j, i)
0, (α, β)j /∈ Ns(j, i)

(3.1)

for each α ∈ Qs,m, β ∈ Qs,n, where pj and qi denotes indices satisfying j = αpj and i = βqi .

Our statements generalize known results, mainly, from the papers [1, 8, 14, 15, 16, 23, 27] into the
corresponding double inner product representations in an arbitrary Riemannian manifold. The main
principles used in the verifications of these assertions generalize known techniques used in the above
mentioned papers.
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Lemma 3.1 Let A = [aij(x)], x ∈ Rr
n ⊂ Rm is a second rank tensor of dimensions m × n. Assume

that 1≤ s≤ r is selected integer and let E = [eij(x)], x ∈ Rs ⊂ Rn and F = [fij(x)], x ∈ Rs ⊂ Rm

are two arbitrary full-matrix rank tensors of dimensions n × s and s × m, respectively. Suppose that
G = [gij(x)], x ∈ Rm and H = [hij(x)], x ∈ Rn are two symmetric invertible tensors of dimensions m
and n, such that Cs(G) and Cs(H) are two metric tensors in R(m

s ) and R(n
s), respectively. Also, suppose

that ρ(A·E ·F ) = ρ(E ·F ·A) = s and
∣∣F ·G ·A·H·E∣∣ 6= 0. Then the following statements are valid:

(i) The determinant
∣∣F ·G ·A·H·E∣∣ can be expressed as

∣∣F ·G ·A·H·E∣∣ = 〈Cs(E ·F )T , Cs(A)〉Cs(G),Cs(H)

=
∣∣HKδ

∣∣ ∣∣(E ·F )Kγ

∣∣ ∣∣GSγ
∣∣ ∣∣ASδ

∣∣ , (γ, δ), (S, K) ∈ Ns;

(ii) For arbitrary integers 1 ≤ i ≤ n, 1 ≤ j ≤ m the following equality holds:

(H·E · adj(F ·G ·A·H·E)·FG)ij = 〈Cs(E ·F )T ,
∂Cs

∂aji
(A)〉Cs(G),Cs(H)

=
∣∣HKδ

∣∣ ∣∣(E ·F )Kγ

∣∣ ∣∣GSγ
∣∣ ∣∣(ad(ASδ))ji

∣∣ , (γ, δ), (S, K) ∈ Ns.

(iii) For arbitrary integers 1 ≤ i ≤ n, 1 ≤ j ≤ m the following is valid:

(H·E ·(F ·G ·A·H·E)−1 ·F ·G)
ij

=

∣∣HKδ
∣∣ ∣∣(E ·F )Kγ

∣∣ ∣∣GSγ
∣∣ ∣∣(ad(ASδ))ij

∣∣
∣∣HKδ

∣∣ ∣∣(E ·F )Kγ

∣∣ ∣∣GSγ
∣∣ ∣∣ASδ

∣∣ , (γ, δ), (S, K) ∈ Ns.

(3.2)

Proof. (i) In the case 1<s≤r, using ρ(F ·G ·A·H·E)=s we conclude
∣∣F ·G ·A·H·E∣∣ = Tr(F ·G ·A·H·E) = Tr(Cs(F ·G ·A·H·E))

and later ∣∣F ·G ·A·H·E∣∣ = Tr(Cs(H·E ·F ·G ·A)) = Tr(Cs(H·E ·F ·G)·Cs(A))

=
∣∣(H·E ·F ·G)δ

γ

∣∣ ∣∣Aγ
δ

∣∣ , (γ, δ) ∈ Ns.

Tensors G and H are symmetric by the assumptions, so that it is not difficult to verify
∣∣F ·G ·A·H·E∣∣ = 〈Cs(H·E ·F ·G)T , Cs(A)〉

= 〈Cs(G)·Cs(E ·F )T ·Cs(H), Cs(A)〉.

Applying property (2.7) of the double inner product, we have that
∣∣F ·G ·A·H·E∣∣ = 〈Cs(E ·F )T , Cs(A)〉Cs(G),Cs(H).

This part of the proof can be completed using the form (2.9) of the double inner product.
In the case s = 1 we put E = uT , F = v, where

u = {u1, . . . , un}, v = {v1, . . . , vm} (3.3)

are rank 1 tensors, and obtain
∣∣F ·G ·A·H·E∣∣ = F ·G ·A·H·E

= (uv)j
ia

i
j = hjp(E ·F )pig

ikAkj , i, k = 1, . . . , m, j, p = 1, . . . , n

= 〈EF,A〉G,H = 〈C1(EF )T , C1(A)〉C1(G),C1(H).

(3.4)
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(ii) The following representation can be derived generalizing known results from [23] and [27]:

(H·E · adj(F ·G ·A·H·E)·F ·G)ij =
∣∣(H·E ·F ·G)β

α

∣∣ ∂

∂aji

∣∣Aα
β

∣∣ , (α, β) ∈ Ns(j, i)

Since ∂
∂aji

∣∣Aα
β

∣∣ = 0, for j /∈ α or i /∈ β, we obtain

(H·E · adj(F ·G ·A·H·E)·F ·G)ij =
∣∣(H·E ·F ·G)β

α

∣∣ ∂

∂aji

∣∣Aα
β

∣∣ , (α, β) ∈ Ns

=
∣∣(H·E ·F ·G)β

α

∣∣
∣∣∣
(
ad(Aα

β)
)

ij

∣∣∣ , (α, β) ∈ Ns

= Tr
(

Cs(H·E ·F ·G)· ∂Cs

∂aji
(A)

)

= 〈Cs(H·E ·F ·G)T ,
∂Cs

∂aji
(A)〉

= 〈Cs(G)·Cs(E ·F )T ·Cs(H),
∂Cs

∂aji
(A)〉.

(3.5)

This part of the proof can be finished from Lemma 2.1.
In the case s = 1 the tensors E and F are of the form (3.3), and obtain

(H·E · adj(F ·G ·A·H·E)·F ·G)ij = (H·E ·F ·G)ij

= 〈C1(E ·F )T ,
∂C1

∂aji
(A)〉C1(G),C1(H).

(3.6)

Part (iii) follows from (i) and (ii).

In the following theorem we introduce the main result. This theorem gives the answer to the following
question: given m× n second rank tensor A of rank 0 < s ≤ r in the Riemannian subspace Rn ⊂ Rm;
determine a general form of non-zero outer inverses of A and necessary and sufficient conditions for its
existence in terms of the double inner product, using s× s minors of A, an appropriate n×m second
rank tensor and two metric tensors of dimensions m and n.

Theorem 3.1 Assume that A = [aij(x)] is a given m × n second rank tensor of matrix rank r over
Rn ⊂ Rm, s is arbitrary integer satisfying s ≤ r. Then the following statements are equivalent:

(i) X = [xij(x)], x ∈ Rn ⊂ Rm is {2}-inverse of A of rank s > 0.

(ii) There exist two full-matrix rank second rank tensors E = [eij(x)], x ∈ Rs ⊂ Rn, F = [fij(x)],
x ∈ Rs ⊂ Rm of dimensions n× s and s×m, respectively, and two symmetric invertible tensors
G = [gij(x)], x ∈ Rm and H = [hij(x)], x ∈ Rn of dimensions m×m and n× n, such that Cs(G)
and Cs(H) are two metric tensors in R(m

s ) and R(n
s), respectively, such that

〈Cs(E ·F )T , Cs(A)〉Cs(G),Cs(H) =
∣∣HKδ

∣∣ ∣∣(E ·F )Kγ

∣∣ ∣∣GSγ
∣∣ ∣∣ASδ

∣∣ , (γ, δ), (S,K) ∈ Ns. (3.7)

is invertible.

and xij ∈ X, i = 1, . . . , n, j = 1, . . . , m possesses the following representation:

xij =
〈Cs(E ·F )T , ∂Cs

∂aji
(A)〉Cs(G),Cs(H)

〈Cs(E ·F )T , Cs(A)〉Cs(G),Cs(H)

=

∣∣HKδ
∣∣ ∣∣(E ·F )Kγ

∣∣ ∣∣GSγ
∣∣ ∣∣(ad(ASδ))ij

∣∣
∣∣HKδ

∣∣ ∣∣(E ·F )Kγ

∣∣ ∣∣GSγ
∣∣ ∣∣ASδ

∣∣ , (γ, δ), (S,K) ∈ Ns.

(3.8)
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(iii) There exists a second rank tensor W = [wij(x)], x ∈ Rn ⊂ Rm of matrix rank s and of dimensions
n×m as well as two symmetric invertible tensors G = [gij(x)], x ∈ Rm and H = [hij(x)], x ∈ Rn

of dimensions m×m and n× n, such that Cs(G) and Cs(H) are two metric tensors in R(m
s ) and

R(n
s), respectively, satisfying

〈Cs(W )T , Cs(A)〉G,H =
∣∣HKδ

∣∣ ∣∣WKγ

∣∣ ∣∣GSγ
∣∣ ∣∣ASδ

∣∣ 6= 0, (γ, δ), (S,K) ∈ Ns (3.9)

and any element xij ∈X, i=1, . . . , n, j =1, . . . , m can be represented as follows:

xij =
〈Cs(W )T , ∂Cs

∂aji
(A)〉Cs(G),Cs(H)

〈Cs(W )T , Cs(A)〉Cs(G),Cs(H)

=

∣∣HKδ
∣∣ ∣∣WKγ

∣∣ ∣∣GSγ
∣∣ ∣∣(ad(ASδ))ij

∣∣
∣∣HKδ

∣∣ ∣∣WKγ

∣∣ ∣∣GSγ
∣∣ ∣∣ASδ

∣∣ , (γ, δ), (S, K) ∈ Ns.

. (3.10)

(iv) There exist two second rank tensors E = [eij(x)], x ∈ Rs ⊂ Rn, F = [fij(x)], x ∈ Rs ⊂ Rm of
full- matrix rank and of dimensions n × s and s ×m, respectively, and two symmetric invertible
tensors G = [gij(x)], x ∈ Rm, H = [hij(x)], x ∈ Rn of dimensions m ×m and n × n, satisfying
that Cs(G) and Cs(H) are two metric tensors in R(m

s ) and R(n
s), respectively, such that

∣∣F ·G ·A·H·E∣∣ (3.11)

is invertible, and
X = H·E ·(F ·G ·A·H·E)−1 ·F ·G. (3.12)

(v) There exist a second rank tensor B = [bβ,α(x)], x ∈ R(n
s) ⊂ R(m

s ) of dimensions
(
n
s

)× (
m
s

)
and

of the matrix rank 1, two symmetric invertible second rank tensors G = [gij(x)], x ∈ Rm and
H = [hij(x)], x ∈ Rn of dimensions m×m and n× n, satisfying that Cs(G) and Cs(H) are two
fundamental tensors in R(m

s ) and R(n
s), respectively, such that the following condition holds

〈BT , Cs(A)〉Cs(G),Cs(H) =
∣∣HKδ

∣∣ bKγ

∣∣GSγ
∣∣ ∣∣ASδ

∣∣ , (γ, δ), (S, K) ∈ Ns

= 1,
(3.13)

and xij ∈ X, 1 ≤ i ≤ n, 1 ≤ j ≤ m is equal to

xij = 〈BT ,
∂Cs

∂aji
(A)〉Cs(G),Cs(H)

=
∣∣HKδ

∣∣ bKγ

∣∣GSγ
∣∣ ∣∣(ad(ASδ))ij

∣∣ , (γ, δ), (S,K) ∈ Ns.

(3.14)

(vi) There exist symmetric invertible second rank tensors G = [gij(x)], x ∈ Rm and H = [hij(x)],
x ∈ Rn of dimensions m×m and n× n, satisfying that Cs(G) and Cs(H) are two metric tensors
in R(m

s ) and R(n
s), respectively, such that the following condition is satisfied

1 = 〈Cs(X)T , Cs(A)〉Cs(G),Cs(H)

=
∣∣HKδ

∣∣ ∣∣XKγ

∣∣ ∣∣GSγ
∣∣ ∣∣ASδ

∣∣ , (γ, δ), (S, K) ∈ Ns

(3.15)

and arbitrary (i, j)-th element xij from X, 1 ≤ i ≤ n, 1 ≤ j ≤ m possesses the form

xij = 〈Cs(X)T ,
∂Cs

∂aji
(A)〉Cs(G),Cs(H)

=
∣∣HKδ

∣∣ ∣∣XKγ

∣∣ ∣∣GSγ
∣∣ ∣∣(ad(ASδ))ij

∣∣ , (γ, δ), (S, K) ∈ Ns.

(3.16)
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Proof. (i) ⇒ (ii). Assume that X = [xij ], i = 1, . . . , n, j = 1, . . . , n is {2}-inverse of A. Let us choose
G = Im, H = In. Using known full-rank representation of {2}-inverses from [27] (which is valid in that
case) we conclude that there exist tensors E ∈ Rs ⊂ Rn of dimensions n × s and F ∈ Rs ⊂ Rm of
dimensions s×m, both of the matrix rank equal to s, such that F·A·E is invertible and X = E·(F·A·E)−1·F
can be expressed in the form (1.1), or equivalently in the following inner product representation in the
Euclidean space:

xij =
〈Cs(E ·F )T , ∂Cs

∂aji
(A)〉

〈Cs(E ·F )T , Cs(A)〉 , 〈Cs(E ·F )T , Cs(A)〉 6= 0.

Now, using (2.6) and Lemma 3.1, we conclude that the condition (3.7) is satisfied in the particular case
G = Im, H = In and xij is represented in the form (3.8) in the same particular case.

(ii) ⇒ (iii). Let us choose full-matrix rank tensors E ∈ Rs ⊂ Rn, F ∈ Rs ⊂ Rm of dimensions
n × s and s×m, respectively, as well as two symmetric invertible tensors G and H of dimensions
m × m and n × n, respectively, such that conditions (3.7) and (3.8) are satisfied. Then the matrix
W = E ·F ∈ Rn ⊂ Rm of dimensions n×m satisfies the conditions imposed in (3.9) and (3.10).

(iii) ⇒ (i). Assume that W satisfies conditions (3.9) and (3.10) in (iii). Also, let W = E ·F is a
full-rank factorization of W , where E = [eij(x)], x ∈ Rs ⊂ Rn and F = [fij(x)], x ∈ Rs ⊂ Rm are of
dimensions n× s and s×m, respectively, and both of the matrix rank equal to s. Then the condition
(3.9) guarantees

〈Cs(W )T , Cs(A)〉Cs(G),Cs(H) =
∣∣F ·G ·A·H·E∣∣ 6= 0

and existence of the inverse (G·F ·A·H·E)−1. Consider the matrix X = [xij ], i = 1, . . . , n, j = 1, . . . , m
whose elements are defined by (3.10). Using the results from Lemma 3.1, X can be expressed in the
following general representation:

X = H·E ·(F ·G ·A·H·E)−1 ·F ·G.

Now, equation X ·A·X = X can be easily verified.
(ii) ⇔ (iv). Follows from Lemma 3.1.
(iii) ⇒ (v). Assume that there exists matrix W together with two metric tensors G and H which

satisfy conditions from (iii). Then the matrix

B =
(〈Cs(W )T , Cs(A)〉Cs(G),Cs(H)

)−1
Cs(W )

is of dimensions
(
n
s

) × (
m
s

)
and satisfies (3.13) and (3.14). Further, since ρ(W ) = s we have ρ(B) =

ρ(W ) = 1 (see, for example [7]). Therefore, the matrix B satisfies conditions imposed in (v).
(v) ⇒ (i). Assume that the matrix B satisfy conditions from (v). Since (3.13) and (3.14) are

satisfied, we have

(XA)il =
∣∣HKδ

∣∣ bKγ

∣∣GSγ
∣∣

m∑
t=1

atl

∣∣(ad(ASδ))it

∣∣ , (γ, δ), (S, K) ∈ Ns

and

(XAX)ij =
n∑

l=1

(
∣∣HKδ

∣∣ bKγ

∣∣GSγ
∣∣

m∑
t=1

atl

∣∣(ad(ASδ))it

∣∣
)

(∣∣HK1δ1
∣∣ bK1γ1

∣∣GS1γ1
∣∣ ∣∣(ad(AS1δ1))lj

∣∣) ,

(γ, δ), (S, K) ∈ Ns, (γ1, δ1), (S1, K1) ∈ Ns

Consider the tensor Λ defined as Λ = Cs(H)·B ·Cs(G) = [λδγ ], (γ, δ) ∈ Ns. It is not difficult to verify
that Λ is of dimensions

(
n
s

)× (
m
s

)
and of the matrix rank 1. We have

(XAX)ij =
n∑

l=1

(
λδS

m∑
t=1

atl

∣∣(ad(ASδ))it

∣∣
)

(
λδ1S1

∣∣(ad(AS1δ1))lj

∣∣) ,

(S, δ) ∈ Ns, (S1, δ1) ∈ Ns.
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Since ρ(Λ) = 1 using known result from [14] we get

λδSλδ1S1 = λδ1SλδS1

and later

(XAX)ij = λδ1SλδS1
∑

l∈S1

(∣∣ASδ(i←l)

∣∣ ∣∣(ad(AS1δ1))lj

∣∣) , (S, δ1) ∈ Ns, (S1, δ) ∈ Ns

= λδ1S
(
λδS1

∣∣AS1δ

∣∣) ∣∣(ad(ASδ1))ij

∣∣ , (δ1, S) ∈ Ns, (δ, S1) ∈ Ns.

Using
λδS1

∣∣AδS1

∣∣ =
∣∣HKδ

∣∣ bKγ

∣∣GS1γ
∣∣ ∣∣ASδ

∣∣ , (γ, δ), (S1,K) ∈ Ns

= 1,

we obtain
(XAX)ij = λδ1S

∣∣(ad(ASδ1))ij

∣∣ , (S, δ1) ∈ Ns

=
∣∣HKδ1

∣∣ bKγ

∣∣GSγ
∣∣ ∣∣(ad(ASδ1))ij

∣∣ , (γ, δ), (S,K) ∈ Ns

= xij .

Therefore, (i) is satisfied.
(i) ⇒ (vi). It suffices to use the following result from [27], in the case G = Im, H = In:

X ·A·X = X ⇔ Tr(Cs(X ·A)) = 1, X = ACs(X),

together with
Tr(Cs(X ·A)) = 〈Cs(X)T , Cs(A)〉 = 1

and
xij =

(
ACs(X)

)
ij

= 〈Cs(X)T ,
∂Cs

∂aji
(A)〉

=
∣∣Xδ

γ

∣∣ ∣∣(ad(Aγ
δ ))

ij

∣∣ , (γ, δ), (S,K) ∈ Ns.

Therefore, conditions (3.15) and (3.16) are satisfied in the case G = Im, H = In.
(vi)⇒ (i). Assume that conditions from (vi) are satisfied. Choose an arbitrary full-rank factorization

X = M ·N of X. According to (3.16) and Lemma 3.1 we get

X = H·M ·(N ·G ·A·H·M)−1 ·N ·G. (3.17)

From (3.15) we have the following conclusion
∣∣N ·G ·A·H·M ∣∣ = 1 ⇒ ρ(N ·G ·A·H·M) = s > 0.

Now, equation X ·A·X = X and ρ(X) = s can be easily verified from (3.17).

In the following theorem we derive an additional characterization of the set of outer inverses by
means of metric tensors.

Corollary 3.1 Assume that A = [aij(x)], x ∈ Rn ⊂ Rm is miscellaneous m × n tensor of rank 2 and
the matrix rank equal to r. Also, suppose that G, H are two symmetric invertible tensors of dimensions
m×m and n×n, such that Cs(G) and Cs(H) are two fundamental tensors in R(m

s ) and R(n
s), respectively.

The set of outer inverses of A possesses the following representation:

A{2} = {H·(G·A·H) {1, 2}·G} . (3.18)
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Proof. Consider an arbitrary outer inverse X ∈ A{2}. According to Theorem 3.1, X is of the general
form (3.12). Since

E ·(F ·G ·A·H·E)−1 ·F ∈ (G·A·H){1, 2}
we get

X ∈ {H·(G·A·H) {1, 2}·G} .

On the other hand, in the case X = H·(G·A·H)(1,2) ·G, for some reflexive g-inverse of G ·A ·H, the
equation X ·A·X = X evidently holds.

Remark 3.1 In some partial cases of Theorem 3.1, we immediately obtain analogous characterizations
and representations of the Moore-Penrose inverse, group inverse and the weighted Moore-Penrose in-
verse for the set of tensors of rank 2 in the Riemannian space Rn ⊂ Rm. Selecting G = Im, H = In,
the Moore-Penrose inverse can be obtained in the case W = AT and the group inverse is selected with
W = A, while the Drazin inverse arises in the case W = Ak, k ≥ ind(A). The weighted Moore-Penrose
inverse can be characterized in two cases:

(a) G = Im, H = In, W = (M ·A·N−1)T ;

(b) W = AT , G = M , H = N−1.

Remark 3.2 The general rule for generating the Moore-Penrose inverse is

H·E ·F ·G = AT .

Similarly, the weighted Moore-Penrose inverse and the group inverse can be generated in the general
case

H·E ·F ·G = (M ·A·N−1)T = N−1 ·AT ·M
and

H·E ·F ·G = A,

respectively. In the case
H·E ·F ·G = Ak, k ≥ ind(A)

we obtain an analogy of the determinantal representation of the Drazin inverse from [26] in the Rie-
mannian space.

Remark 3.3 In the particular case H = N−1, G = M , E = Q∗, F = P ∗, where A = PQ is a full-rank
factorization of A and M , N are symmetric invertible matrices, reducing the Riemannian space into
the space Fn with the indefinite scalar product, the general representation (3.12) reduces to the general
representation of the generalized weighted Moore-Penrose inverse which is given in Theorem 3.2 from
[24]. Further, in the case when the matrices M and N are positive definite, from Theorem 3.1 we derive
known general and the determinantal representation of the weighted Moore-Penrose inverse.

In the following theorem we generalize results from [23] into the Riemannian space.

Theorem 3.2 Assume that A = [aij(x)] and W = [wij(x)] are given m × n and n × m tensors of
rank 2 and of matrix rank r and s ≤ r, respectively, over Rn ⊂ Rm. Also, suppose that W = E ·F
is a full-matrix rank factorization of W , where E ∈ Rs ⊂ Rn of dimensions n× s and F ∈ Rs ⊂ Rm

of dimensions s×m are two tensors of matrix rank equal to s. Then the following conditions are
equivalent:

(i) There exist symmetric invertible second rank tensors G = [gij(x)], x ∈ Rm and H = [hij(x)], x ∈ Rn

of dimensions m×m and n×n, satisfying that Cs(G) and Cs(H) are two fundamental tensors in
R(m

s ) and R(n
s), respectively, such that (3.7) is satisfied and xij ∈ X, i = 1, . . . , n, j = 1, . . . , m

can be expressed as in (3.8).
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(ii) If A has {2}-inverse A
(2)
H·R(E),G−1·N (F ), then it possesses the full-matrix rank representation

A
(2)
H·R(E),G−1·N (F ) = H·E ·(F ·G ·A·H·E)−1 ·F ·G. (3.19)

Proof. (i) ⇒ (ii). Assume that A
(2)
H·R(E),G−1·N (F ) exists and X satisfies conditions from (i). Using the

result (iii) from Lemma 3.1, it is clear that X can be represented in the form

X = H·E ·(F ·G ·A·H·E)−1 ·F ·G.

Therefore, X·A·X = X. Since G, H are invertible, E is full-column rank and F possesses full-row rank,
it is easy to verify (see [3])

R(X) = R(H·E ·(F ·G ·A·H·E)−1 ·F ·G) = R(H·E) = H·R(E),

N (X) = N (H·E ·(F ·G ·A·H·E)−1 ·F ·G) = N (F ·G) = G−1 ·N (F ).

Therefore, since A
(2)
T,S inverse is unique, we just verify X = A

(2)
H·R(E),G−1·N (F ).

(ii) ⇒ (i). Assume that X = A
(2)
H·R(E),G−1·N (F ) exists. Consider the matrix W = H·E ·F ·G. Since

R(W ) = R(H·E) = H·R(E) and N (W ) = N (F ·G) = G−1 ·N (F ) (see [3]), according to Theorem 3.1
from [23] (valid in the Euclidean space) we get X = H·E ·(F ·G ·A·H·E)−1 ·F ·G. Now (i) follows from
Lemma 3.1.

Remark 3.4 Outer generalized inverse defined by (3.12) reduces to the usual outer inverse of the form
X = E·(F·A·E)−1·F (investigated in [27]) in the Euclidean space, in the same way as the weighted Moore-
Penrose inverse generalizes the Moore-Penrose inverse. And conversely, an arbitrary outer inverse in
the Euclidean space, given in the form X = E ·(F ·A ·E)−1 ·F , translates by means of the symmetric
invertible tensors G and H into the form X = H·E ·(F ·G ·A·H·E)−1 ·F ·G, under the assumption that
Cs(G) and Cs(H) are two fundamental tensors in R(m

s ) and R(n
s), respectively. For this purpose, it is

appropriately to use the notion weighted outer inverse of A for the matrix defined in (3.12). If the
symmetric invertible tensors G and H are equal with identity tensors Im and In, respectively, then (3.19)
reduces to known full-rank representation of the inverse A

(2)
R(E),N (F ), originated in [23]. Therefore, it

seems reasonable to use the notion weighted A
(2)
R(E),N (F ) inverse for A

(2)
H·R(E),G−1·N (F ).

In the rest of this section we introduce an additional determinantal representation of outer inverses.
For this purpose we introduce a generalization of the k-volume, originated in [4], [5].

Definition 3.2 Consider tensor A = [aij(x)], x ∈ Rr
n ⊂ Rm of rank 2 and dimensions m× n, and

choose arbitrary tensor W = [wij(x)], x ∈ Rs
n ⊂ Rm of rank 2 and dimensions n×m. Assume that k

is arbitrary integer satisfying 1 ≤ k ≤ r. The k-volume of the matrix A associated with the matrix W
and with symmetric invertible second rank tensors G = [gij(x)] and H = [hij(x)] of dimensions m×m
and n× n, denoted by volk(A,W ), is defined as the following square root of the double inner product of
the second rank tensors Ck(W )T and Ck(A):

volk(A,W ) =
√
〈Ck(W )T , Ck(A)〉Cs(G),Cs(H), (3.20)

where Cs(G) and Cs(H) are two metric tensors in R(m
s ) and R(n

s), respectively.

Remark 3.5 For any second rank tensor A = [aij(x)], x ∈ Rr
n ⊂ Rm of dimensions m× n, any integer

k satisfying 1 ≤ k ≤ r and fundamental tensors G = Im, H = In, we obtain

volk(A,A∗) = volk(A),

where volk(A) is the k-volume of A, defined in [4], [5].
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Definition 3.3 Consider the second rank tensor A = [aij(x)], x ∈ Rr
n ⊂ Rm of dimensions m× n and

symmetric invertible second rank tensors G = [gij(x)], x ∈ Rm, H = [hij(x)], x ∈ Rn of dimensions
m×m and n×n, assuming that Cs(G) and Cs(H) are two metric tensors in R(m

s ) and R(n
s), respectively.

The generalized adjoint matrix of A with respect to the generalized k-volume volk(A,W ), W ∈ Rr
s ⊂ Rm

of dimensions n×m, s ≤ r, k ≤ s, denoted by gadj(vol2k(A,W )), is n×m matrix whose (i, j)th element,
1 ≤ i ≤ n, 1 ≤ j ≤ m is equal to

(
gadj(vol2k(A,W ))

)
ij

= 〈Ck(W )T ,
∂Ck

∂aji
(A)〉Cs(G),Cs(H).

Theorem 3.3 The set of non-zero {2}-inverses for A ∈ Rr
n ⊂ Rm of dimensions m× n is equal to

A{2}=
{

1
vol2s(A, W )

gadj(vol2s(A,W )), W ∈Rs
n ⊂ Rm, vol2s(A, W ) 6=0, 0 < s ≤ r

}

=
{

gadj(vol2s(A,B)), B∈Rn ⊂ Rm of dimensions
(

n

s

)
×

(
m

s

)
, ρ(B)=1, vol2s(A,W )=1, 0<s≤r

}
,

where symmetric invertible second rank tensors G = [gij ], gij ∈ Rm, H = [hij ], hij ∈ Rn are of
dimensions m ×m and n × n, and Cs(G) and Cs(H) are two fundamental tensors in R(m

s ) and R(n
s),

respectively.

Proof. Assume that X ∈ A{2} possesses the matrix rank s > 0. According to Theorem 3.1, an arbitrary
(i, j)th element xij of X can be expressed in the form (3.10). In view of Definition 2.5, the denominator
of xij can be expressed as follows:

〈Cs(W )T , Cs(A)〉Cs(G),Cs(H) = vol2s(A,W ).

Also, according to Definition 2.3, for arbitrary integers 1≤ i≤n, 1≤j≤m, the double inner product

〈Cs(W )T ,
∂Cs

∂aji
(A)〉Cs(G),Cs(H)

is equal to (i, j)th element of the matrix gadj(vol2s(A,W )), which completes this part of the proof.
On the other hand, consider an arbitrary matrix X = [xij ], xij ∈ Rn ⊂ Rm, of dimensions n ×m,

defined by

X =
1

vol2s(A,W )
gadj(vol2s(A,W )), W ∈Rs

n ⊂ Rm, vol2s(A,W ) 6=0, s > 0.

For arbitrary integers 1 ≤ i ≤ n, 1 ≤ j ≤ m, it is not difficult to express xij ∈ X in the form (3.10).
Using the part (i) ⇔ (ii) of Theorem 3.1, we immediately obtain X ∈ A{2} and ρ(X) = s.

The second equality in theorem can be verified in a similar way, using the part (i)⇔ (v) of Theorem
3.1.

4 Examples

Example 4.1 Consider the second rank tensor

A =




−1 0 0 0
0 0 −1 0
0 0 2 0
1 0 0 0
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of dimensions 4× 4 and of matrix rank 2. Also, consider the following tensor W :

W =




−1 0 2 0
0 0 −1 0
1 0 2 0
1 0 0 0




of the same matrix rank. If the tensors G and H are chosen as G = H = I4, by means of Theorem 3.1
we get the following outer inverse of A:

X =




−1 0 0 0
1
4

0 − 1
8

0

0 0 1
2

0
1
2

0 1
4

0




.

In the case W = AT we get the following Moore-Penrose inverse of A:

A† =




− 1
2

0 0 1
2

0 0 0 0
0 − 1

5
2
5

0
0 0 0 0


 .

Later, if we use H = I4 and

G =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 .

In this case we have C2(G)=I6, and applying Theorem 3.1 we generate the following outer inverse of
A:

X =




−1 0 0 0
0 0 1

4
0

0 0 1
2

0

−1 0 0 0




.

Now, let us choose the following symmetric invertible tensors:

G = H =




e2cx1 0 0 0
0 e2cx2 0 0
0 0 e2cx3 0
0 0 0 e2cx4


 ,

where c ∈ R is a real constant and x1, . . . , x4 are real variables. Then C2(G) and C2(H) are of the
form of metric tensors from [6]:

C2(G) = C2(H) =




e2cx1+2cx2 0 0 0 0 0
0 e2cx1+2cx3 0 0 0 0
0 0 e2cx1+2cx4 0 0 0
0 0 0 e2cx2+2cx3 0 0
0 0 0 0 e2cx2+2cx4 0
0 0 0 0 0 e2cx3+2cx4




.

Applying Theorem 3.1 we generate the following outer inverse of A:

X =




−1 0 0 0
1
4
e2cx2−2cx1 0 − 1

8
e2cx2−2cx3 0

0 0 1
2

0
1
2
e2cx4−2cx1 0 1

4
e2cx4−2cx3 0


 .

Example 4.2 Consider the following 6×5 tensor of matrix rank 4, which is generated by putting a = 1
in the test matrix M3 from [35, p. 143]:

A =




1 2 3 4 1
1 3 4 6 2
2 3 4 5 3
3 4 5 6 4
4 5 6 7 6
6 6 7 7 8




.
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Let us choose tensors E and F as in [27]:

E =




0 0
2 1
3 2
5 3
1 0


 , F =

[
0 1 0 1 0 1
1 0 1 0 1 0

]
. (4.1)

Furthermore, let us choose G = b2I6, H = a2I5, where a and b are unevaluated real numbers. Since
ρ(F ·G ·A·H·E) = 2 and

|F ·G ·A·H·E| = 174a4b4

we conclude that corresponding {2}-inverse of A of rank 2 exist, and it is defined as in (3.12). Simple
calculation in accordance with (3.10) or (3.12) gives the following outer inverse X:

X =
1

174




0 0 0 0 0 0
−21 19 −21 19 −21 19

60 −46 60 −46 60 −46
39 −27 39 −27 39 −27

−102 84 −102 84 −102 84


 ,

which coincides with the outer inverse obtained in [27].
In the case E ·F = AT , using s = r = ρ(A) = 4, from (3.10) or (3.12) we obtain the following outer

inverse of A:

X =




− 1243
5562

13
618 − 1031

5562
329
5562

27
103

49
309 − 11

309
34
309 − 26

309 − 32
309

9
206

145
1854 − 91

1854 − 3
206 − 35

927

− 581
5562 − 95

1854 − 187
5562

109
5562

37
309

905
5562

11
1854

571
5562 − 301

5562 − 167
927

− 31
309 − 1

103 − 38
927

46
927

40
927




.

In the case G = I6, H = I5 we obtain the Moore-Penrose inverse as in [27]:

A† =
(
Tr(Cr(AT ·A))

)−1
ACr(AT ) =

1
8




4 −1 −8 7 −5 3
−8 15 −36 23 −5 3
10 −13 26 −15 1 −1
−2 3 −2 1 1 −1
−4 −2 12 −10 6 −2


 .

Example 4.3 Consider the following tensors A and W as in [23]:

A =



−1 2 1 0

1 0 1 1
−1 −3 1 2


 , W =




3 1 0
−2 4 −2
−5 −4 1

0 7 −3


 .

Let us choose G and H as in the following:

G =




1
g2
1

0 0

0 1
g2
2

0

0 0 1
g2
3


 , H =




1
h2
1

0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


 .

Then C2(G) and C2(H) are equal to

C2(G) =




1
g2
1g2

2
0 0

0 1
g2
1g2

3
0

0 0 1
g2
2g2

3


 , C2(H) =




1
h2
1

0 0 0 0 0

0 1
h2
1

0 0 0 0

0 0 1
h2
1

0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




,
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and both are of the form of the general Riemannian metric matrix of diagonal type. Corresponding
{2}-inverse of A is equal to

X=




−3g2
2−14g2

3

(h2
1+1)g2

1+6g2
2(h2

1+2)+7g2
3(h2

1+5)
21g2

3−g2
1

(h2
1+1)g2

1+6g2
2(h2

1+2)+7g2
3(h2

1+5)
−2g2

1−9g2
2

(h2
1+1)g2

1+6g2
2(h2

1+2)+7g2
3(h2

1+5)
2(3g2

2−7g2
3(h2

1−1))
(h2

1+1)g2
1+6g2

2(h2
1+2)+7g2

3(h2
1+5)

2(g2
1+7g2

3(2h2
1+1))

(h2
1+1)g2

1+6g2
2(h2

1+2)+7g2
3(h2

1+5) − 2((h2
1−1)g2

1+3g2
2(2h2

1+1))
(h2

1+1)g2
1+6g2

2(h2
1+2)+7g2

3(h2
1+5)

(6h2
1−3)g2

2+7g2
3(5h2

1−1)
(h2

1+1)g2
1+6g2

2(h2
1+2)+7g2

3(h2
1+5)

g2
1(2h2

1−1)−7g2
3(8h2

1+1)
(h2

1+1)g2
1+6g2

2(h2
1+2)+7g2

3(h2
1+5)

(5h2
1−1)g2

1+3g2
2(8h2

1+1)
(h2

1+1)g2
1+6g2

2(h2
1+2)+7g2

3(h2
1+5)

7g2
3(3−5h2

1)−3g2
2(h2

1−3)
(h2

1+1)g2
1+6g2

2(h2
1+2)+7g2

3(h2
1+5)

21g2
3(3h2

1+1)−g2
1(h2

1−3)
(h2

1+1)g2
1+6g2

2(h2
1+2)+7g2

3(h2
1+5)

g2
1(3−5h2

1)−9g2
2(3h2

1+1)
(h2

1+1)g2
1+6g2

2(h2
1+2)+7g2

3(h2
1+5)




.

Example 4.4 In the following example we consider tensors A and W whose elements are transcendental
functions, for example

A =




e2x sin(x) 0
e2x sin(x) 0

1 + e3x cos(x) 0
sin(x) cos(x) 0


 , W =




1 1 0 0
3x 0 1 0
x 0 1

3
0


 .

Further, let us chose

G =




1
g2
1

0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

g2
4


 , H =




1
h2
1

0 0

0 1 0
0 0 1

h2
3


 .

In this case, an application of Theorem 3.1 gives the following outer inverse of A:

X =




3x sin(x)−cos(x)

((1+e3x) sin(x)−e2x cos(x))(g2
1+1)

− cos(x)g2
1+3x sin(x)

((1+e3x) sin(x)−e2x cos(x))(g2
1+1)

sin(x)

(1+e3x) sin(x)−e2x cos(x)
0

−3e2xx+e3x+1

((1+e3x) sin(x)−e2x cos(x))(g2
1+1)

(1+e3x)g2
1+3e2xx

((1+e3x) sin(x)−e2x cos(x))(g2
1+1)

− e2x

(1+e3x) sin(x)−e2x cos(x)
0

−3e2xx+e3x+1
3((1+e3x) sin(x)−e2x cos(x))(g2

1+1)h2
3

(1+e3x)g2
1+3e2xx

3((1+e3x) sin(x)−e2x cos(x))(g2
1+1)h2

3
− e2x

3((1+e3x) sin(x)−e2x cos(x))h2
3

0




.

5 Conclusion

We consider the determinantal representation and characterization of generalized inverses from a new
point of view.

Firstly, it is verified that the determinantal representations (1.1) and (1.2) as well as the determi-
nantal representation (1.3)-(1.4) can be expressed in terms of the double inner product in the Euclidean
vector space. For this purpose we define double inner product of two tensors of rank 2. Motivated by
this fact, we continue these representations and give analogous representations in the Riemannian space
in the general case.

In this way, we extended recently obtained results from [12, 24] where the weighted Moore-Penrose
inverse and its generalization are investigated in an indefinite inner product space. The generalization
was done in two different ways: in the present paper we consider more general class of generalized
inverses in a Riemannian space, which contains any indefinite inner product space.

We also continue and extended results from [27] concerning outer inverses and results concerning
A

(2)
T,S inverse from [23, 33, 34]. Corresponding results from [27] and [23, 33, 34] can be derived in the

case when both tensors (gij) and (hij) coincide with appropriate identity tensors.
In the partial case s = r we extended analogous results relative to {1, 2}-inverses, introduced in

[2, 14] and [25]. As a corollaries we get extensions of corresponding results concerning the Drazin
inverse from [26], the Moore-Penrose inverse from [1], the weighted Moore-Penrose inverse from [16, 17]
as well as the group inverse from [15]. Analogous results for the generalized inverse A

(2)
T,S are also

derived, as a continuation of papers [8] and [23, 33, 34].
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Of course, during the verification of our statements, we follow some of the known matrix algebra
results on {2}-inverses, weighted Moore-Penrose inverses, Drazin inverses, and the k-volume. We also
make use of known techniques developed in cited papers. But, the final contributions of the paper are
extensions of known results. We emphasize the following results of the paper:
- We show that known determinantal representations of generalized inverses are quotients of two scalar
products.
- It is possible to extend these scalar product in the Riemannian manifold. In this way, generalized
inverses are available for the most general class of matrices whose elements are arbitrary functions.
Moreover, the underlying geometry which is established in the definition of the best approximate solution
of linear systems (related to {1, 3}-inverses), the minimal norm solution (associated with {1, 4}-inverses)
as well as the best approximate solution of minimal norm (derived by means of the Moore-Penrose
inverse) can be fully reconsidered through the aspect of the Riemannian geometry.

It is reliable to expect that these facts will be a motivation in further investigations of generalized
inverses, and generally for all extensions from the Euclidean into the Riemannian geometry.
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