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ABSTRACT

Body weight is regulated by the ability of hypothalamic neurons to orchestrate behavioral, 

endocrine and autonomic responses via afferent and efferent pathways to the brainstem and 

the periphery. Weight maintenance requires a balance between energy intake and energy 

expenditure. Although several components that participate in energy homeostasis have 

been identi�ed, there is a need to know in more detail their actions as well as their interac-

tions with environmental and psychosocial factors in the development of human obesity. 

In this review, we examine the role of systemic mediators such as leptin, ghrelin and insulin, which 

act in the central nervous system by activating or inhibiting neuropeptide Y, Agouti-related pep-

tide protein, melanocortin, transcript related to cocaine and amphetamine, and others. As 

a result, modi�cations in energy homeostasis occur through regulation of appetite and energy 

expenditure. We also examine compensatory changes in the circulating levels of several peripheral 

hormones after diet-induced weight loss. Arch Endocrinol Metab. 2016;60(2):152-62
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INTRODUCTION

O besity is a chronic multifactorial disease of com-

plex etiology, resulting from the chronic disrup-

tion between energy intake and energy expenditure, 

involving genetic, environmental, lifestyle, and emo-

tional factors. The body mass index (BMI) calculated 

by dividing weight (in kilograms) by height (in meters) 

squared, is one of the available tools for assessment of 

overall adiposity. The prevalence of overweight, de�ned 

as BMI between 25 and 29.9 kg/m2 and obesity, as 

BMI greater than or equal to 30 kg/m2 has increased 

progressively in recent decades. Data from the National 

Health and Nutrition Examination Survey (NHANES) 

show that approximately 70% of North American adults 

are overweight and 35% are obese. Obese individuals 

have an increased risk of obesity-related chronic com-

plications and mortality from all causes proportional to 

the increasing of BMI (1). The addition of waist cir-

cumference (WC) to BMI seems to predict a greater 

variance in health risk than does BMI alone (2). In-

creased central adiposity is associated with an increased 

risk of morbidity and mortality (3). In adults with a 

BMI of 25 to 34.9 kg/m2, a WC greater than 102 cm 

(40 in) for men and 88 cm (35 in) for women is associ-

ated with a greater risk of chronic complications (2). 

In this review, we synthesize the main neurohumo-

ral mechanisms involved in the regulation of energy 

metabolism and the evidence for their possible asso-

ciation with the development of obesity. In addition, 

we discuss brie�y about compensatory changes in the 

circulating levels of several peripheral hormones after 

weight loss for understanding the physiological basis of 

weight regain after diet-induced weight loss. 

INTEGRATION OF AFFERENT AND EFFERENT 

SYSTEM AND COMPLEX REGULATOR

The appetite control derives from a variety of afferent 

stimuli (afferent pathways) to be processed in the 
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central nervous system (CNS) (processing unit) and 

�nally signals the intake and regulates energy store 

(4). Sense organs, humoral signals, nutrients and va-

gals afferents are involved in feeding in the short term 

(5). Processing unit of the CNS includes hypotha-

lamus and brain stem. Efferent system, a complex re-

gulator of appetite and satiety, includes limbic cortex, 

thalamus, brain stem, insula, hippocampus and base 

nuclei that taken together with autonomic thermo-

genic effectors will regulate the energy expenditure 

(Figure 1). The interaction between these compo-

nents �nally will result in increased or decreased in 

energy stores. 

AFFERENT SYSTEM: HORMONES SIGNALING 

ENERGY RESERVES 

Role of the adipose tissue

Adipose tissue is the major reservoir of energy in the 

body. In mammals, two types of adipose tissue occur: 

white and brown both directly regulated by the auto-

nomic nervous system (6). Sympathetic innervation is 

mainly related to the catabolic actions, such as lipolysis, 

mediated by β-adrenergic receptor-dependent activity 

of the enzyme hormone-sensitive lipase (6). On the 

other hand, the parasympathetic activation is involved 

in anabolic effects, such as uptake of glucose and fatty 

acids stimulated by insulin (6). 

Recent evidence has shown that the adipose tissue 

also plays an important role in the integration of en-

docrine, metabolic and in�ammatory signals to control 

energy homeostasis, through the production of a va-

riety of bioactive proteins, together referred to as “adi-

pokines”, which include: leptin, adiponectin, resistin, 

visfatin, tumor necrosis factor – alpha (TNF-alpha), 

plasminogen inhibitor type 1, among others. Some of 

these are associated with disruption in metabolism and 

obesity and will be described below.

Leptin

Leptin is produced mainly in white adipose tissue 

and its concentration, in normal individuals, is pro-

portional to the amount of adipose tissue, being 

Figure 1. Regulation of energy homeostasis between central nervous system and peripheral signals (adapted 5,47). The determination of body weight 

results from a complex interaction of peripheral signals from the gastrointestinal tract, adipose tissue with the CNS. The hypothalamic control of energy 

homeostasis comes from the ability of hypothalamic neurons to orchestrate behavioral, endocrine and autonomic responses, via afferent and efferent 

pathways to the brain stem and the periphery. In the muscle, peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) stimulates the 

expression of the membrane protein �bronectin type III domain containing 5 (FNDC5), which is proteolytically cleaved to form irisin, a myokine that drives 

the transformation of white fat cells into brite cells, an effect known as “browning” of subcutaneous adipose tissue. AgRP: Agouti-related peptide; CART: 

co-caine and amphetamine regulated transcript; CCK: cholecystokinin; GLP-1: glucagon like-peptide 1; MC4R: melanocortin 4 receptor; NPY: neuropeptide y; 

POMC: pro-opiomelanocortin; PYY: peptide YY.
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higher in subcutaneous adipose tissue compared 

to visceral tissue (7). Leptin, which is stimulated by 

insulin, acts by inhibiting the release of neuropep-

tide Y (NPY)/Agouti-related peptide (AgRP), and 

through increased activation of neurons of the ar-

cuate nucleus (ARC) of the hypothalamus that ex-

press the pro-opiomelanocortin (POMC) (8). Thus, 

the NPY/AgRP neurons are thought to constitute a 

potent feeding system that is actively opposed by the 

POMC/cocaine and amphetamine regulated trans-

cript (CART) satiety system (9). Leptin also stimula-

tes other anorexigenic peptides such as corticotro-

pin releasing hormone (CRH) and CART, resulting 

in catabolic effects of prolonged action and decrea-

sed food intake with increased energy expenditu-

re (9). In polygenic obesity, increased leptin levels 

suggest resistance to its anorexigenic effects. It is 

likely that a failure in its production and/or action 

on its hypothalamic receptor could lead to a positi-

ve energy balance, generating hyperphagia and seve-

re obesity (10). In human or animal obesity models 

with lack the leptin receptor or ligand, high leptin le-

vels do not inhibit the feeding; its absence is a strong 

stimulus to induce feeding though (9). This can be 

considered an evolutionarily advanta geous system as 

it allows for excess energy storage when resources 

are transiently available but drives feeding behav ior 

under more limiting conditions (11). However, lep-

tin sign aling becomes maladaptive under obesogenic 

environment with easy access to highly palatable and 

energy dense foods.

Visfatin

Visfatin is an adipokine highly expressed in visceral fat 

that has been associated to numerous proin�amma-

tory effects and glucose homeostasis (12). Obesity and 

type 2 diabetes mellitus (T2DM) were associated with 

elevated circulating plasma visfatin in meta-analysis of 

observational studies (13). It has been suggested that 

visfatin is signi�cantly increased during the process of 

adipogenesis, being involved in adipocyte differentia-

tion and proliferation (14). Its elevated plasma levels in 

association with insulin resistance and T2DM are pro-

bably a consequence of the hyperglycemic milieu (13). 

Its exact biological action remains uncertain being ne-

cessary further investigation to clarify the connection 

between visfatin, and pathologic conditions as obesity 

and T2DM (13).

Adiponectin

Adiponectin appears to play an important role in the 

modulation of glucose and lipid metabolism in insu-

lin sensitive tissues, both in animals and humans mo-

dels (15). Its production is stimulated by peroxisome 

proliferator-activated receptor gamma (PPAR-gamma) 

and inhibited by catecholamines, and TNF-alpha (16). 

It acts systemically through two receptors, adipo-R1 

and adipo-R2 (expressed in muscle tissue and in hepa-

tocytes, respectively), increasing sensitivity to insulin, 

reducing hepatic glucose production and stimulating 

fatty acid oxidation (16). In humans, plasma adipo-

nectin levels are signi�cantly lower in states of insulin 

resistance, including type 2 DM (17). Two loci related 

to metabolic syndrome components were identi�ed in 

the same chromosome (3q27) where the adiponectin 

gene is located, reinforcing the role of this hormone in 

obesity (18). The fact that obesity is characterized by a 

state of adiponectin de�ciency makes this an interesting 

target for possible therapeutic interventions.

Resistin

The main biological effects of resistin are associated 

with increases in blood glucose levels and obesity in 

some animal models, partially explained as a conse-

quence of increased hepatic glucose production (19). 

In humans,  resistin reduces insulin-stimulated gluco-

se uptake in isolated adipocytes. The mechanisms un-

derlying these effects remain unclear, although data 

aim to the suppression of AMP-activated protein kina-

se (AMPK) activity by resistin, primarily in the liver, 

due to activation of cytokine stimulation-3 suppressor. 

The pheno types of humanized resistin transgenic mice 

suggest similar roles of murine and human resistin in 

insulin resistance (20). Elevated resistin levels are as-

sociated with greater risk for type 2 DM, increased in-

�ammatory markers and atherosclerosis (21). 

Role of the intestine

In the gut, chemo and mechano-receptors give informa-

tion about the amount of nutrients that is tempora rily 

stored in the gastrointestinal tract (8). In the stomach, nu-

trients are perceived by vagal stretch and sensors present 

in the gastric mucosa (8). Moreover, intestinal peptides, 

stimulated by food intake, mediate satiety centers in the 

brain stem. Signals received by the brain stem centers to 

regulate long term weight use neural connections with 
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the hypothalamus to regulate total daily intake, by ad-

justing the size of the meals, their number or both (22). 

Ghrelin

Ghrelin is a potent orexigenic hormone that stimulates 

food intake (10). The stomach is the primary site of 

ghrelin, although lower concentrations may be found 

in other organs as small intestine and hypothalamus 

(10). It is likely that this peptide is responsible for the 

start of a meal. Its levels are elevated one to two hours 

before the meal, and are decreased soon after (23). Its 

orexigenic action results from activation of NPY/AgRP 

neurons in the ARC (10). The pharmacological blocka-

de of ghrelin receptors in these neurons attenuates food 

intake in rodents (24). The exogenous administration 

of ghrelin is associated with increased food intake, re-

duced resting energy expenditure and catabolism in the 

adipose tissue (25). 

Glucagon like-peptide 1 (GLP-1)

GLP-1, derived from the proglucagon gene, is the pro-

totypical incretin hormone. GLP-1 release is triggered 

by ingestion of carbohydrates, fats, and protein and 

seems to re�ect, at least in part, the direct sensing of 

luminal nutrients by the apical processes of the intesti-

nal L-cells and the hindbrain, primarily in the nucleus 

of the solitary tract (26). GLP-1 acts as satiety signals 

through the GLP-1 receptor (GLP-1R). GLP-1R can 

also be stimulated exogenously via long lasting GLP-1 

analogs (27). In humans, peripheral GLP-1 administra-

tion to normal and diabetic subjects induces satiety and 

reduces food intake in short term studies (28). Chronic 

continuous GLP-1 administration to human diabetic 

subjects was associated with modest weight loss (28). 

The effects of GLP-1 on appetite may be mediated in 

part via inhibition of gastric emptying and also re�ect 

direct effects of GLP-1 on satiety and induction of 

taste aversion (29). GLP-1R stimulation reduces food 

reward behavior (28). Peripherally, GLP-1 stimulates 

lipolysis, adiponectin expression and increases thermo-

genesis with increased energy expenditure (30). 

Peptide YY (PYY)

PYY is released in the gastrointestinal tract in the pos-

tprandial period. It is important in prompting the end 

of the meal (8). It acts by inhibiting the activity of neu-

rons NPY/AgRP and stimulating POMC/CART in 

the ARC of the hypothalamus. Infusion of PYY at phy-

siological doses results in inhibition of gastric emptying 

and gastric acid and pancreatic exocrine secretion (31). 

These effects are mediated by direct action of PYY on 

the dorsal vagal complex (31). The peripheral adminis-

tration of pharmacological doses of this peptide seems 

to have a short anorectic effect in humans, suggesting 

that PYY functions as a satiety factor (32). The mecha-

nisms underlying the action of PYY in reducing food 

intake have not been fully elucidated. Its contribution 

in long term regulation of energy deposits, however, 

needs to be better evaluated. 

Cholecystokinin (CCK)

CCK is released approximately 15 min after meal initia-

tion by the presence of lipids and proteins, inducing ano-

rectic effect by vagal afferent pathways (33). There are se-

veral known bioactive forms of CCK, such as CCK-8 and 

CCK-58 and two types of CCK receptors, CCKA and 

CCKB (33). CCKA (also known as CCK1) seems to play 

a more important role in food intake regulation. CCK 

regulates short term feeding behavior in mice through 

selectively satiation, namely, the termination of eating 

at meal end (34). De�cits in  satiation  signaling during 

obesogenic feeding have been proposed to play a role in 

hyperphagia and weight gain in animals prone to become 

obese. The effects of CCK on suppression of food intake 

of high fat fed obese prone and resistant rats and its role 

on lipid-induced  satiation was recently examined (35). 

Obese prone rats have reduced feeding responses to 

exogenous CCK and have de�cits in endogenous CCK 

signaling compared to resistant rats (35). These results 

suggest that high fat feeding leads to impairments in li-

pid-induced CCK satiation signaling in obese-prone rats, 

potentially contributing to hyperphagia and weight gain. 

Moreover, to evaluate CCK function on meal size and 

intermeal interval, CCK was injected in experimental ro-

dents during every spontaneous meal by intraperitoneal 

catheters with extended of both (36). However, the ab-

sence of CCK signaling seems has no effect on long term 

energy homeostasis. The in�uence of exogenous CCK-8 

on satiety effect was �rst reported in obese humans in 

1982 and revealed that subjects stopped eating sooner 

during CCK-8 administration, even though maintaining 

the same eat rate (37). Studies have been shown that in 

lean individuals, the increase in postprandial CCK levels 

is high and fast, which may result in earlier occurrence of 

satiation, while in obese individuals, postprandial CCK 

levels remain increased for longer (38). 
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Insulin

Insulin is a circulating afferent signal, whose concen-

trations increasing with BMI, with many central effects 

similar to leptin (10). Mice without insulin receptors in 

the CNS develop hyperphagia and fat deposition, while 

insulin agonists exert the opposite effect (39). In view 

of insulin and leptin regulate body weight via negative 

feedback, the exogenous administration of these hor-

mones would presumably promote weight loss (10). 

However, obese individuals become resistant to insulin 

and leptin, and remain hyperphagic despite high circu-

lating levels of both hormones (40). Researchers have 

attempted to elucidate the mechanisms associated with 

resistance to the action of these hormones, as well as 

to develop more effective agonists of leptin and insulin 

analogues with selective action in the CNS, without pe-

ripheral anabolic effects (10). 

Central circuits: regulation of energy homeostasis

The regulation of energy homeostasis occurs through 

interconnection between a wide variety of signals from 

the gastrointestinal tract, via either sensory afferents or 

via circulation, at the dorsal vagal complex to multiple 

brain circuits to affect autonomic neuronal pathways 

and endocrine organs (41). This interaction will result 

in appetite control, in satiety, de�ned as sensation of sa-

tisfaction or fullness, and in the pleasure associated with 

food, related to palatability and reward derived from 

food (9).

The hypothalamus and the brain stem act as the two 

main centers, which receive and integrate peripheral 

signals that then cross-regulate each other and com-

municate with higher brain regions such as the anterior 

forebrain mesolimbic reward system (22). Peptides can 

regulate both appetite and energy expenditure as neu-

rotransmitters can act in an even more complex way, 

through multiple receptors. Its effects may vary accor-

ding to the anatomical region involved (42). A sum-

mary of the principal peptides and neurotransmitters 

involved in the regulation of body weight are presented 

in Table 1.

Hypothalamus

Within the hypothalamus, several hypothalamic sites 

are thought to be key in regulating energy homeos-

tasis. The ARC of the hypothalamus contains two po-

pulations of neurons that continuously monitor signals 

re�ecting energy status and promote the appropriate 

behavioral and metabolic responses to changes in ener-

gy demand. Neurons making POMC decrease food 

intake and increase energy expenditure through acti-

vation of G protein-coupled melanocortin receptors 

(MCR) via release of alpha-melanocyte-stimulating 

hormone (α-MSH) (Figure 1) (43). AgRP acts anta-

gonizing the action of α-MSH at the melanocortin 4 

receptor (MC4R). Overexpression of AgRP can lead to 

obesity (44). MC4R is widely found in the hypothala-

mus and activation of this receptor by α-MSH reduces 

food intake (45). Deletions or mutations in the MC4R 

are associated with obesity. It is estimated that 5% of 

cases of early-onset and severe obesity are the result of 

heterozygous mutations of MC4R (46). 
Neurons expressing orexigenic neuropeptides as 

NPY, AgRP, MCH neurons act increasing feeding 

and decreasing energy expenditure primarily by oppo-

sing the anorexigenic/catabolic actions of the POMC 

through both via competitive inhibition of melanocor-

tin tone at the postsynaptic level and via direct inhibi-

tion of POMC (43). The opposite does not occur, fa-

voring dietary intake and decreased energy expenditure 

in the absence of reciprocal inhibition of the POMC 

system on the NPY/AgRP.

Two neuropeptides are expressed by neurons in the 

lateral hypothalamus: melanin-concentrating hormone 

(MCH) and orexins (42). MCH stimulates appetite, 

possibly induced by the �avor of foods (47). The MCH 

producers neurons in the lateral hypothalamus are pro-

jected to the centers of smell and other areas of cerebral 

cortex, being inhibited by MSH producers neurons and 

neurons stimulated by NPY/AgRP (47). Orexins have 

secondary effects on food intake (42). The exact sites 

targeted by MCH neurons and orexins for induction of 

feeding behavior remains being determined. 

Brain stem

The brain stem is classically understood as the center for 

detection and response to hunger/satiety signals (47). 

The dorsal vagal complex is comprised of the nucleus 

of the solitary tract (NST), the dorsal motor nucleus of 

the vagus (vagal motor neurons) and the area postrema. 

Sensory afferent signals carried by glossopharyngeal 

and vagus nerves include indications of taste, gastric 

stretch, and levels of glucose and lipids in the liver and 

portal vein. This information is relayed to the dorsal 

motor nucleus of the vagus, located ventrally to the 

NTS, which is the primary site of motor effectors into 

the intestine (47). 
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Table 1. Summary of key peptides and neurotransmitters involved in the regulation of body weight 

Production site
Stimulation of 

production
Production 
inhibitors

Action
Effects on the 
regulation of 

hunger
Effects on EE

Afferent system

Leptin Adipose tissue Postprandial period

Insulin

Fast Inhibition of NPY/

AgRP

Increased release of 

α-MSH, CRH and 

CART

Anorexigenic action Increases

Ghrelin Stomach, primarily Fast

Preprandial period

Postprandial period Activation of NPY/

AgRP

Orexigenic action Decreases

GLP-1 Small intestine Postprandial period Fast Increases secretion 

of insulin-dependent 

glucose

Increases fatty acid 

synthesis

Anorexigenic action No effect

Insulin Pancreas Postprandial period Overnight fast

Preprandial period

Production of 

catabolic 

neuropeptides

Anorexigenic action 

in the CNS

No effect

Central nervous system 

NPY Arcuate nucleus of  

MH

Fast

Ghrelin

Leptin

Glucose

Increases food 

intake

Increases 

lipogenesis in 

animals

Orexigenic action Decreases

AgRP Arcuate nucleus of  

MH

Fast

Ghrelin

Leptin Antagonizes the 

effects of MC4R

Orexigenic action Decreases

MCH LH Flavor of foods MSH-producing 

neurons

Uncertain

Probable link with 

the NAc

Orexigenic action No effect

α-MSH Arcuate nucleus of  

MH

Leptin AgRP Agonist for the 

MC4R

Anorexigenic action Increases

Efferent system

Irisin Myocytes Exercise Unknown Induces “browning” 

of the SAT by 

increasing the 

expression of UCP1

No direct effect on 

hunger

Increases

Serotonin/ 

Norepinephrine

Autonomous nervous 

system

Environmental 

factors: low 

temperatures, diet

Weight loss Increases 

sympathetic activity

Thermogenesis

Lipolysis in adipose 

tissue

Anorexigenic action Increases

Thyroid hormones Thyroid Exposure to cold

Fever

High calorie diet

Critical illness  

Caloric restriction

Drugs

Regulates obligatory 

and adaptive 

thermogenesis

Modulates appetite 

according to the 

state of hyper or 

hypothyroidism

Increases

AgRP: Agouti-related peptide protein; α-MSH: alpha-melanocyte-stimulating hormone; CART: cocaine and amphetamine regulated transcript; CNS: Central Nervous System; CRH: corticotropin 

releasing hormone; EE: energy expenditure; GLP1: glucagon like-peptide 1; LH: lateral hypothalamus; MC4R: melanocortin 4 receptor; MCH: melanin-concentrating hormone; MH: medial 

hypothalamus; NAc: Nucleus accumbens; NPY: neuropeptide Y; SAT: subcutaneous adipose tissue; UCP1: uncoupling protein 1.
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EFFERENT SYSTEM: REGULATION OF ENERGY 

EXPENDITURE, EFFERENT AUTONOMIC AND 

ENDOCRINE SYSTEMS

Energy expenditure 

Ultimately, obesity results from an imbalance between 

energy input and energy output. Energy expenditure 

comprises combustion of substrates by oxygen and bo-

dy’s work and is divided into four types: (1) obligatory 

thermogenesis, related to cellular metabolism, functio-

ning of organs, maintenance of the body’s vital func-

tions; (2) postprandial thermogenesis, or the thermal 

effect of food; (3) thermogenesis resulting from phy-

sical activity; and (4) adaptive thermogenesis (48). It 

has been postulated that a de�cit in energy expenditure 

could contribute to the storage of triglycerides leading 

to obesity.

The obligatory thermogenesis is also referred to as 

resting energy expenditure or resting metabolic rate 

(RMR), representing approximately 70% of energy ex-

penditure (42). Most studies do not support the in-

volvement of a defect in RMR in the development of 

obesity. Obese individuals usually have greater RMR 

than lean persons because greater lean and adipose tis-

sue cell mass excess (49). Ravussin and cols. concluded 

that the most important factor determining both the 

increased RMR and energy expenditure during 24 h in 

obese when compared to control subjects is the incre-

ased free fat mass (49). Some studies, however, have 

shown that a low energy expenditure could play a role 

in energy imbalance and obesity. A longitudinal study 

showed that a low rate of energy expenditure adjus-

ted for body composition could be a predictor of wei-

ght gain in population prone to obesity (50). Another 

prospective study evaluated the energy metabolism and 

weight changes in Pima Indians, one of the most obese 

populations in the world (51). In this study, both to-

tal caloric intake and RMR were signi�cantly associated 

with changes in weight in an average period of four ye-

ars. Weight loss is associated with a reduction in energy 

expenditure that is out of proportion to changes in lean 

body mass, and it appears to persist inde�nitely as long 

as the reduced weight is maintained (52). 

The oxygen consumption increased (approximately 

50 kcal to 100 kcal over a period of 4 hours to 8 hours) 

after the ingestion of food is named thermic effect of 

food (53). There are many factors that can in�uence 

it, as meal size, composition meal, physical activity and 

stands out the insulin resistance. In animal models, the 

association between obesity and decreased sympathetic 

nervous system (SNS) activity has consistently been 

found (53). The normal response (increased oxygen 

consumption) to a high fat diet is absent in mice wi-

thout β-adrenergic receptor (53). In humans, it is like-

ly that obese subjects have smaller but potentially im-

portant reduction in thermic effect of food from the 

insulin resistance and attenuated SNS activity (53). 

The most variable part of energy expenditure is 

that corresponding to physical activity: exercise and 

non-exercise activity thermogenesis, which includes 

involuntary activities such as spontaneous muscle con-

tractions, maintaining posture and involuntary move-

ments, both representing 20% of energy expenditure 

(47). Physical activity has short and long-term effects 

on energy expenditure. Acutely, it induces an increase 

in oxygen consumption (47). Irisin levels are increased 

in response to acute exercise as described in the sec-

tion “Role of muscle tissue”. In addition, it may have 

long-term effects on RMR, which may be promoted by 

stimulants of adaptive thermogenesis, as excess calories 

(42). It is unknown whether obese persons expend less 

total energy on daily physical activity than lean indivi-

duals do or if they are less active (54). Obese persons 

expend the same amount of energy as lean persons to 

perform the same amount of work during non–weight 

bearing activity (42). However, during weight-bearing 

activities, obese persons expend more energy than lean 

ones because more work is required to carry their grea-

ter body weight (55). It is estimated that in obese per-

sons, the energy de�cit created by exercise is usually 

much less and requires more effort than the energy de-

�cit created by a reduced-calorie diet (47). 

Adaptive thermogenesis corresponds to changes in 

energy expenditure as a function of thyroid hormones 

administration, exposure to cold and food intake, 

and accounts for 10% of energy expenditure (48). 

Thyroid hormones play a critical role in both obliga-

tory and adaptive thermogenesis. In complete absen-

ce of thyroid hormone, RMR could be reduced by at 

least 30% (56). In response to an environment with 

low temperature, the SNS encourages a thermogenic 

response of brown adipose tissue with rapid increase 

in T3 levels. Although thyroid hormones are critical 

for the regulation of RMR and adaptive thermoge-

nesis, their effects on weight in the absence of di-

seases such as hyper or hypothyroidism are dif�cult 

to determine. The effects of administration of daily 
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injections of T3 or GC-1 (a synthetic analogue, selec-

tive for the β type thyroid receptor) at equimolar do-

ses, for 6 weeks, on different metabolic parameters 

were assessed in rodents (57). In this study, animals 

treated with T3 or GC-1 lost 70% and 20% of the fat 

mass, respectively, compared to controls, which gai-

ned 80% of fat mass, with no difference in the gain of 

fat-free mass. The development of synthetic analo-

gues of thyroid hormones with selective effect on the 

RMR, adaptive thermogenesis and metabolic pro�le, 

without side effects on other organs, is a promising 

area in the treatment of obesity (57).

The brown adipose tissue regulates energy expen-

diture through adaptive thermogenesis, a process that 

results in heat production by mitochondria to maintain 

normal body temperature. The activity of brown adi-

pose tissue increases during childhood and adolescen-

ce, reaching a peak at 13 years of age, with a tendency 

to decrease progressively with increased age (58). The 

brown adipose tissue was not previously associated 

with thermogenesis in adults. However, observational 

studies using positron emission tomography and com-

puterized tomography with 18F-�uorodeoxyglucose 

have shown the presence of metabolically active brown 

adipose tissue in healthy adults when exposed to cold 

(59). Thus, the activation of brown adipose tissue may 

be an important component of energy expenditure 

stimulated by cold in adults. Moreover, the activity of 

brown adipose tissue is inversely related to BMI, age 

and percentage of body fat (58). 

Irisin

Irisin is secreted by myocytes and appears to mediate 

the bene�cial effects of exercise on metabolism. Irisin, 

secreted into the blood as a product of �bronecting 

type III domain containing 5 (FNDC5), is induced 

by exercise and stimulates the transformation of whi-

te adipose tissue into brown adipose tissue, an effect 

known as “browning” of subcutaneous adipose tissue, 

by increasing the expression of uncoupling protein 1 

(UCP1, thermogenin) (60). This effect leads to in-

creased energy expenditure, potentially re�ected in the 

reduction of body weight and the incidence of type 2 

DM. Böstrom and cols. examined the effect of exercise 

on FNDC5 expression in the skeletal muscle of mice 

after 3 weeks of resistance exercise (60). There was a 

signi�cant increase in both FNDC5 and plasma levels 

of irisin, resulting in improved glucose tolerance and 

reduced weight of mice submitted to exercise (60). Si-

milar to what occurs in mice, the gene is expressed in 

the muscle of humans (61). Although irisin is identical 

in humans and rodents, the reproducibility of the ef-

fects of different stimuli in rodents is still doubtful in 

humans. Since that formation of brown adipose tissue 

has shown antidiabetes and antiobesity effects in both 

murine and human models, administration of analo-

gues of irisin is a potentially attractive therapeutic target 

for metabolic disorders, especially in patients unable to 

perform physical activity (62).

Efferent autonomic

Regarding the contribution of the SNS, several neuro-

peptides, monoamines and drugs involved in the modu-

lation of food intake and energy storage have reciprocal 

effects on sympathetic activity and adaptive thermoge-

nesis (63). Both serotonin and norepinephrine reduce 

food intake and increase sympathetic activity (63). Mice 

expressing no adrenergic receptors develop severe obe-

sity due to impaired diet-induced thermogenesis (63). 

Decreased SNS activity has been described in humans 

with obesity (63). Reduced sympathetic activity plays 

an opposite role in the adipose tissue: in white adipose 

tissue, there is a recruitment of new adipocytes that will 

result in hypertrophy and overdevelopment this cell; in 

the brown adipose tissue, an decrease in SNS activity 

will result in an overall decreased thermogenesis by two 

ways: decreasing the amount and activity of UCP1 and, 

decreasing the number of brown adipocytes (6). 

GUT MICROBIOTA

Dietary habits are considered one of the main factors 

that contribute to the diversity of human gut micro-

biota (64). Microbial changes in the human gut have 

been proposed as another possible cause of obesity 

(65). Many studies have reported shifts in the relative 

abundance of bacterial communities in the gut micro-

biota of obese relative to normal-weight individuals, 

and each study has attempted to link obesity with a spe-

cies- or genus-speci�c composition pro�le of the gut 

microbiota (64). Meta-analyses revealed no difference 

in the Bacteroidetes concentrations between obese and 

normal weight humans (66). Other meta-analyses re-

vealed that obese subjects present less Firmicutes, Bi�-

dobacteria and Methanobrevibacter spp. than nonobese 

subjects do in their gut �ora (8). However, it is still 



C
op

yr
ig

h
t©

 A
E&

M
 a

ll 
rig

h
ts

 re
se

rv
ed

.

160

Review of body weight regulation

Arch Endocrinol Metab. 2016;60/2

poorly understood how the dynamics and com position 

of intestinal microbiota are affected by diet or other li-

festyle factors. It is believed that gut microbiota could 

affect body weight in experimental animals (and proba-

bly in humans) by several mechanisms, including effects 

on energy metabolism, low-grade in�ammation, and 

altered gut permeability (67). Further studies should 

be conducted to clarify how gut microbial communities 

normally operate, and how they may be altered by pro-

biotic, prebi otic, and antibiotic interventions to pro-

mote weight loss (64). 

SHORT AND LONG-TERM PERSISTENCE OF 

HORMONAL ADAPTATIONS TO WEIGHT LOSS

After a period of weight loss induced by dieting, the 

body lay hold on to a series of adjustments in order to 

restrict the weight loss and prevent starvation. Calorie 

restriction induces compensatory short and long term 

mechanisms that will promote regain weight in most 

patients in treatment. The extremely high failure rate 

(> 80%) to keep the reduced weight after successful 

weight loss is due to adaptation processes of the body 

to maintain body energy stores (68). Increased hunger 

and decreased satiety are secondary to increased ghrelin 

following weight loss (69). Moreover, signi�cant and 

persistent reductions in energy expenditure as well as 

reductions in anorexigenic hormones as leptin appear to 

persist for at least one year following weight reduction 

and may remain altered inde�nitely in a manner that 

promotes increased energy intake and ultimately weight 

regain (69). As previously documented, obese indivi-

duals undergoing weight loss through diet exhibit an 

approximate 28% decrease in energy expenditure (70). 

CONCLUSION

The determination of body weight results, ultimately, 

from a complex interaction of peripheral signals invol-

ving the gastrointestinal tract, adipose tissue and muscle 

with the CNS. The increasingly detailed mapping of ef-

fector pathways that regulate body weight in response to 

afferent information from peripheral adiposity signals has 

produced a series of targets for new anti-obesity drugs. 

Although several components that participate in ener-

gy homeostasis have been identi�ed, there is a need to 

know further details about their actions as well as their 

interactions with environmental and psychosocial factors 

in the development of human obesity. For most obese 

persons, negative energy balance is more readily achie-

ved by decreasing food intake than by increasing physical 

activity. Therefore, dietary intervention is considered the 

cornerstone of weight-loss therapy. Weight-loss diets ge-

nerally involve modi�cations of energy content and ma-

cronutrient composition. However, the degree of weight 

loss achieved primarily depends on the energy content, 

rather than the relative macronutrient composition of 

the diet. Since the adaptive biologic responses to weight 

loss are prone to promote energy accumulation, indivi-

duals must restrict energy intake and increase energy ex-

penditure inde�nitely to avoid weight regain.
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