*

Determinants of Bond Risk Premia

Jing-zhi Huang and Zhan Shi
Penn State University

First draft: November 2009
This version: January 2011

Abstract

In this paper, we provide new and robust evidence on the power of macro variables for
forecasting bond risk premia by using a recently developed model selection method—
the supervised adaptive group “least absolute shrinkage and selection operator” (lasso)
approach. We identify a single macro factor that can not only subsume the macro factors
documented in the existing literature but also can substantially raise their forecasting
power for future bond excess returns. Specifically, we find that the new macro factor,
a linear combination of four group factors (including employment, housing, and price
indices), can explain the variation in excess returns on bonds with maturities ranging
from 2 to 5 years up to 43%. The new factor is countercyclical and furthermore picks up
unspanned predictability in bond excess returns. Namely, the new macro factor contains
substantial information on expected excess returns (as well as expected future short
rates) but has negligible impact on the cross section of bond yields.
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1 Introduction

Recent empirical evidence has documented that some financial and macroeconomic variables
can be used to predict the excess returns of the U.S. Treasury bonds. For instance, financial
variables found to have such predictive power include forward rates or spreads (Fama and
Bliss, 1987; Stambaugh, 1988; Cochrane and Piazzesi, 2005) and yield spreads (Campbell
and Shiller, 1991). In particular, Cochrane and Piazzesi show that a tent-shaped linear
combination of five forward rates can explain between 30 and 35 percent of the variation in
one-year excess returns on bonds with 2-5 years to maturity. On the other hand, Ludvigson
and Ng (2009b) obtain a macro factor (extracted from a monthly panel of 131 macroeconomic
variables using dynamic factor analysis) that has forecasting power for bond excess returns,
above and beyond the power contained in the aforementioned financial variables. Specially,
Ludvigson and Ng find that their factor alone can explain 21-26 percent of the one-year
excess returns and can raise it to 42-45 percent when augmented with the Cochrane-Piazzesi
factor. Interestingly, Cochrane and Piazzesi, Ludvigson and Ng, and Duffee (2008) all docu-
ment empirically the presence of a so-called “hidden” factor, namely, a factor that contains
substantial information about expected excess returns but has negligible impact on the cross
section of bond yields. These findings have generated important insights and implications for
term structure modeling, and spawned a fast growing literature on the determinants of bond
risk premia. Nonetheless, some recent studies have raised concerns about the robustness of
the documented power of those financial and macro variables for predicting bond risk premia
(see, e.g., Duffee, 2007).

In this paper, we reexamine the potential power of macro variables for forecasting bond
risk premia using a recently developed model selection method, namely, the supervised adap-
tive group “least absolute shrinkage and selection operator” (lasso) approach (referred to as
the SAGLasso approach, hereafter). We first extract a new macro factor from a standard
monthly panel of macro variables—the same set of macro variables used in Ludvigson and Ng
(2009b)—using the SAGLasso approach. We then examine the intuition of the new macro
factor and, in particular, investigate whether the new factor has any forecasting power for
bond risk premia above and beyond the predictive power contained in those financial and
macro factors identified in the literature. Finally, as a robustness check, we address two
issues raised recently by Duffee (2007, 2008) about the empirical literature on the prediction
of bond excess returns.

The new macro factor that we obtain is a linear combination of four non-overlapping group
factors, each of which itself is a linear combination of a small number of closely related macro
variables (a subset of the original 131 macro variables) and thus has a clear interpretation.
More specifically, the four group factors represent employment, housing, price indices, and
financial, respectively. As such, our new macro factor is easy to interpret.



We find that the new macro factor can predict excess returns on 2- to 5-year maturity
bonds with (in sample) R? up to 43 percent. This is significantly higher than that found
by either Cochrane and Piazzesi (2005, CP hereafter) or Ludvigson and Ng (2009b, LN
hereafter). Furthermore, our new macro factor is found to subsume the LN factor. However,
like the LN factor, our factor does not subsume the CP factor and contains information
about bond risk premia that is not contained in the CP factor. Augmenting our factor
with the latter can increase the R? of the forecasting regression to 47 percent. Like the CP
and LN factors, the new macro factor is found to be countercyclical. We also find that our
new factor has strong out-of-sample forecasting power as well and moreover has significantly
incremental predictive power beyond that in the LN factor. Overall, results from both in-
sample and out-of-sample analysis indicate that our new macro factor contains information
about future bond excess returns beyond what captured by the CP and LN factors.

We also find that our employment group factor can subsume the output gap factor found
by Cooper and Priestley (2009) that can predict excess returns on 2- to 5-year maturity
bonds with R? equal to 2 percent. As such, our macro factor goes beyond output gap
and inflation (two main macro variables considered in existing studies) and, in particular,
includes a component of macro risk tied to economic measures in the housing sector, that is
consistent with the implication of the Piazzesi, Schneider, and Tuzel (2007) model.*

To explore further the information content in the new macro factor, we include the
realized jump-mean factor of Wright and Zhou (2009) in predictive regressions of the bond
risk premium on the macro factor and the Duffee hidden factor, both jointly and separately.
Regression results indicate that these three factors are all significant and jointly can predict
excess returns on 2- to 5-year maturity bonds with R? up to 66 percent (where the sample
period used is 1984-2007, a sub sample period over which the jump factor can be constructed).

Finally, we conduct a robustness test of the empirically documented predictability of our
new macro factor by addressing two issues raised by Duffee (2007, 2008). He argues in the
former study that all existing predictive regression studies actually test a restrictive null
hypothesis that excess bond returns are unforecastable, whereas the more relevant null hy-
pothesis should be that “expected excess returns are stochastic, persistent, and independent
of the macroeconomy.” We attempt to distinguish between these two nulls by documenting
the strong forecasting power of the lagged value of excess returns themselves. We construct
tests for both restrictive and general null hypotheses and find that the general null, which
Duffee cannot reject in the finite sample analysis, is rejected regardless whether asymptotic or
simulated critical values are used. The other issue is whether the evidence for predictability
of excess returns is simply a symptom of small-sample biases in estimated t-statistics or R2.
We find that all the evidence of return predictability (based on regressions with asymptotic

'Piazzesi et al. (2007) focus on excess stock returns. But the same mechanism applies to excess bond returns
because risk premia on bonds and stocks are largely driven by the same business-cycle factors (Fama and French,
1989).



theories) in our new macro factor persists even after we adjust the estimated test statistics
for their finite-sample properties.

To sum, we provide new and robust evidence on the link between expected excess bond
returns and macroeconomic variables. The new macro factor identified in our analysis is
intuitive, includes a housing component, subsumes both the Ludvigson-Ng macro factor and
the output gap identified in Cooper and Priestley, and contains the information about future
bond excess returns that is not contained in the Cochrane-Piazzesi forward rate factor, the
Duffee hidden factor (referred to as an expectation factor by some researchers), and the
Wright-Zhou realized jump-mean factor. Furthermore, our analysis indicates that sources of
bond risk premium predictability include macro variables, jumps, and an expectation factor.

The SAGLasso approach, used to extract our bond return forecasting factor from a large
set of 131 macro variables using, has some advantages over the standard principal component
analysis (PCA) or factor analysis. First, the SAGLasso approach selects predictors based on
their association with the dependent variable (the bond risk premium in our case), whereas
principal components may contain most information with respect to the data matrix of in-
dependent variables, but this information may not be most correlated with the dependent
variable to be forecasted.? Second, the SAGLasso approach picks only a few most impor-
tant ones (out of those 131 macro variables) as explanatory variables by shrinkage, whereas
principal components or factors estimated using the PCA method are linear combinations
of all 131 macro variables. In particular, due to cluster structure of macroeconomic data,
we can divide 131 macro variables into groups and then apply the SAGLasso approach at
the group level to help us select group factors (which are informative and easy to interpret)
and thus identify underlying economic determinants of bond risk premia. Finally, predictive
regressions of excess bond returns tend to exhibit autocorrelation (due to both high serial
and cross-sectional correlations of bond prices) and the SAGLasso approach provides a ro-
bust way to correct for autocorrelated disturbances with an unspecified structure in such
regressions.

Our study builds directly on the insightful studies by Cochrane and Piazzesi (2005) and,
in particular, Ludvigson and Ng (2009b), respectively, the latter of which documents among
other things that macro factors have important forecasting power for future bond excess
returns, above and beyond the predictive power contained in yield curve factors (identified
by the former study). We extend LN in several directions. First, we extract macro factors
using the SAGLasso approach instead of dynamic factor analysis, and identify a new factor—
the housing factor. Secondly, we identify more sources of bond risk premium predictability.
Finally, we address the concerns raised by Duffee (2007, 2008) on the robustness of such a
predictability. Overall, we provide new and robust evidence to support LN’s findings.

2However, the information on the dependent variable can be used to help select a particular combination of those
principal components (and/or their higher order terms) as a predictor in predictive regressions. See Ludvigson and
Ng (2009Db).



Our study is also closely related to the macro finance literature (Ang and Piazzesi, 2003).
Several recent studies of dynamic term structure models (DTSM) document that factors
unspanned by bond yields have predictive content for bond excess returns. For instance,
Cochrane and Piazzesi (2009) and Duffee (2008) focus on unspanned “yield-curve” risks by
allowing yield factors, other than the traditional “level”, “slope” and “curvature” ones to
drive variation in expected excess returns. Joslin, Priebsch, and Singleton (2009) develop
a model that incorporates macro factors but allows for components of macroeconomic risks
orthogonal to the yield curve. Our empirical analysis sheds more light on the nature of
unspanned predictability documented in the aforementioned studies. Specifically, we identify
macroeconomic risk over and beyond that associated with variations in output gap and
inflation, the focus of current literature. Also, our regression results highlight the importance
of incorporating both yield-curve evolution and macroeconomic fundamentals in extending
the conventional three-factor DTSMs, because risk premia on unspanned predictors are not
identified otherwise.

The organization of the paper is as follows: The next section lays out the economet-
ric framework and introduces the Supervised Adaptive Group Lasso (SAGLasso) method.
Section 3 reports empirical results. In particular, we extract first those macro factors with
significant predictive power for excess bond returns and then conduct both in-sample and
out-of-sample forecasting regression analysis. Section 4 presents a bootstrap analysis for
finite-sample inference. Section 5 summarizes the results of our investigation. The appendix
provides a list of macroeconomic variables used in the analysis and also describes the dynamic

term structure model used in the bootstrap analysis.

2 The Empirical Method

This section introduces the Supervised Adaptive Group Lasso method and illustrates how
to use it to select macroeconomic factors that can forecast excess bond returns. Below we
first describe the penalized least squares, lasso, adaptive lasso, and group lasso. We then
propose our SAGLasso procedure based on the latter.

2.1 Motivation

There are two types of excess returns used in the literature on predicting excess bond returns.
In this paper, we follow Fama and Bliss (1987) by using continuously compounded annual log
returns on a n-year zero-coupon Treasury bond in excess of the annualized yield on a 1-year

zero-coupon Treasury bond. For t =1,--- T, excess returns are defined m:ﬁ)l = rt(i)l — yt(l) =

ny™ — (n— 1)yt($fl) — ", where rgﬁ)l is the one-year log holding-period return on an n-year
bond purchased at time ¢ and sold at time t+4 1, and yt(”) is the log yield on the n-year bond.

To examine if predictable variation in excess bond returns is specifically related to the



macroeconomic state, researchers often run the following predictive regression:

m:ﬁi)l =97 + e (1)
The predictors Z; are ususally based on a few predetermined macroeconomic measures such
as GDP growth, NAPM price index and personal consumption expenditure etc. Nevertheless,
the decision as to which predetermined macro variables to use in the econometric analysis can
substantially influence the estimated predictability of excess returns. Moreover, as pointed
out by LN, there is a potential degree-of-freedom problem here if the number of predictors
used is large. In fact, LN emphasize that it is infeasible to follow standard econometric
procedure with mass information contained in the 7" x N panel “unless we have a way of
ordering the importance of the IV series in forming conditional expectation.”

To get around these difficulties, LN employ the dynamic factor analysis to estimate
several linear combinations from a large panel of macroeconomic series. Such estimated
(static) factors can then be used in predictive regressions. One big advantage of the LN
methodology is that it allows us to summarize the information from a large number of time
series using only a few factors as follows

Txgi)l = F+7Zi + e (2)

Although very insightful, the LN method has some limitations. First, as mentioned ear-
lier principal component analysis (PCA) is an effective tool for finding linear combinations
of features that exhibit largest variation in a data set, but the resulting factors are not
necessarily most related with variations in the outcome variable to be predicted. In particu-
lar; the first component does not necessarily correlate strongly with the dependent variable
in factor-augmented regressions. For instance, the fifth and sixth components Fy, and Fy
identified in LN are found to have little forecasting power for excess bond returns.

To summarize, asymptotic principal component analysis is a standard method for mod-
eling correlation but the factors extracted using this method are not necessarily those most
correlated with the dependent variables that we want to forecast. The SAGLasso approach
used in this study singles out subsets of input features (and groups) associated with a par-
ticular response/dependent variable and thus drives the estimated factor toward it. As a
result, under this approach, it is possible to extract a sparse loading vector from a large
panel of noisy macroeconomic series and identify the association between bond risk premia

and different economic sectors.

2.2 Lasso, Adaptive Lasso, and Group Lasso

We assume that there are N macroeconomic measures observed for 7' time periods. Let X
be the T'x N panel of macroeconomic data with elements z;;, i =1,---N,t=1,---T. Asin



dynamic factor analysis, the cross-sectional dimension here, N, is large and possibly greater
than the number of observations, 7. Throughout this paper, we define

1l = (0 Pn)"?
for a vector € R¥ and a symmetric k x k positive definite matrix P. And we write ||n|| =
l|n]|z, for brevity. For a T x 1 response vector y, the penalized least squares function is
defined to be

N

ly = XBIF+ A5, (3)

i=1
where A > 0 is a tuning parameter. Note that the penalty functions p;(-) are not necessarily
the same for all i. The ¢;-norm penalty |5;| used here induces sparsity in the solution, and
defines the lasso method (Tibshirani, 1996). Bai and Ng (2008) pioneer the use of the novel
shrinkage method in macroeconomic forecasting by setting the soft thresholding to select a
subset of variables from which factors are extracted.

We now discuss why LASSO regression is preferred to using a linear combination of all
macro variables available as the fitted value estimated from OLS. First, in terms of forecasting
accuracy, OLS estimates usually exhibit low bias but large variance but shrinkage methods
can sacrifice a little bias to reduce the variance of the predicted value and thus improve the
overall forecasting performance. Next, it is well known that OLS has poor finite sample
property when the dimension of parameters to be estimated is comparable with the number
of observations.> The lasso approach is developed to handle such problems.

Zou (2006) modifies the lasso penalty as the following

N
[ly = XBI*+ > _ Al Ai (4)
i=1
such that different amounts of shrinkage are allowed for different regression coefficients. It
has been shown that this “Adaptive Lasso” has the oracle property if the weights A; are
data-dependent and appropriately chosen.

Despite its popularity, lasso has limitations. For instance, if each explanatory factor may
be represented by a group of derived input variables, then the lasso tends to select only one
variable from each group and does not care which one is selected, especially when there is
a group of variables among which the pairwise correlations are very high. In another word,
the solution for lasso depends on how the factors are represented,* and this is undesirable
in economic forecasting. Another issue is that when N > T the lasso selects at most T’
variables before it saturates, because of the nature of the convex optimization problem. As

3For our empirical study, there are 131 macroeconomic variables with only 528 observations.
4That is, if any factor is reparameterized through a different set of orthonormal contrasts, we may obtain a different
set of factors in the solution.



shown below, the first problem can be fixed by the Group Lasso of Yuan and Lin (2006).
The second concern is automatically removed by the SAGLasso procedure.
We begin with the following liner model

Y =X3%+e¢ (5)

with the assumption that e is a T-dimensional vector of iid errors, and we well relax this
assumption later. The central modeling assumption of Group Lasso is that some subvectors
of the true coefficients 59 are zero. And we denote by h € Hy = {h : 32 # 0} the unknown
index set of non-zero subvectors of 4. Hence, the Group Lasso involves identifying H; and
estimating $°. This can be naturally formulated in the framework of penalized least squares.

The general form of Group Lasso estimate is defined in Yuan and Lin (2006) as the

solution to the following problem:

ggﬂi{r}v{Hy—XﬁH“rAZHBhHwh}, (6)
h

given N, x Ny, positive definite matrices Wj. However, in practice, the Group Lasso is usually
implemented by estimating the following restrictive form

ggﬂg%{|ly—Xﬁll2+AZ|lﬁhll}~ (7)
h

Note that expression (7) reduces to the Lasso when |H| = N and each h corresponds to the
1-dimensional subspace of R? spanned by the corresponding column of the design matrix X.
Instead, we stick to the general Group Lasso in this paper and mimic the Adaptive Lasso

by setting W, = wp, Iy, . The resulted penalty function is given by

ﬁrgﬂigv{Hy—xmfﬂzwhuﬁhn} ®
h

For a large-scale macroeconomic data set, series are usually organized in a hierarchical
manner, making the Group Lasso perfectly suitable for factor selection. However, even within
a group, different variables may represent certain quantitative measurements of different
economic sectors. In our context, it is natural to conjecture that Industrial Production (IP)
Index for consumer goods might have connection with the bond risk premia in a different way
from the connection between IP Index of materials and the bond risk premia. Thus, it seems
necessary to also consider variable selection at the within-cluster level so that the irrelevant
individual series can be screened out. Furthermore, the capability of selecting informative
economic measures within the selected groups is especially valuable for practitioners that

require parsimonious models with specific input variables.



2.3 Supervised Adaptive Group Lasso

Essentially, the Supervised Adaptive Group Lasso (SAGLasso) consists of two steps. In the
first step, we identify informative individual macro series within each cluster using the Adap-
tive Lasso method. In the second step, we select important clusters using the Group Lasso.
The details of the SAGLasso procedure are provided in the appendix. To our knowledge,
the SAGLasso is the first to consider penalized time series selection at both the cluster level
and the within cluster level.

Compared to individual variable selection methods, the SAGLasso is capable of taking
cluster information into consideration. This makes it possible to reveal the associations
between term premia and macrocosmic fundamentals. With the proposed approach, we can
identify macroeconomic measures which are jointly significantly associated with risk premia
in bond returns. Compared to simple cluster based methods such as Group Lasso, SAGLasso
carries out the additional within cluster selection. This leads to a small number of variables
within each cluster. So beyond identifying influential factors, the proposed approach can
also identify the economic sectors that actually cause the association.

Besides the SAGLasso method, another two-step supervised learning approach in the
literature is the supervised principal component analysis (SPCA) proposed by Bair et al.
(2006) in a biological setting. Bai and Ng (2008) incorporate SPCA into the confines of
Diffusion Index framework and apply it to inflation forecasts. Significant differences exist
between the SAGLasso and other two-step approaches like SPCA. In other two-step ap-
proaches, the first supervised screening step considers all candidate variables simultaneously
and the cluster structure is ignored, whereas the main merit of the SAGLasso is the usage
of the information of underlying cluster structure. Moreover, in SPCA, the selected features
are the principal components. Although they may have satisfactory prediction performance,
economic interpretations may not be clear. As a comparison, for SAGLasso clear economic
interpretations of macro series identification results are available as shown in the next sec-
tion. Finally, the asymptotic theory for SPCA, established by Bair et al. (2006), is based
on the assumption of #d disturbance, which is usually not the case for financial time se-
ries. In contrast, penalized least squares (or more generally, penalized likelihood) can be
applied to general linear models with autocorrelated disturbance, as long as the objective
function is well defined and locally differentiable. In our context, suppose the disturbances

are homoscedastic but correlated across observations
mt+1 = ' Xi + €11, A(L)er11 = Vg, (9)

where v;41 is nonautocorrelated. If the lag operator has the order of p, then the AR(p)

disturbance model is

A(L)mutJrl = B A(L)X; + v (10)



Therefore, any model with an AR(p) disturbance can be written as a more general autore-
gressive distributed lag (ARDL) model with both p autoregressive terms and p distributed
lag terms, namely, the following ARDL(p, p) model

B(L)ra?h = B'C(L)X, + v (11)

with a nonlinear restriction imposed B(L) = C(L). Thus, upon finding evidence of auto-
correlation on the basis of LN’s and CP’s model, we proceed with relaxing the nonlinear
restrictions on the ARDL model, instead of seeking serial correlation in omitted variables.
This interpretation is largely supported by our empirical result: adding additional lags of
the dependent variable boosts the explanatory power of the model, with R? up to nearly

90%, leaving little room for other explanatory variables.

3 Empirical Results

In this section we extract macro factors from a monthly panel of 131 measures of economic
activity over the period 1964-2007 and then examine their power for forecasting excess bond
returns. Section 3.1 describes the data and discuss two different null hypotheses to infer
the relationship between term premia and the macroeconomy. Section 3.2 presents some
preliminary results from CP and LN’s analysis, which motivates our use of the general ARDL
model. The empirical results obtained from our SAGLasso are summarized in Sections 3.3
and 3.4. Sections 3.5 and 3.6 discuss the economic interpretation of the estimated factor
by characterizing its countercyclic pattern and unspanned predictive ability, respectively.
Section 3.7 examines the role of jumps. Finally, Section 3.8 reports some robustness checks

and assess the performance in subsample and out-of-sample analysis.

3.1 Data and Null Hypotheses

Monthly prices for 1-year through 5-year zero coupon U.S. Treasury bonds from CRSP are
used to construct annual excess returns, as specified at the beginning of Section 2. To follow
the literature, we construct annual returns by continuously compounding monthly return
observations, rather than constructing monthly excess returns. In spite of the well-known
statistical problem associated with regressions involving overlapping observations, there may
truly be more information on predictability of excess returns using the annual excess returns
because they subtract the 1-year yield instead of the 1-month yield.

Our macroeconomic data set consists of a balanced panel of 131 monthly macroeconomic
times series, each spanning the period from January 1964 to September 2007. The same
data are used in most dynamic factor model studies, such as Stock and Watson (2002,2005)
and Ludvigson and Ng (2009a, 2009b). These series are initially transformed to induce sta-

tionarity. To provide a basis for comparison, we include in our data set as many economic



series as used in Ludvigson and Ng (2009a), and the sample periods are exactly the same.
These series are roughly identified into 15 broad categories: real output and income; em-
ployment and hours; real retail, manufacturing and trade sales; consumption; housing starts
and sales; real inventories; orders; commercial credit; stock indexes; exchange rates; interest
rates and spreads; money and credit quantity aggregates; inflation indexes; average hourly
earnings; and miscellaneous. The complete list of series and their transformation is given in
the appendix.

Duffee (2007) argues that the existing literature does not test the relevant null hypoth-
esis that expected excess bond returns are persistent and uncorrelated with macroeconomic
measures. Instead, previous studies uses the restrictive null that excess returns are unfore-
castable. For simplicity, we follow Duffee by referring to the former null hypothesis as the
general null and the latter null hypothesis as the restrictive null. Statistically, the well-
known spurious regression problem is exemplification of their difference and the general null
can be typically incorporated into the linear regressions by adjusting the covariance ma-
trix of parameter estimates. And if we follow the ARDL methodology to correct for the
autocorrelation, the issue will be fully clarified. However, in predictive regression the criti-
cal issue associated with different null hypotheses is whether the small-sample properties of
test statistics are close to standard asymptotic properties. Therefore, when analyzing the
finite-sample properties of their techniques, existing studies usually makes bootstrap infer-
ence based on the restrictive null hypothesis. Put differently, the model used to generate
simulation data offer only a choice between term premia that covaries with macroeconomic
variables and term premia that are serially uncorrelated.

But the most significant effect brought about by different null hypotheses may lie in
the economic aspect. If we focus on predictors from the financial sector, using restrictive
null may not yield any conclusive result on whether expected excess returns are correlated
with the macroeconomy. As stressed by Duffee (2007), least square regression detects partial
correlations instead of unconditional correlations. Therefore, if the macroeconomic series are
correlated with the noise in financial variables derived from prices of risky securities, they
would exhibit forecasting power in regressions even if these series are independent of excess
returns. To assess the independent predictive power of macroeconomic inputs, in this paper

we test both restrictive and general null hypothesis.

3.2 Some Preliminary Results

We first construct the return-forecasting factors used in CP and LN, completely following
their methodology. The explanatory variables used by CP are the annualized forward rates
E™ = pm _ plnth oy — 0, 4. Stack them in the vector For,. The specification in
LN’s forecasting regression is slightly more complicated. Using eight static factors ( fn)
estimated from asymptotic PCA, they perform best-subset selection among different subsets

10



of fit as well as their quadratic and cubic functions. A nine-factor subsect given by F9, =
< fm e fgt, fft> is found to minimize the in-sample and the out-of-sample BIC. The CP and
LN single predictive factors are then formed as the fitted value from following regression

arri., = 7o+ Fory, (12)
arti = 0o+ 6'F9,, (13)

where arxy = }l Zi:2 rmgi)l. Table 1 shows coeflicient estimates, associated ¢-statistics and

R? value for Eq. (13). We denote the two single factors @t = 4'For; and mt = §F 9,
respectively.

Panel A of Table 2 reports results of univariate regressions of 2-5 year excess returns on
CP and LN factors. As the regression for annual excess returns use overlapping observations,
we compute standard errors using the Hansen-Hodrick (1980) GMM correction for overlap
(the first row in parentheses). Also, the Newey-West (1987) asymptotic standard ¢-statistics
(with 18 lags) are reported to correct serial correlation. Note that these two correction
methods correspond to different null hypotheses for the Wald tests. Because the restrictive
null states that forecast errors are serially uncorrelated and the general null is that forecast
errors contain persistent components independent of the macroeconomy, the robust Hansen-
Hodrick method is used to estimate the covariance matrix of parameter estimates for the
restrictive null, and the Newey-West method is used for the general null. Under both null
hypotheses the test is asymptotically distributed as a y*(1).

The regression with @t have a R? of 26 ~ 30 percent, slightly lower than reported by CP,
who use data through 2003. And the result of regressing excess returns on LN ¢ is remarkably
similar to what is obtained by LN. Result of multivariate regressions, in which both CP and
LN factors are included, is shown in Panel B. This specification serves as the starting point
of our analysis. First of all, LN ; alone explains 0.26 ~ 0.28 variance in excess bound returns
with maturities of 2-5 years. Adding C'P, to the regression increases R? to about 0.4. Our
SAGLasso methodology is intended to investigate whether these return-forecasting factors
have fully captured forecastable variations in excess returns, or equivalently, whether we can
construct a macroeconomic factor from the same penal data with predictive power above
and beyond the LN factor. Moreover, according to Panel C, the null hypothesis that the
first-order autocorrelation in the error term is zero is overwhelmingly rejected, using Ljung-
Box refined Q test. Note that Q test is even too conservative when the null hypothesis is
false, because it does not conditional independent variables. Autocorrelated disturbance may
occur due to misspecification, such as omitting relevant variables, choosing too low a lag order
for dependent or independent variables, or using inappropriate transformed variables. But
the documented evidence seems too strong to be purely explained by omitted explanatory

variables. Hence we proceed with relaxing the nonlinear restriction imposed on essentially

11



general ARDL model, and perform the SAGLasso algorithm on the basis of following model
C(L)GT$t+1 = ﬁB(L)Xt + &¢ (14)

The dimension of B(L) and C(L) is set to be 7 (with 6 lags). This original specification is
arbitrary and aims to make sure that the model contains more than the true lagged values.
Our conjecture is confirmed by the final estimation result (reported in Table 3) that the
resulted SAGLasso regression model does not exhibit significant serial correlation.

3.3 SAGLasso: In-Sample Analysis

Following Ludvigson and Ng (2009a), we divide the data into 8 blocks. These are (1) output,
(2) labor market, (3) housing sector, (4) orders and inventories, (5) money and credit (6)
bond and FX, (7) prices and (8) stock market. Then Adaptive Lasso is conducted with
each group, along with lagged value of excess bond returns. The use of Adaptive Lasso
provides the flexibility to not penalize the coefficients associated with lagged dependent
variables. One merit of estimating Group Lasso is that the factor estimates are easy to
interpret. We notice that after performing the first step of SAGLasso, the dimension of the
exogenous explanatory variables has been greatly reduced. Only 38 macroeconomic variables
have non-zero coefficients on their contemporaneous and/or lagged values. For instance, the
largest group at the cluster level, the “labor market group”, contains 32 series and thus 224
candidate explanatory variables,® but only 11 of them have non-zero coefficients after the
group lasso is applied.

In the second step, we select important clusters using the Group Lasso. Yuan and
Lin (2006) show that the solution to the Group Lasso problem (6) can be obtained effi-
ciently by using a modified least angle regression selection (LARS) algorithm of Efron et al.
(2004). With tuning parameters determined by 2-fold cross validation, coefficients of 4 clus-
ters/groups, (1), (4), (5) and (8), are shrunk to exactly zero. The estimates indicate that
macro factors associated with labor market, housing, interest rate and prices show strongest
connection with bond risk premia. We will revert back to the implication of this shrinkage
result in Section 3.4. Along the lines of CP and LN, the single SAGLasso factor, denoted
G, is defined as @(T)Xt.

Table 3 presents results from in-sample predictive regressions of 2- through 5-year long
excess bond returns on the SAGLasso factor along with lags of excess returns, in the form
of (13). Estimates of regressions with maturities of 3-5 years should be a preferable focus of

our interpretation, since a reparametrization of Eq. (11) reveals that for the regression with

SFor each series, we include its 6 lagged variables; so the total number of variables equals 32 x 7 = 224.
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the 2-year bond, some of the log prices appear on the both sides of the following equations

5
mﬁ)l = AOT@E” + BB(L)X: + Z AiT%@iv (15)
i=1
5
1 2 1 1 2 1 2
i =+ 00 = Ao (b o 40 ) + BB+ Y Ara (1)

i=1

Note that @t is basically a linear combination of macroeconomic series as well as their
lagged values. The essential difference between the SAGLasso factor and the LN factor is that
the former (1) exerts shrinkage of sufficient magnitude to give an economically interpretable
model as well as to substantially reduce the forecast variance and (2) takes into account
the dynamic respondence of risk premia to macroeconomic innovations. Panel A (and the
following Table 4) gives prominence to the first feature by showing that the SAGLasso factor
have statistically and economically significant predictive power conditional on lagged returns.
@t is highly significant in forecasting regression of all maturities, implying the estimated
factors contain information about future returns that is not contained in its own historical
path. This test directly corresponds to the general null hypothesis, as it demonstrates that
the lagged returns per se, especially the first lag, have considerable forecasting power for
the future ones. More strikingly, the SAGLasso factor, together with lagged excess returns,
explains nearly 90 percent of next year’s returns of 2- to 5-year Treasury bonds. It seems safe
to conclude that this specification has captured nearly all forecastbale variations in excess
bond returns and thus leaves marginal scope for other explanatory variable, in favor of using
the ARDL framework.

Another support for this specification comes from the result presented in Panel B, which
highlights the second feature of our methodology. The Ljung-Box Q test does not detect the
presence of AR(1) serial correlation in our model, in sharp contrast to extant studies. It is
well known that Q test is less powerful when the null hypothesis does not hold. Breusch and
Pagan (1980) also point out that Q test is inappropriate when the regressors include both
lagged dependent variables and exogenous variables. Hence, we also perform Lagrangian
multiplier test for robustness,® but it cannot reject the null hypothesis either. Testing for
higher order serial correlation does not alter the result.”

Next, we examine whether the SAGLasso factor has unconditional predictive power for
excess returns; this amounts to estimating the restricted version of (13), where A(L) is
restricted to zero except for the contemporaneous one. Table 4 presents the estimation
results of univariate predictive regression on G;. The most striking finding is that the
SAGLasso factor could explain more than 43% of the variations in excess returns on 2-5
year maturity bonds. This R? statistics, to the best of our knowledge, is the highest in

5See Breusch (1978) and Godfrey (1978) for details.
"Therefore, we do not report the Newey-West estimator for this specification.
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the literature to investigate the predictability of excess returns. Results not reported here
show that the lagged values along explains about 62% of the variance in the 3-5 year excess
bond returns. In other words, adding @t to the corresponding AR(6) model increases R?
by nearly 30%. Combining these numbers with results reported in Table 4, we can see
that the SAGLasso factor contains macroeconomic information on bond risk premia that
is unspanned by past bond prices. This implication is not surprising, though, because the
shrinkage path of our SAGLasso regression is based on partial correlations controlling for
lagged dependent variables (lagged values of excess returns are chosen to not be penalized).
Economic interpretation of this SAGLasso factor will be further discussed in Section 3.5.
These estimates also confirm that the unsupervised procedures adopted by LN underes-
timate the predictive power of macro variable (with R? of 0.28 versus 0.43), as much useful
information is missed in the process of unsupervised factor analysis. This point appears
more prominent in Panel B, which presents the results of regressions with both @t and LN ¢
as predictors. We find adding f]vt into the regression make little improvement in the pre-
dictability, measured by R?. Moreover, whether HH or NW t-statistics indicate that the
LN factor does not have the conditional predictive power for excess bond returns, as it be-
comes completely insignificant once @t is included in the regression. Hence we conclude that
our SAGLasso factor contains most macroeconomic information on term premia and thus

absorbs the role of LN factor in forecasting excess bond returns.

3.4 SAGLasso: the Group Level

A major advantage of SAGLasso is that it allows for using a priori information to organize
the numerous time series into several cluster. Unlike data obtained in other field, such
as microarray data, macroeconomic data usually has natural hierarchical structure that
may enhance our interpretation of empirical results. And the Group Lasso in the second
step produces accurate prediction while selecting a subset of important factors (clusters).
This subsection aims to evaluate the individual predictive power of each group factor and
characterize their connections with the bond risk premia.

Only 21 macroeconomic variable have non-zero coefficients associated with their contem-
poraneous and/or lagged values after two-step screening. See the column labeled “@t” in
Table A.1 for details. A quick review of these macro variables with non-zero coefficient vali-
dates our use of ARDL model, as many series have lagged effect on risk premia of Treasury
bonds. Especially, shocks to consumer prices require a long lag to manifest their impact on
the bond market.

To provide a clearer picture of the relationship between excess bond returns and each
macroeconomic cluster, we first form 4 group factors using estimates from the Group Lasso

ght = XhBhvh - 2737677' (17)
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Recall that these four supervised macroeconomic factors correspond to employment, housing,
interest spread and inflation, according to the result yielded in the second step of SAGLasso.
We then examine the predictive power of these group factors.

Table 5 presents results from in-sample predictive regressions of 2- through 5-year long
excess bond returns on these group factors (relabeled as gis, h = 1,...,4 in tables thereafter).
Panel A reports the estimates of univariate regression. We find that all group factors exhibit
significant unconditional predictive power. Each of them alone can explain 20 to 30 percent
of variance in excess returns on bonds of various maturities. Results reported in Panel B
are based on regressions that include four group factors as predictors. This specification
can be viewed as the counterpart of Table 1 using unsupervised factors. An inspection
of the results in Tables 2 and 3 reveals that, using the same panel of macro data, our
SAGLasso approach uncovers 4 cluster factors with the R? significantly higher than that in
the LN regression (0.43 versus 0.29). This evidence confirms the first two major conjectures
discussed in Section 2. In the first place, the unsupervised PCA does yield some useless
factors. Even if subset selection based on BIC is performed to select predictors, we still
find some insignificant factors in the forecasting regression (f?)t and f5t), largely due to the
discrete nature of subset selection methods. In the second place, some important information
on term premia is missed in unsupervised factors. Although the SAGLasso regression only
yields 4 group factors with non-zero coefficients, they can explain more of the variations in
excess bond returns. Note that unlike the estimates from large-scale factor analysis, our
group factors have clear economic interpretations.

Finally, we investigate whether these group factors have predictive power conditional on
Cochrane-Piazzesi return forecasting factor 6’?%, a common benchmark in the literature.
The estimation result shows gp;s have statistically significant and economically important
predictive power beyond that contained in the forward-rate factor 61\3t. For the regression
of excess return for 2-year bonds, the R? statistic rises from 0.26 to 0.48 once §p;s are
included in the regression. Unlike the th in LN’s regression, our group factor gg;, which is
estimated from the “bond spreads” block, does not lose its marginal predictive power when
E'T’t is added as a predictor. On the other hand, 6’1\Dt remains significant in the multivariate
regressions, implying that the macroeconomic factors do not subsume its role in predicting
excess bond returns.

Cooper and Priestley (2009) document that the output gap can predict excess returns on
2- to 5-year maturity bonds with R? equal to 2 percent, where the output gap is measured
as the deviations of the log of industrial production index from a quadratic and linear trend.
The top two panels in Table 6 replicate the results on the predictive power reported in Cooper
and Priestley, where E}j is the Cochrane-Piazzesi (2005) factor orthogonalized relative to
gap. Results reported in the bottom panel of Table 6 show that our employment group factor
can subsume the output gap factor.
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3.5 SAGLasso: a Countercyclical Component

Given the special statistical relevance of the SAGLasso factor in predicting excess returns, it
seems interesting to investigate its economic implication. We begin with characterizing its
countercyclic pattern, as predicted by economic theory. In the next subsection, we interpret
its role in yield dynamic and show that it contains information about risk premia that is not
already embedded in bond market data.

Wachter (2006) generalizes the habit formation model of Campbell and Cochrane (1999)
and shows that bond risk premia covary with consumption surplus, which is driven by shocks
to aggregate consumption. As documented in LN about their macro factor, our SAGLasso
also captures the countercyclic component in risk premia. Figure 1 plots the 6 month moving
average of G, and the growth rate of industrial production (GIP). Shaded areas indicate
the periods designated by the National Bureau of Economic Research (NBER) as recession
periods, where are characterized by low growth rate of IP and high values of (A}’t. The figure
shows that @t is strongly negatively correlated with GIP, with a correlation coefficient of
-0.78. The SAGLasso factor falls to troughs in the mid-to-late stage of economic expansions
and reaches its peaks at the end of recessions.

To illustrate that it captures more countercyclical variation in real activity than that doc-
umented by existing studies, we follow LNs methodology by including different sets of state
variables in a VAR system to calculate multiperiod forecasts of excess returns. Specifically,
we consider two benchmarks, which we compare to our specification including the SAGLasso
factor Z7L = [mcf’), m§4), rwl(t?)), rw,@, 61\3“ ét]’ . The first benchmark amounts to a restricted
VAR model that excludes our SAGLasso factor Z&F = [T:rf’) ,r:vfl) ,r:v?),rxf), 51\3,5]’ . For
comparison, we also construct bond forecasts with a LN benchmark version, which con-
tains their single forecasting factor as well as all variables in the first benchmark ZMN =
[rx§5)7 rx§4), rxgg’), rx?), E'I\Dt, f]\\ft]’ . And a VAR(12) model will be estimated separately with
each of the three state vectors.

Note that all three model specifications involve 6]\3t, as neither our SAGLasso factor nor
LN’s factor subsume the information in CP’s forward rate factor, as implied in Table 2 and
Table 5. Table 7 reports similar results obtained from the following regression

ngi)l = o + 51@t + ﬁé@t + €tt1- (18)

Both HH and NW t-tests overwhelmingly reject the hypotheses that each factor can be
excluded from the joint regression, indicating that ét and @t are picking up different
sources of predictability. Especially, when both factor are included in the regression, the R?s
are much higher than they are when only one is included. Moreover, even if lagged excess
returns are incorporated into the regression, the CP factor still has significant predictive
power for the 4-year bond. Its significance in predicting excess returns across different
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maturities is curved at the long end, closely resembling the pattern documented in CP. This
suggests that the CP factor does summarized information on risk premia at the long end.

Figure 2 plots estimates of five-year bond premium E[m‘gl] verses time over the sample

period, where E [r:c§5+)1] is obtained by solving the VAR forward to create forecasts of future
at monthly horizons. Panel A shows the estimated risk premium using Z%%, while Panel B

ZCP LN has shown that the risk premia exhibits greater

displays the same estimates with
countercyclicality than in the absence of macroeconomic factors. Here we confirm that this
result is robust regardless of the methodology used to extract macroeconomic information.
Careful contrast of the two panels implies that the difference mainly arises in recession
periods, when return premia estimated with SAGLasso factor increases dramatically. Their
correlations with IP growth are -0.263 and 0.034, respectively.

We also form an estimate of the term premia
(n) 1 n—1
7" ~ nt1—i
TP, = - Zl E, (rxgﬂ- )) (19)

as the average of obtained estimates of return risk premia of declining maturity. This time
we compare our SAGLasso-based estimates of term premia to the corresponding values gen-
erated from the LN benchmark. The six-month moving average of two estimated premium
components in the five-year bond yield are plotted over time in Figure 3. We find both
series exhibit a similar pattern in the sense that the yield risk premium tends to rise over
the course of a recession and peak just after the recession period. However, term premia are
more countercyclical and reach greater values in recessions when macroeconomic information
is summarized by the SAGLasso factor. For example, in the recession of early 1980’s the
difference in term premia reached a level of 0.83% per annum. Indeed, the former estimate
has a contemporaneous correlation of -42.8% with the growth of IP and the latter has a
correlation of -37.2%. Generally, these findings are consistent with the implications of the
general equilibrium model developed in Wachter (2006).

3.6 Unspanned Predictability

Besides CP, empirical research in dynamic term structure models has revealed the presence
of another predictor that is unspanned by cross section of yields. For example, Duffee
(2008) uses Kalman filtering estimation and finds evidence of a “hidden” factor that has an
imperceptible affect on yields but nevertheless has substantial forecasting power for future
yields and returns; Barillas (2009) estimated a macro-finance model with a unspanned risk
factor, which appears to add substantial predictability to beyond what is already contained
in the term structure. In this subsection, we demonstrate that our SAGLasso factor shares

the same property and further show its leverage over macroeconomic indicators.
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We firstly examine the cross sectional relation between the SAGLasso factor and bond
yields. Consider the following regression

Ay™ =00+ 6,Gy+2, n=1,...,5. (20)

The percentage of yield changes variance explained by the SAGLasso factor is defined as
100 x trace(cov(6,Gy)) /trace(cov(Ay,)). We find G, explains only 0.09% of the variance of
yield changes, indistinguishable from noise in yields. As expected, although the SAGLasso
factor contains substantial information about future excess bond returns, its contribution to
the overall volatility of the cross section of bond yields is imperceptible. Put differently, our
empirical evidence supplements Duffee (2008)’s argument by uncovering another ”hidden
factor” that comes from the macroeconomy.

Indeed, we can decompose variation in bond yields into expectations and term premium

components
n—1
n 1 n
u" =B (Z yt‘il-) + TP, (21)

If aggregate risk aversion is time varying in response to both news about aggregate con-
sumption growth and news about inflation, as indicated by Campbell and Cochrane (1999),
shocks to consumption growth (or an unexpected increase in inflation) temporarily raises risk
aversion and cause agents to demand greater premia on risky long-term bonds. On the other
hand, investors believe that the Fed will attempt to offset these short-lived macroeconomic
shocks with monetary policy actions. It in turn drives down the expectations of future short
rate. Thus the net effect of the macro shocks on current yields becomes insignificant because
the expected change in short rates and the change in risk premia have opposite effects. In
fact, our SAGLasso factor is also found (results not reported) to have a significant forecasting
power for 12-month-ahead 3-month annualized bill yield, with a NW t-statistic of -2.54.

To demonstrate that our SAGLasso factor truly captures market expectations, we plot
the impulse response functions (IRF) obtained from factor-augmented vector autoregressive
models (FAVARs). A generalization of dynamic factor models, FAVAR models the joint
dynamics of r unobservable factors (F}) and a small number of observable economic variable
(Y;) of our ultimate interest.

Zy =9(L) 21 +wy (22)

where Z; = (F]Y/) is of dimension r + m. As inspired by Bernanke et al. (2005), F; can
be interrelated as theoretically motivated economic concepts that is hardly measurable. In
this context, the presence of dynamic factors in the model is to capture information set
of policy-makers and the private sector, which is not contained in a few predetermined
economic indicators (Y;). Therefore, for our application the interpretation of F; is the focus

of our analysis. Instead, we are interested in uncovering the structural relationships among
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economic variables in Y;. To extract F}, we make use a large information set, i.e. the 131
macroeconomic time series X;. Specifically, we related X; to Z; by an observation equation
of the form

X, = P2 + €. (23)

The model is estimated using likelihood-based Gibbs sampling, as outlined by Bernanke
et al. (2005). As the Bai-NG information criteria indicate that 8 factors are need to capture
the majority information in X;, we set the number of unobservable factors as 8 — m, where
m is the dimension of Y;.

Suppose an econometrician has extracted the variable that reflects investor’s expectation
of Fed’s response to macroeconomic shocks, following our SAGLasso procedures. In our first
specification, Y; consists of IP growth and the SAGLasso factor. If the the SAGLasso factor
does denote financial market participants’ risk aversion in the presence of macroeconomic
release (or equivalently, their belief of Federal Reserve’s reaction), a negative shock to output
growth will lead to an immediate increase in the SAGLasso factor. And the Panel A in
Figure 4 matches this expectation indeed: the SAGLasso factor dramatically drops following
a positive innovation in IP growth.®

Another attractive feature of the FAVAR framework is that IRF can be constructed
for any observable economic variables included in X;. In order to highlight the effect of the
market expectation on short rate and term premia, we estimate another FAVAR specification
in which SAGLasso is the only variable contained in Y;. Panel B reports the IRFs, along
with 90 percent confidence intervals, of a selection of economic indicators to a one-standard-
deviation shock in SAGLasso.

First of all, let us focus on the response of the 3-month Treasury bill yield. The SAGLasso
factor has zero effect on the short rate the Month 0, but it results in a nearly 40-basis-
points drop in short rate after 18 months. Moreover, the response of the short rate is quite
persistent, remaining 25 basis points 4 years later. In contrast, the response of 5-year bond
yield seems insignificant throughout all periods, especially for the first 18 months in which
the IRF is flat. By the definition of excess returns, responses of short rate and long-maturity
bond yield jointly imply an increase in the risk premium. To sum up, the estimated IRF
make it glaringly apparent that the SAGLasso factor has no contemporaneous effect on the
term structure but contains substantial information about expected excess bond returns.

Another direct evidence for the expectation nature of SAGLasso comes from the last
subpanel, which plots the IRF of (UMichigan) Consumer Expectation Index. The immediate
effect of SAGLasso on the index confirms that the unspanned predictability of SAGLass is
associated with market expectations. Finally, the responses of other variables are generally
of the expected sign and magnitude. Particularly, variables that typically exhibit stickiness,

8This inverse relation between IP and the hidden factor is also documented by Duffee (2008), who employs a
simple regression analysis.
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such as CPI, investment and Unemployment, do have slow-moving responses to SAGLasso,
while housing start index and dividend, which are sensitive to future changes in short rate,
initially jump and eventually wear off.

As such, both our SAGLasso factor and Duffee (2008)’s “hidden” factor represent com-
ponents of risks borne by investors which are orthogonal to the yield curve. However, the
two factors do not subsume each other, as indicated by the results reported in Table 8. Panel
A of the table confirms Duffee’s finding that his five latent factors extracted from the yield
data contain information about future bond excess returns, even more than the forward rates
do (see panel A of Table 2). The R?s here ranging from 0.32 to 0.35 are slightly lower than
those documented in Duffee (2008), who use data through 2006. Comparing these R%s with
those reported in panel A of Table 4, we can see that the SAGLasso factor has stronger
predictive power than Duffee’s five factors do. Results reported in panel B show that when
both sets of factors are used in regression, the R2s rise to nearly 50 percent, much higher
than the values when only one set of factors is used. Moreover both SAGLasso and the
“hidden” yield factors remain highly significant, implying they are not measuring the same
component of bond risk premia. The implication of this result is that macroeconomic risk
underlies, but does not perfectly capture, the variation in excess returns that is not contained
in the first three yield principal components. Therefore, both unspanned “yield-curve” risk
and unspanned “macro” risk are priced and bond risk premia are not fully identified in ab-
sence of either information set. This evidence also sheds light on DTSMs in determining the
dimension of risk factors driving expected excess returns, which is not necessarily the same

as the dimension of state vector that prices the relevant universe of bonds.

3.7 Realized Jump Risk and Subsample Analysis

Wright and Zhou (2009) show that some realized jump measures explain a nontrivial fraction
of the variation in post-1984 excess bond returns. In particular, they find that inclusion of a
rolling realized jump mean into the benchmark predictive regression on forward rates nearly
doubles the R?. In this section, we aim to identify the source of realized jump risk and to
what extent the information in jump measures has been contained in known macro and yield
predictors.

Consider the following baseline regression in Wright and Zhou (hereafter WZ):

e = Bo+ BIRV, 4 Bod IZ + Ba I M + Bud VP + B F) + B + BrF®) 4 2441, (24)

where F™ is the n-year forward rate used in CP, RV,! monthly realized volatility, JI24, JM24,
and JV;** denote 24-month rolling average realized jump intensity, jump mean, and jump
volatility, respectively. The latter four measures are constructed using data on 30-year
Treasury bond futures at the five-minute frequency from CBOT. However, as the high-
frequency Treasury bond future data are not available until July 1982, the sample period for

20



the 24-month rolling jump mean starts only from August 1984.

Table 9 reports coefficient estimates, associated HH and NW t-statistics and (adjusted)
R? values for several specifications of the form of Eq. (24). Panel A, the counterpart of WZ’s
Table 2, shows that the jump mean is the most significant predictor among various volatility
and jump risk measures, with the R? ranging from 14 to 16 percent. The negative coefficients
imply that a downward realized jumps in long bond would cause short term bond prices to
appreciate over the next year. Other results are almost identical to those documented by
WZ.2 Panel B replicates their main result that augmenting CP’s regression model with jump
mean nearly doubles the predictability, with the adjusted R? increased to about 60 percent.
WZ argue that it implies that forward rates and jump mean are not picking up the same
predictability, and that the latter complements the information content of the former.

Before we conduct a comparative analysis of return predictability using jump mean and
other known instruments, it would be helpful to provide some insight about the source of
realized jumps in bond markets. Intuitively, most of them are associated with macroeco-
nomic announcements. Using jump-diffusion term structure models, for instance, Das (2002)
and Johannes (2004) discover direct connection between model-implied jumps and macroe-
conomic shocks. As the high-frequency data based method employed by WZ should result in
more timely jump filtering, we could reestablish this connection by identify the events that
caused the detected jumps.

Table 10 compiles a list of the 20 biggest realized jumps during our sample period, and
major news events on the jump dates. We can observe that each of these jumps coincides
with unexpected macroeconomic news arrivals. As documented by Johannes (2004), there are
three major source of jumps: (1) leading economic indicators releases such as unemployment
announcements, (2) official announcements on monetary policy such as Federal Open Market
Committee target, and (3) exogenous political events regarding the nation’s vital interests,
e.g. the breakout of Gulf War. Judging from the frequency, most jumps are generated equally
by regularly scheduled announcements, consistent with the findings of Fleming and Remolona
(1997) and Balduzzi et al. (2001). Judging from the absolute jump size, unemployment
announcements produce those largest moves, implying surprises regarding the current state
of the real economy significant affect long-term bond prices.

These results give an economic interpretation of realized jumps that provide the mecha-
nism through which macroeconomic shocks enter the Treasury bond market. Therefore, it
is of interest to examine whether the information in jump mean has been subsumed by the
SAGLasso factor or other known predictors. Coincidentally, the high-frequency Treasury
bond future data availability results in a subsample that exactly covers the post monetary
experiment period. Since there is considerable evidence of a regime switch during the late
1970s and early 1980s, we firstly investigate the subsample performance of our SAGLasso

90ur sample period is slightly (16 months) longer than that used in WZ.
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factor and filtered yield factors.

Table 11 reports a breakdown by subsamples of regressions of bond excess returns with
different maturities rz;,; on the SAGLasso factor and Duffee’s five yield factors. The SA-
GLasso factor appears to have less explanatory power for bond risk premia, and the uni-
variate R? drops to about 30 percent from more than 40 percent from the full sample. In
contrast, the filtered factors account for a larger proportion of term premia than they do in
the full sample. The enhanced predictive power of the yield factors mainly comes from the
fourth factor, which becomes particularly significant especially in regressions of long-term
bond returns.

These results point toward an important indication that after the Fed changed operat-
ing procedures, interest rates were less volatile, so macroeconomic instruments, especially
inflation measures, became less correlated with bond risk premia. Consequently, latent fac-
tors that require filtering may capture an more important component of risk premia in the
post experiment period. We also run forecasting regressions using group factors, the result
(not reported here) also implies that the fourth (inflation) factor turns out significant in the
subsample regressions, consistent with our conjecture. However, the combined predictive
capacity of these two sets of predictors remains almost unchanged during the subsample
period, with R? of 45-50 percent. These results contrast with those reported by some recent
work that most of the predictability came in the 1970s and 1980s and there is little if any
significant predictability in the post-1985 period.

The more important question here is whether realized jump mean and the SAGLasso
factor are picking up the same predictability. The evidence in the Panel A of Table 10 says
that they are not. Augmenting our SAGLasso regression with WZ’s estimates of jump mean
raises the R? to 39 percent. Moreover, the coefficients on SAGLasso factor and jump mean do
not change greatly when they enter multivariate forecasting regressions. It implies that unlike
our macroeconomic factor the realized jump measures capture a high-frequency relation
between macroeconomic variables and bond yields. On the other hand, the information
content of the filtered yield factors seems to be orthogonal to that of jump mean in that the
R? (0.62) of the regression on both jump mean and forward rates is larger than the sum of
the R2s on each set of the variables separately. For completeness, the Panel B reports the
regression results using all of these instruments shown to have significant predictive power.
The SAGlasso factor, Duffee’s hidden factor and WZ’s jump mean remain significant and
jointly explain 65% of the variation in excess bond return.

What is the implication of our finding for affine term structure model? The results
reported in Table 12 indicate that there are two primary conduits through which information
about the macroeconomic enters the term structure. One is captured by our SAGLasso factor
which describes a low-frequency relation between macroeconomic variables and yields, while

realized jumps measure the other one which how yields directly respond to unexpected shocks
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from real economy and monetary policy. Absence of any one of them in term structure models
may induce misspecification. These findings are not taken into consideration by commonly
employed affine term structure models where the forecastability of bond returns is completely
summarized by the cross-section of yields. The recent macro-finance models take into account
the first conduit by allowing macroeconomic factors to enter state variables. But a further
extension is required to deal with the jump-induced misspecification.

However, even a jump-diffusion macro-finance model may not be able to account for all of
these empirical regularities. As discussed by WZ, the implication that jump risk factors are
not spanned by the current yield curve reminds may have something to do with unspanned
stochastic volatility documented in Collin-Dufresne and Goldstein (2002).

3.8 SAGLasso: Out of Sample Analysis

A common concern in tests of predictability is that significant in-sample evidence of pre-
dictability does not guarantee significant out-of-sample predictability. This evidence is often
interpreted as an indication that in-sample evidence is likely to be spurious and should be
discounted. In this subsection we report results on out-of-sample forecasting performance of
factors estimated in the previous section. To avoid involving future information, we carry
on fully recursive factor estimation and parameter estimation with data only through time ¢
for prediction at time ¢t + 1. The following description of the procedure applies to forecasts
of annual excess returns with factors estimated using SAGLasso. The notation of Clark and
McCracken (2001) is used here.

The in-sample observations span 1 to R. That is, observations 1 through R of the macro
variables and observations rx%’fl)g through rmgﬁ% 412 of annual excess returns are used to es-
timate the SAGLasso factors CAJt and the return-forecasting regression. Given the estimated
parameters, forecast rxgﬂ)rm’ R4 USING G Rr+12 as the linear combinations of the macro vari-
ables for observation R+12. Denote the realized forecast error by u(n) un,1, where the
first subscript refers to a forecast error from an unrestricted regression. Collect the realized
(n)

u,1)

regression. Then repeat this exercise using an additional observation, recompute the super-

forecast error wu, i, where the first subscript refers to a forecast error from an unrestricted
vised factors and estimate the new regression using observations 1 through R + 1, and so
on. Letting P denote the number of 1-step ahead predictions, the out-of-sample observations
span R + 1 through R + P. To account for the 12-period overlap induced from continuously

compounding monthly returns to obtain annual returns, the length of the resulted time series
(n
u,

macroeconomic variables.

of forecast errors u\™) is P = T — R — 11, where T is the total number of observations of

(n)

r¢ can be constructed using the same

The time series of restricted forecast errors
methodology, where the forecasting regression uses a constant term as a benchmark, apart

from an MA(12) error term. The first subscript refers to a forecast error from a restricted
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regression. But the restrictive hypothesis has already been strongly rejected even in out-
of-sample analysis. In order to investigate whether the SAGLasso factor has additional
predictive power conditional on information contained in past returns, we compare the out-
of-sample forecasting performance of our shrunk ARDL model to a simple AR(6) specifi-
cation. This second specification can be viewed as the out-of-sample counterpart of the
specification (11). To assess the incremental predictive power of the SAGLasso factor above
and beyond the predictive power in LN +, we conduct another model comparison. We com-
pare the out-of-sample forecasting performance of a specification that includes the SAGLasso
factor plus to the LN factor to a benchmark model that includes just the LN factor.

For the full sample 1964:1 through 2007:12, the initial estimation period span 1964:1
to 1984:12 (in terms of independent variables) so that R=252, thus P = 265 for annual
excess returns. The choice of the length of in-sample portion is arbitrary, but alternative
choices do not lead to qualitatively different results. Table 13 reports test statistics for
the ENC-REG test of Ericsson (1992) and the ENC-NEW test of Clark and McCracken
(2001). Both tests examine the null hypothesis that the benchmark model encompasses the
unrestricted model with additional predictors. The motive for using two encompassing tests
is for that Ericsson test critical values from a standard normal distribution are conservative
if 7= limpp_ it P/R > 0.1 As the asymptotic ratio of P/R is unknown for our case, the
Ericsson test is used as a robust check.

The column labeled “Ericsson” in Table 13 reports the ENC-REG test statistic and its 95
percent critical value is 1.645. Similarly, column “Clark-McCracken” presents the ENC-NEW
test statistic and its 95 percent critical value is 1.584. The results show that the forecast-
ing model including the SAGLasso factor improves remarkably over the constant expected
returns benchmark. Specifically, when the supervised factors are incorporated, the model
is shown to have a forecast error variance that is only 72 percent of the constant expected
returns benchmark for mﬁ)l. Tests for the forecasting model with the SAGLasso factor
versus a simple AR(6) benchmark, presented in Panel B, rejects the general null hypothesis
as well. More strikingly, incorporating the SAGLasso factor into the original AR(6) model
produces a mean-squared error that is anywhere form 62 to 64 percent of the autoregressive
benchmark mean-squared error. Overall, both null hypotheses are completely rejected no
matter which test is conducted. But note that the Ericsson test may not appropriate to be
applied to the general null because the forecasts are not truly out of sample.

Panel C indicates that the model including the SAGLasso factor and LN ¢ improves
substantially over a benchmark that includes a constant and LN ¢, consistent with Table 4.
Both test statistics indicate that the improvement in forecast power is strongly statistically
significant, at the one percent or better level. Moreover, the models have a mean-squared

10The precise asymptotic distribution of the test statistics for both Ericsson and Clark-McCracken tests depends
on the 7, the asymptotic ratio of P/R.
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error that is anywhere from 87 to 93 percent of the LN expected returns benchmark mean-
squared error. To sum up, this result reinforces the conclusion form the in-sample analysis,
i.e. the SAGLasso factor contains information about future returns that is not captured by
the LN factor.

4 Finite-Sample Property

In this section, we proceed with a finite-sample analysis by generating bootstrap samples
of the yields as well as of the exogenous predictors, under both restrictive and general null
hypotheses. Only regressions on four group factors estimated from SAGLasso are examined
here because the Monte Carlo simulations involves a term structure model to specify the
dynamics of yields and state variables. For the term structure model used to generate
simulation data under the general null, the number of latent term premia factors must equal
the number of macro factor. Thus only one macro factor and one latent factor may not fully
capture the joint variation in the macro variables and yield data.

4.1 Data-Generating Processes

Stambaugh (1999) and Ferson, Sarkissian, and Simin (2003) discuss why small-sample in-
ference is essentially important in our context. The two reasons identified by them for the
deviation of finite-sample properties from asymptotic properties are relevant to our fore-
casting regressions. First, if the standard instruments employed as predictors are highly
persistent and/or contemporaneously correlated with the idiosyncratic noise in returns, se-
rious over-rejection could result. For our factors estimated with SAGLasso, some display
high persistence, with first-order autoregressive coefficient up to 0.9282. Second, when over-
lapping observations are used in constructing regressands, estimates of standard errors for
regression coefficients show strong bias. This concern also applies to our regression analysis,
as computing annual excess returns involves overlapping yields data.

In the literature, there are two major methods used to generate simulation data for finite-
sample inference. One approach is to construct a time-series model for the log yields and
rerun the predictive regressions.!! Residuals are bootstrapped to form the empirical distri-
bution. Note that for this method the independent variables (the macroeconomic factors)
are not simulated and enter the predictive regression as their actual values. The other one is
based on a dynamic term structure model that satisfies either the restrictive or the general
null hypothesis. For this data-generating process, state variables are also simulated from
the term structure model using parameters estimated from the actual sample data. Duf-

fee (2007) constructs a class of discrete-time term structure models to make finite-sample

"For example, CP (2005) run a unconstrained VAR,(12) model of all 5 yields, and LN (2008) use a MA(12) process
to test the restrictive null.
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inference for both restrictive and general null hypotheses.

In our case, the two simulation procedures yield almost indistinguishable empirical dis-
tributions for our test statistics, as shown in Table 14. For the general null hypothesis, along
the spirit of the first approach we run a VAR(12) for the yield process that imposes a single
unit root (one common trend). With the second approach we construct a term structure
model in which macro factors determine the cross section of short rate but the price of risk
does not depend on macro factors (c.f. the appendix).

Though in different forms, both data-generating processes satisfy the general null hypoth-
esis that the the excess returns may not be constant but their time variation has nothing
to do with the macroeconomic factors. A close scrutiny of our simulation data suggests the
reason from this consistent result. First of all, as the group factors estimated from actual
data are highly persistent variables (the most persistent factor has a monthly AR(1) coeffi-
cient of 0.9282), the Gaussian VAR(1) process, specified in the term structure model, may
be a good approximation for their joint dynamics. More important, as both data-generating
processes satisfy the general null of independence, what is relevant for the test statistics is
the time series properties of the excess returns, instead of how the returns are generated
(VAR or term structure model), because that is how the distribution of our test statistics
are determined. Indeed, in the two different settings that we use to generate excess bond
returns, they give similar time series properties (when we plot the average ACFs for the
simulated excess returns generated by two simulation model, they look very close).

Though not reported here, the finite-sample distributions generating by these two ap-
proach under the restrictive null are also qualitatively identical. Therefore, for our small-
sample inference we employ a vector moving average (VMA) model of order 12, namely, a
VMA(12) model, to form the bootstrap samples under the restrictive null hypothesis, and
use an eight-factor term structure model, specified in the appendix, for the general null. The
use of VMA model is because the monthly bond price data used to construct continuously
compounded annual returns induces an MA(12) error structure in the annual excess returns.
For the term structure model-based simulations, an initial draw of the state variables is taken
from their unconditional multivariate normal distribution. Subsequent draws use their con-
ditional multivariate normal distribution. The finite-sample distributions are constructed
based on 50,000 Monte Carlo simulations, and the length of each simulation is 528 months,
the same as the length of the full sample used in our empirical analysis.

4.2 Bootstrapped Results

The finite-sample properties based on simulation are reported in Table 15. The first three
columns specify the details of simulation: the type of regression (in-sample or out-of-sample),
the test used, and the bond maturity. The column labeled “Rejection Rates” presents finite-
sample rejection rates of tests of the null hypothesis when using the asymptotic five percent
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critical value, which is 9.49 for Wald test, 1.645 for Ericsson test and 3.007 for Clark-
McCracken test. The “5% CV” column reports true finite-sample critical values at a five
percent rejection rate. To test the restrictive null hypothesis we drawing random samples
from the empirical distribution of the residuals from a VMA (12) model, so that annual
returns are forecastable up to MA (12) error structure. Note that for the restrictive null we
pre-estimate the supervised factors by re-sampling the 7" x N panel of data. This procedure
creates bootstrapped samples of the predictors themselves.

The main conclusion is that the results based on bootstrap inference are broadly con-
sistent with those based on asymptotic inference in Tables 4 and 12. Our results support
Duffee’s finding that small-sample distributions of test statistics associated with the general
null markedly diverge from their counterparts under the restrictive null, as well as the asymp-
totic distributions of these test statistics. However, even after adjusting the estimated test
statistics for their finite-sample properties, all regression evidence of return predictability
presented in Section 4 remains robust. For example, the actual values of Wald, Ericsson and
Clark-McCracken test statistics are 67.5, 3.36, and 129, respectively, all of which are much
higher than the 95% small-sample critical values even under the general null, namely, 19.2,
2.23 and 26.9. Indeed, both null hypotheses are rejected regardless of the type of regression
or the test used.

Table 16, the counterpart of Table 5 based on finite-sample distributions, reports the
evidence for the in-sample analysis. The magnitude of predictability found in historical data,
measured in R%s and x? tests, is too large to be accounted for by sampling error in samples
of the size we currently have. And P-values computed with the empirical distributions of

50,000 bootstrapped samples are almost zero as well.

5 Conclusion

Although it is now believed that expected excess bond returns are time-varying and fore-
castable, the empirical evidence on the correlation between term premia and their macroe-
conomic underpinnings is mixed so far. In this paper, we reassess the predictive power of
macroeconomic indicators using the supervised adaptive group lasso (SAGLasso) approach, a
new model selection approach that allows us to explore the underlying structure of macroe-
conomic variables with respect to risk premium in bond markets. Our empirical analysis
provides new and robust evidence on the explanatory power of macroeconomic fundamen-
tals for variations in excess bond returns, which is even stronger than previously documented
in the literature. Furthermore, we find evidence of an unspanned predictor extracted from
macroeconomic variables. Overall, our study provides further support for the implication
from Ludvigson and Ng (2009b) that we should look beyond observable bond yields when
building term structure models, as well as predicting future returns.
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A Macroeconomic Series Used in the Analysis

Table A.1 lists macroeconomic series used in our empirical analysis. Following Ludvigson
and Ng (2009b), we provide the short name of each series, its mnemonic (the series label
used in the source database), its transformation code, and a brief data description. The
transformation codes are defined as follows. Code 1: no transformation applied to the
series; 2: the first difference applied; 3: the second difference; 4: the logarithm; 5: the first
difference of logarithm; and 6: the second difference of logarithm. The “G,” column specifies
whether the macroeconomic variable has a non-zero coefficient for contemporaneous and/or
lagged value in the SAGLasso regression. The value of “0” under @t corresponds to the

contemporaneous variable and the value of 1 through 6 denotes corresponding lagged values.
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B The Term Structure Model Used in the Bootstrap Analysis

This appendix describes in detail the dynamic term structure model used to test the general
null hypothesis. Asin Ang and Piazzesi (2003), we specify the short rate as an affine function
of a vector of both macroeconomic and latent factors as follows: f, = (m;, x;)/, where m; is a
4 x 1 vector of macroeconomic factors (to be estimated by supervised principle components),
and x; a 4 x 1 vector of latent factors. Furthermore, following Duffee (2007), we restrict the
latent factors from driving the dynamics of short rate r, and their only role is to drive the
risk compensation for corresponding macro factors. Namely,

1y = 0o + 01 f;, where 67 = (0;,, O1x4) (25)

Under this specification, the vector f; fully reflects all available information on the state of
the economy at time ¢; hence, for example, one need not consider lags of f;.

We assume that the state vector follows a Gaussian VAR(1) process

Ji=p+Pfi1+ Xe
B [ s [
O4x1 Osxa Py Tt Oaxa g €

where shocks ¢ ~ N(0,1). With the restriction imposed on ® and ¥, the evolution of
the latent term premia factors depends only on the latent factors. Moreover, innovations
in my, and thus innovations in the short rate, are by construction orthogonal to the latent
state vector. In the DTSM proposed by Joslin et al. (2009), the information embodied in
macroeconomic variables is not spanned by latent factors as well. However, their latent
factors underlie the variation in short rate and are still correlated (but not perfectly) with
macro factors. Intuitively, their model allows for more flexibility and therefore should fit
better the comovement of economic indicators and bond yields. To generate data conforming
with the general null hypothesis, we need macro factors that do not covary with latent ones,
as can be seen later in the market price of risk.

It follows from the no-arbitrage restriction of Duffie and Kan (1996) that the period-t
price of any asset with valuation P ; at the end of period ¢ + 1 satisfies

éEtP [5t+1 eXP(_Tt)PtH] (27)

where () and P denote the risk-neutral and the physical measures, respectively, and &; is the

P, = EtQ[eXP(—Tt)PtH] =

Radon-Nikodym derivative that follows the log-normal process

i1 = & exp(—=N /2 — Nerra), (28)
where the market prices of risk follow the essentially-affine specification (Duffee, 2002):

Z)\t - )\Q + Alft- (29)
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If we use lowercase letters to indicate logs, then we have

pe = El i1 + muia] (30)
where the pricing kernel my; is given as follows
1
e = — 11 +1og% = 0= 81— XA~ N (31)
t

If the matrix A; contains 8 x 8 free parameters, our model exactly follows the details of
Ang-Piazzesi macro-finance model: the price of risk relates shocks in the underlying state
variables (macro and latent factors) to £ and investors require both compensations to face
uncertainty in macro and latent factors. Instead we parameterize \y and \; in the following
way
Aom At Laxa

Ao = [Om] and i = {om 04x4] (32
such that the compensation required by investors depends on latent factors that evolve in-
dependently of the macro factors but affect the risk compensation for macro factors through
1-to-1 mappings.'> Note that the specification of risk premia in Eq. (32) distinguishes be-
tween macro and observable influences on term premia and thus embodies the general null
hypothesis. To see this, we write the functional form of \; as
| Aom + Ay + 1y

A
! O4><1

(33)

The risk compensation depends on the macro factors only through \y,,. Therefore, with
the restriction Ay, = 0, shocks to the macroeconomic factors have no impact on expected
excess returns at all leads and lags, and thus the model corresponds to the general null that
excess bond returns are stochastic and persistent, but independent of the macroeconomy.
Otherwise, we cannot recover latent factors solely from the market price of risk.

Finally, bond prices are exponential affine functions of the state variables

p" = A, + B, f, (34)
where A, and B, can be computed recursively as the following:
1
B, = B, _(®—-)\)—0 (36)

with the initial values A; = 0y and B; = —97.

We estimate the term structure model using the Kalman filter, following Duffee and
Stanton (2004). The parametrization of expected excess returns for the model under general
null requires 61 free parameters, including five measurement error parameters. Some of the
initial values (those for ®,, and X,,) are set to those from OLS estimation of the VAR(1),
and analytic derivatives are used in the derivative-based optimization routine.

12Latent factor i affects only the risk compensation for macro factor 4.
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C Swupervised Adaptive Group Lasso Method

The Supervised Adaptive Group Lasso (SAGLasso) method for predicting excess returns
that we propose consists of the following steps:

1. For cluster h € ‘H, compute Bh—the cluster-wise Adaptive Lasso estimate of 5. Namely,

B = argr}flin {||arx — X8> + Z Ap * whjmy\} : (37)
p i

where arx is a vector of average excess bond returns across maturity and wy; the j-th
component of wy,, the vector of the (adaptive) weights. Zou (2006) recommends using
BOLS to construct Wy, As collinearity is a concern in our case, we set W, = 1/| B,?ID |7
where S0 is the best ridge regression fit of arx on X,. That is, for cluster i we
only use macroeconomic variables within that cluster to construct predictive models.
The optimal pairs of (7, A,) are determined using two-dimensional cross-validations.
It is worth noting that tuning parameters A, are selected for each cluster separately in
order to have different degrees of regularization for different clusters. This flexibility
allows us to uncover subtle structures that otherwise will be missed when applying the

(adaptive) lasso method to all the series/clusters at the same time.

Notice that for each cluster h € H, the adaptive lasso Bh has only a small number of
nonzero components. Let 5”‘ = Bh \ 0, the vector of nonzero estimated components
of Bh given by the cluster-wise model (37), and denote the corresponding part of X,
by Xj. In our case, a typical cluster size (dim(X})) of 80 variables may reduce to a
dim(X},) of 8 ~ 10. Namely, the number of macroeconomic measures selected in Step

1 is significantly smaller than the original number to begin with.
2. Construct the joint predictive model under the Group Lasso constraint as the following:

B:arg;nin{“arx—f(ﬁw+)\th||ﬁh||}, (38)

heH

where X is formed by concatenating the design matrices Xj. \ is also chosen by cross

validation. With A — oo, estimates of some components of 3;,s can be exactly zero.

35



[0000]  916°9TT (9¢0%-) (2007 ) (esee-) (Fs¥'z-) (6181-) (L26°1-) (02c0) (060€) (¥287% ) MN

[00000]  PeLese Frre-) (6gev) (FLee-) (89zz-) (09L1-) (¥8L°1-) (816°0) (928°2) (20L%) HH
¥92°0  69T°0- 6660 91L0- 1011~ VLV0- 1€8°0- 720°0 8zE'T cIee g
[00000] 2167801 (€L0%-) (sL6¢) (gsee-) (9eve-) (wpe1-) (L102-)  (61€0) (g00€) (¥eee) MN
[00000]  STE¥6T (e61%-) (e61%) (6e12-) (81¢2-) (coe1-) (go81-) (L620) (19LC) (S1TG) HH
GLz0  SYT0- 878°0 Tee0- TL8°0- 887°0- L69°0- €€0°0 870'T 980°C iz
[0000]  0L1°00T (cog'e-) (e68L¢) (1100-) (¥€Te-) (L260-) (zege-) (1100) (668 ) (g£€9°G) MN
[0000]  8zE0TT (ve6e-) (2g6'¢)  (c06'1-) (820'z-) (916°0-) (g6€2-) (1100) (989¢) (sveq) HH
1820  LOT'0- 96¢°0 670~ LLG°0- 9FT°0- 109°0- 100°0 689°0 129°T ¢
(00070 ] TTLT6 (veze-) (oLee) (ote1-) (168°1-) (617°0-) (p21€-) (991'1-) (09C) (6LL°G) MN
[00000] 6266 (ore'e-) (69¢) (61%1-) (1221-) (gov'0-) (0L62-) (6ST'1-) (g9vc) (0S¢ ) HH
9620  8S0°0- €0€°0 P10~ V.30~ L€0°0- 20V 0- 7700~ 61€°0 166°0 4
fea-d 39T Juior Ly s 18f wf 0/ el wf ef ref ny (1£) Lyumyewt

*200g Ioquueda(] 0% 96T Arenue[ potred
o3 sueds ofdures oy [, 'sjoyoRIQ UL OIR ‘UOMNALISIP (§) X € uo poseq ‘sonfea-d orojdwdsy 010z [enbo sjuewIoeod [[e yeys sisoyjodAy oyj Jo s3s0y
PIeAA s3odel (3sa], Julof, pa[aqe] UWN[0d JY ], "UOIJR[AIIOD [RLISS }DAI1I0D 0} STR[ I1S9A\-AomaN QT UM SIOLIS pIepueri)s SUIsn pandurod sor)sIie)s 459
syr0dex AN, Po[eqe] MOI oy ], "de[ISA0 IOJ UOIIDRII0D NAY) YPLIPOH-USSURH oY) [IIM SIOIIS pIepue)s Sursn pejnduwod sorgsiye)s 9s9) sprodar (HH,,
Poleqe[ MOI 9], "SUOI}OUN] JIGND 10 d1jeIpeND I9T) puR ‘SISA[RUR 1070R] posiAladnsun Jo POyl o) AQ PaJRIIIISS SI0JOR] DIOUOIDOINRW dY) ‘s*[ U0
PossaI8ar ST puoq AIMseal], 1eaf-0U0 ® U0 POIA 2-YIUOW YY) SSI[ g + 7 [IUOW 0} 7 YIUOW WOIJ PUO(] AINseal], uodnod-oIez IeeA-u ue 09 EE@W@Q L

s1090eq d13e)S NI UO SUINj)oy puoyg SS9dX{ [eNUUY JO SUOISSaI39Y :T 9[qe],

36



Table 2: Regressions of Annual Excess Bond Returns on Single Return-Forecasting
Factor

The return to an n-year zero-coupon Treasury bond from month ¢ to month ¢+ 12 less the month-t yield on a one-year
Treasury bond is regressed on C' Py, the Cochrane-Piazzesi (2005) predictor (a linear combination of forward rates),
and/or LN,, the Lugvigson-Ng (2009b) factor (a linear combination of static factors estimated as the fitted values
from OLS). The row labeled “HH” reports test statistics computed using standard errors with the Hansen-Hodrick
GMM correction for overlap. The row labeled “N'W” reports test statistics computed using standard errors with 18
Newey-West lags to correct serial correlation. The column labeled “Joint Test” reports Wald tests of the hypothesis
that all coefficients equal zero. Asymptotic p-values, based on a X2(1) distribution, are in brackets. Ljung-Box Q
statistic is used to test autocorrelation in the error term in the multivariate regressions. The sample spans the period
January 1964 to December 2007.

Panel A: Univariate predictive regressions

maturity (yr) ‘ 51\3,5 R? Joint Test P-val ‘ LN ¢ R? Joint Test P-val
2 0.453 0.256 0.482 0.282
HH (5.851) 34.237  [0.000] | ( 6.833) 46.686  [0.000]
NW (6.402) 40.983  [0.000] | ( 7.349) 54.003 [ 0.000]
3 0.854 0.272 0.877 0.279
HH (5.439) 20.588 [ 0.000] | ( 6.805) 46.311 [ 0.000]
NW (6.011) 36.134  [0.000] | (7.295) 53211 [ 0.000]
4 1.242 0.300 1.204 0.275
HH (5.419) 20.367  [0.000] | ( 6.949) 48.284  [0.000]
NW (6.043) 36.522  [0.000] | (7.295) 53211 [ 0.000]
5 1.451 0.273 1.437 0.261
HH ( 5.065) 25.655  [0.000] | ( 7.015) 49.203 [ 0.000]
NW ( 5.638) 31787 [0.000] | (7.426) 55.143 [ 0.000]

Panel B: Multivariate predictive regressions

maturity (yr) ‘ CP, LN, R*  Joint Test  P-val
2 0.359 0.317 0.390
HH (4.277)  ( 3.080) 101.273 [ 0.000]
NW (4.697)  ( 3.474) 110.466 [ 0.000]
3 0.639 0.613 0.399
HH (4.393) (3.137) 91.274  [0.000]
NW (4.830) ( 3.548) 99.461 [ 0.000]
4 0.847 0.922 0.416
HH (4.335)  ( 3.226) 100.256 [ 0.000]
NW (4.776)  (3.669) 108.752 [ 0.000]
5 1.025 1.065 0.387
HH (4.367)  ( 2.959) 102.795 [ 0.000]
NW (4.792)  ( 3.361) 107.259 [ 0.000]

Panel C: Testing for Serial Correlation in the multivariate regression models

maturity (yr) ‘ 2 3 4 5
Q 348.89 353.30 362.57 332.23
P-val 0.000 0.000 0.000 0.000
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Table 3: SAGLasso Regressions of Annual Excess Bond Returns on Macroeconomic Variables and

Lagged Returns.

The return to an n-year zero-coupon Treasury bond from month ¢ to month ¢ + 12 less the month-t yield on a
one-year Treasury bond is regressed on G, the single predictor estimated by SAGLasso, and lagged bond excess

returns.

The row labeled “HH” reports test statistics computed using standard errors with the Hansen-Hodrick

GMM correction for overlap. The row labeled “Q” reports Ljung-Box test statistic for first order autocorrelation in
the error term in the SAGLasso regressions. The row labeled “LM” reports Breusch-Godfrey LM test statistic for
first order autocorrelated disturbance. The sample spans the period January 1964 to December 2007. The sample
spans the period January 1964 to December 2007.

Panel A: Results from the ARDL model estimated from SAGLasso

maturity (yr) Gy rai™ r:vi:l)l rwiié m:yl)?, rwgﬁl r:ci:l)s R?

2 0.1898 0.9890 -0.1661 0.0866 -0.1205 0.1780 -0.1255 0.880
HH (3.4912) (16.1747)  (-1.5009) (0.9021) (-1.1587) (1.7512) (-2.2185)

3 0.3373 1.0254 -0.2133 0.1042 -0.0892 0.0905 -0.0699  0.884
HH (3.4641)  (24.1105) (-2.4438) (1.1947) (-0.8803) (0.8919) (-1.3797)

4 0.4698 1.0045 -0.1773 0.0933 -0.1000 0.1247 -0.0994  0.883
HH (4.5464) (24.7101)  (-2.3040) (1.2554) (-1.2874) (1.3258) (-1.5297)

5 0.6338 0.9369 -0.1147 0.1095 -0.1246 0.1054 -0.0791  0.866
HH (4.1879)  (20.6022) (-1.6537) (1.3886) (-1.3624) (0.9904) (-1.1378)

Panel B: Results from a two-regressor model

maturity (yr) Gy ra{™ R?

2 0.180 0.861 0.876
HH (2.709)  (23.487)

3 0.326 0.867 0.879
HH (2.756)  (28.548)

4 0.457 0.867 0.879
HH (3.531)  (33.819)

5 0.617 0.853 0.863
HH (3.445)  (30.140)

Panel C: Testing for serial correlation in the SAGLasso regression model.

maturity (yr) 2 3 4 5
Q test 0.508 0.521 0.556 0.585
P-val 0.476 0.471 0.456 0.446

LM test 1.347 2.201 1.860 2.247
P-val 0.247 0.138 0.178 0.134
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Table 4: Regressions of Annual Excess Bond Returns on Single Predictive Factor

The return to an n-year zero-coupon Treasury bond from month ¢ to month ¢ + 12 less the month-¢ yield
on a one-year Treasury bond is regressed on Gy, the single predictor estimated by SAGLasso, and/or LN,
the Lugvigson-Ng (2009b) factor (a linear combination of static factors estimated as the fitted values from
OLS). The row labeled “HH” reports test statistics computed using standard errors with the Hansen-Hodrick
GMM correction for overlap. The row labeled “NW?” reports test statistics computed using standard errors
with 18 Newey-West lags to correct serial correlation. The column labeled “Joint Test” reports Wald tests
of the hypothesis that all coefficients equal zero. Asymptotic p-values, based on a x?(1) distribution, are in
brackets. The sample spans the period January 1964 to December 2007.

Panel A: Univariate predictive regressions

maturity (yr) Gy R?  Joint Test  P-val
2 1.064 0.437
HH ( 10.797) 116.573 [ 0.000]
NW (11.519) 132.680 [ 0.000]
3 1.897 0.414
HH ( 9.566) 91.513 [ 0.000]
NW (10.210) 104.240 [ 0.000]
4 2.591 0.404
HH (9.070) 82.261 [ 0.000]
NW (19.665) 93.405 [ 0.000]
) 3.122 0.391
HH ( 8.909) 79.362 [ 0.000]
NW (19.441) 89.138 [ 0.000]

Panel B: Multivariate predictive regression of excess returns on ét and LN +

maturity (yr) G, LN p R?  Joint Test  P-val
2 0.903 0.132 0.448
HH (4.544) (1.230) 153.297 [ 0.000]
NW (5.111) ( 1.340) 154.803 [ 0.000]
3 1.569 0.268 0.428
HH (4.392) (1.405) 107.831 [ 0.000]
NW (4.918) ( 1.535) 114.888 [ 0.000]
4 2.129 0.378 0.418
HH (4.057) (1.356) 100.149 [ 0.000]
NW (4.535) (1.491) 107.005 [ 0.000]
5 2.596 0.431 0.403
HH (4.089) (1.291) 96.097 [ 0.000]
NW (4.564) (1.422) 101.814 [ 0.000]
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Table 5: Regressions of Annual Excess Bond Returns on Group Factors

The return to an n-year zero-coupon Treasury bond from month ¢ to month ¢+ 12 less the month-¢ yield on a one-year Treasury
bond is regressed on g;¢s, the four macroeconomic group factors estimated by the Group Lasso method. The row labeled “HH”
reports test statistics computed using standard errors with the Hansen-Hodrick GMM correction for overlap. The row labeled
“NW?” reports test statistics computed using standard errors with 18 Newey-West lags to correct serial correlation. The column
labeled “Joint Test” reports Wald tests of the hypothesis that all coefficients equal zero. Asymptotic p-values, based on a x?2 (4)
distribution, are in brackets. For brevity, panel B does not report test statistics based on the “HH” correction. The sample

spans the period January 1964 to December 2007.

Panel A: Univariate predictive regressions on each §;¢

maturity (yr) g1t Jot J3t Jat
2 0.493 0.569 0.396 0.489
HH (5.897) (3.966) (2.702) (2.741)
NW (6.456)  (4.376)  (2.975)  (3.031)
R? 0.255 0.236 0.075 0.128
3 0.886 0.914 0.794 0.885
HH (5.808) (3.302) (2925 (2.562)
NW (6.320)  (3.667) (3.347) (2.843)
R? 0.246 0.181 0.009 0.126
4 1.190 1.166 1.219 1.211
HH (5.808)  (2.953) (3.240) (2.484)
NW (6.269)  (3.272) (3.603) (2.759)
R2 0.232 0.154 0.111 0.123
5 1.430 1.351 1.591 1.415
HH (5.931) (2.836) (3.589) (2.345)
NW (6.349)  (3.129)  (3.980)  ( 2.599)
R? 0.223 0.138 0.126 0.112

Panel B: Multivariate predictive regression of excess returns on group factors {gi: }

‘ (2)

(3)

(4)

(5)

(2)
‘ rTyy

(3)

(4)

(5)

(2)

(3)

(4)

(5)

Txt+l rxt+1 T'.Tt+1 T$t+1 7".'L‘t+1 T’.’Et+1 Tmt+l T':Et+1 T$t+1 ’f‘xt+1 T‘Z‘t+1
git | 0.297 0.561 0.735 0.880 0.270 0.525 0.710 0.885
NW | (2.545) (2.560) (2.341) (2.303) (2.256)  (2.323) (2217)  (2.245)
G2t | 0.358 0.496 0.591 0.672 0.362 0.561 0.740 0.895
NW | (2.171) (1.600) (1.333) ( 1.248) (2.115)  (1.698) (1.542) ( 1.522)
gst | 0.127 0.310 0.590 0.881 0.180 0.240 0.455 0.697
NW | (0.986) (1.342) (1.852) (2.309) (0.801)  (0.614) (0.867) (1.113)
G4t | 0.075 0.168 0.231 0.192 0.192 0.340 0.486 0.504
NW | (0.470) (0.544) (0.522) ( 0.349) (1.049)  (0.975)  (0.995)  ( 0.832)
fie 0.576 0.928 1.128 1.224 -0.023 -0.118 -0.284 -0.491
NW (2.850)  (2476)  (2.283)  (2.088) | (-0.103) (-0.277) (-0.501) (-0.718)
for 0.310 0.674 1.027 1.304 -0.296 -0.333 -0.472 -0.599
NW (2.435)  (2.720) (2.836) (2935) | (-1.230) (-0.811) (-0.848) (-0.892)
fae -0.042 0.004 0.038 0.080 -0.071 -0.041 -0.048 -0.040
NW (-1.110)  (0.063)  (0.368) (0.614) | (-1.587) (-0.496) (-0.382) (-0.263)
Far -0.495 -0.773 -0.936 -1.102 -0.070 -0.057 0.041 0.076
NW (-3.929) (-3.326) (-2.842) (-2.697) | (-0.413) (-0.184) (0.093)  ( 0.139)
foe -0.089 -0.243 -0.422 -0.627 -0.070 -0.206 -0.309 -0.429
NW (-0.756) (-1.132) (-1.500) (-1.876) | (-0.546) (-0.871) (-1.005) (-1.144)
ot -0.268 -0.566 -0.856 -1.083 -0.195 -0.457 -0.677 -0.827
NW (-1.816) (-2.134) (-2.331) (-2.394) | (-1.225) (-1.592) (-1.697) (-1.694)
Fre -0.116 -0.294 -0.476 -0.629 -0.124 -0.302 -0.466 -0.587
NW (-1.312)  (-1.840) (-2.090) (-2.234) | (-1.243) (-1.669) (-1.835) (-1.904)
fat 0.298 0.547 0.815 0.984 0.170 0.321 0.476 0.530
NW (3.689) (3.844) (4.041) (4.126) | (2.345) (2617) (2.887) (2.757)
RZ | 0.346 0.313 0.298 0.291 0.246 0.230 0.224 0.220 0.390 0.357 0.348 0.342
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Table 6: Regressions of Annual Excess Bond Returns on the Output Gap and Other
Predictors.

The dependent variable is the return to an n-year zero-coupon Treasury bond from month ¢ to month ¢ + 12 less
the month-t yield on a one-year Treasury bond. The independent variables include the output gap gap—measured as
the deviations of the log of industrial production index from a quadratic and linear trend as in Cooper and Priestley
(2009), @jfthe Cochrane-Piazzesi (2005) factor orthogonalized relative to gap, @f‘fthe SAGLasso orthogonalized
relative to gap, and gi;—the first macroeconomic group factor identified using the Group Lasso. The row labeled
“NW?” reports test statistics computed using standard errors with 18 Newey-West lags to correct serial correlation.
Results based on the Hansen-Hodrick GMM correction for overlap are similar and not reported here for brevity. The

sample spans the period January 1964 to December 2007.

maturity ‘ gapt—1 61\:’? éf‘ Jgit R?

2 -8.798 0.094
NW (-2.480)

3 -13.924 0.070
NW (-2.142)

4 -19.676 0.073
NW (-2.211)

5 -23.702 0.071
NW (-2.224)

2 -8.798 0.433 0.254
NW (-2.812) (5.241)

3 -13.924 0.884 0.270
NW (-2.482) ( 5.630)

4 -19.676 1.299 0.299
NW (-2.594) (5.832)

5 -23.702 1.501 0.271
NW (-2.606) ( 5.409)

2 -8.798 1.213 0.451
NW (-3.681) (111.356)

3 -13.924 2.258 0.440
NW (-3.159) (110.539)

4 -19.676 3.049 0.425
NW (-3.127) (10.309)

5 -23.702 3.674 0.412
NW (-3.094) (10.193)

2 -4.623 3.887 0.268
NW (-1.309) (13.741)

3 -6.238 7.155 0.246
NW (-0.959) (13.695)

4 -9.564 9.414 0.232
NW (-1.048) (/3.519)

5 -11.760 11.117  0.219
NW (-1.062) (13.442)
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Table 8: Comparison between the SAGLasso factor and Duffee’s Yield Factors

The return to an n-year zero-coupon Treasury bond from month ¢ to month ¢+ 12 less the month-t¢ yield on a one-year

Treasury bond is regressed on ﬁf, i =1,...,5, Duffee (2008)’s five latent yield factors (the 5th factor being the hidden
factor) estimated using Kalman filtering, alone with éz, the single predictor estimated by SAGLasso. The row labeled

“HH” reports test statistics computed using standard errors with the Hansen-Hodrick GMM correction for overlap.
The row labeled “NW” reports test statistics computed using standard errors with 18 Newey-West lags to correct

serial correlation. The column labeled ”Joint Test” reports Wald tests of the hypothesis that all coefficients equal

zero. Asymptotic p-values, based on a xg(l) distribution, are in brackets. The sample spans the period January 1964
to December 2007.

Panel A: Predictive regressions of excess returns on filtered
state variable estimated from the yield curve

maturity ‘ H} H? H? H} H? R?*  Joint Test  P-val
2 0.913 8.884 -11.174 50.994  204.850 0.312
HH | (2228) (3.764) (-1.309) (2.570) ( 3.689) 78077 [0.000]
NW | (2488) (4.009) (-1.461) (2.627) (3.652) 70.183 [ 0.000]
3 1.187 16.800 -14.034 80.784  441.654 0.325
HH | (1.608) (3.655) (-0.965) (2.320) ( 4.699) 68.985 [ 0.000]
NW | (1.802) (4.052) (-1.075) (2.368) (4.543) 62.991 [ 0.000]
4 1.385 25.432 -17.551 99.892  613.020 0.344
HH | (1.346) (3.842) (-0.961) (2.151) (5.017) 63.075 [ 0.000]
NW | (1.513) (4.297) (-1.059) (2.193) (4.797) 60.085 [ 0.000]
) 1.453 32.377  -16.186  103.049 680.247 0.324
HH | (1.145) (3.961) (-0.750) (1.745) ( 4.582) 48579 [0.000]
NW | (1.287) (4.446) (-0.821) (1.794) (4.354) 50.005 [ 0.000]

Panel B: Predictive regression of excess returns on both G and fltis.

maturity ‘ G H} H? H? H} H? R?*  Joint Test  P-val
2 0.888 0.619 1.726 -3.146 27.656  134.905 0.501
HH | (6.999) (1.606) (0.677) (-0.755) (1.494) ( 2.480) 181579 [ 0.000]
NW | (7.633) (1.785) (0.747) (-0.717) ( 1.567) ( 2.608) 180.158 [ 0.000]
3 1.536 0.678 4.417 -0.147 40.414  320.660 0.495
HH | (6421) (0.973) (0.881) (-0.019) (1.274) (3.457) 164.723 [ 0.000]
NW | (6.997) (1.080) (0.981) (-0.018) (1.312) ( 3.560) 161.920 [ 0.000]
4 1.981 0.729 9.469 0.352 47.850  457.045 0.491
HH | (5771) (0.739) (1.291) (0.035) (1.126) (3.611) 154.765 [ 0.000]
NW | (6.234) (0.823) (1444) (0.031) (1.139) (3.717) 152.962 [ 0.000]
) 2.381 0.664 13.190 5.334 40.493  492.761 0.465
HH | (5730) (0.555) (1.441) (0.420) (0.757) (3.197) 142,390 [ 0.000]
NW | (6.152) (0.617) (1615) (0.378) (0.766) ( 3.282) 140.217 [ 0.000]
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Table 10: Realized Jumps and Macroeconomic News

This table reports the jump dates and jump size of the 20 biggest jumps during our sample period, identified by model-
free realized jump tests, and associated events on jump dates. The sample period is July 1982 through December
2007.

Jump Dates  Jump Size Events

07-Oct-1982  1.0859 FOMC Target Announcement*
12-Oct-1982  -0.9370 Advanced Retail Sales Announcement
12-May-1989  1.2003 Advanced Retail Sales Announcement

09-Jan-1991  -1.3131 the Outbreak of the Gulf War
13-Nov-1991  -0.8426 CPI Announcement

04-Sep-1992  0.9330 Unemployment Rate Announcement
02-Jun-1995 1.1363 Unemployment Rate Announcement
08-Mar-1996 -1.3810 the Third Taiwan Strait Crisis
07-Jun-1996  -1.7188 Unemployment Rate Announcement
05-Jul-1996  -1.4057 Unemployment Rate Announcement
30-Aug-1996 -0.7399 GDP Announcement

29-Apr-1997  1.2346 Consumer Confidence Announcement
05-Mar-1999 1.0107 Unemployment Rate Announcement
14-May-1999 -0.8258 Industrial Production Announcement
06-Dec-2002  0.9711 Unemployment Rate Announcement
03-Oct-2003  -0.7913 Unemployment Rate Announcement
09-Jan-2004  1.2738 Unemployment Rate Announcement
28-Jan-2004  -1.0643 FOMC Target Announcement**
02-Jul-2004  1.2727 Unemployment Rate Announcement
06-Aug-2004 1.6548 Unemployment Rate Announcement

*Federal Reserve announced a reduction in the discount rate from 10 percent to 9-1/2 percent.
**In contrast with pre-announcement forecasts by economists, Federal Reserve decided to keep its target for the

federal funds rate at 1 percent.
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Table 13: Out-of-Sample Predictive Power of Supervised and Unsupervised Macro
Factors

This table reports results from one-year-ahead out-of-sample forecast comparisons of n-period log excess
bond returns, rxgi)l. Panel A reports forecast comparisons of an unrestricted model with the SAGLasso
Factor CAv't as the predictor, against a restricted, constant expected returns benchmark. Panel B reports
forecast comparisons of an unrestricted model that includes G, and AR(6) as predictors, against an AR(6)
benchmark model. Panel C reports forecast comparisons of an unrestricted model, which includes ét and
LN ¢+ as predictors, with a restricted benchmark model that includes a constant and LN ¢ The column
labeled “M SE, /M SE,” reports the ratio of the mean-squared forecasting error of the unrestricted model to
the mean-squared forecasting error of the restricted benchmark model that excludes additional forecasting
variables. The column labeled “Ericsson” reports the ENC-REG test statistics of Ericsson (1992), and its
95th percentile of the asymptotic distribution is ®~! = 1.645. The column labeled “Clark-McCracken”
reports the ENC-NEW test statistics of Clark and McCracken (2001), and its 95% critic value is 1.584 for
testing one additional predictor. The two tests share the same null hypothesis that the benchmark model
encompasses the unrestricted model with excess parameter.

Panel A: SAGLasso Factor @t v.s. constant

maturity (yr) Ericsson MSE,/MSE, Clark-McCracken

2 3.364 0.7217 129.6905
3 3.159 0.7580 111.3578
4 3.201 0.7520 111.0675
5 3.370 0.7706 104.6911

Panel B: G; + AR(6) v.s. AR(6)

maturity (yr) Ericsson MSE,/MSE, Clark-McCracken

2 6.728 0.6446 177.076
3 6.835 0.6421 160.268
4 7.083 0.6197 162.507
) 6.850 0.6384 149.888

Panel C: @t JrI//J\\ft v.S. f]\\ft -+ constant

maturity (yr) Ericsson

MSE,/MSE, Clark-McCracken

2 2.730 0.9384 42.988
3 2.838 0.9064 40.440
4 3.139 0.8749 43.355
5 3.179 0.8716 41.994

48



08687¢ ¥8¢€0 ¢L66°9¢ 18G€°0 g
1078°G¢ 09€€°0 97¢9’Le €65€°0 ¥
1918°L¢ Ve o 897L°LC 88G¢€°0 €
6T98°9¢ Pare o 888.L°8¢ 0L9€°0 ¢ USRI IR odureg-jo-mo
1790°¢ 728070 GEIT1'C ¢v60°0 g -
€021'¢ 9680°0 PX4s é 8¢60°0 ¥
810¢°¢ 7€60°0 9VIT'C ¢060°0 €
G8CC'C ¥860°0 0091°¢ 1€60°0 (4 UOSSOLIH
CEES'LT 00€C0 8869°0¢ GILC0 g
T0G6°LT 0ceT0 ¢6¢.L°0¢ 8L9¢°0 ¥ ordures-uy
L9GL°81 8¢Ve 0 L6.8°0¢ €0.¢°0 €
LLET 6T ¥ve o E€I8T'1C 989¢°0 (4 PIBM
AD %G onil, oyer uoialey] AD %G enil, el uolpeley  (1£) Ajumjey O1)S19e1G 1S9, UOISSaI3aI JO odAT,

[PPOJN 2INJONIIG WLIT,

(21) VA

OMSTYRIS 9591 MHN-ONG 9 10J L00°€ ST onfea o110 donojduidse 9,66 o1y pue uonnqsip (1°0)N 2nordudse ue ser 4591 HHY-ONA UL “(1007)
UODRINOIN PUR JIR[D) JO 1591 MHAN-DNH PUR (Z66T) UOSSOLIF JO 1593 HIY-DNH o[dures-Jo-1no o1} 10j pajiodol oIe SOIISIIRIS IR[IUIS “dN[RA [RIIILIO
juoorod oAy opdures ojuy oy se [[om st ‘UONNGLISIP ()X © 10§ onfea [edLD Juedrad oA oy Suisn djer uorgosfor reourdure oy syrodox o[qey oy,
‘019z ATJurof are SJULIOFE0D oY) ey SISoy10dAY oY) JO ‘STe[ QT YIIM Pasn ST oInpodold 1SoAp-MON ) UDTUM I0J ‘)S99 PIRAA © ST O1Is1)R)s 4599 ordures-ut
QY [, 'SI0)0R] OTWOUODS0IORW dNOIS 7 JO SoN[RA 2-[JUOW ST} UO PISSOIIAI 9T€ SILINIDI SS90XF "UOIJR[NUIIS [[0RS I0J PIJRISUSS oIR RIRD JO SYIUOW {ZG PUY
"AWIOU009010RW J1[} JO Juspuadapur N SUIAIRA-OUWII] IR SUINYAI PUOQ $S90Xd Pajoadxs jey) s1Soj0dAT] [[NU [eIoUa3 oY) AJsIjes s9ss0001d FurjrIoUSS-vIRD
Yjog ‘[OPOU SINIONIJS ULID) SIURUY-0IRUW ® 10 $59001d (gT) YVA ® UO POseq SUOIIRNWIIS O[Ie)) 9JUOIN (000G UWIOIJ SINSOI SOZLIRTIWINS (e} ST T,

S9SS9201J Suljetousr) eye(] JULISHI(] UO paseq suornquiysiq ojdureg-ayurq :§1 9[qel,

49



0868°1¢ 78¢¢ 0 GIOS'TT 96710 g USRI OIN - Ie[D)
TOV8°GC 09¢¢°0 9TLLTT ee71°0 14 USXDBIYOIN - Ie[)
T918°LC 147230 G¢9¢'6 ¥¢01°0 S USXDRIYOIN - Ie[)
6198°9¢ 797€°0 GEGe 0T GveTo 4 USRI - Ie[) orduregjo-mo
1790°¢ 7.80°0 ¢E91'¢ ¢v60°0 5 UOSSOLIH
¢0C1°¢C 96800 LCST°C 8¢60°0 4 UOSSOLIH
810¢°¢C 7¢60°0 9L9L°T €v.0°0 ¢ UOSSOLIYH
G8GG'¢G 7860°0 0€CL'T TTL0°0 4 UOSSOLIH
GEEG LT 00€¢0 LLLETT 8C¢ET0 g PIeM
TOG6°LT 0¢ec 0 G886'TT 90¢T°0 14 PreM ordureg-uy
L9GL8T 8¢V 0 T6TE'TT LOET 0 ¢ Prem
LLEC 61 e 0 0689°'TT 0evT 0 4 PIeM
AD %G onay, ojeruonefeyy AD %G oni, olel uonoeley  Ajumiey 1597, Jo odA, uOISsaISe1 JO odAT,

[N [BIoUSL)

[N PATIOLIISAY

O1SIYRIS 1591 MHN-ONG 93 10§ L00°€ ST dnfea o110 donojduidse 9,66 o1y pue uonnqsip (1°0)N 2nordudse ue sey 4591 HHY-ONA UL “(1007)
UODRINOIN PUR JIR[)) JO 1591 MHAN-DNH PUR (Z66T) UOSSOLIF JO 1593 HIY-DNH o[dures-Jo-1no o1} 10j pajiodor oIe SOIISIIRIS IR[IUIS “dN[RA [RDIILIO
juoored oAy opdures ojuy oy se [[om st ‘UONNGLISIP () X © 10§ onfea [@dLD JuedIad oA oy Suisn ojer uorjosfor reourtdure oy syrodor o[qesy oy,
“[INU [eI9US 1) J0J SR QT [IIM Pasn ST 2Inpasold 1SoA\-AoMaN] 9} PUR ‘[[NU SAIOLIISAI 91} 10} proIdde YPLIPOH-UsSURY 1SNQOI 8} Sutsn pajnduoo
ST sojewmIr)so Iojowreled oY) JO XLIJRUI 9OURLIRAOD O} ‘7 O[], Ul PoSN S9dI0YD oY} JIWIW O, "0Ioz ATJUIof oIe SUIdIFe0d oy} ey} sisoyjodAy o) Jo
159 P[RAA ® ST O19sT9R)S 159) o[dures-ur o], ‘SI030R] OIWOU0I90I0RW dNOIS INOJ JO SAN[RA J-[[JUOUL S} UO PISSOIFOI oI SUWINJAI SSOOXH UOIR[NUILS IR
I0J POJRIDULS dIR RJRP JO SYIUOW Q7G PUY AWOUO0IS0IORW o) JO juapuadopul jng SUIAIRA-OWII]} oIR SWINISI PUOQ SS90X6 pajoadxe jer) sisejodAy
[[NU [eIoUS3 oY) SOYSIIeS [OPOUL SINJONIIS WLIO) YT, AJ[IqeIdIpald ou Jo SISoUjodAY [[NU SATIOLIISOI oY) SoYsIjes sso00Id YN A O WO PojeIotuss viep
PIOIA [PPOW SINJONIIS ULI) SOURUY-0IORW © 10 $99001d (ZT)VINA B UO Paseq SUOIRINUIIS O[IR)) 9JUOIN (000G WIOI] SINSAI SOZLIRUIWNS d(e) ST T,

SuoIssa18o} Surjsedalo jo sorjaedordg ojdueg-olurqd :GT o[qe],

(]
10



Table 16: Small Sample Inference for the Predictability of Excess Bond Returns

This table is the counterpart of Table 5 based on finite-sample distributions for test statistics. 50000 Monte
Carlo simulations are run based on a VMA(12) process or a macro-finance term structure model. Yield
data generated from the VMA process satisfies the restrictive null hypothesis of no predictability. The term
structure model satisfies the general null hypothesis that expected excess bond returns are time-varying but
independent of the macroeconomy. And 528 months of data are generated for each simulation. 95-percent
confidence intervals for R?, under each null hypothesis, are reported in square brackets. The column labeled
“Joint Test” reports the Wald test statistics computed with the actual data, but the P-values are based on
the empirical distributions of 50,000 bootstrapped samples. Both the restrictive and general hypotheses are
defined as in Duffee (2008).

maturity (yr) Null Hypothesis R? Joint Test ~ P-val
2 0.436
Restrictive 0.0025,0.0559]  56.977 [ 0.0000]
General 0.0072,0.1272]  67.484 [ 0.0002]
3 0.405
Restrictive [0.0021,0.0441] 50.032 [ 0.0000]
General [0.0074,0.1277] 57.658 [ 0.0003]
4 0.392
Restrictive [0.0028,0.0547] 52.324 [ 0.0000]
General 0.0071,0.1220]  57.995 [ 0.0010]
) 0.379
Restrictive 0.0037,0.0543]  55.818 [ 0.0000]
General 0.0071,0.1190]  61.473 [ 0.0004]
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Figure 2: Return Risk Premium of the 5-year Bond Estimated from Different VAR

Specifications

Panel A: Return risk premium including SAGLasso factor and IP growth.
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This figure plots the return risk premium of the 5-year bond that is estimated using two alternative VAR models,
along with the growth of industrial production. The first VAR model involves state variables including both the
Cochrane-Piazzesi (2005) and SAGLasso factors and the second specification excludes the SAGLasso factor. Shaded

bars denote months designated as recessions by the National Bureau of Economic Research.
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Figure 3: Term Premium of the 5-year Bond Estimated Different VAR Specifications
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This figure plots the term premium of the 5-year bond that is estimated using two alternative VAR models.
The first VAR model involves state variables including both the Cochrane-Piazzesi (2005) and SAGLasso
factors and the second state vector contains the Cochrane-Piazzesi and the Ludvigson-Ng (2009b) factors.
Shaded bars denote months designated as recessions by the National Bureau of Economic Research.
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Figure 4: Impulse Response Generated from alternative FAVAR Specifications

Saplasso

Panel A: This figure plots the estimated impulse response, with 90 percent confidence interval, of the SA-
GLasso factor to one-standard-deviation shocks in logarithm IP growth.
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Panel B: This figure plots the estimated impulse responses, with 90 percent confidence intervals, of key
macroeconomic indicators to one-standard-deviation shocks in the SAGLasso factor.
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