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Abstract

In this paper, we provide new and robust evidence on the power of macro variables for
forecasting bond risk premia by using a recently developed model selection method–
the supervised adaptive group “least absolute shrinkage and selection operator” (lasso)
approach. We identify a single macro factor that can not only subsume the macro factors
documented in the existing literature but also can substantially raise their forecasting
power for future bond excess returns. Specifically, we find that the new macro factor,
a linear combination of four group factors (including employment, housing, and price
indices), can explain the variation in excess returns on bonds with maturities ranging
from 2 to 5 years up to 43%. The new factor is countercyclical and furthermore picks up
unspanned predictability in bond excess returns. Namely, the new macro factor contains
substantial information on expected excess returns (as well as expected future short
rates) but has negligible impact on the cross section of bond yields.

∗We thank Yakov Amihud, Charles Cao, Long Chen, Peter Feldhütter (AFA discussant), Laura Field, Raymond
Kan, Anh Le, Hong Liu, Marco Rossi, Ilona Shiller, Joel Vanden, Hong Yan, Weina Zhang, Hao Zhou, and seminar par-
ticipants at National University of Singapore, Penn State, Singapore Management University, Wisconsin-Milwaukee,
the 20th Annual Derivatives Securities and Risk Management Conference at FDIC, the 2010 CICF, the 2010 FMA,
the 2010 SAIF and CKGSB Summer Research Conference, and the 2011 AFA for helpful comments and suggestions.
Both authors are at the Smeal College of Business, Penn State University, University Park, PA 16802, USA. Email
addresses: jxh56@psu.edu (Huang) and zus116@psu.edu (Shi).



1 Introduction

Recent empirical evidence has documented that some financial and macroeconomic variables

can be used to predict the excess returns of the U.S. Treasury bonds. For instance, financial

variables found to have such predictive power include forward rates or spreads (Fama and

Bliss, 1987; Stambaugh, 1988; Cochrane and Piazzesi, 2005) and yield spreads (Campbell

and Shiller, 1991). In particular, Cochrane and Piazzesi show that a tent-shaped linear

combination of five forward rates can explain between 30 and 35 percent of the variation in

one-year excess returns on bonds with 2-5 years to maturity. On the other hand, Ludvigson

and Ng (2009b) obtain a macro factor (extracted from a monthly panel of 131 macroeconomic

variables using dynamic factor analysis) that has forecasting power for bond excess returns,

above and beyond the power contained in the aforementioned financial variables. Specially,

Ludvigson and Ng find that their factor alone can explain 21-26 percent of the one-year

excess returns and can raise it to 42-45 percent when augmented with the Cochrane-Piazzesi

factor. Interestingly, Cochrane and Piazzesi, Ludvigson and Ng, and Duffee (2008) all docu-

ment empirically the presence of a so-called “hidden” factor, namely, a factor that contains

substantial information about expected excess returns but has negligible impact on the cross

section of bond yields. These findings have generated important insights and implications for

term structure modeling, and spawned a fast growing literature on the determinants of bond

risk premia. Nonetheless, some recent studies have raised concerns about the robustness of

the documented power of those financial and macro variables for predicting bond risk premia

(see, e.g., Duffee, 2007).

In this paper, we reexamine the potential power of macro variables for forecasting bond

risk premia using a recently developed model selection method, namely, the supervised adap-

tive group “least absolute shrinkage and selection operator” (lasso) approach (referred to as

the SAGLasso approach, hereafter). We first extract a new macro factor from a standard

monthly panel of macro variables–the same set of macro variables used in Ludvigson and Ng

(2009b)–using the SAGLasso approach. We then examine the intuition of the new macro

factor and, in particular, investigate whether the new factor has any forecasting power for

bond risk premia above and beyond the predictive power contained in those financial and

macro factors identified in the literature. Finally, as a robustness check, we address two

issues raised recently by Duffee (2007, 2008) about the empirical literature on the prediction

of bond excess returns.

The new macro factor that we obtain is a linear combination of four non-overlapping group

factors, each of which itself is a linear combination of a small number of closely related macro

variables (a subset of the original 131 macro variables) and thus has a clear interpretation.

More specifically, the four group factors represent employment, housing, price indices, and

financial, respectively. As such, our new macro factor is easy to interpret.

1



We find that the new macro factor can predict excess returns on 2- to 5-year maturity

bonds with (in sample) R2 up to 43 percent. This is significantly higher than that found

by either Cochrane and Piazzesi (2005, CP hereafter) or Ludvigson and Ng (2009b, LN

hereafter). Furthermore, our new macro factor is found to subsume the LN factor. However,

like the LN factor, our factor does not subsume the CP factor and contains information

about bond risk premia that is not contained in the CP factor. Augmenting our factor

with the latter can increase the R2 of the forecasting regression to 47 percent. Like the CP

and LN factors, the new macro factor is found to be countercyclical. We also find that our

new factor has strong out-of-sample forecasting power as well and moreover has significantly

incremental predictive power beyond that in the LN factor. Overall, results from both in-

sample and out-of-sample analysis indicate that our new macro factor contains information

about future bond excess returns beyond what captured by the CP and LN factors.

We also find that our employment group factor can subsume the output gap factor found

by Cooper and Priestley (2009) that can predict excess returns on 2- to 5-year maturity

bonds with R2 equal to 2 percent. As such, our macro factor goes beyond output gap

and inflation (two main macro variables considered in existing studies) and, in particular,

includes a component of macro risk tied to economic measures in the housing sector, that is

consistent with the implication of the Piazzesi, Schneider, and Tuzel (2007) model.1

To explore further the information content in the new macro factor, we include the

realized jump-mean factor of Wright and Zhou (2009) in predictive regressions of the bond

risk premium on the macro factor and the Duffee hidden factor, both jointly and separately.

Regression results indicate that these three factors are all significant and jointly can predict

excess returns on 2- to 5-year maturity bonds with R2 up to 66 percent (where the sample

period used is 1984-2007, a sub sample period over which the jump factor can be constructed).

Finally, we conduct a robustness test of the empirically documented predictability of our

new macro factor by addressing two issues raised by Duffee (2007, 2008). He argues in the

former study that all existing predictive regression studies actually test a restrictive null

hypothesis that excess bond returns are unforecastable, whereas the more relevant null hy-

pothesis should be that “expected excess returns are stochastic, persistent, and independent

of the macroeconomy.” We attempt to distinguish between these two nulls by documenting

the strong forecasting power of the lagged value of excess returns themselves. We construct

tests for both restrictive and general null hypotheses and find that the general null, which

Duffee cannot reject in the finite sample analysis, is rejected regardless whether asymptotic or

simulated critical values are used. The other issue is whether the evidence for predictability

of excess returns is simply a symptom of small-sample biases in estimated t-statistics or R2.

We find that all the evidence of return predictability (based on regressions with asymptotic

1Piazzesi et al. (2007) focus on excess stock returns. But the same mechanism applies to excess bond returns
because risk premia on bonds and stocks are largely driven by the same business-cycle factors (Fama and French,
1989).
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theories) in our new macro factor persists even after we adjust the estimated test statistics

for their finite-sample properties.

To sum, we provide new and robust evidence on the link between expected excess bond

returns and macroeconomic variables. The new macro factor identified in our analysis is

intuitive, includes a housing component, subsumes both the Ludvigson-Ng macro factor and

the output gap identified in Cooper and Priestley, and contains the information about future

bond excess returns that is not contained in the Cochrane-Piazzesi forward rate factor, the

Duffee hidden factor (referred to as an expectation factor by some researchers), and the

Wright-Zhou realized jump-mean factor. Furthermore, our analysis indicates that sources of

bond risk premium predictability include macro variables, jumps, and an expectation factor.

The SAGLasso approach, used to extract our bond return forecasting factor from a large

set of 131 macro variables using, has some advantages over the standard principal component

analysis (PCA) or factor analysis. First, the SAGLasso approach selects predictors based on

their association with the dependent variable (the bond risk premium in our case), whereas

principal components may contain most information with respect to the data matrix of in-

dependent variables, but this information may not be most correlated with the dependent

variable to be forecasted.2 Second, the SAGLasso approach picks only a few most impor-

tant ones (out of those 131 macro variables) as explanatory variables by shrinkage, whereas

principal components or factors estimated using the PCA method are linear combinations

of all 131 macro variables. In particular, due to cluster structure of macroeconomic data,

we can divide 131 macro variables into groups and then apply the SAGLasso approach at

the group level to help us select group factors (which are informative and easy to interpret)

and thus identify underlying economic determinants of bond risk premia. Finally, predictive

regressions of excess bond returns tend to exhibit autocorrelation (due to both high serial

and cross-sectional correlations of bond prices) and the SAGLasso approach provides a ro-

bust way to correct for autocorrelated disturbances with an unspecified structure in such

regressions.

Our study builds directly on the insightful studies by Cochrane and Piazzesi (2005) and,

in particular, Ludvigson and Ng (2009b), respectively, the latter of which documents among

other things that macro factors have important forecasting power for future bond excess

returns, above and beyond the predictive power contained in yield curve factors (identified

by the former study). We extend LN in several directions. First, we extract macro factors

using the SAGLasso approach instead of dynamic factor analysis, and identify a new factor–

the housing factor. Secondly, we identify more sources of bond risk premium predictability.

Finally, we address the concerns raised by Duffee (2007, 2008) on the robustness of such a

predictability. Overall, we provide new and robust evidence to support LN’s findings.

2However, the information on the dependent variable can be used to help select a particular combination of those
principal components (and/or their higher order terms) as a predictor in predictive regressions. See Ludvigson and
Ng (2009b).
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Our study is also closely related to the macro finance literature (Ang and Piazzesi, 2003).

Several recent studies of dynamic term structure models (DTSM) document that factors

unspanned by bond yields have predictive content for bond excess returns. For instance,

Cochrane and Piazzesi (2009) and Duffee (2008) focus on unspanned “yield-curve” risks by

allowing yield factors, other than the traditional “level”, “slope” and “curvature” ones to

drive variation in expected excess returns. Joslin, Priebsch, and Singleton (2009) develop

a model that incorporates macro factors but allows for components of macroeconomic risks

orthogonal to the yield curve. Our empirical analysis sheds more light on the nature of

unspanned predictability documented in the aforementioned studies. Specifically, we identify

macroeconomic risk over and beyond that associated with variations in output gap and

inflation, the focus of current literature. Also, our regression results highlight the importance

of incorporating both yield-curve evolution and macroeconomic fundamentals in extending

the conventional three-factor DTSMs, because risk premia on unspanned predictors are not

identified otherwise.

The organization of the paper is as follows: The next section lays out the economet-

ric framework and introduces the Supervised Adaptive Group Lasso (SAGLasso) method.

Section 3 reports empirical results. In particular, we extract first those macro factors with

significant predictive power for excess bond returns and then conduct both in-sample and

out-of-sample forecasting regression analysis. Section 4 presents a bootstrap analysis for

finite-sample inference. Section 5 summarizes the results of our investigation. The appendix

provides a list of macroeconomic variables used in the analysis and also describes the dynamic

term structure model used in the bootstrap analysis.

2 The Empirical Method

This section introduces the Supervised Adaptive Group Lasso method and illustrates how

to use it to select macroeconomic factors that can forecast excess bond returns. Below we

first describe the penalized least squares, lasso, adaptive lasso, and group lasso. We then

propose our SAGLasso procedure based on the latter.

2.1 Motivation

There are two types of excess returns used in the literature on predicting excess bond returns.

In this paper, we follow Fama and Bliss (1987) by using continuously compounded annual log

returns on a n-year zero-coupon Treasury bond in excess of the annualized yield on a 1-year

zero-coupon Treasury bond. For t = 1, · · ·T , excess returns are defined rx
(n)
t+1 = r

(n)
t+1− y

(1)
t =

ny
(n)
t − (n− 1)y

(n−1)
t+1 − y(1)

t , where r
(n)
t+1 is the one-year log holding-period return on an n-year

bond purchased at time t and sold at time t+ 1, and y
(n)
t is the log yield on the n-year bond.

To examine if predictable variation in excess bond returns is specifically related to the
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macroeconomic state, researchers often run the following predictive regression:

rx
(n)
t+1 = γ′Zt + et+1 (1)

The predictors Zt are ususally based on a few predetermined macroeconomic measures such

as GDP growth, NAPM price index and personal consumption expenditure etc. Nevertheless,

the decision as to which predetermined macro variables to use in the econometric analysis can

substantially influence the estimated predictability of excess returns. Moreover, as pointed

out by LN, there is a potential degree-of-freedom problem here if the number of predictors

used is large. In fact, LN emphasize that it is infeasible to follow standard econometric

procedure with mass information contained in the T × N panel “unless we have a way of

ordering the importance of the N series in forming conditional expectation.”

To get around these difficulties, LN employ the dynamic factor analysis to estimate

several linear combinations from a large panel of macroeconomic series. Such estimated

(static) factors can then be used in predictive regressions. One big advantage of the LN

methodology is that it allows us to summarize the information from a large number of time

series using only a few factors as follows

rx
(n)
t+1 = β′Ft + γ′Zt + et+1 (2)

Although very insightful, the LN method has some limitations. First, as mentioned ear-

lier principal component analysis (PCA) is an effective tool for finding linear combinations

of features that exhibit largest variation in a data set, but the resulting factors are not

necessarily most related with variations in the outcome variable to be predicted. In particu-

lar, the first component does not necessarily correlate strongly with the dependent variable

in factor-augmented regressions. For instance, the fifth and sixth components F̂5t and F̂6t

identified in LN are found to have little forecasting power for excess bond returns.

To summarize, asymptotic principal component analysis is a standard method for mod-

eling correlation but the factors extracted using this method are not necessarily those most

correlated with the dependent variables that we want to forecast. The SAGLasso approach

used in this study singles out subsets of input features (and groups) associated with a par-

ticular response/dependent variable and thus drives the estimated factor toward it. As a

result, under this approach, it is possible to extract a sparse loading vector from a large

panel of noisy macroeconomic series and identify the association between bond risk premia

and different economic sectors.

2.2 Lasso, Adaptive Lasso, and Group Lasso

We assume that there are N macroeconomic measures observed for T time periods. Let X

be the T ×N panel of macroeconomic data with elements xit, i = 1, · · ·N , t = 1, · · ·T . As in
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dynamic factor analysis, the cross-sectional dimension here, N , is large and possibly greater

than the number of observations, T . Throughout this paper, we define

||η||P = (η′Pη)1/2

for a vector η ∈ Rk and a symmetric k × k positive definite matrix P. And we write ||η|| =
||η||Ik for brevity. For a T × 1 response vector y, the penalized least squares function is

defined to be

||y −Xβ||2 + λ
N∑
i=1

|βi|, (3)

where λ ≥ 0 is a tuning parameter. Note that the penalty functions pi(·) are not necessarily

the same for all i. The `1-norm penalty |βi| used here induces sparsity in the solution, and

defines the lasso method (Tibshirani, 1996). Bai and Ng (2008) pioneer the use of the novel

shrinkage method in macroeconomic forecasting by setting the soft thresholding to select a

subset of variables from which factors are extracted.

We now discuss why LASSO regression is preferred to using a linear combination of all

macro variables available as the fitted value estimated from OLS. First, in terms of forecasting

accuracy, OLS estimates usually exhibit low bias but large variance but shrinkage methods

can sacrifice a little bias to reduce the variance of the predicted value and thus improve the

overall forecasting performance. Next, it is well known that OLS has poor finite sample

property when the dimension of parameters to be estimated is comparable with the number

of observations.3 The lasso approach is developed to handle such problems.

Zou (2006) modifies the lasso penalty as the following

||y −Xβ||2 +
N∑
i=1

λi|βi| (4)

such that different amounts of shrinkage are allowed for different regression coefficients. It

has been shown that this “Adaptive Lasso” has the oracle property if the weights λi are

data-dependent and appropriately chosen.

Despite its popularity, lasso has limitations. For instance, if each explanatory factor may

be represented by a group of derived input variables, then the lasso tends to select only one

variable from each group and does not care which one is selected, especially when there is

a group of variables among which the pairwise correlations are very high. In another word,

the solution for lasso depends on how the factors are represented,4 and this is undesirable

in economic forecasting. Another issue is that when N > T , the lasso selects at most T

variables before it saturates, because of the nature of the convex optimization problem. As

3For our empirical study, there are 131 macroeconomic variables with only 528 observations.
4That is, if any factor is reparameterized through a different set of orthonormal contrasts, we may obtain a different

set of factors in the solution.

6



shown below, the first problem can be fixed by the Group Lasso of Yuan and Lin (2006).

The second concern is automatically removed by the SAGLasso procedure.

We begin with the following liner model

Y = Xβ0 + e (5)

with the assumption that e is a T -dimensional vector of iid errors, and we well relax this

assumption later. The central modeling assumption of Group Lasso is that some subvectors

of the true coefficients β0 are zero. And we denote by h ∈ H1 = {h : β0
h 6= 0} the unknown

index set of non-zero subvectors of β0. Hence, the Group Lasso involves identifying H1 and

estimating β0. This can be naturally formulated in the framework of penalized least squares.

The general form of Group Lasso estimate is defined in Yuan and Lin (2006) as the

solution to the following problem:

min
β∈RN

{
||y −Xβ||2 + λ

∑
h

||βh||Wh

}
, (6)

given Nh×Nh positive definite matrices Wh. However, in practice, the Group Lasso is usually

implemented by estimating the following restrictive form

min
β∈RN

{
||y −Xβ||2 + λ

∑
h

||βh||

}
. (7)

Note that expression (7) reduces to the Lasso when |H| = N and each h corresponds to the

1-dimensional subspace of RT spanned by the corresponding column of the design matrix X.

Instead, we stick to the general Group Lasso in this paper and mimic the Adaptive Lasso

by setting Wh = whINh
. The resulted penalty function is given by

min
β∈RN

{
||y −Xβ||2 + λ

∑
h

wh||βh||

}
(8)

For a large-scale macroeconomic data set, series are usually organized in a hierarchical

manner, making the Group Lasso perfectly suitable for factor selection. However, even within

a group, different variables may represent certain quantitative measurements of different

economic sectors. In our context, it is natural to conjecture that Industrial Production (IP)

Index for consumer goods might have connection with the bond risk premia in a different way

from the connection between IP Index of materials and the bond risk premia. Thus, it seems

necessary to also consider variable selection at the within-cluster level so that the irrelevant

individual series can be screened out. Furthermore, the capability of selecting informative

economic measures within the selected groups is especially valuable for practitioners that

require parsimonious models with specific input variables.
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2.3 Supervised Adaptive Group Lasso

Essentially, the Supervised Adaptive Group Lasso (SAGLasso) consists of two steps. In the

first step, we identify informative individual macro series within each cluster using the Adap-

tive Lasso method. In the second step, we select important clusters using the Group Lasso.

The details of the SAGLasso procedure are provided in the appendix. To our knowledge,

the SAGLasso is the first to consider penalized time series selection at both the cluster level

and the within cluster level.

Compared to individual variable selection methods, the SAGLasso is capable of taking

cluster information into consideration. This makes it possible to reveal the associations

between term premia and macrocosmic fundamentals. With the proposed approach, we can

identify macroeconomic measures which are jointly significantly associated with risk premia

in bond returns. Compared to simple cluster based methods such as Group Lasso, SAGLasso

carries out the additional within cluster selection. This leads to a small number of variables

within each cluster. So beyond identifying influential factors, the proposed approach can

also identify the economic sectors that actually cause the association.

Besides the SAGLasso method, another two-step supervised learning approach in the

literature is the supervised principal component analysis (SPCA) proposed by Bair et al.

(2006) in a biological setting. Bai and Ng (2008) incorporate SPCA into the confines of

Diffusion Index framework and apply it to inflation forecasts. Significant differences exist

between the SAGLasso and other two-step approaches like SPCA. In other two-step ap-

proaches, the first supervised screening step considers all candidate variables simultaneously

and the cluster structure is ignored, whereas the main merit of the SAGLasso is the usage

of the information of underlying cluster structure. Moreover, in SPCA, the selected features

are the principal components. Although they may have satisfactory prediction performance,

economic interpretations may not be clear. As a comparison, for SAGLasso clear economic

interpretations of macro series identification results are available as shown in the next sec-

tion. Finally, the asymptotic theory for SPCA, established by Bair et al. (2006), is based

on the assumption of iid disturbance, which is usually not the case for financial time se-

ries. In contrast, penalized least squares (or more generally, penalized likelihood) can be

applied to general linear models with autocorrelated disturbance, as long as the objective

function is well defined and locally differentiable. In our context, suppose the disturbances

are homoscedastic but correlated across observations

rx
(n)
t+1 = β′Xt + εt+1, A(L)εt+1 = νt+1, (9)

where νt+1 is nonautocorrelated. If the lag operator has the order of p, then the AR(p)

disturbance model is

A(L)rx
(n)
t+1 = β′A(L)Xt + νt+1. (10)
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Therefore, any model with an AR(p) disturbance can be written as a more general autore-

gressive distributed lag (ARDL) model with both p autoregressive terms and p distributed

lag terms, namely, the following ARDL(p, p) model

B(L)rx
(n)
t+1 = β′C(L)Xt + νt+1 (11)

with a nonlinear restriction imposed B(L) = C(L). Thus, upon finding evidence of auto-

correlation on the basis of LN’s and CP’s model, we proceed with relaxing the nonlinear

restrictions on the ARDL model, instead of seeking serial correlation in omitted variables.

This interpretation is largely supported by our empirical result: adding additional lags of

the dependent variable boosts the explanatory power of the model, with R2 up to nearly

90%, leaving little room for other explanatory variables.

3 Empirical Results

In this section we extract macro factors from a monthly panel of 131 measures of economic

activity over the period 1964-2007 and then examine their power for forecasting excess bond

returns. Section 3.1 describes the data and discuss two different null hypotheses to infer

the relationship between term premia and the macroeconomy. Section 3.2 presents some

preliminary results from CP and LN’s analysis, which motivates our use of the general ARDL

model. The empirical results obtained from our SAGLasso are summarized in Sections 3.3

and 3.4. Sections 3.5 and 3.6 discuss the economic interpretation of the estimated factor

by characterizing its countercyclic pattern and unspanned predictive ability, respectively.

Section 3.7 examines the role of jumps. Finally, Section 3.8 reports some robustness checks

and assess the performance in subsample and out-of-sample analysis.

3.1 Data and Null Hypotheses

Monthly prices for 1-year through 5-year zero coupon U.S. Treasury bonds from CRSP are

used to construct annual excess returns, as specified at the beginning of Section 2. To follow

the literature, we construct annual returns by continuously compounding monthly return

observations, rather than constructing monthly excess returns. In spite of the well-known

statistical problem associated with regressions involving overlapping observations, there may

truly be more information on predictability of excess returns using the annual excess returns

because they subtract the 1-year yield instead of the 1-month yield.

Our macroeconomic data set consists of a balanced panel of 131 monthly macroeconomic

times series, each spanning the period from January 1964 to September 2007. The same

data are used in most dynamic factor model studies, such as Stock and Watson (2002,2005)

and Ludvigson and Ng (2009a, 2009b). These series are initially transformed to induce sta-

tionarity. To provide a basis for comparison, we include in our data set as many economic
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series as used in Ludvigson and Ng (2009a), and the sample periods are exactly the same.

These series are roughly identified into 15 broad categories: real output and income; em-

ployment and hours; real retail, manufacturing and trade sales; consumption; housing starts

and sales; real inventories; orders; commercial credit; stock indexes; exchange rates; interest

rates and spreads; money and credit quantity aggregates; inflation indexes; average hourly

earnings; and miscellaneous. The complete list of series and their transformation is given in

the appendix.

Duffee (2007) argues that the existing literature does not test the relevant null hypoth-

esis that expected excess bond returns are persistent and uncorrelated with macroeconomic

measures. Instead, previous studies uses the restrictive null that excess returns are unfore-

castable. For simplicity, we follow Duffee by referring to the former null hypothesis as the

general null and the latter null hypothesis as the restrictive null. Statistically, the well-

known spurious regression problem is exemplification of their difference and the general null

can be typically incorporated into the linear regressions by adjusting the covariance ma-

trix of parameter estimates. And if we follow the ARDL methodology to correct for the

autocorrelation, the issue will be fully clarified. However, in predictive regression the criti-

cal issue associated with different null hypotheses is whether the small-sample properties of

test statistics are close to standard asymptotic properties. Therefore, when analyzing the

finite-sample properties of their techniques, existing studies usually makes bootstrap infer-

ence based on the restrictive null hypothesis. Put differently, the model used to generate

simulation data offer only a choice between term premia that covaries with macroeconomic

variables and term premia that are serially uncorrelated.

But the most significant effect brought about by different null hypotheses may lie in

the economic aspect. If we focus on predictors from the financial sector, using restrictive

null may not yield any conclusive result on whether expected excess returns are correlated

with the macroeconomy. As stressed by Duffee (2007), least square regression detects partial

correlations instead of unconditional correlations. Therefore, if the macroeconomic series are

correlated with the noise in financial variables derived from prices of risky securities, they

would exhibit forecasting power in regressions even if these series are independent of excess

returns. To assess the independent predictive power of macroeconomic inputs, in this paper

we test both restrictive and general null hypothesis.

3.2 Some Preliminary Results

We first construct the return-forecasting factors used in CP and LN, completely following

their methodology. The explanatory variables used by CP are the annualized forward rates

F
(n)
t = p

(n)
t − p

(n+1)
t , n = 0, . . . 4. Stack them in the vector Fort. The specification in

LN’s forecasting regression is slightly more complicated. Using eight static factors (f̂it)

estimated from asymptotic PCA, they perform best-subset selection among different subsets
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of f̂it as well as their quadratic and cubic functions. A nine-factor subsect given by F̂9t =(
f̂1t, . . . f̂8t, f̂

3
1t

)
is found to minimize the in-sample and the out-of-sample BIC. The CP and

LN single predictive factors are then formed as the fitted value from following regression

arxt+1 = γ0 + γ′Fort, (12)

arxt+1 = δ0 + δ′F̂9t, (13)

where arxt+1 = 1
4

∑5
n=2 rx

(n)
t+1. Table 1 shows coefficient estimates, associated t-statistics and

R2 value for Eq. (13). We denote the two single factors ĈP t = γ̂′Fort and L̂N t = δ̂′F̂9t,

respectively.

Panel A of Table 2 reports results of univariate regressions of 2-5 year excess returns on

CP and LN factors. As the regression for annual excess returns use overlapping observations,

we compute standard errors using the Hansen-Hodrick (1980) GMM correction for overlap

(the first row in parentheses). Also, the Newey-West (1987) asymptotic standard t-statistics

(with 18 lags) are reported to correct serial correlation. Note that these two correction

methods correspond to different null hypotheses for the Wald tests. Because the restrictive

null states that forecast errors are serially uncorrelated and the general null is that forecast

errors contain persistent components independent of the macroeconomy, the robust Hansen-

Hodrick method is used to estimate the covariance matrix of parameter estimates for the

restrictive null, and the Newey-West method is used for the general null. Under both null

hypotheses the test is asymptotically distributed as a χ2(1).

The regression with ĈP t have a R2 of 26 ∼ 30 percent, slightly lower than reported by CP,

who use data through 2003. And the result of regressing excess returns on L̂N t is remarkably

similar to what is obtained by LN. Result of multivariate regressions, in which both CP and

LN factors are included, is shown in Panel B. This specification serves as the starting point

of our analysis. First of all, L̂N t alone explains 0.26 ∼ 0.28 variance in excess bound returns

with maturities of 2-5 years. Adding CPt to the regression increases R2 to about 0.4. Our

SAGLasso methodology is intended to investigate whether these return-forecasting factors

have fully captured forecastable variations in excess returns, or equivalently, whether we can

construct a macroeconomic factor from the same penal data with predictive power above

and beyond the LN factor. Moreover, according to Panel C, the null hypothesis that the

first-order autocorrelation in the error term is zero is overwhelmingly rejected, using Ljung-

Box refined Q test. Note that Q test is even too conservative when the null hypothesis is

false, because it does not conditional independent variables. Autocorrelated disturbance may

occur due to misspecification, such as omitting relevant variables, choosing too low a lag order

for dependent or independent variables, or using inappropriate transformed variables. But

the documented evidence seems too strong to be purely explained by omitted explanatory

variables. Hence we proceed with relaxing the nonlinear restriction imposed on essentially

11



general ARDL model, and perform the SAGLasso algorithm on the basis of following model

C(L)arxt+1 = βB(L)Xt + εt (14)

The dimension of B(L) and C(L) is set to be 7 (with 6 lags). This original specification is

arbitrary and aims to make sure that the model contains more than the true lagged values.

Our conjecture is confirmed by the final estimation result (reported in Table 3) that the

resulted SAGLasso regression model does not exhibit significant serial correlation.

3.3 SAGLasso: In-Sample Analysis

Following Ludvigson and Ng (2009a), we divide the data into 8 blocks. These are (1) output,

(2) labor market, (3) housing sector, (4) orders and inventories, (5) money and credit (6)

bond and FX, (7) prices and (8) stock market. Then Adaptive Lasso is conducted with

each group, along with lagged value of excess bond returns. The use of Adaptive Lasso

provides the flexibility to not penalize the coefficients associated with lagged dependent

variables. One merit of estimating Group Lasso is that the factor estimates are easy to

interpret. We notice that after performing the first step of SAGLasso, the dimension of the

exogenous explanatory variables has been greatly reduced. Only 38 macroeconomic variables

have non-zero coefficients on their contemporaneous and/or lagged values. For instance, the

largest group at the cluster level, the “labor market group”, contains 32 series and thus 224

candidate explanatory variables,5 but only 11 of them have non-zero coefficients after the

group lasso is applied.

In the second step, we select important clusters using the Group Lasso. Yuan and

Lin (2006) show that the solution to the Group Lasso problem (6) can be obtained effi-

ciently by using a modified least angle regression selection (LARS) algorithm of Efron et al.

(2004). With tuning parameters determined by 2-fold cross validation, coefficients of 4 clus-

ters/groups, (1), (4), (5) and (8), are shrunk to exactly zero. The estimates indicate that

macro factors associated with labor market, housing, interest rate and prices show strongest

connection with bond risk premia. We will revert back to the implication of this shrinkage

result in Section 3.4. Along the lines of CP and LN, the single SAGLasso factor, denoted

Ĝt, is defined as β̂B(L)Xt.

Table 3 presents results from in-sample predictive regressions of 2- through 5-year long

excess bond returns on the SAGLasso factor along with lags of excess returns, in the form

of (13). Estimates of regressions with maturities of 3-5 years should be a preferable focus of

our interpretation, since a reparametrization of Eq. (11) reveals that for the regression with

5For each series, we include its 6 lagged variables; so the total number of variables equals 32 × 7 = 224.
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the 2-year bond, some of the log prices appear on the both sides of the following equations

rx
(2)
t+1 = A0rx

(2)
t + βB(L)Xt +

5∑
i=1

Airx
(2)
t−i, (15)

p
(1)
t+1 − p

(2)
t + p

(1)
t = A0

(
p

(1)
t − p

(2)
t−1 + p

(1)
t−1

)
+ βB(L)Xt +

5∑
i=1

Airx
(2)
t−i. (16)

Note that Ĝt is basically a linear combination of macroeconomic series as well as their

lagged values. The essential difference between the SAGLasso factor and the LN factor is that

the former (1) exerts shrinkage of sufficient magnitude to give an economically interpretable

model as well as to substantially reduce the forecast variance and (2) takes into account

the dynamic respondence of risk premia to macroeconomic innovations. Panel A (and the

following Table 4) gives prominence to the first feature by showing that the SAGLasso factor

have statistically and economically significant predictive power conditional on lagged returns.

Ĝt is highly significant in forecasting regression of all maturities, implying the estimated

factors contain information about future returns that is not contained in its own historical

path. This test directly corresponds to the general null hypothesis, as it demonstrates that

the lagged returns per se, especially the first lag, have considerable forecasting power for

the future ones. More strikingly, the SAGLasso factor, together with lagged excess returns,

explains nearly 90 percent of next year’s returns of 2- to 5-year Treasury bonds. It seems safe

to conclude that this specification has captured nearly all forecastbale variations in excess

bond returns and thus leaves marginal scope for other explanatory variable, in favor of using

the ARDL framework.

Another support for this specification comes from the result presented in Panel B, which

highlights the second feature of our methodology. The Ljung-Box Q test does not detect the

presence of AR(1) serial correlation in our model, in sharp contrast to extant studies. It is

well known that Q test is less powerful when the null hypothesis does not hold. Breusch and

Pagan (1980) also point out that Q test is inappropriate when the regressors include both

lagged dependent variables and exogenous variables. Hence, we also perform Lagrangian

multiplier test for robustness,6 but it cannot reject the null hypothesis either. Testing for

higher order serial correlation does not alter the result.7

Next, we examine whether the SAGLasso factor has unconditional predictive power for

excess returns; this amounts to estimating the restricted version of (13), where A(L) is

restricted to zero except for the contemporaneous one. Table 4 presents the estimation

results of univariate predictive regression on Ĝt. The most striking finding is that the

SAGLasso factor could explain more than 43% of the variations in excess returns on 2-5

year maturity bonds. This R2 statistics, to the best of our knowledge, is the highest in

6See Breusch (1978) and Godfrey (1978) for details.
7Therefore, we do not report the Newey-West estimator for this specification.
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the literature to investigate the predictability of excess returns. Results not reported here

show that the lagged values along explains about 62% of the variance in the 3-5 year excess

bond returns. In other words, adding Ĝt to the corresponding AR(6) model increases R2

by nearly 30%. Combining these numbers with results reported in Table 4, we can see

that the SAGLasso factor contains macroeconomic information on bond risk premia that

is unspanned by past bond prices. This implication is not surprising, though, because the

shrinkage path of our SAGLasso regression is based on partial correlations controlling for

lagged dependent variables (lagged values of excess returns are chosen to not be penalized).

Economic interpretation of this SAGLasso factor will be further discussed in Section 3.5.

These estimates also confirm that the unsupervised procedures adopted by LN underes-

timate the predictive power of macro variable (with R2 of 0.28 versus 0.43), as much useful

information is missed in the process of unsupervised factor analysis. This point appears

more prominent in Panel B, which presents the results of regressions with both Ĝt and L̂N t

as predictors. We find adding L̂N t into the regression make little improvement in the pre-

dictability, measured by R2. Moreover, whether HH or NW t-statistics indicate that the

LN factor does not have the conditional predictive power for excess bond returns, as it be-

comes completely insignificant once Ĝt is included in the regression. Hence we conclude that

our SAGLasso factor contains most macroeconomic information on term premia and thus

absorbs the role of LN factor in forecasting excess bond returns.

3.4 SAGLasso: the Group Level

A major advantage of SAGLasso is that it allows for using a priori information to organize

the numerous time series into several cluster. Unlike data obtained in other field, such

as microarray data, macroeconomic data usually has natural hierarchical structure that

may enhance our interpretation of empirical results. And the Group Lasso in the second

step produces accurate prediction while selecting a subset of important factors (clusters).

This subsection aims to evaluate the individual predictive power of each group factor and

characterize their connections with the bond risk premia.

Only 21 macroeconomic variable have non-zero coefficients associated with their contem-

poraneous and/or lagged values after two-step screening. See the column labeled “Ĝt” in

Table A.1 for details. A quick review of these macro variables with non-zero coefficient vali-

dates our use of ARDL model, as many series have lagged effect on risk premia of Treasury

bonds. Especially, shocks to consumer prices require a long lag to manifest their impact on

the bond market.

To provide a clearer picture of the relationship between excess bond returns and each

macroeconomic cluster, we first form 4 group factors using estimates from the Group Lasso

ĝht = X̃hβ̃h, h = 2, 3, 6, 7. (17)
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Recall that these four supervised macroeconomic factors correspond to employment, housing,

interest spread and inflation, according to the result yielded in the second step of SAGLasso.

We then examine the predictive power of these group factors.

Table 5 presents results from in-sample predictive regressions of 2- through 5-year long

excess bond returns on these group factors (relabeled as ĝht, h = 1, . . . , 4 in tables thereafter).

Panel A reports the estimates of univariate regression. We find that all group factors exhibit

significant unconditional predictive power. Each of them alone can explain 20 to 30 percent

of variance in excess returns on bonds of various maturities. Results reported in Panel B

are based on regressions that include four group factors as predictors. This specification

can be viewed as the counterpart of Table 1 using unsupervised factors. An inspection

of the results in Tables 2 and 3 reveals that, using the same panel of macro data, our

SAGLasso approach uncovers 4 cluster factors with the R2 significantly higher than that in

the LN regression (0.43 versus 0.29). This evidence confirms the first two major conjectures

discussed in Section 2. In the first place, the unsupervised PCA does yield some useless

factors. Even if subset selection based on BIC is performed to select predictors, we still

find some insignificant factors in the forecasting regression (f̂3t and f̂5t), largely due to the

discrete nature of subset selection methods. In the second place, some important information

on term premia is missed in unsupervised factors. Although the SAGLasso regression only

yields 4 group factors with non-zero coefficients, they can explain more of the variations in

excess bond returns. Note that unlike the estimates from large-scale factor analysis, our

group factors have clear economic interpretations.

Finally, we investigate whether these group factors have predictive power conditional on

Cochrane-Piazzesi return forecasting factor ĈP t, a common benchmark in the literature.

The estimation result shows ĝhts have statistically significant and economically important

predictive power beyond that contained in the forward-rate factor ĈP t. For the regression

of excess return for 2-year bonds, the R2 statistic rises from 0.26 to 0.48 once ĝhts are

included in the regression. Unlike the f̂2t in LN’s regression, our group factor ĝ6t, which is

estimated from the “bond spreads” block, does not lose its marginal predictive power when

ĈP t is added as a predictor. On the other hand, ĈP t remains significant in the multivariate

regressions, implying that the macroeconomic factors do not subsume its role in predicting

excess bond returns.

Cooper and Priestley (2009) document that the output gap can predict excess returns on

2- to 5-year maturity bonds with R2 equal to 2 percent, where the output gap is measured

as the deviations of the log of industrial production index from a quadratic and linear trend.

The top two panels in Table 6 replicate the results on the predictive power reported in Cooper

and Priestley, where ĈP
⊥
t is the Cochrane-Piazzesi (2005) factor orthogonalized relative to

gap. Results reported in the bottom panel of Table 6 show that our employment group factor

can subsume the output gap factor.
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3.5 SAGLasso: a Countercyclical Component

Given the special statistical relevance of the SAGLasso factor in predicting excess returns, it

seems interesting to investigate its economic implication. We begin with characterizing its

countercyclic pattern, as predicted by economic theory. In the next subsection, we interpret

its role in yield dynamic and show that it contains information about risk premia that is not

already embedded in bond market data.

Wachter (2006) generalizes the habit formation model of Campbell and Cochrane (1999)

and shows that bond risk premia covary with consumption surplus, which is driven by shocks

to aggregate consumption. As documented in LN about their macro factor, our SAGLasso

also captures the countercyclic component in risk premia. Figure 1 plots the 6 month moving

average of Ĝt and the growth rate of industrial production (GIP). Shaded areas indicate

the periods designated by the National Bureau of Economic Research (NBER) as recession

periods, where are characterized by low growth rate of IP and high values of Ĝt. The figure

shows that Ĝt is strongly negatively correlated with GIP, with a correlation coefficient of

-0.78. The SAGLasso factor falls to troughs in the mid-to-late stage of economic expansions

and reaches its peaks at the end of recessions.

To illustrate that it captures more countercyclical variation in real activity than that doc-

umented by existing studies, we follow LNs methodology by including different sets of state

variables in a VAR system to calculate multiperiod forecasts of excess returns. Specifically,

we consider two benchmarks, which we compare to our specification including the SAGLasso

factor ZSL
t = [rx

(5)
t , rx

(4)
t , rx

(3)
t , rx

(2)
t , ĈP t, Ĝt]

′. The first benchmark amounts to a restricted

VAR model that excludes our SAGLasso factor ZCP
t = [rx

(5)
t , rx

(4)
t , rx

(3)
t , rx

(2)
t , ĈP t]

′. For

comparison, we also construct bond forecasts with a LN benchmark version, which con-

tains their single forecasting factor as well as all variables in the first benchmark ZLN
t =

[rx
(5)
t , rx

(4)
t , rx

(3)
t , rx

(2)
t , ĈP t, L̂N t]

′. And a VAR(12) model will be estimated separately with

each of the three state vectors.

Note that all three model specifications involve ĈP t, as neither our SAGLasso factor nor

LN’s factor subsume the information in CP’s forward rate factor, as implied in Table 2 and

Table 5. Table 7 reports similar results obtained from the following regression

rx
(n)
t+1 = β0 + β1Ĝt + β′2ĈP t + et+1. (18)

Both HH and NW t-tests overwhelmingly reject the hypotheses that each factor can be

excluded from the joint regression, indicating that Ĝt and ĈP t are picking up different

sources of predictability. Especially, when both factor are included in the regression, the R2s

are much higher than they are when only one is included. Moreover, even if lagged excess

returns are incorporated into the regression, the CP factor still has significant predictive

power for the 4-year bond. Its significance in predicting excess returns across different
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maturities is curved at the long end, closely resembling the pattern documented in CP. This

suggests that the CP factor does summarized information on risk premia at the long end.

Figure 2 plots estimates of five-year bond premium E[rx
(5)
t+1] verses time over the sample

period, where Ê[rx
(5)
t+1] is obtained by solving the VAR forward to create forecasts of future

at monthly horizons. Panel A shows the estimated risk premium using ZSL, while Panel B

displays the same estimates with ZCP . LN has shown that the risk premia exhibits greater

countercyclicality than in the absence of macroeconomic factors. Here we confirm that this

result is robust regardless of the methodology used to extract macroeconomic information.

Careful contrast of the two panels implies that the difference mainly arises in recession

periods, when return premia estimated with SAGLasso factor increases dramatically. Their

correlations with IP growth are -0.263 and 0.034, respectively.

We also form an estimate of the term premia

T̂P
(n)

t =
1

n

n−1∑
i=1

Êt

(
rx

(n+1−i)
t+i

)
(19)

as the average of obtained estimates of return risk premia of declining maturity. This time

we compare our SAGLasso-based estimates of term premia to the corresponding values gen-

erated from the LN benchmark. The six-month moving average of two estimated premium

components in the five-year bond yield are plotted over time in Figure 3. We find both

series exhibit a similar pattern in the sense that the yield risk premium tends to rise over

the course of a recession and peak just after the recession period. However, term premia are

more countercyclical and reach greater values in recessions when macroeconomic information

is summarized by the SAGLasso factor. For example, in the recession of early 1980’s the

difference in term premia reached a level of 0.83% per annum. Indeed, the former estimate

has a contemporaneous correlation of -42.8% with the growth of IP and the latter has a

correlation of -37.2%. Generally, these findings are consistent with the implications of the

general equilibrium model developed in Wachter (2006).

3.6 Unspanned Predictability

Besides CP, empirical research in dynamic term structure models has revealed the presence

of another predictor that is unspanned by cross section of yields. For example, Duffee

(2008) uses Kalman filtering estimation and finds evidence of a “hidden” factor that has an

imperceptible affect on yields but nevertheless has substantial forecasting power for future

yields and returns; Barillas (2009) estimated a macro-finance model with a unspanned risk

factor, which appears to add substantial predictability to beyond what is already contained

in the term structure. In this subsection, we demonstrate that our SAGLasso factor shares

the same property and further show its leverage over macroeconomic indicators.
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We firstly examine the cross sectional relation between the SAGLasso factor and bond

yields. Consider the following regression

∆y
(n)
t = θ0 + θ1Ĝt + εt, n = 1, . . . , 5. (20)

The percentage of yield changes variance explained by the SAGLasso factor is defined as

100× trace(cov(θ1Ĝt))/trace(cov(∆yt)). We find Ĝt explains only 0.09% of the variance of

yield changes, indistinguishable from noise in yields. As expected, although the SAGLasso

factor contains substantial information about future excess bond returns, its contribution to

the overall volatility of the cross section of bond yields is imperceptible. Put differently, our

empirical evidence supplements Duffee (2008)’s argument by uncovering another ”hidden

factor” that comes from the macroeconomy.

Indeed, we can decompose variation in bond yields into expectations and term premium

components

y
(n)
t =

1

n
Et

(
n−1∑
i=0

y
(1)
t+i

)
+ TP

(n)
t . (21)

If aggregate risk aversion is time varying in response to both news about aggregate con-

sumption growth and news about inflation, as indicated by Campbell and Cochrane (1999),

shocks to consumption growth (or an unexpected increase in inflation) temporarily raises risk

aversion and cause agents to demand greater premia on risky long-term bonds. On the other

hand, investors believe that the Fed will attempt to offset these short-lived macroeconomic

shocks with monetary policy actions. It in turn drives down the expectations of future short

rate. Thus the net effect of the macro shocks on current yields becomes insignificant because

the expected change in short rates and the change in risk premia have opposite effects. In

fact, our SAGLasso factor is also found (results not reported) to have a significant forecasting

power for 12-month-ahead 3-month annualized bill yield, with a NW t-statistic of -2.54.

To demonstrate that our SAGLasso factor truly captures market expectations, we plot

the impulse response functions (IRF) obtained from factor-augmented vector autoregressive

models (FAVARs). A generalization of dynamic factor models, FAVAR models the joint

dynamics of r unobservable factors (Ft) and a small number of observable economic variable

(Yt) of our ultimate interest.

Zt = Φ(L)Zt−1 + ut (22)

where Zt = (F ′tY
′
t ) is of dimension r + m. As inspired by Bernanke et al. (2005), Ft can

be interrelated as theoretically motivated economic concepts that is hardly measurable. In

this context, the presence of dynamic factors in the model is to capture information set

of policy-makers and the private sector, which is not contained in a few predetermined

economic indicators (Yt). Therefore, for our application the interpretation of Ft is the focus

of our analysis. Instead, we are interested in uncovering the structural relationships among
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economic variables in Yt. To extract Ft, we make use a large information set, i.e. the 131

macroeconomic time series Xt. Specifically, we related Xt to Zt by an observation equation

of the form

Xt = βZt + εt. (23)

The model is estimated using likelihood-based Gibbs sampling, as outlined by Bernanke

et al. (2005). As the Bai-NG information criteria indicate that 8 factors are need to capture

the majority information in Xt, we set the number of unobservable factors as 8−m, where

m is the dimension of Yt.

Suppose an econometrician has extracted the variable that reflects investor’s expectation

of Fed’s response to macroeconomic shocks, following our SAGLasso procedures. In our first

specification, Yt consists of IP growth and the SAGLasso factor. If the the SAGLasso factor

does denote financial market participants’ risk aversion in the presence of macroeconomic

release (or equivalently, their belief of Federal Reserve’s reaction), a negative shock to output

growth will lead to an immediate increase in the SAGLasso factor. And the Panel A in

Figure 4 matches this expectation indeed: the SAGLasso factor dramatically drops following

a positive innovation in IP growth.8

Another attractive feature of the FAVAR framework is that IRF can be constructed

for any observable economic variables included in Xt. In order to highlight the effect of the

market expectation on short rate and term premia, we estimate another FAVAR specification

in which SAGLasso is the only variable contained in Yt. Panel B reports the IRFs, along

with 90 percent confidence intervals, of a selection of economic indicators to a one-standard-

deviation shock in SAGLasso.

First of all, let us focus on the response of the 3-month Treasury bill yield. The SAGLasso

factor has zero effect on the short rate the Month 0, but it results in a nearly 40-basis-

points drop in short rate after 18 months. Moreover, the response of the short rate is quite

persistent, remaining 25 basis points 4 years later. In contrast, the response of 5-year bond

yield seems insignificant throughout all periods, especially for the first 18 months in which

the IRF is flat. By the definition of excess returns, responses of short rate and long-maturity

bond yield jointly imply an increase in the risk premium. To sum up, the estimated IRF

make it glaringly apparent that the SAGLasso factor has no contemporaneous effect on the

term structure but contains substantial information about expected excess bond returns.

Another direct evidence for the expectation nature of SAGLasso comes from the last

subpanel, which plots the IRF of (UMichigan) Consumer Expectation Index. The immediate

effect of SAGLasso on the index confirms that the unspanned predictability of SAGLass is

associated with market expectations. Finally, the responses of other variables are generally

of the expected sign and magnitude. Particularly, variables that typically exhibit stickiness,

8This inverse relation between IP and the hidden factor is also documented by Duffee (2008), who employs a
simple regression analysis.
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such as CPI, investment and Unemployment, do have slow-moving responses to SAGLasso,

while housing start index and dividend, which are sensitive to future changes in short rate,

initially jump and eventually wear off.

As such, both our SAGLasso factor and Duffee (2008)’s “hidden” factor represent com-

ponents of risks borne by investors which are orthogonal to the yield curve. However, the

two factors do not subsume each other, as indicated by the results reported in Table 8. Panel

A of the table confirms Duffee’s finding that his five latent factors extracted from the yield

data contain information about future bond excess returns, even more than the forward rates

do (see panel A of Table 2). The R2s here ranging from 0.32 to 0.35 are slightly lower than

those documented in Duffee (2008), who use data through 2006. Comparing these R2s with

those reported in panel A of Table 4, we can see that the SAGLasso factor has stronger

predictive power than Duffee’s five factors do. Results reported in panel B show that when

both sets of factors are used in regression, the R2s rise to nearly 50 percent, much higher

than the values when only one set of factors is used. Moreover both SAGLasso and the

“hidden” yield factors remain highly significant, implying they are not measuring the same

component of bond risk premia. The implication of this result is that macroeconomic risk

underlies, but does not perfectly capture, the variation in excess returns that is not contained

in the first three yield principal components. Therefore, both unspanned “yield-curve” risk

and unspanned “macro” risk are priced and bond risk premia are not fully identified in ab-

sence of either information set. This evidence also sheds light on DTSMs in determining the

dimension of risk factors driving expected excess returns, which is not necessarily the same

as the dimension of state vector that prices the relevant universe of bonds.

3.7 Realized Jump Risk and Subsample Analysis

Wright and Zhou (2009) show that some realized jump measures explain a nontrivial fraction

of the variation in post-1984 excess bond returns. In particular, they find that inclusion of a

rolling realized jump mean into the benchmark predictive regression on forward rates nearly

doubles the R2. In this section, we aim to identify the source of realized jump risk and to

what extent the information in jump measures has been contained in known macro and yield

predictors.

Consider the following baseline regression in Wright and Zhou (hereafter WZ):

rx
(n)
t+1 = β0 + β1RV

1
t + β2JI

24
t + β3JM

24
t + β4JV

24
t + β5F

(1)
t + β6F

(3)
t + β7F

(5)
t + εt+1. (24)

where F
(n)
t is the n-year forward rate used in CP,RV 1

t monthly realized volatility, JI24
t , JM

24
t ,

and JV 24
t denote 24-month rolling average realized jump intensity, jump mean, and jump

volatility, respectively. The latter four measures are constructed using data on 30-year

Treasury bond futures at the five-minute frequency from CBOT. However, as the high-

frequency Treasury bond future data are not available until July 1982, the sample period for
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the 24-month rolling jump mean starts only from August 1984.

Table 9 reports coefficient estimates, associated HH and NW t-statistics and (adjusted)

R2 values for several specifications of the form of Eq. (24). Panel A, the counterpart of WZ’s

Table 2, shows that the jump mean is the most significant predictor among various volatility

and jump risk measures, with the R2 ranging from 14 to 16 percent. The negative coefficients

imply that a downward realized jumps in long bond would cause short term bond prices to

appreciate over the next year. Other results are almost identical to those documented by

WZ.9 Panel B replicates their main result that augmenting CP’s regression model with jump

mean nearly doubles the predictability, with the adjusted R2 increased to about 60 percent.

WZ argue that it implies that forward rates and jump mean are not picking up the same

predictability, and that the latter complements the information content of the former.

Before we conduct a comparative analysis of return predictability using jump mean and

other known instruments, it would be helpful to provide some insight about the source of

realized jumps in bond markets. Intuitively, most of them are associated with macroeco-

nomic announcements. Using jump-diffusion term structure models, for instance, Das (2002)

and Johannes (2004) discover direct connection between model-implied jumps and macroe-

conomic shocks. As the high-frequency data based method employed by WZ should result in

more timely jump filtering, we could reestablish this connection by identify the events that

caused the detected jumps.

Table 10 compiles a list of the 20 biggest realized jumps during our sample period, and

major news events on the jump dates. We can observe that each of these jumps coincides

with unexpected macroeconomic news arrivals. As documented by Johannes (2004), there are

three major source of jumps: (1) leading economic indicators releases such as unemployment

announcements, (2) official announcements on monetary policy such as Federal Open Market

Committee target, and (3) exogenous political events regarding the nation’s vital interests,

e.g. the breakout of Gulf War. Judging from the frequency, most jumps are generated equally

by regularly scheduled announcements, consistent with the findings of Fleming and Remolona

(1997) and Balduzzi et al. (2001). Judging from the absolute jump size, unemployment

announcements produce those largest moves, implying surprises regarding the current state

of the real economy significant affect long-term bond prices.

These results give an economic interpretation of realized jumps that provide the mecha-

nism through which macroeconomic shocks enter the Treasury bond market. Therefore, it

is of interest to examine whether the information in jump mean has been subsumed by the

SAGLasso factor or other known predictors. Coincidentally, the high-frequency Treasury

bond future data availability results in a subsample that exactly covers the post monetary

experiment period. Since there is considerable evidence of a regime switch during the late

1970s and early 1980s, we firstly investigate the subsample performance of our SAGLasso

9Our sample period is slightly (16 months) longer than that used in WZ.
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factor and filtered yield factors.

Table 11 reports a breakdown by subsamples of regressions of bond excess returns with

different maturities rxt+1 on the SAGLasso factor and Duffee’s five yield factors. The SA-

GLasso factor appears to have less explanatory power for bond risk premia, and the uni-

variate R2 drops to about 30 percent from more than 40 percent from the full sample. In

contrast, the filtered factors account for a larger proportion of term premia than they do in

the full sample. The enhanced predictive power of the yield factors mainly comes from the

fourth factor, which becomes particularly significant especially in regressions of long-term

bond returns.

These results point toward an important indication that after the Fed changed operat-

ing procedures, interest rates were less volatile, so macroeconomic instruments, especially

inflation measures, became less correlated with bond risk premia. Consequently, latent fac-

tors that require filtering may capture an more important component of risk premia in the

post experiment period. We also run forecasting regressions using group factors, the result

(not reported here) also implies that the fourth (inflation) factor turns out significant in the

subsample regressions, consistent with our conjecture. However, the combined predictive

capacity of these two sets of predictors remains almost unchanged during the subsample

period, with R2 of 45-50 percent. These results contrast with those reported by some recent

work that most of the predictability came in the 1970s and 1980s and there is little if any

significant predictability in the post-1985 period.

The more important question here is whether realized jump mean and the SAGLasso

factor are picking up the same predictability. The evidence in the Panel A of Table 10 says

that they are not. Augmenting our SAGLasso regression with WZ’s estimates of jump mean

raises the R2 to 39 percent. Moreover, the coefficients on SAGLasso factor and jump mean do

not change greatly when they enter multivariate forecasting regressions. It implies that unlike

our macroeconomic factor the realized jump measures capture a high-frequency relation

between macroeconomic variables and bond yields. On the other hand, the information

content of the filtered yield factors seems to be orthogonal to that of jump mean in that the

R2 (0.62) of the regression on both jump mean and forward rates is larger than the sum of

the R2s on each set of the variables separately. For completeness, the Panel B reports the

regression results using all of these instruments shown to have significant predictive power.

The SAGlasso factor, Duffee’s hidden factor and WZ’s jump mean remain significant and

jointly explain 65% of the variation in excess bond return.

What is the implication of our finding for affine term structure model? The results

reported in Table 12 indicate that there are two primary conduits through which information

about the macroeconomic enters the term structure. One is captured by our SAGLasso factor

which describes a low-frequency relation between macroeconomic variables and yields, while

realized jumps measure the other one which how yields directly respond to unexpected shocks
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from real economy and monetary policy. Absence of any one of them in term structure models

may induce misspecification. These findings are not taken into consideration by commonly

employed affine term structure models where the forecastability of bond returns is completely

summarized by the cross-section of yields. The recent macro-finance models take into account

the first conduit by allowing macroeconomic factors to enter state variables. But a further

extension is required to deal with the jump-induced misspecification.

However, even a jump-diffusion macro-finance model may not be able to account for all of

these empirical regularities. As discussed by WZ, the implication that jump risk factors are

not spanned by the current yield curve reminds may have something to do with unspanned

stochastic volatility documented in Collin-Dufresne and Goldstein (2002).

3.8 SAGLasso: Out of Sample Analysis

A common concern in tests of predictability is that significant in-sample evidence of pre-

dictability does not guarantee significant out-of-sample predictability. This evidence is often

interpreted as an indication that in-sample evidence is likely to be spurious and should be

discounted. In this subsection we report results on out-of-sample forecasting performance of

factors estimated in the previous section. To avoid involving future information, we carry

on fully recursive factor estimation and parameter estimation with data only through time t

for prediction at time t + 1. The following description of the procedure applies to forecasts

of annual excess returns with factors estimated using SAGLasso. The notation of Clark and

McCracken (2001) is used here.

The in-sample observations span 1 to R. That is, observations 1 through R of the macro

variables and observations rx
(n)
1,13 through rx

(n)
R,R+12 of annual excess returns are used to es-

timate the SAGLasso factors Ĝt and the return-forecasting regression. Given the estimated

parameters, forecast rx
(n)
R+12,R+24 using ĜR+12 as the linear combinations of the macro vari-

ables for observation R+12. Denote the realized forecast error by u(n) un,1, where the

first subscript refers to a forecast error from an unrestricted regression. Collect the realized

forecast error u
(n)
u,1, where the first subscript refers to a forecast error from an unrestricted

regression. Then repeat this exercise using an additional observation, recompute the super-

vised factors and estimate the new regression using observations 1 through R + 1, and so

on. Letting P denote the number of 1-step ahead predictions, the out-of-sample observations

span R + 1 through R + P. To account for the 12-period overlap induced from continuously

compounding monthly returns to obtain annual returns, the length of the resulted time series

of forecast errors u
(n)
u,t is P = T − R − 11, where T is the total number of observations of

macroeconomic variables.

The time series of restricted forecast errors u
(n)
r,t can be constructed using the same

methodology, where the forecasting regression uses a constant term as a benchmark, apart

from an MA(12) error term. The first subscript refers to a forecast error from a restricted
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regression. But the restrictive hypothesis has already been strongly rejected even in out-

of-sample analysis. In order to investigate whether the SAGLasso factor has additional

predictive power conditional on information contained in past returns, we compare the out-

of-sample forecasting performance of our shrunk ARDL model to a simple AR(6) specifi-

cation. This second specification can be viewed as the out-of-sample counterpart of the

specification (11). To assess the incremental predictive power of the SAGLasso factor above

and beyond the predictive power in L̂N t, we conduct another model comparison. We com-

pare the out-of-sample forecasting performance of a specification that includes the SAGLasso

factor plus to the LN factor to a benchmark model that includes just the LN factor.

For the full sample 1964:1 through 2007:12, the initial estimation period span 1964:1

to 1984:12 (in terms of independent variables) so that R=252, thus P = 265 for annual

excess returns. The choice of the length of in-sample portion is arbitrary, but alternative

choices do not lead to qualitatively different results. Table 13 reports test statistics for

the ENC-REG test of Ericsson (1992) and the ENC-NEW test of Clark and McCracken

(2001). Both tests examine the null hypothesis that the benchmark model encompasses the

unrestricted model with additional predictors. The motive for using two encompassing tests

is for that Ericsson test critical values from a standard normal distribution are conservative

if π = limP,R→inf P/R > 0.10 As the asymptotic ratio of P/R is unknown for our case, the

Ericsson test is used as a robust check.

The column labeled “Ericsson” in Table 13 reports the ENC-REG test statistic and its 95

percent critical value is 1.645. Similarly, column “Clark-McCracken” presents the ENC-NEW

test statistic and its 95 percent critical value is 1.584. The results show that the forecast-

ing model including the SAGLasso factor improves remarkably over the constant expected

returns benchmark. Specifically, when the supervised factors are incorporated, the model

is shown to have a forecast error variance that is only 72 percent of the constant expected

returns benchmark for rx
(2)
t+1. Tests for the forecasting model with the SAGLasso factor

versus a simple AR(6) benchmark, presented in Panel B, rejects the general null hypothesis

as well. More strikingly, incorporating the SAGLasso factor into the original AR(6) model

produces a mean-squared error that is anywhere form 62 to 64 percent of the autoregressive

benchmark mean-squared error. Overall, both null hypotheses are completely rejected no

matter which test is conducted. But note that the Ericsson test may not appropriate to be

applied to the general null because the forecasts are not truly out of sample.

Panel C indicates that the model including the SAGLasso factor and L̂N t improves

substantially over a benchmark that includes a constant and L̂N t, consistent with Table 4.

Both test statistics indicate that the improvement in forecast power is strongly statistically

significant, at the one percent or better level. Moreover, the models have a mean-squared

10The precise asymptotic distribution of the test statistics for both Ericsson and Clark-McCracken tests depends
on the π, the asymptotic ratio of P/R.
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error that is anywhere from 87 to 93 percent of the LN expected returns benchmark mean-

squared error. To sum up, this result reinforces the conclusion form the in-sample analysis,

i.e. the SAGLasso factor contains information about future returns that is not captured by

the LN factor.

4 Finite-Sample Property

In this section, we proceed with a finite-sample analysis by generating bootstrap samples

of the yields as well as of the exogenous predictors, under both restrictive and general null

hypotheses. Only regressions on four group factors estimated from SAGLasso are examined

here because the Monte Carlo simulations involves a term structure model to specify the

dynamics of yields and state variables. For the term structure model used to generate

simulation data under the general null, the number of latent term premia factors must equal

the number of macro factor. Thus only one macro factor and one latent factor may not fully

capture the joint variation in the macro variables and yield data.

4.1 Data-Generating Processes

Stambaugh (1999) and Ferson, Sarkissian, and Simin (2003) discuss why small-sample in-

ference is essentially important in our context. The two reasons identified by them for the

deviation of finite-sample properties from asymptotic properties are relevant to our fore-

casting regressions. First, if the standard instruments employed as predictors are highly

persistent and/or contemporaneously correlated with the idiosyncratic noise in returns, se-

rious over-rejection could result. For our factors estimated with SAGLasso, some display

high persistence, with first-order autoregressive coefficient up to 0.9282. Second, when over-

lapping observations are used in constructing regressands, estimates of standard errors for

regression coefficients show strong bias. This concern also applies to our regression analysis,

as computing annual excess returns involves overlapping yields data.

In the literature, there are two major methods used to generate simulation data for finite-

sample inference. One approach is to construct a time-series model for the log yields and

rerun the predictive regressions.11 Residuals are bootstrapped to form the empirical distri-

bution. Note that for this method the independent variables (the macroeconomic factors)

are not simulated and enter the predictive regression as their actual values. The other one is

based on a dynamic term structure model that satisfies either the restrictive or the general

null hypothesis. For this data-generating process, state variables are also simulated from

the term structure model using parameters estimated from the actual sample data. Duf-

fee (2007) constructs a class of discrete-time term structure models to make finite-sample

11For example, CP (2005) run a unconstrained VAR(12) model of all 5 yields, and LN (2008) use a MA(12) process
to test the restrictive null.
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inference for both restrictive and general null hypotheses.

In our case, the two simulation procedures yield almost indistinguishable empirical dis-

tributions for our test statistics, as shown in Table 14. For the general null hypothesis, along

the spirit of the first approach we run a VAR(12) for the yield process that imposes a single

unit root (one common trend). With the second approach we construct a term structure

model in which macro factors determine the cross section of short rate but the price of risk

does not depend on macro factors (c.f. the appendix).

Though in different forms, both data-generating processes satisfy the general null hypoth-

esis that the the excess returns may not be constant but their time variation has nothing

to do with the macroeconomic factors. A close scrutiny of our simulation data suggests the

reason from this consistent result. First of all, as the group factors estimated from actual

data are highly persistent variables (the most persistent factor has a monthly AR(1) coeffi-

cient of 0.9282), the Gaussian VAR(1) process, specified in the term structure model, may

be a good approximation for their joint dynamics. More important, as both data-generating

processes satisfy the general null of independence, what is relevant for the test statistics is

the time series properties of the excess returns, instead of how the returns are generated

(VAR or term structure model), because that is how the distribution of our test statistics

are determined. Indeed, in the two different settings that we use to generate excess bond

returns, they give similar time series properties (when we plot the average ACFs for the

simulated excess returns generated by two simulation model, they look very close).

Though not reported here, the finite-sample distributions generating by these two ap-

proach under the restrictive null are also qualitatively identical. Therefore, for our small-

sample inference we employ a vector moving average (VMA) model of order 12, namely, a

VMA(12) model, to form the bootstrap samples under the restrictive null hypothesis, and

use an eight-factor term structure model, specified in the appendix, for the general null. The

use of VMA model is because the monthly bond price data used to construct continuously

compounded annual returns induces an MA(12) error structure in the annual excess returns.

For the term structure model-based simulations, an initial draw of the state variables is taken

from their unconditional multivariate normal distribution. Subsequent draws use their con-

ditional multivariate normal distribution. The finite-sample distributions are constructed

based on 50,000 Monte Carlo simulations, and the length of each simulation is 528 months,

the same as the length of the full sample used in our empirical analysis.

4.2 Bootstrapped Results

The finite-sample properties based on simulation are reported in Table 15. The first three

columns specify the details of simulation: the type of regression (in-sample or out-of-sample),

the test used, and the bond maturity. The column labeled “Rejection Rates” presents finite-

sample rejection rates of tests of the null hypothesis when using the asymptotic five percent
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critical value, which is 9.49 for Wald test, 1.645 for Ericsson test and 3.007 for Clark-

McCracken test. The “5% CV” column reports true finite-sample critical values at a five

percent rejection rate. To test the restrictive null hypothesis we drawing random samples

from the empirical distribution of the residuals from a VMA (12) model, so that annual

returns are forecastable up to MA (12) error structure. Note that for the restrictive null we

pre-estimate the supervised factors by re-sampling the T ×N panel of data. This procedure

creates bootstrapped samples of the predictors themselves.

The main conclusion is that the results based on bootstrap inference are broadly con-

sistent with those based on asymptotic inference in Tables 4 and 12. Our results support

Duffee’s finding that small-sample distributions of test statistics associated with the general

null markedly diverge from their counterparts under the restrictive null, as well as the asymp-

totic distributions of these test statistics. However, even after adjusting the estimated test

statistics for their finite-sample properties, all regression evidence of return predictability

presented in Section 4 remains robust. For example, the actual values of Wald, Ericsson and

Clark-McCracken test statistics are 67.5, 3.36, and 129, respectively, all of which are much

higher than the 95% small-sample critical values even under the general null, namely, 19.2,

2.23 and 26.9. Indeed, both null hypotheses are rejected regardless of the type of regression

or the test used.

Table 16, the counterpart of Table 5 based on finite-sample distributions, reports the

evidence for the in-sample analysis. The magnitude of predictability found in historical data,

measured in R2s and χ2 tests, is too large to be accounted for by sampling error in samples

of the size we currently have. And P-values computed with the empirical distributions of

50,000 bootstrapped samples are almost zero as well.

5 Conclusion

Although it is now believed that expected excess bond returns are time-varying and fore-

castable, the empirical evidence on the correlation between term premia and their macroe-

conomic underpinnings is mixed so far. In this paper, we reassess the predictive power of

macroeconomic indicators using the supervised adaptive group lasso (SAGLasso) approach, a

new model selection approach that allows us to explore the underlying structure of macroe-

conomic variables with respect to risk premium in bond markets. Our empirical analysis

provides new and robust evidence on the explanatory power of macroeconomic fundamen-

tals for variations in excess bond returns, which is even stronger than previously documented

in the literature. Furthermore, we find evidence of an unspanned predictor extracted from

macroeconomic variables. Overall, our study provides further support for the implication

from Ludvigson and Ng (2009b) that we should look beyond observable bond yields when

building term structure models, as well as predicting future returns.
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A Macroeconomic Series Used in the Analysis

Table A.1 lists macroeconomic series used in our empirical analysis. Following Ludvigson

and Ng (2009b), we provide the short name of each series, its mnemonic (the series label

used in the source database), its transformation code, and a brief data description. The

transformation codes are defined as follows. Code 1: no transformation applied to the

series; 2: the first difference applied; 3: the second difference; 4: the logarithm; 5: the first

difference of logarithm; and 6: the second difference of logarithm. The “Ĝt” column specifies

whether the macroeconomic variable has a non-zero coefficient for contemporaneous and/or

lagged value in the SAGLasso regression. The value of “0” under Ĝt corresponds to the

contemporaneous variable and the value of 1 through 6 denotes corresponding lagged values.
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B The Term Structure Model Used in the Bootstrap Analysis

This appendix describes in detail the dynamic term structure model used to test the general

null hypothesis. As in Ang and Piazzesi (2003), we specify the short rate as an affine function

of a vector of both macroeconomic and latent factors as follows: ft =
(
m′t, x

′
t

)′
, where mt is a

4×1 vector of macroeconomic factors (to be estimated by supervised principle components),

and xt a 4× 1 vector of latent factors. Furthermore, following Duffee (2007), we restrict the

latent factors from driving the dynamics of short rate r, and their only role is to drive the

risk compensation for corresponding macro factors. Namely,

rt = δ0 + δ′1ft, where δ′1 = (δ′m, 01×4) (25)

Under this specification, the vector ft fully reflects all available information on the state of

the economy at time t; hence, for example, one need not consider lags of ft.

We assume that the state vector follows a Gaussian VAR(1) process

ft = µ+ Φft−1 + Σεt

=

[
µm
04×1

]
+

[
Φm 04×4

04×4 Φx

] [
mt−1

xt−1

]
+

[
Σm 04×4

04×4 Σx

] [
εmt
εxt

]
(26)

where shocks εt ∼ N(0, 1). With the restriction imposed on Φ and Σ, the evolution of

the latent term premia factors depends only on the latent factors. Moreover, innovations

in mt, and thus innovations in the short rate, are by construction orthogonal to the latent

state vector. In the DTSM proposed by Joslin et al. (2009), the information embodied in

macroeconomic variables is not spanned by latent factors as well. However, their latent

factors underlie the variation in short rate and are still correlated (but not perfectly) with

macro factors. Intuitively, their model allows for more flexibility and therefore should fit

better the comovement of economic indicators and bond yields. To generate data conforming

with the general null hypothesis, we need macro factors that do not covary with latent ones,

as can be seen later in the market price of risk.

It follows from the no-arbitrage restriction of Duffie and Kan (1996) that the period-t

price of any asset with valuation Pt+1 at the end of period t+ 1 satisfies

Pt = EQ
t [exp(−rt)Pt+1] =

1

ξt
EP
t [ξt+1 exp(−rt)Pt+1] (27)

where Q and P denote the risk-neutral and the physical measures, respectively, and ξt is the

Radon-Nikodym derivative that follows the log-normal process

ξt+1 = ξt exp(−λ′tλt/2− λ′tεt+1), (28)

where the market prices of risk follow the essentially-affine specification (Duffee, 2002):

Σλt = λ0 + λ1ft. (29)
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If we use lowercase letters to indicate logs, then we have

pt = EP
t [pt+1 +mt+1] (30)

where the pricing kernel mt+1 is given as follows

mt+1 = −rt + log
ξt+1

ξt
= −δ0 − δ′1ft −

1

2
λ′tλt − λ′tεt+1. (31)

If the matrix λ1 contains 8 × 8 free parameters, our model exactly follows the details of

Ang-Piazzesi macro-finance model: the price of risk relates shocks in the underlying state

variables (macro and latent factors) to ξ and investors require both compensations to face

uncertainty in macro and latent factors. Instead we parameterize λ0 and λ1 in the following

way

λ0 =

[
λ0m

04×1

]
and λ1 =

[
λ1m I4×4

04×4 04×4

]
(32)

such that the compensation required by investors depends on latent factors that evolve in-

dependently of the macro factors but affect the risk compensation for macro factors through

1-to-1 mappings.12 Note that the specification of risk premia in Eq. (32) distinguishes be-

tween macro and observable influences on term premia and thus embodies the general null

hypothesis. To see this, we write the functional form of λt as

Σλt =

[
λ0m + λ1mmt + xt

04×1

]
. (33)

The risk compensation depends on the macro factors only through λ1m. Therefore, with

the restriction λ1m = 0, shocks to the macroeconomic factors have no impact on expected

excess returns at all leads and lags, and thus the model corresponds to the general null that

excess bond returns are stochastic and persistent, but independent of the macroeconomy.

Otherwise, we cannot recover latent factors solely from the market price of risk.

Finally, bond prices are exponential affine functions of the state variables

p
(n)
t = An +B′nft (34)

where An and Bn can be computed recursively as the following:

An = An−1 +B′n−1(µ− λ0) +
1

2
B′n−1ΣΣ′B′n−1 − δ0 (35)

Bn = B′n−1(Φ− λ1)− δ′1 (36)

with the initial values A1 = δ0 and B1 = −δ′1.

We estimate the term structure model using the Kalman filter, following Duffee and

Stanton (2004). The parametrization of expected excess returns for the model under general

null requires 61 free parameters, including five measurement error parameters. Some of the

initial values (those for Φm and Σm) are set to those from OLS estimation of the VAR(1),

and analytic derivatives are used in the derivative-based optimization routine.
12Latent factor i affects only the risk compensation for macro factor i.
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C Supervised Adaptive Group Lasso Method

The Supervised Adaptive Group Lasso (SAGLasso) method for predicting excess returns

that we propose consists of the following steps:

1. For cluster h ∈ H, compute β̂h–the cluster-wise Adaptive Lasso estimate of βh. Namely,

β̂h = argmin
βh

{
||arx−Xhβ

h||2 +
∑
j

λh ∗ ŵhj|βhj |

}
, (37)

where arx is a vector of average excess bond returns across maturity and ŵhj the j-th

component of ŵh, the vector of the (adaptive) weights. Zou (2006) recommends using

β̂OLS to construct ŵh. As collinearity is a concern in our case, we set ŵh = 1/|β̂RIDh |γh ,

where β̂RIDh is the best ridge regression fit of arx on Xh. That is, for cluster h we

only use macroeconomic variables within that cluster to construct predictive models.

The optimal pairs of (γh, λh) are determined using two-dimensional cross-validations.

It is worth noting that tuning parameters λh are selected for each cluster separately in

order to have different degrees of regularization for different clusters. This flexibility

allows us to uncover subtle structures that otherwise will be missed when applying the

(adaptive) lasso method to all the series/clusters at the same time.

Notice that for each cluster h ∈ H, the adaptive lasso β̂h has only a small number of

nonzero components. Let β̃h = β̂h \ 0, the vector of nonzero estimated components

of β̂h given by the cluster-wise model (37), and denote the corresponding part of Xh

by X̃h. In our case, a typical cluster size (dim(Xh)) of 80 variables may reduce to a

dim(X̃h) of 8 ∼ 10. Namely, the number of macroeconomic measures selected in Step

1 is significantly smaller than the original number to begin with.

2. Construct the joint predictive model under the Group Lasso constraint as the following:

β̂ = argmin
β

{
||arx− X̃β||2 + λ

∑
h∈H

wh||βh||

}
, (38)

where X̃ is formed by concatenating the design matrices X̃h. λ is also chosen by cross

validation. With λ→∞, estimates of some components of β̃hs can be exactly zero.
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Table 2: Regressions of Annual Excess Bond Returns on Single Return-Forecasting
Factor

The return to an n-year zero-coupon Treasury bond from month t to month t+12 less the month-t yield on a one-year
Treasury bond is regressed on ĈP t, the Cochrane-Piazzesi (2005) predictor (a linear combination of forward rates),

and/or L̂N t, the Lugvigson-Ng (2009b) factor (a linear combination of static factors estimated as the fitted values
from OLS). The row labeled “HH” reports test statistics computed using standard errors with the Hansen-Hodrick
GMM correction for overlap. The row labeled “NW” reports test statistics computed using standard errors with 18
Newey-West lags to correct serial correlation. The column labeled “Joint Test” reports Wald tests of the hypothesis
that all coefficients equal zero. Asymptotic p-values, based on a χ2(1) distribution, are in brackets. Ljung-Box Q
statistic is used to test autocorrelation in the error term in the multivariate regressions. The sample spans the period
January 1964 to December 2007.

Panel A: Univariate predictive regressions

maturity (yr) ĈP t R2 Joint Test P-val L̂N t R2 Joint Test P-val

2 0.453 0.256 0.482 0.282

HH ( 5.851) 34.237 [ 0.000] ( 6.833) 46.686 [0.000]

NW ( 6.402) 40.983 [0.000] ( 7.349) 54.003 [ 0.000]

3 0.854 0.272 0.877 0.279

HH (5.439) 29.588 [ 0.000] ( 6.805) 46.311 [ 0.000]

NW ( 6.011) 36.134 [ 0.000] ( 7.295) 53.211 [ 0.000]

4 1.242 0.300 1.204 0.275

HH (5.419) 29.367 [ 0.000] ( 6.949) 48.284 [0.000]

NW ( 6.043) 36.522 [0.000] ( 7.295) 53.211 [ 0.000]

5 1.451 0.273 1.437 0.261

HH ( 5.065) 25.655 [ 0.000] ( 7.015) 49.203 [ 0.000]

NW ( 5.638) 31.787 [0.000] ( 7.426) 55.143 [ 0.000]

Panel B: Multivariate predictive regressions

maturity (yr) ĈP t L̂N t R2 Joint Test P-val

2 0.359 0.317 0.390

HH ( 4.277) ( 3.080) 101.273 [ 0.000]

NW (4.697) ( 3.474) 110.466 [ 0.000]

3 0.639 0.613 0.399

HH ( 4.393) ( 3.137) 91.274 [0.000]

NW ( 4.830) ( 3.548) 99.461 [ 0.000]

4 0.847 0.922 0.416

HH (4.335) ( 3.226) 100.256 [ 0.000]

NW ( 4.776) (3.669) 108.752 [ 0.000]

5 1.025 1.065 0.387

HH ( 4.367) ( 2.959) 102.795 [ 0.000]

NW ( 4.792) ( 3.361) 107.259 [ 0.000]

Panel C: Testing for Serial Correlation in the multivariate regression models

maturity (yr) 2 3 4 5

Q 348.89 353.30 362.57 332.23

P-val 0.000 0.000 0.000 0.000
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Table 3: SAGLasso Regressions of Annual Excess Bond Returns on Macroeconomic Variables and
Lagged Returns.

The return to an n-year zero-coupon Treasury bond from month t to month t + 12 less the month-t yield on a
one-year Treasury bond is regressed on Ĝt, the single predictor estimated by SAGLasso, and lagged bond excess
returns. The row labeled “HH” reports test statistics computed using standard errors with the Hansen-Hodrick
GMM correction for overlap. The row labeled “Q” reports Ljung-Box test statistic for first order autocorrelation in
the error term in the SAGLasso regressions. The row labeled “LM” reports Breusch-Godfrey LM test statistic for
first order autocorrelated disturbance. The sample spans the period January 1964 to December 2007. The sample
spans the period January 1964 to December 2007.

Panel A: Results from the ARDL model estimated from SAGLasso

maturity (yr) Ĝt rx
(n)
t rx

(n)
t−1 rx

(n)
t−2 rx

(n)
t−3 rx

(n)
t−4 rx

(n)
t−5 R̄2

2 0.1898 0.9890 -0.1661 0.0866 -0.1205 0.1780 -0.1255 0.880

HH (3.4912) (16.1747) (-1.5009) (0.9021) (-1.1587) (1.7512) (-2.2185)

3 0.3373 1.0254 -0.2133 0.1042 -0.0892 0.0905 -0.0699 0.884

HH (3.4641) (24.1105) (-2.4438) (1.1947) (-0.8803) (0.8919) (-1.3797)

4 0.4698 1.0045 -0.1773 0.0933 -0.1000 0.1247 -0.0994 0.883

HH (4.5464) (24.7101) (-2.3040) (1.2554) (-1.2874) (1.3258) (-1.5297)

5 0.6338 0.9369 -0.1147 0.1095 -0.1246 0.1054 -0.0791 0.866

HH (4.1879) (20.6022) (-1.6537) (1.3886) (-1.3624) (0.9904) (-1.1378)

Panel B: Results from a two-regressor model

maturity (yr) Ĝt rx
(n)
t R̄2

2 0.180 0.861 0.876

HH (2.709) (23.487)

3 0.326 0.867 0.879

HH (2.756) (28.548)

4 0.457 0.867 0.879

HH (3.531) (33.819)

5 0.617 0.853 0.863

HH (3.445) (30.140)

Panel C: Testing for serial correlation in the SAGLasso regression model.

maturity (yr) 2 3 4 5

Q test 0.508 0.521 0.556 0.585

P-val 0.476 0.471 0.456 0.446

LM test 1.347 2.201 1.860 2.247

P-val 0.247 0.138 0.178 0.134
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Table 4: Regressions of Annual Excess Bond Returns on Single Predictive Factor

The return to an n-year zero-coupon Treasury bond from month t to month t + 12 less the month-t yield
on a one-year Treasury bond is regressed on Ĝt, the single predictor estimated by SAGLasso, and/or L̂N t,
the Lugvigson-Ng (2009b) factor (a linear combination of static factors estimated as the fitted values from
OLS). The row labeled “HH” reports test statistics computed using standard errors with the Hansen-Hodrick
GMM correction for overlap. The row labeled “NW” reports test statistics computed using standard errors
with 18 Newey-West lags to correct serial correlation. The column labeled “Joint Test” reports Wald tests
of the hypothesis that all coefficients equal zero. Asymptotic p-values, based on a χ2(1) distribution, are in
brackets. The sample spans the period January 1964 to December 2007.

Panel A: Univariate predictive regressions

maturity (yr) Ĝt R2 Joint Test P-val

2 1.064 0.437

HH ( 10.797) 116.573 [ 0.000]

NW ( 11.519) 132.680 [ 0.000]

3 1.897 0.414

HH ( 9.566) 91.513 [ 0.000]

NW ( 10.210) 104.240 [ 0.000]

4 2.591 0.404

HH (9.070) 82.261 [ 0.000]

NW ( 9.665) 93.405 [ 0.000]

5 3.122 0.391

HH ( 8.909) 79.362 [ 0.000]

NW ( 9.441) 89.138 [ 0.000]

Panel B: Multivariate predictive regression of excess returns on Ĝt and L̂N t

maturity (yr) Ĝt L̂N t R2 Joint Test P-val

2 0.903 0.132 0.448

HH ( 4.544) ( 1.230) 153.297 [ 0.000]

NW ( 5.111) ( 1.340) 154.803 [ 0.000]

3 1.569 0.268 0.428

HH ( 4.392) (1.405) 107.831 [ 0.000]

NW ( 4.918) ( 1.535) 114.888 [ 0.000]

4 2.129 0.378 0.418

HH ( 4.057) ( 1.356) 100.149 [ 0.000]

NW ( 4.535) ( 1.491) 107.005 [ 0.000]

5 2.596 0.431 0.403

HH ( 4.089) ( 1.291) 96.097 [ 0.000]

NW ( 4.564) ( 1.422) 101.814 [ 0.000]
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Table 5: Regressions of Annual Excess Bond Returns on Group Factors

The return to an n-year zero-coupon Treasury bond from month t to month t+12 less the month-t yield on a one-year Treasury
bond is regressed on ĝits, the four macroeconomic group factors estimated by the Group Lasso method. The row labeled “HH”
reports test statistics computed using standard errors with the Hansen-Hodrick GMM correction for overlap. The row labeled
“NW” reports test statistics computed using standard errors with 18 Newey-West lags to correct serial correlation. The column
labeled “Joint Test” reports Wald tests of the hypothesis that all coefficients equal zero. Asymptotic p-values, based on a χ2(4)
distribution, are in brackets. For brevity, panel B does not report test statistics based on the “HH” correction. The sample
spans the period January 1964 to December 2007.

Panel A: Univariate predictive regressions on each ĝit

maturity (yr) ĝ1t ĝ2t ĝ3t ĝ4t

2 0.493 0.569 0.396 0.489

HH ( 5.897) ( 3.966) ( 2.702) ( 2.741 )

NW (6.456) (4.376) (2.975 ) (3.031)

R2 0.255 0.236 0.075 0.128

3 0.886 0.914 0.794 0.885

HH ( 5.808) ( 3.302) ( 2.925) ( 2.562)

NW (6.320) ( 3.667) ( 3.347) ( 2.843)

R2 0.246 0.181 0.009 0.126

4 1.190 1.166 1.219 1.211

HH (5.808) ( 2.953) ( 3.240) ( 2.484)

NW (6.269) ( 3.272) ( 3.603) ( 2.759)

R2 0.232 0.154 0.111 0.123

5 1.430 1.351 1.591 1.415

HH ( 5.931) ( 2.836) ( 3.589) ( 2.345 )

NW (6.349) ( 3.129) (3.980) ( 2.599)

R2 0.223 0.138 0.126 0.112

Panel B: Multivariate predictive regression of excess returns on group factors {ĝit}

rx
(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1 rx

(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1 rx

(2)
t+1 rx

(3)
t+1 rx

(4)
t+1 rx

(5)
t+1

ĝ1t 0.297 0.561 0.735 0.880 0.270 0.525 0.710 0.885
NW ( 2.545) ( 2.560) ( 2.341) ( 2.303) ( 2.256) ( 2.323) ( 2.217) ( 2.245)
ĝ2t 0.358 0.496 0.591 0.672 0.362 0.561 0.740 0.895
NW ( 2.171) ( 1.600) ( 1.333) ( 1.248) ( 2.115) ( 1.698) ( 1.542) ( 1.522)
ĝ3t 0.127 0.310 0.590 0.881 0.180 0.240 0.455 0.697
NW ( 0.986) ( 1.342) ( 1.852) ( 2.309) ( 0.801) ( 0.614) ( 0.867) ( 1.113)
ĝ4t 0.075 0.168 0.231 0.192 0.192 0.340 0.486 0.504
NW ( 0.470) ( 0.544) ( 0.522) ( 0.349) (1.049) ( 0.975) ( 0.995) ( 0.832)

f̂1t 0.576 0.928 1.128 1.224 -0.023 -0.118 -0.284 -0.491
NW ( 2.850) ( 2.476) ( 2.283) ( 2.088) ( -0.103) ( -0.277) ( -0.501) ( -0.718)

f̂2t 0.310 0.674 1.027 1.304 -0.296 -0.333 -0.472 -0.599
NW ( 2.435) ( 2.720) ( 2.836) ( 2.935) ( -1.230) ( -0.811) ( -0.848) ( -0.892)

f̂3t -0.042 0.004 0.038 0.080 -0.071 -0.041 -0.048 -0.040
NW ( -1.110) ( 0.063) ( 0.368) ( 0.614) ( -1.587) ( -0.496) ( -0.382) ( -0.263)

f̂4t -0.495 -0.773 -0.936 -1.102 -0.070 -0.057 0.041 0.076
NW ( -3.929) ( -3.326) ( -2.842) ( -2.697) ( -0.413) ( -0.184) ( 0.093) ( 0.139)

f̂5t -0.089 -0.243 -0.422 -0.627 -0.070 -0.206 -0.309 -0.429
NW ( -0.756) ( -1.132) ( -1.500) ( -1.876) ( -0.546) ( -0.871) ( -1.005) ( -1.144)

f̂6t -0.268 -0.566 -0.856 -1.083 -0.195 -0.457 -0.677 -0.827
NW ( -1.816) ( -2.134) ( -2.331) ( -2.394) ( -1.225) ( -1.592) ( -1.697) ( -1.694)

f̂7t -0.116 -0.294 -0.476 -0.629 -0.124 -0.302 -0.466 -0.587
NW ( -1.312) ( -1.840) ( -2.090) ( -2.234) ( -1.243) ( -1.669) ( -1.835) ( -1.904)

f̂8t 0.298 0.547 0.815 0.984 0.170 0.321 0.476 0.530
NW ( 3.689) ( 3.844) ( 4.041) ( 4.126) ( 2.345) ( 2.617) ( 2.887) ( 2.757)
R2 0.346 0.313 0.298 0.291 0.246 0.230 0.224 0.220 0.390 0.357 0.348 0.342
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Table 6: Regressions of Annual Excess Bond Returns on the Output Gap and Other
Predictors.

The dependent variable is the return to an n-year zero-coupon Treasury bond from month t to month t + 12 less

the month-t yield on a one-year Treasury bond. The independent variables include the output gap gap–measured as

the deviations of the log of industrial production index from a quadratic and linear trend as in Cooper and Priestley

(2009), ĈP
⊥
t –the Cochrane-Piazzesi (2005) factor orthogonalized relative to gap, Ĝ⊥t –the SAGLasso orthogonalized

relative to gap, and ĝ1t–the first macroeconomic group factor identified using the Group Lasso. The row labeled

“NW” reports test statistics computed using standard errors with 18 Newey-West lags to correct serial correlation.

Results based on the Hansen-Hodrick GMM correction for overlap are similar and not reported here for brevity. The

sample spans the period January 1964 to December 2007.

maturity gapt−1 ĈP
⊥
t Ĝ⊥t ĝ1t R̄2

2 -8.798 0.094

NW ( -2.480)

3 -13.924 0.070

NW ( -2.142)

4 -19.676 0.073

NW ( -2.211)

5 -23.702 0.071

NW ( -2.224)

2 -8.798 0.433 0.254

NW ( -2.812) ( 5.241)

3 -13.924 0.884 0.270

NW ( -2.482) ( 5.630)

4 -19.676 1.299 0.299

NW ( -2.594) ( 5.832)

5 -23.702 1.501 0.271

NW ( -2.606) ( 5.409)

2 -8.798 1.213 0.451

NW ( -3.681) ( 11.356)

3 -13.924 2.258 0.440

NW ( -3.159) ( 10.539)

4 -19.676 3.049 0.425

NW ( -3.127) ( 10.309)

5 -23.702 3.674 0.412

NW ( -3.094) ( 10.193)

2 -4.623 3.887 0.268

NW ( -1.309) ( 3.741)

3 -6.238 7.155 0.246

NW ( -0.959) ( 3.695)

4 -9.564 9.414 0.232

NW ( -1.048) ( 3.519)

5 -11.760 11.117 0.219

NW ( -1.062) ( 3.442)
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Table 8: Comparison between the SAGLasso factor and Duffee’s Yield Factors

The return to an n-year zero-coupon Treasury bond from month t to month t+12 less the month-t yield on a one-year

Treasury bond is regressed on H̃i
t , i = 1, . . . , 5, Duffee (2008)’s five latent yield factors (the 5th factor being the hidden

factor) estimated using Kalman filtering, alone with Ĝt, the single predictor estimated by SAGLasso. The row labeled

“HH” reports test statistics computed using standard errors with the Hansen-Hodrick GMM correction for overlap.

The row labeled “NW” reports test statistics computed using standard errors with 18 Newey-West lags to correct

serial correlation. The column labeled ”Joint Test” reports Wald tests of the hypothesis that all coefficients equal

zero. Asymptotic p-values, based on a χ2(1) distribution, are in brackets. The sample spans the period January 1964

to December 2007.

Panel A: Predictive regressions of excess returns on filtered
state variable estimated from the yield curve

maturity H̃1
t H̃2

t H̃3
t H̃4

t H̃5
t R2 Joint Test P-val

2 0.913 8.884 -11.174 50.994 204.850 0.312

HH ( 2.228) ( 3.764) ( -1.309) ( 2.570) ( 3.689) 78.077 [ 0.000]

NW ( 2.488) ( 4.099) ( -1.461) ( 2.627) ( 3.652) 70.183 [ 0.000]

3 1.187 16.800 -14.034 80.784 441.654 0.325

HH ( 1.608) ( 3.655) ( -0.965) ( 2.329) ( 4.699) 68.985 [ 0.000]

NW ( 1.802) ( 4.052) ( -1.075) ( 2.368) ( 4.543) 62.991 [ 0.000]

4 1.385 25.432 -17.551 99.892 613.020 0.344

HH ( 1.346) ( 3.842) ( -0.961) ( 2.151) ( 5.017) 63.075 [ 0.000]

NW ( 1.513) ( 4.297) ( -1.059) ( 2.193) ( 4.797) 60.085 [ 0.000]

5 1.453 32.377 -16.186 103.049 680.247 0.324

HH ( 1.145) ( 3.961) ( -0.750) ( 1.745) ( 4.582) 48.579 [ 0.000]

NW ( 1.287) ( 4.446) ( -0.821) ( 1.794) ( 4.354) 50.095 [ 0.000]

Panel B: Predictive regression of excess returns on both Ĝt and H̃i
ts.

maturity Ĝt H̃1
t H̃2

t H̃3
t H̃4

t H̃5
t R̄2 Joint Test P-val

2 0.888 0.619 1.726 -3.146 27.656 134.905 0.501

HH ( 6.999) ( 1.606) ( 0.677) ( -0.755) ( 1.494) ( 2.480) 181.579 [ 0.000]

NW ( 7.633) ( 1.785) ( 0.747) ( -0.717) ( 1.567) ( 2.608) 180.158 [ 0.000]

3 1.536 0.678 4.417 -0.147 40.414 320.660 0.495

HH ( 6.421) ( 0.973) ( 0.881) ( -0.019) ( 1.274) ( 3.457) 164.723 [ 0.000]

NW ( 6.997) ( 1.080) ( 0.981) ( -0.018) ( 1.312) ( 3.560) 161.920 [ 0.000]

4 1.981 0.729 9.469 0.352 47.850 457.045 0.491

HH ( 5.771) ( 0.739) ( 1.291) ( 0.035) ( 1.126) ( 3.611) 154.765 [ 0.000]

NW ( 6.234) ( 0.823) ( 1.444) ( 0.031) ( 1.139) ( 3.717) 152.962 [ 0.000]

5 2.381 0.664 13.190 5.334 40.493 492.761 0.465

HH ( 5.730) ( 0.555) ( 1.441) ( 0.420) ( 0.757) ( 3.197) 142.390 [ 0.000]

NW ( 6.152) ( 0.617) ( 1.615) ( 0.378) ( 0.766) ( 3.282) 140.217 [ 0.000]
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Table 10: Realized Jumps and Macroeconomic News

This table reports the jump dates and jump size of the 20 biggest jumps during our sample period, identified by model-

free realized jump tests, and associated events on jump dates. The sample period is July 1982 through December

2007.

Jump Dates Jump Size Events

07-Oct-1982 1.0859 FOMC Target Announcement*

12-Oct-1982 -0.9370 Advanced Retail Sales Announcement

12-May-1989 1.2003 Advanced Retail Sales Announcement

09-Jan-1991 -1.3131 the Outbreak of the Gulf War

13-Nov-1991 -0.8426 CPI Announcement

04-Sep-1992 0.9330 Unemployment Rate Announcement

02-Jun-1995 1.1363 Unemployment Rate Announcement

08-Mar-1996 -1.3810 the Third Taiwan Strait Crisis

07-Jun-1996 -1.7188 Unemployment Rate Announcement

05-Jul-1996 -1.4057 Unemployment Rate Announcement

30-Aug-1996 -0.7399 GDP Announcement

29-Apr-1997 1.2346 Consumer Confidence Announcement

05-Mar-1999 1.0107 Unemployment Rate Announcement

14-May-1999 -0.8258 Industrial Production Announcement

06-Dec-2002 0.9711 Unemployment Rate Announcement

03-Oct-2003 -0.7913 Unemployment Rate Announcement

09-Jan-2004 1.2738 Unemployment Rate Announcement

28-Jan-2004 -1.0643 FOMC Target Announcement**

02-Jul-2004 1.2727 Unemployment Rate Announcement

06-Aug-2004 1.6548 Unemployment Rate Announcement

*Federal Reserve announced a reduction in the discount rate from 10 percent to 9-1/2 percent.

**In contrast with pre-announcement forecasts by economists, Federal Reserve decided to keep its target for the

federal funds rate at 1 percent.
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Table 13: Out-of-Sample Predictive Power of Supervised and Unsupervised Macro
Factors

This table reports results from one-year-ahead out-of-sample forecast comparisons of n-period log excess

bond returns, rx
(n)
t+1. Panel A reports forecast comparisons of an unrestricted model with the SAGLasso

Factor Ĝt as the predictor, against a restricted, constant expected returns benchmark. Panel B reports

forecast comparisons of an unrestricted model that includes Ĝt and AR(6) as predictors, against an AR(6)

benchmark model. Panel C reports forecast comparisons of an unrestricted model, which includes Ĝt and

L̂N t as predictors, with a restricted benchmark model that includes a constant and L̂N t. The column

labeled “MSEu/MSEr” reports the ratio of the mean-squared forecasting error of the unrestricted model to

the mean-squared forecasting error of the restricted benchmark model that excludes additional forecasting

variables. The column labeled “Ericsson” reports the ENC-REG test statistics of Ericsson (1992), and its

95th percentile of the asymptotic distribution is Φ−1 = 1.645. The column labeled “Clark-McCracken”

reports the ENC-NEW test statistics of Clark and McCracken (2001), and its 95% critic value is 1.584 for

testing one additional predictor. The two tests share the same null hypothesis that the benchmark model

encompasses the unrestricted model with excess parameter.

Panel A: SAGLasso Factor Ĝt v.s. constant

maturity (yr) Ericsson MSEu/MSEr Clark-McCracken

2 3.364 0.7217 129.6905

3 3.159 0.7580 111.3578

4 3.201 0.7520 111.0675

5 3.370 0.7706 104.6911

Panel B: Ĝt + AR(6) v.s. AR(6)

maturity (yr) Ericsson MSEu/MSEr Clark-McCracken

2 6.728 0.6446 177.076

3 6.835 0.6421 160.268

4 7.083 0.6197 162.507

5 6.850 0.6384 149.888

Panel C: Ĝt +L̂N t v.s. L̂N t + constant

maturity (yr) Ericsson MSEu/MSEr Clark-McCracken

2 2.730 0.9384 42.988

3 2.838 0.9064 40.440

4 3.139 0.8749 43.355

5 3.179 0.8716 41.994
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Table 16: Small Sample Inference for the Predictability of Excess Bond Returns

This table is the counterpart of Table 5 based on finite-sample distributions for test statistics. 50000 Monte

Carlo simulations are run based on a VMA(12) process or a macro-finance term structure model. Yield

data generated from the VMA process satisfies the restrictive null hypothesis of no predictability. The term

structure model satisfies the general null hypothesis that expected excess bond returns are time-varying but

independent of the macroeconomy. And 528 months of data are generated for each simulation. 95-percent

confidence intervals for R2, under each null hypothesis, are reported in square brackets. The column labeled

“Joint Test” reports the Wald test statistics computed with the actual data, but the P-values are based on

the empirical distributions of 50,000 bootstrapped samples. Both the restrictive and general hypotheses are

defined as in Duffee (2008).

maturity (yr) Null Hypothesis R2 Joint Test P-val

2 0.436

Restrictive [0.0025,0.0559] 56.977 [ 0.0000]

General [0.0072,0.1272] 67.484 [ 0.0002]

3 0.405

Restrictive [0.0021,0.0441] 50.032 [ 0.0000]

General [0.0074,0.1277] 57.658 [ 0.0003]

4 0.392

Restrictive [0.0028,0.0547] 52.324 [ 0.0000]

General [0.0071,0.1220] 57.995 [ 0.0010]

5 0.379

Restrictive [0.0037,0.0543] 55.818 [ 0.0000]

General [0.0071,0.1190] 61.473 [ 0.0004]
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Figure 2: Return Risk Premium of the 5-year Bond Estimated from Different VAR
Specifications

Panel A: Return risk premium including SAGLasso factor and IP growth.
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Panel B: Return risk premium excluding SAGLasso factor and IP growth
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This figure plots the return risk premium of the 5-year bond that is estimated using two alternative VAR models,

along with the growth of industrial production. The first VAR model involves state variables including both the

Cochrane-Piazzesi (2005) and SAGLasso factors and the second specification excludes the SAGLasso factor. Shaded

bars denote months designated as recessions by the National Bureau of Economic Research.
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Figure 3: Term Premium of the 5-year Bond Estimated Different VAR Specifications
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This figure plots the term premium of the 5-year bond that is estimated using two alternative VAR models.

The first VAR model involves state variables including both the Cochrane-Piazzesi (2005) and SAGLasso

factors and the second state vector contains the Cochrane-Piazzesi and the Ludvigson-Ng (2009b) factors.

Shaded bars denote months designated as recessions by the National Bureau of Economic Research.
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Figure 4: Impulse Response Generated from alternative FAVAR Specifications

Panel A: This figure plots the estimated impulse response, with 90 percent confidence interval, of the SA-

GLasso factor to one-standard-deviation shocks in logarithm IP growth.

Panel B: This figure plots the estimated impulse responses, with 90 percent confidence intervals, of key

macroeconomic indicators to one-standard-deviation shocks in the SAGLasso factor.
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