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Determinants of College Major Choice: Identification
using an Information Experiment*

Matthew Wiswall Basit Zafart

Abstract

This paper studies the determinants of college major choice using a unique “informa-
tion” experiment embedded in a survey. We first ask respondents their self beliefs —
beliefs about their own expected earnings and other major-specific outcomes conditional
on various majors, their population beliefs — beliefs about the population distribution of
these characteristics, as well as their subjective beliefs that they will graduate with each
major. After eliciting these baseline beliefs, we provide students with information on the
true population distribution of these characteristics, and observe how this new informa-
tion causes respondents to update their beliefs. Our experimental design creates unique
panel data. We first show that respondents make substantial errors in population beliefs,
and logically revise their self beliefs in response to the information. Subjective beliefs
about future major choice are positively and strongly associated with beliefs about self
earnings, ability, and spouse’s earnings. However, cross-sectional estimates are severely
biased upwards because of the positive correlation of tastes with earnings and ability. The
experimental variation in beliefs allows us to identify a rich model of college major choice,
with which we estimate the relative importance of earnings and earnings uncertainty on
the choice of college major versus other factors such as ability to complete coursework,
spouse’s characteristics, and tastes for majors. While earnings are a significant determi-
nant of major choice, tastes are the dominant factor in the choice of field of study. We
also investigate why males and females choose different college majors.
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1 Introduction

Understanding the determinants of occupational choices is a classic question in the social sci-
ences: How much do occupational choices depend on expected future earnings versus tastes for
various non-pecuniary aspects of an occupation? Among college graduates, occupational choices
are strongly associated with college major choices as the choice of major-whether in humanities,
business, science or engineering fields—represents a substantial investment in occupation-specific
human capital. Underscoring the importance of college major choices, a number of studies have
documented that choice of post-secondary field is a key determinant of future earnings, and
that college major composition can help explain long-term changes in inequality and earnings
differences across racial groups and between men and women (Grogger and Eide, 1994; Garman
and Loury, 1995; Brown and Corcoron, 1997; Weinberger, 1998; Arcidiacono, 2004; Wiswall,
2006).

This paper studies the determinants of college major choices using a unique survey and
experimental design. We conduct an experiment on undergraduate college students of New
York University (NYU), where in successive rounds we ask respondents their self beliefs about
their own expected earnings and other major-specific aspects were they to major in different
majors, their beliefs about the population distribution of these outcomes, and the subjective
belief that they will graduate with each major. After the initial round in which the baseline
beliefs are elicited, we provide students with accurate information on the population charac-
teristics and observe how this new information causes respondents to update their self beliefs
and their subjective probabilities of graduating with each particular major. Our experimental
design creates unique panel data for major choice, which is otherwise a one-time decision. By
comparing the experimental changes in subjective probabilities of majoring in each field with
the changes in subjective expectations about earnings and other characteristics of the major,
we can measure the relative importance of each of these various characteristics in the choice
of major, without bias stemming from the correlation of fixed preferences with characteristics.
Underscoring the importance of this bias, we compare cross-sectional OLS estimates of major
choice to expectations about earnings with our panel fixed effects estimates, and find that the
OLS estimates are severely biased upward due to positive correlation of tastes with earnings
expectations and perceived ability.

Our approach is motivated by previous research which has found that many college stu-
dents have biased beliefs about the population distribution of earnings among current graduates
(Betts, 1996), and that students tend to be misinformed about returns to schooling (Jensen,
2010; Nguyen, 2010). We test whether students update their beliefs if given accurate informa-
tion on the current population earnings, and find heterogenous errors in population beliefs, and

substantial and logical updating in response to our information treatment. We show how the ex-



perimental variation alone identifies a rich model of college major choice, and we use this model
to understand the importance of earnings and earnings uncertainty on the choice of college ma-
jor relative to other factors such as ability to complete coursework, spousal characteristics, and
tastes for majors.

The standard economic literature on decisions made under uncertainty, such as occupational
choice, generally assumes that individuals, after comparing the expected outcomes from various
choices, choose the option that maximizes their expected utility. Given the choice data, the
goal is to infer the parameters of the utility function. Because one does not typically observe
expectations about future choice-specific outcomes, such as the student’s expectations of earn-
ings and ability in a major, assumptions have to be made on expectations to infer the decision
rule. This approach requires a mapping between objective measures (such as realized earnings)
and beliefs about them. Moreover, assumptions also have to be invoked about expectations for
counterfactual majors, i.e., majors not chosen by the student. Several studies of college ma-
jor choice use this approach (Freeman, 1971; Bamberger, 1986; Berger, 1988; Montmarquette,
Cannings, and Mahseredjian, 2002; Arcidiacono, 2004; Beffy, Denis, and Maurel, 2011). These
studies assume expectations are either myopic or rational, and that the expectations formation
process is homogenous conditional on observables. This approach is problematic because ob-
served choices might be consistent with several combinations of expectations and preferences,
and the list of underlying assumptions may not be valid (Manski, 1993).

A recent literature has evolved which collects and uses subjective expectations data to un-
derstand decision-making under uncertainty (see Manski, 2004, for a survey of this literature).
In the context of schooling choices, Zafar (2009, 2011), Giustinelli (2010), Arcidiacono, Hotz,
and Kang (2011), Kaufmann (2011), and Stinebrickner and Stinebrickner (2010, 2011) incor-
porate subjective expectations into models of choice behavior. These studies collect data on
expectations for the chosen alternative as well as counterfactual alternatives, thereby eliminat-
ing the need to make assumptions regarding expectations. However, as we show in Section
3, one cannot separately identify the tastes for each major from other aspects of the choice
(earnings, ability, etc.) without imposing further modeling restrictions. Experimental variation
in beliefs allows us to accomplish that. More precisely, at the baseline, we collect self beliefs
and beliefs about the population distribution of some college major characteristics, as well as
probabilistic choices of major. We then provide students with accurate fact-based information
on population characteristics. If students are mis-informed about population characteristics
and perceive some link between population and self beliefs, this information should cause them
to revise their beliefs and choices. There are in fact substantial errors in population beliefs,
with students, on average, under-estimating the population earnings in most majors. For ex-

ample, male and female respondents underestimate the male population full-time earnings in



Engineering/Computer Science by around 14%. We next find that students logically revise
their self beliefs about own and spouse earnings and own ability in response to the information
we provide. The response, however, is inelastic: For a 1 percent error, students revise their
self earnings by 0.196 percent, suggesting that self beliefs are not entirely linked to the type of
public information that we provide.

Another novel feature of our framework is that we collect data to investigate whether mar-
riage market returns are a determinant of field of study. This question is motivated by recent
theoretical models that have emphasized that investment in education generates returns in the
marriage market (Iyigun and Walsh, 2007; Chiappori, Iyigun, and Weiss, 2009). These models
are based on the idea that changes in marriage market conditions (such as sex ratios and degree
of assortative mating in age and education) have an effect on the outside option of each spouse,
which in turn alters bargaining weights and leads to changes in the way the household surplus
is shared. If individuals are forward-looking and anticipate these conditions, this should be
reflected in their expectations. Since such data are typically not available, empirical evidence
of the effect of marriage market considerations on educational choices is scant, and is inferred
indirectly (Ge, 2010; Lafortune, 2010; Attanasio and Kaufmann, 2011). In this paper, we are
able to provide direct evidence on whether marriage market returns are a determinant of field of
study. We collect data on students’ beliefs about the probability of marriage, spouse’s earnings,
and spouse’s labor supply conditional on own field of study.

Our reduced-form estimates using baseline (cross-sectional) data show that beliefs about
future relative major choices are positively and strongly associated with beliefs about future
self earnings, ability, and spouse’s earnings. For example, a 1 percent increase in beliefs about
self earnings in a major (relative to humanities/arts) increases the log odds of majoring in that
field (relative to humanities/arts) by about 2 percent. Spousal earnings have a considerably
lower effect on major choice, with the effect being smaller for female respondents. On the other
hand, using the revisions in beliefs and choices, we show that in fact the estimates using cross-
sectional data are biased upwards because of the positive correlation between the unobserved
individual-specific taste component and beliefs about ability and earnings. For example, the
choice elasticity with respect to beliefs about earnings is an order of magnitude lower (about
0.28 percent) using revisions in beliefs and choices, as part of an individual fixed effect analysis.

We next estimate a structural life-cycle model utility model of college major choice. Unlike
the existing literature on educational choices that only elicits beliefs of expected future earnings,
we collect data on the underlying earnings distribution, and also investigate the role that
risk plays in college major choice (Attanasio and Kaufmann, 2011, is an exception). Our
parameter estimates imply a relative risk aversion coefficient of around 5, similar to that found

by Nielsen and Vissing-Jorgensen (2006) in a Danish dataset on labor incomes and educational



choices. Moreover, our estimate of relative risk aversion is higher for females, which is consistent
with experimental studies of gender differences in risk preferences (Eckel and Grossman, 2008;
Croson and Gneezy, 2009). Imposing risk neutrality in our model-a common assumption in
existing studies of college major choice-shows that we would substantially over-estimate (under-
estimate) the probability of majoring in high (low) earnings fields.

Our model estimates indicate that earnings are a significant determinant of major choice.
However, the taste component at the time of choosing a college major is the dominant factor
in the choice of field of study, a finding similar to that of Arcidiacono (2004) and Beffy et al.
(2011). With respect to the marriage market returns to major choice, we find that they have a
small positive impact on choosing high-earnings majors, but a substantial negative impact on
choosing the "not graduate" category.

This paper also contributes to the literature on gender differences in schooling choices.
Males and females are known to choose very different college majors (Turner and Bowen, 1999;
Dey and Hill, 2007; Gemici and Wiswall, 2011). Niederle and Vesterlund (2007) speculate that
women being less over-confident than men may be one possible explanation for this. Zafar
(2010), in his sample of Northwestern University undergraduates, finds that gender differences
in tastes (and not ability) are the main source of these differences. In our sample, we find that
women, on average, do have lower beliefs of ability in all fields relative to men. In order to shed
light on gender differences in major choice, we obtain gender-specific estimates of the structural
model. The model estimates show that earnings differences across majors are a substantially
smaller factor in college major choice for women than men, and that ability differences matter
substantially more for women. The taste component is, however, dominant for both males and
females.

While our experimental variation generates a panel that may look similar to other datasets
with longitudinal information on beliefs (see Stinebrickner and Stinebrickner, 2010, 2011; Zafar,
2011, in the context of college major choice), there is an important distinction: Beliefs in our
survey are separated by only a few minutes, while in conventional panels, the gap is typically
of several months. We can then credibly claim that the utility function, most notably the
individual and major specific taste parameters, are truly time invariant in our context—the key
assumption to identifying the tastes non-parametrically-and that our experimentally derived
panel data satisfies the standard fixed effects assumptions. Estimating the taste parameters
non-parametrically, we find that i) the distribution of tastes is bimodal, ii) average tastes
of females are negative for all majors (relative to humanities/arts), and iii) male students
have a strong relative taste for economics/business majors. Moreover, the fit of the estimated
structural model using the experimental variation in beliefs is substantially better than when

we estimate the model using cross-sectional data and impose a parametric assumption on the



taste parameter, as in Arcidiacono et al. (2011).

This paper is organized as follows. Section 2 outlines the model of college major choice.
In Section 3, we explore identification of the model using: i) commonly used revealed choice
data, ii) cross-sectional beliefs, and iii) panel data on beliefs. The data collection methodology
is outlined in Section 4. We examine heterogeneity in beliefs about earnings and revisions in
self beliefs following the information treatment in Section 5. Section 6 reports reduced-form
regressions on the relationship between beliefs about major choice and beliefs about elements
of future post-graduation utility, while Section 7 reports estimates from a structural life-cycle

utility model of major choice. Finally, Section 8 concludes.

2 Model

In this section we specify the model of college major choice. The next section shows how we
use the information experiment to identify the model.

Individuals choose one of K majors: k =1,..., K.! At the initial period t = —1, individuals
are enrolled in college and have not chosen a particular college major. At the beginning of period
t = 0, the individual makes a college major choice and graduates from college. From period
t = 1 onward, the college graduate makes all remaining choices, including choices regarding
labor supply and marriage.?

We do not explicitly model any of the choices during or after college (i.e., choice to take
particular courses during college, or any of the post-graduation choices). Instead we specify a
preference ordering over the particular college majors. At the period t = —1 (prior to choice of

major), expected utility for each college major is given by

Vo = +v(ar) + EVog, (1)

where the v;,7,, . .., 75 components represent the preferences or tastes for each college major k
at the initial pre-graduation stage. We define "tastes" at the point when students are in college.
These could be tastes for major-specific outcomes realized in college, such as the enjoyability
of coursework, or major-specific post-graduation outcomes, such as non-pecuniary aspects of
jobs. v(ay) is the mapping of a student’s ability in each major, a4, ..., ax with a; > 0 for all £,
to pre-graduation utility from each major. We assume dv(ay)/0day, > 0, reflecting that higher

ability in a particular major improves performance in each major’s coursework and reduces

1 As described below in the Data section, in order to model the complete potential choice set, one of the
"majors" is a "no graduation" (college drop-out) choice.

2To make clear how this timing convention is reflected in our survey design, note that we survey college
students (1st-3rd year students) at period ¢t = —1, prior to college graduation. We do not survey 4th year and
later students because they may have already chosen a particular college major.



the effort cost of completing a major. Ability in coursework and ability in the labor market
can be closely correlated, but we do not explicitly model this interaction since our data allows
us to measure expected earnings in each field and beliefs about ability in each field directly.?
Expectations are formed according to the beliefs in period t = —1.%

At period ¢ = 0, the student realizes some preference shock and then chooses her college

major. Expected utility at the time of graduation for each major k is given by

‘/O,k = N + /BE‘/l,ka (2)
where 1y,7,,...,m are the period ¢ = 0 preference shocks that reflect any change in prefer-
ences that occur between the initial pre-major choice period ¢ = —1 and the period when the

college major is chosen. In the Blass, Lach, and Manski (2010) taxonomy, 7, is "resolvable"
uncertainty—uncertainty that is resolved at the point at which the choice of major is made.
After college graduation, the expected discounted sum of future post-graduation utility from

each major k is given by

BV =0 [ux)acxik) 3)

where u(X) is the utility function that provides the mapping from the finite vector of events
X to utility. X can include a wide range of events (e.g. earnings, labor supply, marriage,
spousal earnings, and so on). G(X |k, t) represents the beliefs about the distribution of future
events in period ¢, conditional on choice of major k. The distributions of future events G(X|k, t)
represent "unresolvable" uncertainty as these events will not have occurred at the time of major
choice. Beliefs are individual specific and based on current information, which, as discussed
below, can be a mixture of public and private information. In the next sections, we refer to
these beliefs as "self" beliefs, e.g., beliefs about what the individual would earn if she graduated
with a business degree. Self beliefs are distinct from the "population" beliefs that students hold
about the population distribution of some major characteristics, e.g., beliefs about the average
earnings in the population of individuals who graduate with a business degree.

Individuals choose the college major that maximizes expected utility at period ¢t = 0:

‘/E)* = max{%,kn ey ‘/O,K}v

3In our data, we find that a student’s self-reported ability rank in each major is highly correlated with
self-reported expected future earnings in the field.

4Note for simplicity that (1) ignores any real separation of the t = —1 and ¢t = 0 periods. We implicitly
assume that the period ¢t = —1 is "just" before the decision making period in t = 0. Alternatively, we could write:
V_1k = v + v(ag) + BEV) ;. However, this is only a slight change from the present model since the discount
rate would not be identified separately from the scale of the 7, shocks (2), and we can capture differences in
utility flows from future post-graduation activities with a shift in the utility function (3).
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At t = —1, each individual’s expected probability of majoring in each of the k£ majors given

beliefs is then given by integrating over the distribution of resolvable uncertainty:

= / Vg, = Vi YF(y), (4)

where F(n) is the joint distribution of 7, ..., 7, and Zle T = 1.

3 Identification

In this section, we explore identification of the model using three types of data: i) commonly
used revealed choice data in which we observe one choice of college major for each individual
along with earnings in this major, ii) a cross-section of baseline (pre-treatment) beliefs, and iii)

panel data including both pre- and post- treatment beliefs.

3.1 Identification Using Actual Choice Data

We first consider identification under the typical revealed preference data in which we observe
for each individual i their actual choice of major (i.e., the data are collected after college
graduation). In revealed preference data, we typically observe a set of indicators for major
choice, some measure(s) of ability, and some realizations of future events, such as future earnings
in the chosen major. Let dy,,...,d;x be the set of indicators for these choices such that
dri = H{Vors = Vi) for all k. From these revealed choices, we can identify the probability

that each major is chosen:

Pk = pr(dm = 1)
= /Wk,idQ('YL@', YK QL - 05, Gi(XE 1), Ga(X Tt K)),

where 22{:1 P, = 1. Q(-) is the population distribution of tastes, abilities, and beliefs about
future post-graduation events. Note that P is distinct from 7 ,;: Py is the probability major
k was chosen, which is revealed in post-graduation data, whereas 7y ; is the belief about the
future probability that major k will be chosen.

With this revealed preference data, the researcher faces the task of constructing elements of
the utility function from actual observed data. In general, this requires four additional layers
of assumptions:

i) an assumed mapping between revealed or actual post-graduation earnings to beliefs about

earnings (or any other elements of post-graduation utility) when the major was chosen,



ii) an assumed model for counterfactual beliefs about earnings (or any other elements of
post-graduation utility) in majors not chosen,

iii) an assumed mapping between measures of ability to beliefs about ability in each major,

iv) an assumed distribution of tastes for all majors.

The prior literature makes various types of assumptions along these dimensions. Freeman
(1971, 1975) for example assumes an adaptive expectations mapping between realized earnings
and beliefs about earnings. Siow (1984) and Zarkin (1985) make perfect foresight (rational
expectations) assumptions. Implicitly these models also assume that earnings are the same
for all individuals. Other work, including Bamberger (1986), Berger (1988), Flyer (1997),
Eide and Waehrer (1998), Montmarquette et al. (2002), and Beffy et al. (2011) allow for
some heterogeneity in earnings, across chosen and counterfactual majors, but assume rational
expectations. Arcidiacono (2004) uses realized grade information during college and an assumed
learning model in order to map grade measures to beliefs about ability in each major. Finally,
previous research assumes some distribution of tastes for majors, usually an extreme value taste
distribution, as in Berger (1988) and Arcidiacono (2004), or a normality assumption, as in Beffy
et al. (2011).

This approach overlooks the fact that subjective expectations may be different from ob-
jective measures, assumes that formation of expectations is homogeneous, makes nonverifiable
assumptions on expectations, and uses choice data to infer decision rules conditional on main-
tained assumptions on expectations. This can be problematic since observed choices might be
consistent with several combinations of expectations and preferences, and the list of underlying
assumptions may not be valid (see Manski, 1993, for this inference problem in the context of

how youth infer returns to schooling, and Manski, 2004, for a detailed discussion on this).

3.2 Identification Using Baseline Beliefs

We next turn to considering the identification if we have baseline beliefs data only, and do
not have the post-treatment information from our information experiment. This is the data
available, for example, in Delavande (2008), van der Klaauw and Wolpin (2008), Zafar (2009),
Giustinelli (2010), Arcidiacono et al. (2011), Attanasio and Kaufmann (2011), and van der
Klaauw (2011). The benefit of collecting belief information for outcomes in all possible choices
is that this allows the researcher to relax assumptions about i) the mapping between realizations
and beliefs for outcomes in the choice made, and ii) beliefs for outcomes in counterfactual choices
not chosen.

In order to make the potential source of bias transparent, let the vector of relevant future
events X be divided into a subset of observed (to the researcher, in the data) events X° and

unobserved events X*“: X = [X°X"]. Note in our context "observed" means future events that



the researcher asks respondents’ expectations about and “unobserved" means any other events
not inquired about. For any given student respondent i, we observe at the time of our survey
(period t = —1, prior to college major choice):

D1) self-reported expectations of graduation for each of the K majors: my,, ..., Tk,

D2) individual beliefs about the distribution of post-graduation future events conditional
on major choice G9(X°|1,t),...,G;(X°|K,t) forallt =1,...,T, and

D3) individual beliefs about ability in each of the majors aj;, ..., ax;.

G9(X°|k,t) are the observed beliefs which are self-reported by respondents in the survey.
The distribution of the unobserved events, covering those events not collected in the beliefs
data, is given by G¥(X"|k,t).

Given this data, we next investigate how much of the underlying choice model can be iden-
tified. Assume that the resolvable uncertainty preference shocks for each major are distributed
i.i.d. extreme value across major choices and across each individual. With this assumption, (4)

is

el vla) + XA u(XN)AGX1 k)
tSexpfyg +v(a) + 0 87 [u(X)dG(X [t )}

In the convenient log odds form, we can write the log odds of student ¢ completing major k

(5)

relative to a reference major k as

i = Inmg, —Inmg
= Vi~ Vi T v(ar;) — U(afc,i) + EVigi — Evl,fm‘ (6)

)

Distinguishing between observed and unobserved events, we have

Tki = Vki — sz_’_v(akl) _U( ) +E‘/1kz E‘/févi—’_ek’i’ (7)

— u u
where €,; = EVY"y , — EV" T

T
BV, =3 p / W(X)dG (X |k, 1),

t=1

BV}, = Zﬁt ! / X)dGH (X |k, 1),

€r; represents the "error" associated with the missing information on beliefs about post-
graduation events not collected in the survey. This is simply the belief data counterpart to

omitted variable error in revealed preference data, e.g., "missing" information about earn-



ings in counterfactual majors. Without loss of generality, we normalize 7 ; = 0 for all ¢ and
Elex;] = 0 for all k.

Collecting information about beliefs about earnings and ability has the advantage of obvi-
ating the need for assumptions mapping realized measures of ability to beliefs about ability in
all fields. However, without any further modeling restrictions, we cannot separately identify
the relative taste for each major 7,, from the expected post-graduation future utility. The lack
of identification holds since we can fully rationalize the data on expected choice probabilities
as u(X) = 0 for any vector X and ry; = v, for all k # k. Separately identifying EVi
from tastes could be achieved through a parametric restriction on the joint distribution of taste
parameters 7y ; (e.g., assuming a joint extreme value or normal distribution of tastes).® In the
next section we propose a new strategy for identification using additional data derived from

experimentally perturbed beliefs.

3.3 Identification using Experimental Variation

This section provides the basis for separately identifying tastes for majors from other utility
components using experimental perturbations of beliefs. Our innovation is to note that if we
can perturb the beliefs of the individuals so that at least some individuals form new beliefs
Gi(X|k) # Gi{(X]k), we could identify a parameterized utility function u(X). We perturb
individual beliefs by providing individuals information on general population characteristics
regarding earnings and labor supply among those who have graduated with various majors (see
Data section). To the extent that the individuals’ self beliefs about earnings and other charac-
teristics are i) linked to their beliefs about the population distribution of these characteristics
and ii) they are mis-informed about the population characteristics, this new information may
cause some individuals to update their own self beliefs. We use our experimental data to test
whether individuals are mis-informed and to examine the extent to which individuals update
their own self beliefs based on this new information. As we discuss below, we find substan-
tial errors in population beliefs and logical self belief updating in response to our information
treatment.

An important distinction between our panel generated using experimental variation and

other longitudinal information on beliefs is that we collect beliefs data over a short period

’To see that there is no loss of generality, note that the original model and the model with ~; , = 0 for all ¢

are equivalent by adding the major k taste parameter and return to the original model as #(X) = Vi T u(X).

SFor example, in our notation, Arcidiacono et al. (2011) assume that 6x; = (9, + V) is distributed
Li.d. extreme value. We make the same parametric assumption about the resolvable uncertainty 7, ;, but relax
this assumption for the permanent taste component v, ;. As described below, our model is then a mixed logit
model which uses the experimental perturbation of beliefs to generate panel data to separately identify a taste
component.
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of time, where the period before and after the information is provided in our experiment is
separated by only a few minutes. This is in contrast to other studies (e.g., Lochner 2007;
Stinebrickner and Stinebrickner 2010, 2011; Delavande, 2011; Paula, Shapira, and Todd, 2011)
where the separation between beliefs observations is much longer, typically months or years. We
can then credibly claim that the utility function, most notably the individual and major specific
taste parameters, are truly time invariant in our context, and our experimentally derived panel
data satisfies the standard fixed effects assumptions.

After providing information on the population distribution, our information treatment ex-
periment augments the baseline information on self beliefs (D1, D2, and D3), with

D1’) post-treatment self-reported expectations of graduating with each of the K majors:
7T,17Z», . ,ﬂ"K,i,

D2’) post-treatment individual beliefs about the distribution of post-graduation future
events conditional on major choice G (X°|1,1),...,G¢ (X°|K,t), and

D3’) individual beliefs about ability in each of the majors @} ,, ..., aj,.

Assuming the distribution of resolvable uncertainty given by the taste shocks 7 is inde-
pendent of the information treatment which perturbs beliefs, we can write the individual post-
minus pre-treatment difference in the log odds of majoring in each major (relative to a reference
major k) as

!/

’ o /
Thi = Thi = In Thi — In T

| =7 —In 7r,~m.]

[E‘/lokz - BV ]+ 62,2' — €k (8)

= v(ag;) — v(ag,) — [vars) — vlag,)] + BV — EVY; Lk

1,ki

where

T
BVE, =3 gt / W(X)dGE (X°[k, 1),
t=1

Given this structure and a parameterized utility and ability functions (X, 6) and v(a,, @),
with finite dimensional unknown parameter vectors 6 and «, we assume the following moment

condition, which is the basis of our estimation strategy:
E[Aeyilh(Z;,0,a)] =0, 9)

where Aey; = €, — i, Zi = [GI(X|L,t), ..., GIX|K, 1), G (X|1,t),...,GY(X|K,t)], and

h(ZZ> 97 Oé) = U(a;c,m CY) - U(a% i) Oé) - [U(ak,ia CY) - U(al;,w CY)]

)
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+Zﬁt 1/ (X,0)dG? (X°|k,t) Zﬁt 1/ (X,0)dG? (X°|k,1)

—[Zﬁ“/u(x, 0)dGo(X°|k,t) — Zﬁt_l/u(X, 0)dGo(X°|k,t).

t=1 t=1
Note that with our data collection, the collection of beliefs for each individual, given by the
vector Z;, are data since we elicit these beliefs in our survey design.

Our identification assumption states that any changes in beliefs about unobserved events,
contained in the Aej; term, is mean-independent of the function of observed changes in beliefs
given by h(Z;,0). This assumption is satisfied if the relative tastes for each major, given by
the v, ; terms, the post-graduation utility function itself u(X,#), and the current effort cost
ability function v(ay,;, @) are invariant between the pre and post-treatment period. Given that
the pre- and post- information treatment periods are separated by a few minutes in our survey

design, we find this to be reasonable assumption.”

3.4 Example

We next consider a simple example to provide some intuition for our information experiment
based identification strategy. Suppose there is a just a single post-graduation period 7' = 1, two
majors k and &, X includes one element (earnings) X = [w], and we ignore the role of major
specific ability. Students in period ¢ = —1 self-report their expected distribution of earnings
given their beliefs. Suppose the utility function takes the simple linear form u(X) = 6w, 6 > 0.
6 is the marginal utility of earnings: high € indicates that college major choices are sensitive to
earnings (relative to tastes), and low 6 indicates that college major choices are insensitive to
earnings. In our empirical estimation, we consider richer life-cycle specifications of the utility
function and collect an array of data about future events associated with majors.

In this simple example, pre-treatment expected post-graduation utility for student i is then:

T
EVi,=> B / OwdG? (w|k,t)
t=1
= Qwy,;,

where wy,; is individual ¢’s beliefs about the average earnings she would receive if she were to

graduate with major k. The information treatment provides new information to the student

"Note as in the typical panel model with homogeneous elements, we do not require that ALL individuals
update their beliefs, only that some individuals update their beliefs. This is because we restrict the post-
graduation utility function to be homogeneous, but allow heterogeneity in fixed taste parameters. In general if
we have many belief changes, we could identify rich patterns of heterogeneity in the utility function as well.
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on the population distribution of earnings, and following the information treatment, student
1 revises her beliefs about her future earnings in each major k and her future probability of
graduating with each degree. Expected post-graduation utility for student ¢ post-treatment is
then:

T

EVih = 308" [ oudG? (wlk.

t=1

_ —/
= Qw,m-

The post- minus pre- treatment difference in log probabilities (relative to a reference major

k) is given by

i — Thi = 0(Wi, — W), (10)
ki , ki ,

’

k

treatment self probabilities of major in major k& and a reference major k' (r} ., r%  riq,r..), and
ki ki’ 0 Nkl

where W,;z = Wy ;—w; . and Wi = Wy, ;— Wy, ;- In this example, the data consist of post- and pre-
post- and pre- treatment beliefs about expected earnings in both majors: (w;m, w;; 2 Wk u‘;kz)
Re-arranging (10), we then have the following moment condition that identifies the marginal

utility of earnings 6:

!
Tri = Tk

0=Fl=———-—
[W;Q,Z - Wk,i

J (11)

The intuition for our identification strategy is clearly seen in (11). The numerator of this
expression measures the extent of the relative probability revision from the pre-treatment to
post-treatment period. The denominator of (11) measures the extent of the relative revision in
self beliefs about earnings. The ratio of the revision of the self-reported revision in probabilities
versus the revision in earnings identifies the marginal utility of earnings in major choice. If there
is a large revision in probabilities relative to a small revision in earnings, then we conclude that
0 is large and earnings are an important factor in major choice. If however, there is little
revision in probabilities relative to a large revision in earnings, then we conclude that @ is low,
and other factors such as tastes or abilities, not earnings, are the predominant consideration in

major choice.®

8There is scope of course to consider heterogeneity in the utility function (e.g. #; varies with 4), in addition
to heterogeneity in permanent taste parameter v, ;. We discuss this possibility below in the estimation.

13



4 Data

4.1 Administration

Our data is from an original survey instrument administered to New York University (NYU)
undergraduate students over a 3-week period, during May-June 2010. NYU is a large, selective,
private university located in New York City. The students were recruited from the email list
used by the Center for Experimental Social Sciences (CESS) at NYU. The study was limited to
full time NYU students who were in their freshman, sophomore, or junior years, were at least
18 years of age, and US citizens. Upon agreeing to participate in the survey, students were
sent an online link to the survey (constructed using the SurveyMonkey software). The students
could use any internet connected computer to complete the survey. The students were given
2-3 days to start the survey before the link became inactive, and were told to complete the
survey in one sitting. The survey took approximately 90 minutes to complete, and consisted
of several parts. Students were not allowed to revise answers to any prior questions after new
information treatments were received. Many of the questions had built-in logical checks (e.g.
percent chances of an exhaustive set of events such as majors had to sum to 100). Students

were compensated $ 30 for successfully completing the survey.

4.2 Survey Instrument

The survey instrument consists of three distinct stages:

STAGE 1) Initial Stage: Respondents were asked about their population and self beliefs

STAGE 2) Intermediate Stage: Respondents were randomly selected to receive 1 of 4 possible
information treatments. The information was reported on the screen and the respondents were
asked to read this information before they continued. Respondents were then re-asked about
population beliefs (on areas they were not provided information about) and self beliefs.

STAGE 3) Final Stage: Respondents were given all of the information contained in each of
the 4 possible information treatments. Respondents were then re-asked about their self beliefs.

For the purposes of estimating the choice models in this paper, we used only the initial
Stage 1 self beliefs (pre-treatment) and the final Stage 3 beliefs. Because of time constraints
not all beliefs questions were asked in the intermediate second stage.

The information treatment consisted of statistics about the earnings and labor supply of the
US population. Some of the information was general (e.g., mean earnings for all US workers),
while other information was specific to individuals who had graduated in a specific major (e.g.,
mean earnings for all male college graduates with a degree in business or economics). Appendix
Table A1 lists all of the information treatments. The information treatments were calculated

by the authors using the Current Population Survey (for earnings and employment for the
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general and college educated population) and the National Survey of College Graduates (for
earnings and employment by college major). Details on the calculation of the statistics used
in the information treatment are in the Appendix; this information was also provided to the
survey respondents.

Our goal was to collect information on consequential life activities that would plausibly
be key determinants of the utility gained from a college major. Because of time constraints,
we were forced to make difficult choices in the aggregation of college majors and the breadth
of belief questions. We aggregate college majors to 5 groups: 1) Business and Economics,
2) Engineering and Computer Science, 3) Humanities and Other Social Sciences, 4) Natural
Sciences and Math, and 5) Never Graduate/Drop Out. We provided the respondents a link
where they could see a detailed listing of college majors (taken from various NYU sources) and
how each of these college majors mapped into the aggregate major categories. Given that we
include a never graduate/drop out category, this list of college majors is exhaustive. Thus, we
forced the self reported percent chance of majoring in these categories to sum to 100. Before
the official survey began, survey respondents were first required to answer a few simple practice
questions in order to familiarize themselves with the format of the questions.

Because we wanted to approximate life cycle utility from each major, we collected beliefs
about both initial earnings- just after college graduation, and for later periods, when earnings
might be believed to be much higher. We collected post-graduation beliefs for three periods: i)
first year after college graduation (when most respondents would be aged 22-24), ii) when the
respondent would be aged 30, and iii) when the respondent would be aged 45. At each of those
periods, we ask respondents for their beliefs about their own earnings (including measures
of dispersion), work status (not working, part time, full time), probability of marriage, and
spouse’s earnings. An example question on expected earnings at age 30: "If you received a
Bachelor’s degree in each of the following magor categories and you were working FULL TIME
when you are 30 years old what do you believe is the average amount that you would earn per
year?"? The instructions emphasized to the respondents that their answers should reflect their
own beliefs, and not use any outside information.'°
Our questions on earnings were intended to elicit beliefs about the distribution of future

earnings. We asked three questions on earnings: beliefs about expected (average) earnings,

9We also provided definitions of working full time ("working at least 35 hours per week and 45 weeks
per year"). Individuals were instructed to consider in their response the possibility they might receive an
advanced/graduate degree by age 30. Therefore, the beliefs about earnings we collected incorporated beliefs
about the possibility of other degrees earned in the future and how these degrees would affect earnings. We also
instructed respondents to ignore the effects of price inflation.

10We included these instructions: "This survey asks YOUR BELIEFS about the earnings among different
groups. Although you may not know the answer to a question with certainty, please answer each question as best
you can. Please do not consult any outside references (internet or otherwise) or discuss these questions with
any other people. This study is about YOUR BELIEFS, not the accuracy of information on the internet."
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beliefs about the percent chance earnings would exceed $35,000, and percent change earnings
would exceed $85,000. As detailed below, we use this information to estimate individual specific
distribution of earnings beliefs. Beliefs about spouse’s earnings conditional on own major were
also elicited in a similar way.

The probability of marriage was elicited as follows: "What do you believe is the percent
chance that you will be married by age 30 if you received a Bachelor’s degree in each of the
following?"

Beliefs about labor supply were elicited conditional on marriage. For example, labor supply
conditional on being not married at age 30 was asked as follows: " What do you believe is the
percent chance of the following: (1) You are working full time; (2) You are working part time;
(8) You are not working at all, when you are 30 years old if you are NOT married and you
received a Bachelor’s degree in each of the following?"

Respondents were also asked about their spouse’s labor supply and field of study, conditional
on own field of study. Beliefs about average hours of work for each major were also asked. The

full survey questionnaire is available from the authors upon request.

4.3 Sample Selection and Descriptive Statistics

Our sample is constructed using the following steps. First, we drop 6 students who report
that they are in the 4th year of school or higher, violating the recruitment criteria. Second,
we censor reported beliefs about full time annual earnings (population or self earnings) so
that earnings below $10,000 are recorded as $10,000 and earnings reported above $500,000 are
recorded as $500,000. Third, we drop nearly 25 percent of the sample who report too radical
changes in age 30 earnings (change of positive $50,000 or negative $50,000 between initial and
final information treatments) for any of the majors. Fourth, we exclude individuals who report
a change in graduation probabilities of greater than 0.5 in magnitude in any of the 5 major
categories. The latter sample selection requirements eliminates a minority of respondents who
either made errors in filling out the survey or simply did not take the survey seriously. In
addition, we recode all reported extreme probabilities of 0 to 0.001 and 1 to 0.999. This follows
Blass et al. (2010) who argue that dropping individuals with extreme probabilities would induce
a sample selection bias in the resulting estimates.

The final sample consists of 359 individual observations and 359 x 5 x 2 = 3,590 total (person
x major x pre and post treatment) responses. 36 percent of the sample (129 respondents) is
male, 40 percent is white and 45 percent is Asian. The mean age of the respondents is about
20, with 40 percent of respondents freshmen, 37 percent sophomores, and the remaining 24
percent juniors. The average grade point average of our sample is 3.5 (on a 4.0 scale), and

the students have an average Scholastic Aptitude Test (SAT) math score of 709, and a verbal
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score of 691 (with a maximum score of 800). These correspond to the 93rd percentile and 95th
percentile of the math and verbal score population distributions, respectively. Therefore, our

sample represents a high ability group of college students.

5 Earnings Beliefs and Belief Updating

We begin our data analysis by focusing on expected earnings at age 30. Beliefs about other
future events are discussed below and incorporated into the life-cycle model of post-graduation
utility. Here we examine heterogeneity in beliefs about population average earnings, self beliefs
about what each individual expects to earn in different majors, self beliefs about spouse’s earn-

ings conditional on own major, and revisions in self beliefs following the information treatment.

5.1 Population Beliefs About Earnings

We asked the following question for a randomly selected subset of respondents: "Among all
male college graduates currently aged 30 who work full time and received a Bachelor’s degree in
each of the following major categories, what is the average amount that you believe these workers
currently earn per year?" For another randomly selected group of respondents, we asked the
corresponding question for women. A subset of respondents were asked the population earnings
for both males and females.

Table 1 reports the mean and standard deviation of male and female respondents’ beliefs
about US population earnings of men and women by the 5 major fields, including college drop-
out, the no degree "major". Examining first the beliefs among male students, we see that
mean male belief of age 30 female full time earnings varies from $30,100 for college drop-outs
to $65,900 for graduates with degrees in economics or business. Students believe humanities
and arts has the lowest average earnings among the graduating majors ($48,400). Engineering
and computer science graduates are believed to have earnings close to economics and business,
followed by natural science majors. There is considerable heterogeneity in beliefs as indicated
by the large standard deviation in population beliefs. For example, for the economics and
business field, the 5th percentile of the belief distribution in our sample is $10,000, the 50th
percentile is $70,000, and the 95th percentile is $100,000.

Based on responses of students who reported population earnings for both males and females,
we can construct the perceived gender gap in earnings. This is reported in column (5) of the
table. Males expect a wage gap in their favor in each of the five major fields, with the gap
varying from -3.23% for humanities/arts to -7.41% in college drop-out.

The lower panel of Table 1 shows that female students have beliefs similar to those of male

students about relative earnings in the majors, and expect the highest average earnings in
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economics or business, followed by engineering and computer science, and the lowest earnings
in humanities and arts among the graduating majors. However, relative to male students,
female students believe average earnings to be higher in all fields for both females and males.
Female students, like their male counterparts, perceive a wage gap in favor of men in all the

fields, but report a larger gender gap in earnings for all graduating majors than men.

5.1.1 Errors in Population Beliefs

Columns (2) and (4) of Table 1 report the percent "error" in these beliefs relative to the
information treatment "truth" we provided (see Table A1l for true population earnings that
were revealed in the information treatments). We calculate errors as truth minus belief, so that
a positive (negative) error indicates that the student under-estimates(over-estimates) the truth.
As students revise their self earnings in response to the information treatment, the sign of the
error should match the sign of the self earnings revision: positive errors should cause an upward
self earnings revision and negative errors should cause a downward self earnings revision. We
find support for this kind of logical updating below.

Table 1 reports that the mean percent error is positive for the majority of the fields and sub-
samples, indicating that on average students are under-estimating the earnings in most fields
(exceptions are mean errors for humanities/arts for female respondents, and economics/business
for both male and female respondents, which are over-estimated). The errors in many categories
are substantial, with students under-estimating full time earnings for engineering and computer
science graduates by 7.3 and 23.4 percent, depending on sub-group and sample. Reflecting the
dispersion in baseline beliefs, there is considerable heterogeneity in errors, with non-trivial
numbers of students making both positive and negative errors in all categories. The top panel
of Figure A1l shows the male student distribution of errors regarding full time men’s earnings
with a economics or business degree. While the mean of this error distribution is 6.74 percent,
the 5th percentile is -34.2 percent and the 95th percentile is 86.6 percent.

The last two columns of Table 1 show that, while both male and female students correctly
perceive the wage gap to be negative, i.e., in favor of males in all fields, they substantially
underestimate the wage gender gap, with male students underestimating the gender gap more
than female students. This underestimation is particularly striking for the "not graduate"
category where the actual gender gap is -27.6 percent (i.e., earnings are 27.6 percent higher
for male college drop-outs relative to corresponding females), but female students expect it to
be close to zero and male students expect it to be about -7 percent. Engineering/computer
science and humanities/arts are the only fields where the discrepancy between the actual and

perceived wage gender gap is less than 10 percentage points.
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5.2 Self Beliefs About Earnings

Next, we turn to self beliefs about own earnings at age 30 if the respondent were to graduate
in each major. For all respondents, we asked "If you received a Bachelor’s degree in each of the
following major categories and you were working full time when you are 30 years old what do
you believe is the average amount that you would earn per year?" The first column of Table 2
provides the average and standard deviation of the distribution of reported self earnings in our
sample before the information treatment was provided. The second column of Table 2 provides
the percent revision in self earnings after the information treatment. In general, students believe
their self earnings will exceed the population earnings for the US, with the average self earnings
across all of the major fields higher than the corresponding average population belief about
earnings reported in Table 1. Looking across majors in column (1), we see that self earnings
beliefs follow the same pattern as the population beliefs, with students believing their earnings
will be highest if they complete a major in the economics/business and engineering/computer
science categories, and lowest if they do not graduate or graduate in a humanities and arts field.
There is a clear pattern of a perceived gender gap in self earnings as the average beliefs about
self earnings for men exceeds those for women. Like the population beliefs, there is substantial
heterogeneity in self beliefs, as seen in the large standard deviations (relative to the means).
The middle panel in Figure Al shows the distribution of male beliefs for earnings if they were
to complete a major in economics or business. The 5th percentile of the distribution is $50,000,
the 50th percentile is $90,000, and the 95th percentile is $150,000.

Table A2 provides the baseline, pre-treatment, correlation in earnings across fields. We see
that for both male and female students, there is a generally high correlation in self earnings
across fields: Individuals who believe they will have high earnings in one field also believe
they will have high earnings in other fields. This cross-major correlation is higher for men than
women, indicating that women believe their earnings advantage is more specialized. Comparing
the correlations across fields, we see a higher correlations in earnings belief across technical or
mathematical intensive fields like economics/business and engineering/computer science com-

pared to humanities/arts and economics/business.

5.2.1 Revisions of Self Beliefs

The second column of Table 2 reports the mean and standard deviation of the distribution of
percent post minus pre-treatment changes in self beliefs about earnings. There is considerable
heterogeneity in the revisions of self beliefs. Looking across categories, the average of the percent
revisions distribution varies from about -47 percent (downward revision) to +37 percent (upward
revision). For both male and female students, average revisions in the two highest earning

categories—economics/business and engineering/computer science—are negative, while average
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revisions in the lowest earning field—the not graduate category—are substantially positive. As
indicated by the standard deviations, within categories there is considerable heterogeneity.
The bottom panel of Figure A1 shows the dispersion in male students’ revisions for earnings in
economics/business: the 5th percentile of the percentage earnings revision is -38 percent, the
50th percentile is zero percent, and the 95th percentile is +33 percent. For female students, the
5th, 50th and 95th percentiles are -40 percent, -12.5 percent, and 430 percent, respectively.

5.2.2 Uncertainty of Self Beliefs

While a very large literature has studied the average returns to schooling choices, there is little
empirical work on the role risk plays in educational choices (Saks and Shore, 2005; Nielsen
and Vissing-Jorgensen, 2006). Attanasio and Kaufmann (2011) is the only other study that
collects data on risk perceptions of schooling choices. We asked respondents about the percent
chance that their own earnings at age 30 would exceed $35,000 and $85,000.!! We fit each
student’s response to these questions as well as the reported average earnings for each field to a
log-normal distribution, and obtain individual field specific parameters of the earnings distrib-
ution. The third column of Table 2 shows the average and standard deviation of the individual
standard deviations of the earnings distributions for each field before the information treatment
was provided. Male students believe the variance to be the largest for economics/business and
engineering amongst graduating majors. For females, highest uncertainty is perceived for eco-
nomics/business and natural sciences. The highest level of uncertainty is reported for the not
graduate category by both male and female students. This is not surprising because the not
graduate category is the least likely to be chosen by our respondents.

Column (4) of Table 2 reports the uncertainty of respondents excluding those who report
the field to be their most likely major. This is to test if the perceived earnings uncertainty in a
field is different conditional on whether the respondent intends to choose it or not. Of the eight
possible pairwise comparisons (of whether the uncertainty of in-major students is equivalent to
that of out-major students), only one is rejected at the 5% level. This suggests that students
intending to major in a field do not have any less uncertainty about earnings than those who
do not intend to major in the field. Column (5) of the table reports the uncertainty in earnings
post-treatment. Farnings uncertainty decreases across all majors for both males and females

(with the exception being the not graduate field for female students).

"'The question was asked as follows: " What do you believe is the percent chance that you would earn: (1) At
least $85,000 per year, (2) At least $35,000 per year, when you are 30 years old if you worked full time and you
received a Bachelor’s degree in each of the following major categories?"
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5.3 Beliefs about Spouse Earnings

One potentially important consideration of major choice may be the types of potential spouses
one might marry. Recent empirical papers suggest that investment in education generates
returns in the marriage market. Ge (2010) estimates a structural dynamic (partial equilibrium)
model of college attendance using the NLSY 1979, and shows that marriage plays a significant
role in a female’s decision to attend college. Lafortune (2010) shows that a worsening of
marriage market conditions spurs higher pre-marital investments—in particular for males—in
her sample of second-generation Americans born around the turn of the twentieth century,
and argues that part of this occurs through the anticipated shift in after-marriage bargaining
power. Attanasio and Kaufmann (2011) find that marriage market considerations are important
in females’ schooling choices in Mexico. Evidence of the effect of marriage market considerations
on educational choices is inferred indirectly in these studies. We investigate this in a direct way,
and asked respondents about the earnings of their potential spouse if they were to be married
at age 30 and their spouse worked full-time: " What do you believe is the average amount that
your spouse would earn per year if you received a Bachelor’s degree in each of the following
major categories?" Importantly, we emphasized to respondents that they were to report beliefs
about their spouse’s earnings conditional on their own major, not the potential spouse’s major.
Column (6) of Table 2 reports the mean and standard deviation of beliefs about spouse’s
earnings. Compared to beliefs about own earnings in column (1), male students believe their
spouse’s earnings will be below their own earnings in every major category, while female students
believe their spouse’s earnings will exceed their own earnings. There are substantial differences
in spousal earnings across own major choices, with both male and female students expecting
their spouse’s earnings to be the highest if they themselves majored in economics/business, and
lowest if they graduated in humanities/arts (among graduating majors). The relative spousal
earnings for own major are similar to the relative self earnings for own major. These patterns
indicate that students perceive sorting of spouses by own major choice, and is suggestive of
assortative mating by field of study.!?

Column (7) of Table 2 indicates that the information treatment induced considerable re-
visions in beliefs about spousal earnings, with the mean of the distribution of spousal beliefs

shifting upward in almost all cases.

5.4 Self Beliefs and Population Beliefs

We next examine whether population beliefs regarding earnings and associated errors relate to

self beliefs and self beliefs revisions. Table 3 estimates a series of reduced form regressions. In

12The fact that there is assortative mating by education (more precisely, years of schooling) in the US is well
documented (Mare, 1991; Pencavel, 1998).
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the first 3 columns, we use only the baseline, pre-treatment data, and the dependent variable
is the individual’s (log) expected self earnings in each field. We pool all of the majors together,
and in some specifications include separate intercepts or major-specific fixed effects (dummy
variables). We regress self earnings in each field on the individual’s (log) belief about the
population average earnings in that field. The estimates indicate that population beliefs are
strongly and statistically significantly related to beliefs about self earnings. The log-log form
of the regressions gives the coefficient estimates an "elasticity" interpretation: the coefficient
of 0.96 in column (1) indicates that a 1 percent increase in population beliefs about average
earnings increases beliefs about own earnings by 0.96 percent. The estimated relationship
is reduced only slightly as we add major-specific fixed effects and covariates for individual
characteristics.

Columns (4) and (5) of Table 3 examine whether the revisions in self-earnings are related
to errors in population beliefs. These regressions indicate the extent to which the information
treatments we provide influence individual beliefs about earnings. We regress log earnings
revision in self earnings (post minus pre-treatment) on the log relative error about population
earnings (log(truth/belief)). The coefficient estimates are positive and statistically significant
at the 5 percent level. The coefficient estimate of 0.196 indicates that a 1 percent error (under-
estimate of population earnings) is associated with a 0.196 percent upward revision of self
earnings. The relatively "inelastic" response of revisions in self beliefs to population errors
suggests that self beliefs about earnings are not entirely linked to the type of public population
information we provide. Heterogeneous private information on the abilities and future earnings
prospects of individuals may cause individuals to have an inelastic response to population

information.

6 Major Choice and Post-Graduation Utility

We next examine how beliefs about elements of future, post-graduation utility, including own
earnings, relate to self-reported beliefs about majoring in the different fields. In this section we
report estimates from a number of reduced form type regressions, and in the following section

we report estimates from a structural life-cycle utility model.

6.1 College Major Beliefs

Self beliefs about the probability of graduating with a major in each of the categories were
elicited as follows: " What do you believe is the percent chance (or chances out of 100) that you

would either graduate from NYU with a major in the following major categories or that you
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would never graduate/drop-out (i.e., you will never receive a Bachelor’s degree from NYU or
any other university)?" Percent chance was converted to (0, 1) probabilities.

Table 4 provides descriptive statistics of the expected major field probabilities for male and
female students. For male students, the most likely major is economics/business at 38 percent,
followed by humanities/arts at 32 percent. For women, the most likely major is humanities at 50
percent followed by economics/business at 27 percent. The probability of not graduating at all is
about 3 percent for men and 2 percent for women. Figure A2, which presents the distribution of
(log) expected major field probabilities for male and female students, shows there is considerable
dispersion in beliefs about future degrees. The distributions are bi-modal for most majors, with
a considerable mass of individuals reporting a small or no chance of majoring in each field and
another mass of individuals reporting a large or near perfect certainty of graduating in the field.

Figure 1 provides the post minus pre-treatment change in log beliefs for male and female
students about majoring in each field (relative to humanities): r4; — 7} ; from equation (8).
The mean of the distribution of log odds changes is positive for all fields and for both male and
female students (see last column of Table 4), indicating that after the information treatment,
students on average revised their expected probability of majoring in non-humanities/arts fields
upward relative to humanities/arts. However, as indicated by Figure 1, there were a substan-
tial number of male and female respondents who revised their expected relative major choice
downward, and believed they were more likely to major in humanities/arts relative to the other
majors. About 1/3 of the sample reported no change in the probability of majoring in any
of the fields following the information treatment. The largest upward changes occurred for
the high earning fields (economics/business and engineering/computer science), especially for
women. For example, the average log odds for male students of majoring in economics/business
increased by 28 percentage points, from pre-treatment odds of 61 percent more likely to major
in economics/business relative to humanities to 89 percent post-treatment. For women, the log
odds of majoring in business/economics relative to humanities increased 53 percentage points
from -132 percent to -79 percent (negative odds indicate more likely to major in humanities/arts
than business/economics). After the information treatment, women are still more likely to ma-
jor in humanities/arts than business/economics, but the difference in expected probabilities

declined substantially.

6.2 College Major Beliefs and Self Beliefs about Own Earnings

We next examine the relationship between beliefs about college major choices and future earn-
ings. The first three columns of Table 5 estimate a series of reduced form regressions using
log expected probability of majoring in each field (relative to humanities/arts) as the depen-

dent variable and log self beliefs about earnings at age 30 (relative to humanities/arts) as the
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independent variable. The regressions take the form:

(In7mg; —In 7T,‘m») = [y + fi(Inwy,; —In w,;’i) + Ci0 + v + wiy (12)

where from (6), the residual error term is

Whyi = Vii — Vi T v(ag;) — U(a%,i) + €k

The residual error in this cross-sectional regression consists of unobserved relative tastes v, ; —
714> unobserved relative abilities v(ax ;) — v(az;), and a component e ;, which reflects all other
residual components. The reference major k in these regressions is humanities/arts, wy; is
beliefs about age 30 earnings in major k, C; is a vector of individual specific characteristics,
and v, is a major k fixed effect.

The log-log format of these regressions gives the estimates of 3; a "choice elasticity" in-
terpretation. We estimate that a 1 percent increase in beliefs about self earnings in a major
(relative to self earnings in humanities/arts) increases the log odds of majoring in that field
(relative to humanities/arts) by about 2 percent. This estimate is robust to the inclusion of
a wide array of individual characteristics and major fixed effects. The estimates indicate that
beliefs about future relative self earnings are strongly associated with beliefs about future rela-
tive major choices: individuals appear to select into majors that they believe will provide them
with the highest earnings. Importantly, because we have beliefs about earnings for all fields,
this type of regression avoids the selection issue inherent in using actual major choice and the
actual earnings in that one major, and omitting counterfactual earnings in majors not chosen.

The regressions in columns (1)-(3) of Table 5 are cross-sectional based regressions using
only the baseline pre-treatment beliefs. As described in the identification section, the major
drawback to using only baseline beliefs is that one cannot separately identify taste or ability
components from earnings components. In the reduced form of (12), the residual (v ; + €x,)
contains individual components reflecting individual variation in tastes and abilities in each of
the majors. A concern is therefore the cross-sectional estimates of the relationship between
choices and earnings could be biased if beliefs about earnings are correlated with beliefs about
ability or tastes for the majors. To resolve this problem, column (4) of Table 5 estimates the
reduced form model (12) in individual (within) differences to net out the individual taste and
ability components (v;,; — v;.; + v(ax:) — v(ag,)):

/

[(In7},; —In 7T]~w.) — (Inmg; —Inmg ;)]

= Bo + B1[(In U_j;c,i —In U_J;;Z) — (Inwy; — In U_)i};z)] + Vg + E;g,i — €kyis (13)

where 7}, and w;, ; are post-treatment observations of choice probabilities and expected earn-
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ings. The estimates of this model are equivalent to adding individual fixed effects (FE) as
individual dummy variable indicators to (12).

Using the post- and pre-treatment panel data with individual FE, we estimate (3, the
choice elasticity with respect to beliefs about earnings, at 0.28. The FE estimate is substantially
smaller than the estimate of around 2 using the cross-sectional OLS estimator. The FE estimate
is statistically significant at the 7 percent level (p-value of 0.067), and significantly different
from the cross-sectional /OLS estimates in Columns (1)-(3) at the 5 percent level. The difference
between the FE/panel and OLS/cross-sectional estimates suggests that the individual tastes
and ability components are positively correlated with beliefs about earnings, and this positive

correlation is severely upwardly biasing the estimates in the cross-section.

6.3 College Major Beliefs and Self Beliefs about Spouse’s Earnings

We next turn to adding other potential elements of post-graduation utility to the reduced form
log odds regression framework. As mentioned above, a potential consideration of major choice
may be the types of potential spouses one might marry. Therefore, beliefs about spouse’s
earnings may be related to college major choice. Columns (5)-(8) of Table 5 examine the
responsiveness of beliefs about major choices to spousal earnings. Columns (5) and (6) use
the cross-sectional design, including major fixed effects and individual covariates. Column (5)
shows that beliefs about spousal earnings are statistically significantly related to the beliefs
about major choice for both male and female students, with the estimate being larger for male
students. In column (6) we include both own earnings and spousal earnings. A one percent
increase in spousal earnings in a major (relative to humanities/arts) increases the odds of
graduating with that major by about 1.01 percent for males (p-value 0.003), and 0.395 percent
for females (p-value 0.116). Including spousal earnings reduces slightly the coefficient on own
earnings to 1.94 (from around 2.15 in column (3)). Own earnings continue to be a statistically
significant factor for major choice, with spousal earnings having a considerably lower effect on
major choice. Turning to the fixed effects estimates using the post and pre-treatment differences
in columns (7) and (8), we see that both own and spousal earnings revisions are positively related
to revisions in beliefs about major choice. The own earnings elasticity in column (8) including
spousal earnings is slightly smaller than that including own earnings alone, and the coefficient
is significantly different from zero at the 11 percent level (p-value 0.109). The spousal earnings
coefficient is smaller than the own earnings coefficient for both males and females (p-value of
0.107 for males, and 0.132 for females), indicating that own earnings are more important to
major choice than spouse’s earnings. Self and spousal earnings are jointly significant in the

regression reported in column (8).
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6.4 College Major Beliefs and Self Beliefs about Ability

Ability in each major could be a factor in expectations about future earnings, and may affect the
likelihood of a student completing required coursework necessary to graduate in each major.
We asked the following question: "Consider the situation where either you graduate with a
Bachelor’s degree in each of the following major categories or you never graduate/drop out.
Think about the other individuals (at NYU and other universities) who will graduate in each of
these categories or never graduate/drop out. On a ranking scale of 1-100, where do you think
you would rank in terms of ability when compared to all individuals in that category?" To provide
easier interpretation, we re-scaled the ability beliefs such that 100 represents highest ability and
1 represents lowest ability. Table 6 provides descriptive statistics for the ability rank beliefs.
In general, male students believe they have higher relative ability than female students- this
is consistent with evidence that women tend to be less confident than men (Weinberger, 2004;
Niederle and Vesterlund, 2007). For both male and female students, lowest believed ability is
in engineering and computer science (53 for male students and 46 for female students). The
highest average beliefs about ability for women are in humanities, whereas for male students it
is in the not graduate category.

The second column of Table 6 reports the ability revisions after the information treatment.
For almost all categories, the average ability revision is upward: After receiving the earnings
and labor supply information, the students believe they are more able than they were before.
This likely reflects that fact that most students under-estimated the average earnings in the
population. The only exception to the positive ability updating was humanities/arts for female
students where the average ability rank fell somewhat following the information treatment.

We next turn to examining whether self beliefs about ability relate to beliefs about future
major choices. Columns (9)-(12) of Table 5 examine the responsiveness of beliefs about major
choices to ability. Ability rank in a major (relative to ability rank in humanities/arts) is
positively and significantly related to reported log odds of graduating in that major (relative to
humanities/arts). Column (9) indicates that a 1 percent increase in ability rank in a major is
associated with a about a 2/3 percent increase in odds of completing that major. In column (10),
we add self beliefs about own earnings and spouse’s earnings at age 30. Reflecting the positive
correlation between ability beliefs and self earnings, the ability rank coefficient and self earnings
coefficient are both smaller than when either are included separately in the regression. Self
earnings, spouse’s earnings, and ability are all jointly statistically significant in these regressions
with the expected positive sign on each.

Turning to the individual fixed effect analysis using revisions in log odds as the dependent
variable and revisions in ability as the regressor in column (11), we see a smaller coefficient

of 0.11 on log rank ability than in the cross-sectional analysis. Mirroring the results with
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own earnings, it appears that the unobserved individual specific taste component is positively
correlated with beliefs about ability and this positive correlation biases upward the ability
coefficient in the cross-sectional analysis in columns (9) and (10). Adding own earnings and
spouse’s earnings in column (12) has little effect on the ability coefficient, and it continues to
be precise at the 5% level (p-value 0.015). Compared to the previous specification omitting
ability (column (8)), the own earnings coefficient is slightly smaller and less precise, while the

spouse’s earnings coefficients are little changed.

7 Structural Estimates

7.1 Empirical Model of Post-Graduation Utility

In this section, we develop the specification of post-graduation utility (periods ¢t = 1,...,T).
Each individual from college graduation to retirement makes a series of decisions regarding
labor supply and marriage. At college graduation, we assume each individual is single and has
obtained a degree in particular field k =1,..., K.

In defining the utility function, we distinguish between two states: married and single.
The flow utility in period ¢ if the agent is single is given by Us; = ugs(cs1,), where cg 1 is
the individual’s period t consumption. The own utility for an individual if married is given
by Ut = unm(Carie €mat), where ¢y, is consumption of the individual and cpo¢ is the
consumption of the individual’s spouse. Uy defines the own utility flow in period ¢ from being
married, not the household total utility for both spouses. Our specification of the utility function
allows for the possibility that the individual agent may derive utility from the consumption of
his or her spouse. Flow utility over the two states is then given by U; = m U + (1 — my)Usy,
where m; = 1 indicates marriage, and m,; = 0 indicates single status at period t. The future
events in u(X) from (3) are then the sequence of own and spousal consumption across both the
married and single states: X = [{cs.1.4, Car1t, Caro, Mt fiey)-

We specify the ?tility functions with CRRA forms. When single, the utility function is given

o
At

Cs

by us(csit) = ¢y -, with ¢, € (0,00) and p; € (0,00). 1/p, is the intertemporal elasticity

of substitution (IES) for own consumption (in this specification, p, is the coefficient of relative
risk aversion). When married, we specify a commonly used specification where utility is a sum
of own and spouse’s utility: wp(car1t, o) = unra(Carie) + unra(Caras)-

Own utility while married uses the same preference structure while single (although the

consumption level may be different under marriage, as we describe below): wn1(carie) =
1-p1
C . .
qbllM—’;’t. Spousal preferences over consumption are allowed to be different from preferences over
—F1
1—pg

own consumption: uyo(Carat) = Go2L2E with ¢, € (0,00) and p, € (0,00). 1 rovides the
p ( ) ¢21_p27 2 ) P2 ) P2 P

27



IES for spouse’s consumption.

We use the individual’s self beliefs about own earnings and labor supply and use the indi-
vidual’s self beliefs about potential spousal earnings and labor supply to define consumption
levels under the single and married states. We do not model borrowing and savings and assume
consumption in each period is equal to current period earnings.!®> Because we ask individuals
about full time equivalent earnings, we combine the beliefs about labor supply and full time
earnings to define earnings in any given period. Own and spousal earnings are modeled as y; ; =
wrr1F T + wFT,l,t(hPT,l,t/hFT,Lt)PTl,t and yp; = wrr2:F 1o + wFT,2,t(hPT,2,t/hFT,1,t)PT2,t7
where wpr,; are full time earnings (¢ = 1 own, ¢ = 2 spouse), FT,; € {0,1} is an indicator if
working full-time, PT;; € {0, 1} is an indicator for working part-time, hpr,, is full time hours,
and hpr g is part-time hours. For each potential major, we ask respondents for their beliefs
about the probability of working full or part-time, if single or married, the probability their
potential spouse works full or part-time if married, and beliefs about average hours of work
for each major. We allow an individual’s beliefs about the future distribution of full-time and
part-time probabilities to depend on marriage, and therefore earnings and consumption also
depend on marriage.

Consumption conditional on marriage is then given by cg1+ = y1+ (own consumption when
single), capr14 = K1(y1e+Yy2.) (own consumption when married), and cpro; = (1— K1) (Y14 + o)
(spousal consumption when married). x; € (0,1) is the share parameter which indicates how

much of total household earnings is consumed by each spouse.!?

7.2 Estimation

We estimate the parameters of the utility function using the pre- and post-information beliefs.
Because of time limitations, we were forced to ask a limited set of questions: we cannot ask
respondents to report full time earnings for all post-graduation periods and we cannot ask an
infinite number of questions in order to provide a non-parametric estimate of the distribution
of beliefs. Section C in the Appendix describes our approximations of the full life-cycle beliefs
from the given data. It is important to emphasize that these approximations of beliefs are

entirely individual specific: we make no assumption regarding the distribution of beliefs in the

130ne has two alternatives in adding borrowing and savings behavior to a model such as this. First, following
the earnings and labor supply questions, one could directly ask respondents about future consumption, borrow-
ing, savings, or asset levels. However, framing these types of questions in a meaningful way for respondents may
be quite difficult. Second, one could use traditional observational data to estimate a model of borrowing and
saving and combine this model with the current model allowing consumption to be endogenous given earnings
and labor supply.

14We have also experimented with functions that allow public goods, such that consumption of each spouse
when married can exceed total resources. In some preliminary estimation, we found that these more general
models were at best only weakly identified.
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population.
The estimator is based on the moment condition (9). Using the within post-pre treatment

difference, the non-linear least squares (NLS) estimator for # and « is given by

(0, &) = arg min Z > ki = rra) — {M(Zi,0,0)}] (14)

where h(Z;, 0, ) (defined earlier) is a non-linear function of parameters. The utility function
parameters to be estimated include [p;, 1y, py, ¥5]. We set k1 = 1/2 as we found it difficult to
separately identify the consumption share parameter from parameters governing the marginal
utility of consumption. The ability function is parameterized as v(a) = Ina. [ is assumed to be
0.95 and T" = 55. The combined parameters then consists of the taste for each major v,,...,vx
and the post-graduation utility function parameters #. We allow for different utility function

parameters for male and female students.!'®

7.3 Model Estimates

Table 7 provides the parameter estimates for two versions of the structural model. Model 1 is
our main model. The marginal utility of own consumption (when single) is given by gblc;ﬁft.
We estimate ¢, to be 0.23 for male students and 0.20 for female students, and the curvature
parameter (relative risk aversion) p; to be 4.43 for males and 5.20 for females. Both estimates
are on the high end of previous estimates, but similar to the estimate in Nielsen and Vissing-
Jorgensen (2006). The larger estimate of relative risk aversion for females is consistent with
several studies that conclude that women are more risk averse than men in their choices (Eckel
and Grossman, 2008; Croson and Gneezy, 2009). The high p estimates could be driven by
the fact that our sample reports very high probabilities of completing a degree in humanities
(Table 4), and humanities is one of the fields with the lowest uncertainty in earnings (columns
(3) and (5) of Table 2). Own value of spouse’s consumption has lower values of ¢, and p,. The
coefficient on log ability rank is similar to the estimate in the reduced form of around 0.11 for
both male and female students.

With the estimated parameters of the utility and ability functions, we can use the choice
pre- and post- treatment choices to estimate each individual’s taste for each major (relative
to humanities/arts), given by v, ,. Table A3 provides statistics for the distribution of the
estimated v, , taste parameters (relative to humanities/arts which is normalized to 0). We

see a distinct gender difference in tastes: On average, male students have a strong taste for

15Tn the estimation we also include a vector of revision fixed effects/intercepts that capture any mean differ-
ences in revisions by major. These revision fixed effects can be consistently estimated by estimating the mean
revision for each major (relative to the reference major). The estimator (14) is then computed by de-meaning
the h(-) by these estimated revision fixed effects.
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economics/business majors over humanities/arts (positive v, ;), but average tastes for female
students are negative for all majors, indicating a strong preference for humanities/arts over
all other fields. Interesting, the median male taste for economics/business majors is negative
and close to zero, indicating a skewed taste distribution. Figure 2 provides a direct look at
the distribution of tastes for majors for men and women, respectively. Both distributions show
some bimodality, but the most frequent mode for male students’ tastes is near 0, whereas for

the female students’ tastes the mode is negative.

7.4 Using Cross-Sectional Data Only

We also estimated a second model using only the cross-sectional data and assuming a parametric
distribution for college major tastes. The estimates of this model are intended to illustrate the
"value added" of our panel data information experiment which allows us to flexibly estimate the
distribution of unobserved tastes. For this restricted model, we assumed that the college major
taste terms v, are distributed Type 1 extreme value with gender and major specific means.
We estimated this model using only the pre-treatment data, thereby forming a cross-sectional
dataset. This is essentially the same type of parametric taste restriction and data structure as
Arcidiacono et al. (2011), although we use our life-cycle consumption utility specification and
our data on own earnings and hours, marriage, and spousal earnings and hours. The estimates
for this model are reported in the last column of Table 7. We obtain estimates that generally
have larger degrees of relative risk aversion, and several times larger estimates for the ability
component. The alternate model estimates also imply a lower marginal utility of own and

spousal consumption.

7.5 Sample Fit

Next, we assess the fit of the estimated models, compared to the reported major choice prob-
abilities in the data. Table 8 computes the predicted probabilities of major choice using the
estimated parameters from each model. The unrestricted model fits the choice probabilities
quite well, for both males and females, with only slight deviations between predicted model
probabilities and those from the actual data.

The second model, using a parametric restriction on the taste distribution fits the choice
probabilities substantially worse. There are large differences in predictions from this model
relative to the actual data. For example, this model predicts only 23 percent of males choose
the economics/business field, compared to the actual proportion of 38 percent. Given this low
sample fit, we can soundedly reject the parametric restriction on the taste distribution.

In Table 8 we also report estimates of a model in which we impose risk neutrality (p; = py =
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0) on the unrestricted, panel data estimates. The risk neutral restricted model has considerably
worse sample fit than the unrestricted risk aversion model. For example, the risk neutral model
predicts 55 percent of males will choose the economics/business field, compared to the actual

data probability of 38 percent or the predicted unrestricted model probability of 39 percent.

7.6 Choice Elasticities

We next interpret the estimated model (unrestricted Model 1) in terms of implied responsiveness
of major choices to changes in self earnings. For each major, we increase beliefs regarding own
earnings by 1 percent in every period. How much more likely would individuals be to major in
each major due to this increase in earnings? We compute choice elasticities given by

OTki WrT14
~ - % 100.

gki

e awFT,l,t Tk

Note that these choice elasticities depend on the estimated utility function parameters, and
given the non-separability of tastes, abilities, and u(X, @), also depend on the distribution of
tastes and abilities.

Figure 3 graphs the distribution of the &, ; choice elasticities in our samples of male and
female students. Table 9 reports the mean of this distribution. A value of &, ; = 0.1 indicates
that individual ¢ would increase her probability of majoring in major k£ by 0.1 percent for
a 1 percent increase in own earnings each period. From the figures it is clear that there is
substantial heterogeneity in the responsiveness of individuals to changes in earnings. While
some individuals would have a near zero response to the change in earnings, other individuals
would have a substantial, albeit inelastic, response. The average response for male students
is higher in most majors. The mean elasticity is considerably higher in the no grad field than
in the other fields. This may be due to the relatively low beliefs about earnings in this major

combined with the estimated concavity of the utility function with respect to consumption.

7.7 Decomposition of the Determinants of College Major Choices

Table 10 uses the estimated unrestricted model to decompose the college major choices into
the constituent components. Our decomposition procedures starts by creating a baseline where
every major choice is equally likely. We accomplish this by setting each respondent’s beliefs
about earnings, ability, hours of work, marriage, spousal characteristics (spousal earnings and
hours), and tastes equal to the corresponding level for the humanities/arts major. Therefore,
at the baseline, the odds of majoring in each of the remaining majors (relative to humani-
ties/arts) is 7y ; /7y, = 1. After establishing this baseline, we then progressively re-introduce

each individual’s major specific beliefs and tastes into the estimated choice model in order to
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capture the marginal contribution of each component. The magnitude by which the relative
odds of majoring in each field changes as we add a component measures the importance of this
component. Table 10 reports the choice probability at each stage of the decomposition averaged

over all of the sample respondents.

7.7.1 Male Students

In the first panel, we decompose major choices for male students only. Focusing on the first
row, we see that re-introducing each individual’s beliefs about his own earnings in each major
increases the average odds of majoring in economics/business (relative to humanities/arts)
from the baseline of 1 to 1.11, or a +0.11 marginal increase in odds. The increase in the
average odds of majoring in economics/business reflects the earnings advantage most individuals
perceive from graduating with an economics/business degree, evaluated at the estimated utility
function parameters. In contrast, adding self beliefs about own earnings reduces the odds of
not graduating from a baseline of 1 to 0.8124. Individuals are now less likely to believe they
will not graduate given lower expected earnings from not graduating.

The remaining columns progressively add other model components, and the entries in Ta-
ble 10 reflect the marginal gain of each component, given the other preceding components are
included. Thus, adding beliefs about own ability in Column (2) only slightly reduce the odds
of majoring in economics/business from 1.11 (including beliefs about own earnings) to about
1.10 (including both beliefs about own earnings and own ability). It is likely that the high
positive correlation of beliefs about earnings and ability implies that marginal contribution of
each is rather small. The marginal contribution of ability has the largest negative effect on
majoring in engineering/computer science. The negative sign on the own ability components
indicates that individuals perceive higher "study effort" due to either lower ability or greater
difficulty in economics/business relative to humanities/arts, and thus this factor reduces the
odds of majoring in economics/business.

Column (3) of Table 10 re-introduces beliefs about own work hours for each major. Because
higher work hours increase total earnings (and there is no disutility from work), this tends to
increase the odds of majoring in economics/business the most, and tends to reduce to the odds
of not graduating, given beliefs of higher unemployment spells with this major.

Column (4) adds spousal characteristics, including probability of marriage, spousal earnings,
and spousal hours. The column indicates the marginal contribution of beliefs about gains in
the marriage market from choosing different majors. These gains are positive and highest for
economics/business but negative for not graduating.

Finally, Column (5) adds the remaining determinant of major choice, the vector of estimated

major specific tastes. Tastes have a modest effect on choice to major in economics/business,
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increasing the log odds by 0.0931. Tastes in this case then complement the other positive
contributions to choosing the economics/business major, with the exception of ability. However,
tastes have a large and negative effect on choosing the other majors. The negative sign on
this component indicates that on average male students have high dis-taste for these majors
(relative to humanities/arts). But the high negative taste is offset somewhat, with the exception
of the not graduate category, by the positive contribution from own earnings and spousal

characteristics.

7.7.2 Female Students

The second panel of Table 10 calculates the decomposition for female students. In comparing
the male and female decompositions, it is clear that own earnings differences are a substantially
smaller factor in college major choice for women than men. For ability, the reverse is true as
ability differences across majors are a more important difference for women than men. For
women, the negative component from ability, reflecting lower perceived ability in these majors
relative to humanities/arts, (more than) offsets the positive earnings advantage. This was not
true for men as the ability component, with the exception of engineering/computer science, is
quite minor relative to the earnings component.

For the other components, own hours and spousal characteristics play relatively small mar-
ginal roles, with the exception of the not graduate category, where beliefs about poor spousal
characteristics reduces the probability of not graduating. As with male choices, the taste
component is large. This suggests that while the other determinants of college major choices,
including earnings and ability, are meaningful, the taste component at the time of college major
decision-making is dominant.

Column (4) shows that including spousal characteristics doesn’t change the log-odds for
graduating majors, but decreases the log-odds for the not graduate category. This suggests
that returns in the marriage market are generated by simply going to college, and the college

major itself does not matter much in this aspect.

7.7.3 Gender Ratio

The last panel of Table 10 directly assesses the contribution of the model components to the
ratio of female to male major choices. Women are considerably more likely to major in hu-
manities/arts than other majors: In our sample (before information treatment) the average
female probability of majoring in humanities is 0.5, compared to 0.32 for men. The last panel
of Table 10 calculates the relative odds for women versus men for each major (relative to

humanities/arts):
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In the pre-treatment sample, this ratio for economics/business is 0.46, reflecting that women
are less likely to major in economics/business relative to humanities/arts than men.

As with the previous decomposition, we start with a baseline in which men and women
are equally likely to choose all majors, and hence the female-male odds ratio is 1. In column
(1) we see that adding beliefs about own earnings begins to create a gap between men’s and
women’s college major choices. Adding earnings beliefs, reduces the economics/business female-
male ratio from 1 to 0.95 (-0.05 marginal reduction). Similar negative reductions are evident
for engineering/computer science and natural sciences. This increase in the gap between men
and women occurs because men have generally higher earnings beliefs in these fields relative
to humanities/arts than women (column (1) of Table 2). The exception is the not graduate
category in which the female-male ratio actually increases to a female advantage from 1 at the
baseline to 1.047 (+0.047 marginal gain).

In Column (2), we see that ability differences between men and women cause a further
increase in the gender gap in major choice. Differences in beliefs about ability exacerbate the
tendency for men to major in non-humanities subjects more than women. This is because men
have higher ability beliefs in these beliefs relative to humanities/arts than women (column (1)
of Table 6). On the other hand, gender differences in beliefs about own hours and spousal
characteristics have only a minor effect on the gender gap. Finally, in Column (5), adding
gender differences in major specific tastes substantially increases the gender gap. This finding
suggests that pre-college determinants of tastes, as distinct in our framework from beliefs about
earnings, ability, hours, and spousal characteristics, causes the majority of the gender difference

in college major choices.

8 Conclusion

This paper seeks to shed light on the determinants of college major choice. While there is a
recent and growing literature that uses subjective expectations data to understand schooling
choices, our approach is unique in several ways. First, our survey has an innovative experimental
feature embedded in it, which generates a panel of beliefs. This allows us to explore the extent
to which students tend to be misinformed about the population distribution of earnings. We
show that this experimental variation in beliefs can be used to identify the distribution of
tastes non-parametrically. Second, we collect data on earnings uncertainty, which are usually

not available in observational data. Third, instead of using indirect proxies, we provide the
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first direct evidence of the role of marriage market returns on schooling choice. The fit of the
model that excludes each of these additional dimensions (panel beliefs and non-parametric taste
distribution, earnings uncertainty, marriage market returns) is substantially worse than that of
our richer model, indicating that incorporating each of these dimensions is important.

We find that, in the context of major choice, earnings differences across majors is a more
important factor for men than women, and ability differences matter more for women than
men. However, tastes for majors are a dominant factor for both males and females. Even
accounting for other characteristics such as earnings, labor supply, and ability, we find that
females have a strong taste for humanities/arts while male students have a strong relative taste
for economics/business. We also estimate substantial heterogeneity in tastes within gender,
with the distribution of relative tastes estimated to be bimodal.

In our framework, "tastes" are defined at the point when students are in college. These could
be tastes for major-specific outcomes realized in college, such as the enjoyability of coursework,
or major-specific post-graduation outcomes, such as non-pecuniary aspects of jobs. It is impor-
tant to note that tastes in our framework are distinct from ability and future earnings, though
they may be correlated with them (which we do find to be the case). Differences in tastes may
arise exogenously because of innate differences (Kimura, 1999; Baron-Cohen, 2003), or they
may be endogenously determined by earlier interactions with peers and parents (Altonji and
Blank, 1999). Understanding the originations of differences in tastes is not investigated in the
current study, and is an important area of future research.

Despite our sample consisting of very high ability students enrolled at an elite university,
we find that our survey respondents have biased beliefs about the distribution of earnings
in the population. As shown in Table 2, the mean errors in population full-time earnings are
substantial, varying from -17% (overestimation by 17%) to 28% (underestimation of population
earnings by 28%), depending on the sub-group and the major. In Sections 5 and 6, we show
that students sensibly revise their self beliefs as well as their probabilistic choices in response
to this information. This suggests that information campaigns focused on providing accurate
information on returns to schooling could have a large impact on beliefs and choices of students.
While such campaigns have been conducted in developing countries (Jensen, 2010; Nguyen,
2010), our results make a case for such interventions in developed countries as well.!6

A possible alternative to our quasi-experimental approach is the methodology used in Blass
et al. (2010), who estimate preferences for electricity reliability by asking survey participants to
value various bundles of electricity generation bills and outage probabilities. The shortcoming of

their counterfactual scenarios approach is that it may be difficult to operationalize meaningful

60ne study that we are aware of in a developed setting is that of Bettinger et al. (2011) who find that
providing information on financial aid and assistance in filling out federal financial aid forms improves college
access.
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counterfactual scenarios for some applications of interest- it is not clear how one would pose

simple counterfactual situations in complicated occupational choice contexts, such as college

major choices.

How students revise their beliefs and choices in an experimental framework like ours where

the information is presented to the respondent may be very different from the change in their

behavior where they acquire the information themselves (Hertwig et al., 2004). While it is

challenging to identify changes in information sets in actual panels (Zafar, 2011), an important

question for future research is to explore how students’ beliefs and choices evolve over longer

time horizons, and how persistent the impact of revealed information is on students’ behavior.
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Figure 1: Distribution of Changes in Log Expected Graduation Probabilities (Relative to Hu-
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Figure 2: Distribution of Individual Fixed Taste (Rel to Hum./Arts) Component v,
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Figure 3: Distribution of Choice Elasticities
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Table 3: Population and Self Beliefs

(1) (2) (3) (4) (5)

Dependent Variable: Log Self Log Self Log Self Log Earnings Log FEarnings
Earnings FEarnings FEarnings Revision Revision
(Post-Pre) (Post-Pre)

Log Population 0.961 0.876 0.904

Earnings Beliefs (0.0437) (0.0641 ) (0.0622)

Log Population 0.196 0.161
Earnings Errors (0.0455) (0.0423)
log(Truth/Belief)

Individual Covariates? NO NO YES - =
Major Dummies? NO YES YES NO YES

Notes: Individual covariates include an indicator for gender; indicators for Asian, Hispanic,
black, or other race (white race is omitted category), overall grade point average (GPA); scores
on the verbal and mathematics SAT; indicators for whether the student’s mother and father
attended college; parents’ income; and indicators for non-reported (missing) SAT scores, GPA,
parental education or parental income. Major dummies include indicators for the remaining
majors: economics/business, engineering/computer sci, natural science, and no graduation.
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Table 4: Expected Probability of Completing a Degree in Specific Majors

Before® Before Revisions Log Odds Reyv.
(Rel. Hum./Arts)® Post-Pre Treat. (Rel. Hum./Arts)®

Male Students

Econ./Bus. mean  0.378 0.0547 -.00251 0.276
(std.) (0.381) (0.679) (0.115) (1.69)
Eng./Comp.Sci. mean  0.0940 -.230 0.0167 0.496
(std.) (0.171) (0.452) (0.0873) (2.00)
Hum./Arts mean  0.324 - -.0289 -
(std.) (0.373) - (0.109) -
Nat. Sci. mean  0.179 -.145 0.0182 0.347
(std.) (0.279) (0.535) (0.110) (1.89)
Not Graduate mean  0.0275 -.296 -.00374 0.127
(std.) (0.0650) (0.377) (0.0627) (1.93)
Female Students
Econ./Bus. mean  0.268 -.235 0.0164 0.528
(std.) (0 348) (0.676) (0.0960) (1.75)
Eng./Comp.Sci. mean  0.0529 -.450 0.0212 0.659
(std.) (0.127) (0.442) (0.0683) (1.95)
Hum./Arts mean  0.503 - -.0421 -
(std.) (0.389) - (0.126) —
Nat. Sci. mean  0.159 -.344 0.00303 0.340
(std.) (0.261) (0.553) (0.0965) (1.74)
Not Graduate mean 0.0184 -.485 0.00133 0.0944
(std.) (0.0537) (0.396) (0.0317) (1.77)

Notes: This table reports the mean self belief about completing each of the majors.
Probabilities are reported on a 0 - 100 scale, and then normalized to 0 - 1. The standard
deviation is in parentheses.

* Reported before receiving info treatments.

b Probability in major - Probability in Humanities.

¢ Log(Post Probability in major / Post Probability in Humanities) - Log(Pre Probability in
major / Pre Probability in Humanities).
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Table 6: Ability Rank

Self Ability Ability Revision

Before (Post - Pre)
Sample: Male Students
Economics/Business mean 64.96 7.19
(std.) (28.59) (20.28)
Engineering/Computer Science mean 53.82 12.50
(std.) (29.77) (25.21)
Humanities/Arts mean 67.98 6.64
(std.) (29.62) (23.67)
Natural Sciences mean 64.81 3.65
(std.) (27.65) (21.58)
Not Graduate mean 69.99 1.15
(std.) (38.31) (35.30)
Sample: Female Students
Economics/Business mean 59.18 6.28
(std.) (26.98) (23.65)
Engineering/Computer Science mean 45.63 11.10
(std.) (28.95) (28.81)
Humanities/Arts mean 73.81 -.191
(std.) (24.33) (22.39)
Natural Sciences mean 56.81 5.82
(std.) (28.64) (24.51)
Not Graduate mean 55.01 13.70
(std.) (43.36) (43.33)

Notes: Ability ranking is measured on a 100 point scale, with 100 being top rank and 1 lowest
rank.
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Table 7: Structural Model Post-Graduation Parameter Estimates

Model 1 Model 2
(Panel Data) (Cross-Sectional
Data Only)
Males Females Males Females
Own Utility
o} 0.2333 0.1985 0.0828 0.1170
(0.0613)  (0.0172) (0.0003)  (0.0008)
P1 4.4379 5.1919 6.4819 5.4128
(1.0694)  (1.0246) (0.0033)  (0.0096)
Spouse Utility
R 0.3435 0.3146 0.0813 0.1868
(0.2774)  (0.0395) (0.0008)  (0.0091)
P 3.8003 4.0965 1.2190 1.5482
(0.8480)  (1.0593) (0.0381)  (0.1542)
Ability « 0.1113 0.1053 0.6221 0.4301
(0.0699) (0.0421) (0.0667)  (0.0360)

Notes: Bootstrapped standard errors in parentheses calculated from 50 bootstrap repetitions.

Table 8: Sample Fit

Data Model 1 Model 2 Model 3
(Cross-Sectional (Risk Neutral:
(Unrestricted) Data Only) p1 = py =0)

Male Students Prob. of Majoring in...

Economics/Business 0.3782 0.3861 0.2305 0.5540
Engineering/Comp. Sci. 0.0940 0.0953 0.0332 0.2166
Humanities/Arts 0.3235 0.3130 0.6123 0.0984
Natural Sciences 0.1787 0.1877 0.1090 0.1216
Not Graduate 0.0275 0.0179 0.0149 0.0094
Female Students Prob. of Majoring in...

Economics/Business 0.2684 0.2771 0.5363 0.5717
Engineering/Comp. Sci. 0.0529 0.0583 0.0661 0.1498
Humanities/Arts 0.5031 0.4908 0.2550 0.1215
Natural Sciences 0.1591 0.1588 0.1293 0.1430
Not Graduate 0.0184 0.0150 0.0133 0.0141
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Male Female
Students Students
% A Prob Bus/Econ 0.0728 0.0459
% A Prob Eng/Comp. Sci.  0.1121  0.0702
% A Prob Hum./Arts 0.1531 0.0733
% A Prob Nat. Sci. 0.1589 0.0811
% A Prob No Grad. 0.3475 0.2272

Table 9: Own Earnings Choice Elasticities: Average Percent Change in Probability of Gradu-
ating in Each Major with a 1% Increase in Own Earnings in that Major

Table 10: Decomposition of the Determinants of College Major Choices

Male Students
Econ./Bus.
Eng./Comp. Sci.
Nat. Sci.

Not Grad.

Female Students
Econ./Bus.
Eng./Comp. Sci.
Nat. Sci.

Not Grad.

Female/Male Ratio
Econ./Bus.
Eng./Comp. Sci.
Nat. Sci.

Not Grad.

Baseline
Equal
Odds

1.0000
1.0000
1.0000
1.0000

1.0000
1.0000
1.0000
1.0000

1.0000
1.0000
1.0000
1.0000

(1) (2) (3) (4) (5)
Change in Odds Relative to Humanities/Arts
Add Add Add Add Add
Own Own Own Spousal Own
Earnings Ability Hours Charact. Tastes
0.1079  -0.0046 0.0197  0.0174  0.0931
0.0982  -0.0415 0.0079  0.0127 -0.7729
0.0505 -0.0039 0.0024  0.0044 -0.4537
-0.1795  -0.0260 -0.0251 -0.0848 -0.6274
0.0536  -0.0366 0.0082  0.0128 -0.4732
0.0423 -0.0816 0.0080  0.0137 -0.8637
0.0253  -0.0443 0.0046  0.0076  -0.6696
-0.1412  -0.0958 -0.0142 -0.0652 -0.6532
-0.0490 -0.0292 -0.0089 -0.0027 -0.4524
-0.0509  -0.0399 0.0008  0.0020 -0.5218
-0.0239 -0.0387 0.0022  0.0033 -0.4033
0.0467 -0.0864 0.0129  0.0254 -0.4651

30



A Appendix

Percent
20 30

10

Percent
20 30 40

10

Percent
20 30 40

10

Error Distribution

T T
-200 -100

100
Percent Error
Self Earnings Distribution

i , — |

0 10 20 30

Earnings (in $10,000's)

Self Earnings Revision Distribution

T T T U T
-200 -100 0 100 200 300

Percent Eamings Revision

Figure Al: Male Expectations of Male Econ/Business Earnings
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Figure A2: Distribution of Expected (Log) Graduation Probabilities
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Table A2: Correlation in Self Earnings Across College Majors

Panel A: Male Students
Econ/Bus Eng/Comp. Hum./Arts Nat Sci. No Grad.

Econ/Bus 1.00

Eng/Comp. 0.794 1.00

Hum./Arts 0.374 0.366 1.00

Nat Sci. 0.540 0.591 0.778 1.00

Not Grad. 0.662 0.797 0.719 0.799 1.00

Panel B: Female Students
Econ/Bus Eng/Comp. Hum./Arts Nat Sci. No Grad.
0

Econ/Bus 1.0

Eng/Comp. 0.602 1.00

Hum. /Arts 0.446 0.431 1.00

Nat Sci. 0.483 0.546 0.431 1.00

Not Grad. 0.186 0.206 0.360 0.0445 1.00

Table A3: Distribution of Estimated Taste Parameters (Relative to Humanities/Arts)

Econ./Bus. Eng./Comp.Sci Nat. Sci. No Grad.
Male Students

Mean 0.507 -1.38 -0.764 -2.07
(Std.) (4.47) (3.71) (3.90) (3.01)
Median -0.0381 -0.464 -0.198 -1.59
Female Students

Mean -1.36 -3.13 -2.06 -3.53
(Std.) (4.21) (3.28) (3.67) (2.80)
Median -1.55 -2.83 -1.61 -3.96
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B Information on Survey Design and Information Treat-

ments

Description of data sources provide to survey respondents:

Sources:

1) CPS: The Current Population Survey (CPS) is a monthly survey of about 50,000 house-
holds conducted by the Bureau of the Census for the Bureau of Labor Statistics. The survey
has been conducted for more than 50 years. The CPS is the primary source of information on
the labor force characteristics of the U.S. population. The sample is scientifically selected to
represent the civilian non-institutional population.

2) NSCG: The 2003 National Survey of College Graduates (NSCG) is a longitudinal survey,
designed to provide data on the number and characteristics of individuals. The Bureau of the
Census conducted the NSCG for the NSF (National Science Foundation). The target population
of the 2003 survey consisted of all individuals who received a bachelor’s degree or higher prior
to April 1, 2000.

Methodology:

1) CPS: Our CPS sample is taken from the March 2009 survey. Full time status is defined
as "usually" working at least 35 hours in the previous year, working at least 45 weeks in the
previous year, and earning at least $10,000 in the previous year. Average employment rates,
average earnings, and percent with greater than $35,000 or $85,000 earnings is calculated using
a sample of 2,739 30 year old respondents.

2) NSCG: We calculate inflation adjusted earnings using the Consumer Price Index. The
salary figures we report are therefore equivalent to CPS figures in 2009 March real dollars. Full
time status is defined as in the CPS sample. Given the need to make precise calculations for
each field of study group, we use the combined sample of 30-35 year old respondents and age
adjust the reported statistics for 30 year olds. This sample consists of 14,116 individuals. To
calculate average earnings, we use an earnings regression allowing for separate age intercepts,
one each for 6 ages 30-35. The predicted value of earnings from the regression is used as
the estimate of average earnings for 30 year olds. For the percent full time employed, and
percent with earnings greater than $35,000 and $85,000, we use a logit model to predict these

percentages for 30 year olds and include a separate coefficient for each of the 6 ages 30-35.
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C Estimation Details

This Appendix describes the approximation of beliefs we use to construct expected lifetime
utility from each major. To make clear the relationship between the beliefs questions, which
are conditioned on future ages of the respondents, we index age ¢ = 22, ...,55, rather than use
time. At period ¢t = 1 (first post-graduation period) in the lifecyle model we assume individuals

are aged 22.

C.1 Beliefs about Own Earnings

For each individual, for each major, and for both the pre- and post- treatment periods, we have
7 data points: i) expected earnings immediately after graduation, ii) expected earnings at age
30, iii) belief that own earnings would exceed $35,000 at age 30, iv) belief that own earnings
would exceed $85,000 at age 30, v) expected earnings at age 45, vi) belief that own earnings
would exceed $35,000 at age 45, vii) belief that own earnings would exceed $85,000 at age 45.
With 5 major categories, this provides bx7x2 = 70 data points on beliefs about own earnings
for each individual respondent.

From this data, we estimate a Normal distribution approximation to individual beliefs about
the distribution of earnings for all periods. For each individual i, we assume beliefs about

earnings in major k follow

2
Inwpr gk ~ N gk O1qik)

where

0 1 2 2
Higik = Mk T Miikd + 11559

_ 0 1
Olgik = 01k T 01,14

This parameterization allows beliefs in earnings to grow with age ¢, following the standard
concave pattern. We also allow the variance in beliefs about own earnings to vary over time by
allowing the variance parameter to depend on age. The individual specific beliefs parameters
consist of Wi = (1§ g, 1 Mo g> Oop, 01s). We estimate these parameters using a method of
simulated moments (MSM) estimator. For any given parameter vector w; ;, we form a sequence
of simulated earnings beliefs draws. From this sequence of earnings draws, we construct the

simulated counterpart to the 7 statistics detailed above. Our estimator then chooses the w;
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parameters that minimize the quadratic distance between the simulated and actual data beliefs.
Note that we estimate w; , for all individual, majors, and for the pre- and post-treatment states

separately.!”

C.2 Beliefs about Spouse’s Earnings

For self beliefs about future spouse’s earnings, we use a similar approximation method. For
beliefs about spouse’s earnings we economized on data question given the length of survey
collection and only asked about the equivalent i)-v) beliefs for spouses. We follow the same
model and estimation procedure for spouse’s earnings beliefs as with own earning beliefs and
estimate a potentially different vector w; ; of parameters for spouses.

2
Inwpr2gik ~ N(Hogik 2q,ik)

where

0 1 2 2
Hogik = Mok T Moird + M2 59

0 1
02,qik = 025 T O 14-

C.3 Beliefs about Own Labor Supply

For labor supply, we asked respondents to report their beliefs about the probability they would
work either full-time, part-time, or not all, conditional on marriage. We asked this information
for two time periods: age 30 and age 45. We also asked population beliefs by major about the
average hours each individual believes a full time individual works in each major. To conserve
on time, this question was only asked in the final post-treatment part of the survey, but the
full /part /no work probability question was asked both in the pre- and post- treatment periods.
We construct an approximation to the hours beliefs for all periods by assuming full time hours
by marriage.

We construct the hours distribution (conditional on marriage m,;x € {0,1}) as

I"In order to remove outliers that can happen by chance in the simulated wages, we enforce an earnings
ceiling and floor as in the original data. We replace all simulated full-time earnings exceeding $500,000 with
$500,000 and all simulated earnings less than $10,000 with $10,000.
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20 w/ prob. pr(PT gir = 1|mgix) ;

. { hiie W/ prob. pr(FTy gk = 1mg,k)
1,q,i,k —
0 w/ prob. 1 — (pr(FTy gk = Umgix) + pr(PT1gik = 1 mgik))-

where h, = hsoix1{q < 35} + hys.x1{q > 35} is individual i’s belief about average full time
hours in major k£, which depends on age. Beliefs about part-time hours are assumed to be 20

hours for all individuals and majors.

C.4 Beliefs about Spouse’s Labor Supply

The distribution of spouse’s hours is modeled symmetrically with own labor supply. We there-

fore set full time hours for spouse’s labor supply to 40.

20  w/ prob. pr(Ply,;r=1) ,

ilgﬂ"k W/ pI'Ob. pr(FTZq,i,k = 1)
h2,q,i,k =
0 w/ prob. 1 — (pr(FTsgix = 1) +pr(PTa,r = 1)).

where h;j = hzoir1{q < 35} + husx1{q > 35} is individual i’s belief about opposite gender’s
average full time hours in major k, which depends on age. pr(FTy ., = 1) and pr(PTs,;r = 1)
are the beliefs of individual ¢ about her spouse’s probability of working full or part-time at age

t if individual ¢ graduates with major k.

C.5 Beliefs about Marriage

For marriage, we elicited beliefs about the probability the individual is married for 3 time
periods: i) first year upon graduation (¢ = 22), ii) age 30, and iv) and age 40. We use a linear

function to interpolation beliefs for all years as follows:

pr(magir = 1) for ¢ = 22
pr(magir = 1) + pT(mgO’i‘k:ggigg(m”’““:l) (g —22) for 30 < q < 22
primep =1) =< pr(msoix =1) for ¢ = 30
pr(magp = 1) + Zasi=loprimaeis=l) (, _ 30) for 30 < ¢ < 45
pr(masix = 1) for ¢ > 45.
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