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Abstract: Reconstructing global species interaction networks and identifying the 

abiotic and biotic factors that shape them are fundamental yet unsolved goals in 

ecology. Here, we integrate multi-kingdom organismal abundances and rich 

environmental measures from Tara Oceans and find that environmental factors are 

incomplete predictors of community structure. To study biotic effects, we 

reconstructed the first global photic-zone co-occurrence network. Interactions are 

non-randomly distributed across plankton functional types and phylogenetic groups, 

and show both local and global patterns. Known and novel interactions were 

identified among grazers, primary producers, viruses and (mainly parasitic) 

symbionts. We show how network-generated hypotheses guide confocal microscopy 

analyses towards discovery of symbiotic relationships. Together, this effort provides a 

foundational resource for ocean food web research and integrating biological 

components into ocean models. 

 

One Sentence Summary: A species interaction network from the global ocean shows 

novel insights in top-down effects on community structure. 

 

 

Introduction 

 

The structure of oceanic ecosystems result from the complex interplay between 

resident organisms and their physico-chemical environment. In the world’s largest 

ecosystem, oceanic plankton (composed of viruses, prokaryotes, microbial 

eukaryotes, and zooplankton) form intricate and dynamic trophic and symbiotic 

interaction networks (1-4) that are also influenced by environmental conditions. 

Ecosystem structure and composition are governed by abiotic as well as biotic 

control. The former includes environmental conditions and nutrient availability (5), 

while the latter encompasses grazing, pathogenicity and parasitism (6, 7). Like in 

terrestrial and intertidal ecosystems, determining the relative importance of both 

processes represents a grand challenge in ecology (5), but overall, abiotic effects have 

historically been considered to be the factor most strongly determining community 

structure (8). The challenge is to establish a quantitative understanding of biotic and 

abiotic interactions in natural systems where the organisms are taxonomically and 
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trophically diverse (9). Although experimental methods were developed to detect 

interactions encompassing virus-host associations (10-13) and competition and 

cooperation among bacteria (14), they are not sufficiently high-throughput yet to be 

applied community-wide in natural systems. However, sequencing technologies are 

now enabling community profiling across trophic levels, organismal sizes, and 

geographic ranges, providing the opportunity to predict organismal interactions across 

entire biomes based on co-occurrence patterns (15). Previous bioinformatics efforts 

addressing these issues have provided insights on the structure (16, 17) and dynamics 

of microbial communities at specific locations or organismal domains (18-20).  

 

Here we analyze data from 313 plankton samples the Tara Oceans expedition (21) 

derived from 7 size-fractions covering collectively 68 stations at 2 depths across 8 

oceanic provinces (Table S1), spanning organisms from viruses to small metazoans. 

For these samples, viral (13), prokaryotic and eukaryotic abundance profiles were 

derived from clusters of metagenomic contigs, mitags (22) and 18S rDNA V9 

metabarcodes, respectively (9, 23, 24) (Table S1). In addition, rich environmental 

data from on-site and satellite measurements were collected (21, 25, 26). On this 

dataset, network inference methods and machine learning techniques are leveraged to 

disentangle biotic and abiotic signals shaping ocean plankton communities, and to 

construct a global-ocean cross-kingdom species interaction network (interactome). 

The interactome is then used to explore top-down relationships in the photic zone and 

validated using microscopic investigation of host/symbiont pairs and in silico analysis 

of phage-host pairings. 

 

Evaluating the effect of abiotic and biotic factors on community structure 

Given the breadth of the dataset we first re-assessed the effects of environment and 

geography on community structure. Using variation partitioning (27) we found that on 

average, the percentage of variation in community composition explained by 

environment alone was 18%, by environment combined with geography 13%, and by 

geography alone only 3%  (28);(29). In addition, we built random forest-based models 

(30) to predict abundance profiles of the Operational Taxonomic Units (OTU) using 

a) OTUs alone, b) environmental variables alone, c) OTUs and environmental 

variables combined, and tested for each OTU whether one of the three approaches 

outcompeted the other (see Methods). These analyses revealed that 95% of the OTU-
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only models are more accurate in predicting OTU abundances than environmental 

variable models, while combined models were no better than the OTU-only models 

(31);(32). This suggests that, unlike previously assumed (8), abiotic factors have a 

limited effect on community structure.  

 

To study the role of biotic interactions, we developed a method to identify robust 

species associations in the context of environmental conditions. Twenty-three taxon-

taxon and taxon-environment co-occurrence networks were constructed based on 

9,292 taxa, representing the combinations of two depths, seven organismal size ranges 

and four organismal domains (Bacteria, Archaea, Eukarya, viruses) (33). To reduce 

noise and thus false positive predictions, we restricted our analysis to taxa present in 

at least 20% of the samples and used conservative statistical cutoffs (see Methods). A 

global network was obtained by performing the union of the individual networks. This 

network features a total of 127,995 unique edges, of which 92,633 are taxon-taxon 

edges and 35,362 are taxon-environment edges (Table 1). Node degree does not 

depend on the abundance of the node (OTU) (33). As such this network represents a 

novel, extensive resource to examine species associations in the global oceans (33-

36).  

 

Next, we assessed how many of the observed taxon links were indirect associations 

representing ‘niche effects’ driven by geographic or environmental parameters (i.e., 

associations between taxa that are only due to a common response to an 

environmental condition (15)). Motifs consisting of two correlated taxa that also 

correlate with at least one common environmental parameter (“environmental 

triplets”) were examined using three approaches (interaction information, sign pattern 

analysis, and network deconvolution (37)) to identify associations that were driven by 

environment (32, 34); 27,868 such taxon-taxon-environment associations (30% of 

total) were detected. Among environmental factors, we found that PO4 , temperature, 

NO2  and mixed layer depth were frequent drivers of network connections (Figure 

1A). Notably, while the three methodologies pinpoint indirect associations, only 

interaction information directly identifies synergistic effects in these biotic-abiotic 

triplets. Exploiting this property, we disentangled the 27,868 environment-affected 

associations into 8,961 edges driven solely by abiotic factors (38) (excluded from the 

network for the remainder of the study) and 18,907 edges whose dependencies result 
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from biotic-abiotic synergistic effects. This revealed that a minority of associations 

can be partly or completely explained by an environmental factor.  

 

Evaluation of predicted interactions 

Because co-occurrence techniques were thus far applied principally to bacteria, we 

assessed the sensitivity of the approach for detecting eukaryotic interactions based on 

V9 rDNA metabarcodes. We created, through extensive literature searches, a list of 

573 known symbiotic interactions sensu lato (i.e., parasitism and mutualism) in 

marine eukaryotic plankton (36, 39). We extracted 42 genus level interactions for 

which both partners (OTUs) were present in the abundance pre-processed input 

matrices, and found that 40.5 % of these were predicted, and up to 49 % when only 

parasitism was considered – a considerable number, given the fact that the list is 

based on interactions that are from other locations and potentially transitive or 

facultative. The probability of having found each of these interactions by chance 

alone was <0.01 (Fisher exact test, average pval = 4e-3, median pval = 5e-7). Most of 

the false negative interactions were due to the strict filtering rules we determined to 

avoid false positives. Based on this sensitivity and a false discovery rate averaging to 

9% (computed from null models; see Methods), we estimate the lower and upper 

limits for the number of interactions among eukaryotes present in our filtered input 

matrices to be 55,000 and 150,000. 

 

Biotic interactions within and across kingdoms 

We next focused on the integrated network containing 83,672 predicted biotic 

interactions (31) (36) that were non-randomly distributed within and between size 

fractions (Figure 1B, C) (40). Copresences (positive associations) outnumbered 

mutual exclusions (anticorrelations; 73% versus 27%), and a non-random edge 

distribution with regard to phylogeny was observed (Figure 2A), with most 

copresences derived from syndiniales and other dinoflagellates, and exclusions 

involving arthropods. On higher taxonomic ranks (e.g., Order), we found that 

although taxonomically related groups do co-occur (2,500 associations within the 

same order; (15, 16)), 32% (1,157) was found across different orders (38, 41). Certain 

combinations of phylogenetic groups are over-represented. For instance, a clade of 

syndiniales (the MALV-II Clade 1 belonging to Amoebophrya (3)) shows a 

significant enrichment in positive associations with tintinnids (P = 2e-4), amongst the 
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most abundant ciliates in marine plankton (42). Although this tintinnid/syndiniales 

interaction is not mentioned in current plankton ecology studies, the tintinnid 

Xystonella lohmani was described in 1964 to be infected by Amoebophrya tintinnis 

(43) and tintinnids can feed on Amoebophrya free-living stages (44). Other found 

host-parasite associations included the copepod parasites Blastodinium, Ellobiopsis 

and Vampyrophrya (43, 45-47).  

 

On the other hand, Maxillopoda, anticorrelating with Bacillariophyceae and 

collodarians, contribute a large number of the negative associations (38), three groups 

of relatively large species whose biomass can dominate planktonic ecosystems. 

Collodarians and copepods occupy the same size range in, respectively, the 

oligotrophic tropical and eu/meso-trophic temperate systems (9, 48). The decoupling 

of phyto- and zooplankton in open oceans by diatoms anti-correlating to copepods 

(49, 50) is classically attributed to growth rate differences and to the diatom 

production of compounds harmful to their grazers (51). The combination of these 

effects could lie at the basis of this observation, which contrasts with other free-living 

autotrophs represented in the network (cyanobacteria and prymnesiophytes), which 

display primarily positive associations (Figure 2A). 

Cross-kingdom associations between Bacteria and Archaea were limited to 24 mutual 

exclusions. Within Archaea, Thermoplasmatales (Marine Group II) co-occur with 

several phytoplankton clades. Links between Bacteria and protists recovered 5 out of 

8 recently discovered interactions from protist single-cell sequencing (52). Significant 

copresences between Diatoms and Flavobacteria agreed with their described 

symbioses (53). We also observed co-ocurrence of uncultured dinoflagellates with 

members of Rhodobacterales (Ruegeria), in agreement with a symbiosis between 

Ruegeria sp. TM1040 and Pfiesteria piscicida around the ability of Ruegeria to 

metabolize dinoflaggelate-produced DMSP (54).  

 

Global versus local associations 

We further investigated whether our network was driven by global trends (e.g., 

whether species co-occur across oceanic regions) or is mainly local and limited to 

specific interaction ‘hotspots.’ To this aim, we divided our set of samples into 7 main 

regions: Mediterranean Sea (MS), Red Sea (RS), Indian Ocean (IO), South Atlantic 

(SAO), Southern Ocean (SO), South Pacific Ocean (SPO) and North Atlantic Ocean  
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(NAO), and assessed the ‘locality’ of associations by comparing the score with or 

without that region (see Methods). We found that association patterns were mostly 

driven by global trends as only 15% of edges were identified as local (Figure 2B, C). 

Approximately two thirds of local associations occur in MS (8,371) followed by SPO 

(1,119), while the rest are contributed by IO (946), with SO (901), SAO (123) and RS 

(891), and NAO (60) (Figures 2C-G). One should note that MS was the region with 

most sampling sites, which allowed us to recover more local patterns. Nevertheless, 

Figures 2C-G show that although the same major groups (order level) interact in both 

the global and local networks, each local site has its own specific interaction profile 

(Pval < 1e-8) (38, 41, 55). 

 

Parasite impact on plankton functional types 

Our approach being particularly suitable for predicting parasitic interactions, we 

assessed their potential impact on biogeochemical processes by exploring a functional 

sub-network (22,223 edges) of known and novel plankton parasites (9) together with 

classical ‘plankton functional types’ (PFTs (56)). PFTs group taxa by trophic strategy 

(e.g., autotrophs vs. heterotrophs) and role in ocean biogeochemistry (Figure 3A)(39, 

57). Overall, the tight relationship between the different PFTs (network density of 

0.71) highlights strong dependencies between phytoplankton and grazers. 

Furthermore, we find that PFTs are universally, but non-homogeneously associated to 

parasites. Most links involve syndiniales MALV-I and MALV-II clades associated to 

zooplankton and, to a lesser extent, to microphytoplankton (excluding diatoms). This 

emphasizes the important role of alveolate parasitoids as top-down affectors of 

zooplankton and microphytoplankton population structure and functioning (3) - 

although the latter group is also affected by grazing (1). The meso-planktonic 

networks contain several known syndiniales targets (Dinophyceae, Ciliophora, 

Acantharia and Metazoa; Figure 3B) (58). In large size fractions, interactions between 

known parasites and groups of organisms that in theory are too small to be their hosts 

were found (59); 32% of these associations involved the abundant and diverse marine 

stramenopiles (MAST) and diplonemids (other Discoba and Diplonema) (9). 

Although their eco-physiology is under-investigated, previous studies (60, 61) suggest 

a parasitic role for these lineages. The association of these groups with other parasites 

would be explained by putative co-infection of the same hosts. Contrasting with the 

above observations, we find phytoplankton silicifiers (diatoms) displaying a 
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significant number of mutual exclusions. One possible interpretation of this is that 

diatom silicate exoskeletons (62) and toxic compound production  (51) could act as 

efficient barriers against top-down pressures (63). 

 

Phage-microbe associations 

We investigated phage-microbe interactions, another major top-down process 

affecting global bacterial/archaeal community structure (7). A major challenge in this 

area is to link viruses to their hosts (64). Here, surface and deep chlorophyll 

maximum virus-bacteria networks revealed 1,479 positive associations between viral 

populations and six of the 54 known bacterial phyla (specifically – Proteobacteria, 

Cyanobacteria, Actinobacteria, Bacteroidetes, Deferribacteres and Verrucomicrobia), 

and one archaeal phylum (Euryarchaeota). These 7 phyla represent most of abundant 

bacterial/archaeal groups across 43 investigated samples (Figure 3C), suggesting that 

the networks are detecting abundant virus-host interactions. Additionally, these 

interactions include phyla of microbes lacking viral genomes in RefSeq databases 

including Verrucomicrobia, and non-extremophile Euryarchaeota, hinting at some of 

the first viral genomic sequences for important yet understudied phyla (Figure 3D) 

(41, 65, 66). 

 

In addition, these data help in more comprehensively evaluating viral “host range” 

breadth, fundamental for predictive modeling and thus far largely limited to 

observations of cultured virus-host systems that insufficiently map complex 

community interactions (64). While not without caveats, these virus-host interaction 

data suggest that viruses are very host specific with ~45% of the phage populations 

interacting with only a single host OTU, and the remaining 55% interacting with no 

more than a few, often closely related OTUs (Figure 3C; robustness tested using 

simulations, see Methods). Further, these networks are modular at large scales and 

nested within sub-modules at smaller scales (67), suggesting that viruses are host-

range-limited across large sections of host space (the modularity), but that specialist 

and generalist phages prey on specific groups within sub-sections of this available 

host space (the nestedness). One should note that the eukaryotic parasite-host 

networks also show nestedness and indications for modularity, suggesting that similar 

rules apply across kingdoms. While these co-occurrence networks have the scale 

needed to more fully represent natural communities, they will obviously require 
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experimental validation to confirm predicted host-phage associations.  Recent 

experimental (10-12, 68) and informatic (13, 69) innovations should help in this 

regard once these technologies (i.e. experimental protocols) are operational and 

required data (i.e. complete genomes or large genome fragments) are available (70).  

 

Microscopic validation of predicted interactions 

Finally, we assessed whether our global interactome can also be used to guide 

observation-based discovery of symbiotic interactions. Specifically, a predicted 

putative photosymbiotic interaction between an acoel flatworm (Symsagittifera sp.) 

and a green microalga (Tetraselmis sp.), was validated experimentally by combined 

Laser Scanning Confocal Microscopy (LSCM), 3D reconstruction, and reverse 

molecular identification on flatworm specimens isolated from Tara Oceans preserved 

morphological samples (see Materials and Methods). Using this approach, we 

observed numerous microalgal cells (5 to 10 µm diameter) within each of the 15 

isolated acoel specimens (Figure 4);(71). The 18S sequence from several sorted 

holobionts matched the metabarcode pair identified in the co-occurrence global 

network. These results demonstrate that the combination of molecular ecology, 

microscopy and bioinformatics provide a powerful toolkit to unveil key symbioses in 

marine ecosystems. 

Conclusions 

Unraveling the global ocean interactome remains a grand challenge for developing 

predictive understanding of the dynamics and structure of ocean ecosystems. The 

interactome, reported here, spanning all three organismal domains and viruses, 

provides a foundational global ocean dataset towards this aim. The analyses presented 

place new emphasis on the role of top-down biotic interactions in the epipelagic zone, 

and present myriad hypotheses that will guide future research to understand how 

symbionts, pathogens, predators and parasites interact with their target organisms, and 

ultimately help elucidate the structure of the global food webs that drive nutrient and 

energy flow in the ocean.  
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Methods 

 

Sampling 

The sampling strategy used in the Tara Oceans expedition is described in (72) and 

samples used in the present study are listed in Table S1. The Tara Oceans nucleotide 

sequences are available at the European Nucleotide Archive (ENA) under project ID 

PRJEB402 (http://www.ebi.ac.uk/ena/data/view/PRJEB402). 

 

Physical and environmental measurements 

Physical and environmental measurements were carried out with a vertical profile 

sampling system (CTD-Rosette) and data collected from Niskin bottles. We measured 

temperature, salinity, chlorophyll, CDOM fluorescence (fluorescence of the colored 

dissolved organic matter), particles abundance, nitrate concentration and particle size 

distribution (using an Underwater Vision Profiler). In addition, mean mixed layer 

depth (MLD), maximum fluorescence, vertical maximum of the Brünt-Väisälä 

Frequency N (s−1), vertical range of dissolved oxygen, and of change of nitrates were 

determined. Satellite altimetry provided the Okubo-Weiss parameter, Lyapunov 

exponent, mesoscale eddie retention and sea surface temperature (SST) gradients at 

eddie fronts (24). Data are available at http://www.pangaea.de. 

 

Abundance table construction  

Prokaryotic 16S rDNA metagenomic reads were identified, annotated and quantified 

from Illumina sequenced metagenomes (hereafter mitags) as described in (22) using 

the SILVA v.115 database (24, 73, 74). The abundance table was normalized using 

the summed read count per sample (24, 75). Quality-checked V9 rDNA metabarcodes 

were clustered into swarms as in (9, 76), and annotated using the V9 PR2 database 

(77). PR2 barcodes were associated to fundamental trophic modes (auto- or hetero-

trophy) and symbiotic interactions (parasitism and mutualism) based on literature. 

Swarm abundance and normalization was performed as in (9, 76). Bacteriophage 

metagenomes were obtained from the < 0.2µm fractions for 48 samples and contigs 

were annotated and quantified as in (23). The abundance matrix was normalized by 

total sample read count and contig length. 

In all cases, only OTUs with relative abundance > 1e-8 and detected in at least 20 % 

of samples were retained. Since sample number in the input tables ranged from 17 to 
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63, prevalence thresholds varied (from 22% to 40%). The sum of all filtered OTU 

relative abundances was kept in the tables to preserve proportions. Abundance tables 

are available at http://psbweb07.psb.ugent.be/raeslab/supplemental/taraoceans.html 

 

Random forest-based models 

Eukaryotic, prokaryotic and environmental matrices were merged into two matrices 

(Deep Chlorophyll Maximum layer (DCM) and surface water layer (SRF)). For each 

of the three models (OTU versus other OTUs (MOTU), environmental factors (MENV) 

or combined (MOTU+ENV)), regressions were perfomed with OTU abundance as 

dependent and the abundances of other OTUs or environmental factors as independent 

variables. For each regression, up to 20 independent variables were selected using the 

minimum Redundancy Maximum Relevance (mRMR) filter-ranking algorithm. 

Regressions were performed using random forests (30) and followed by a leave-one-

out cross-validation. The variable subset with the minimum leave-one-out NMSE 

(Normalized Mean Square Error) was selected. To identify the best model for a given 

target OTU, the significance of the NMSE difference was tested on the absolute error 

values (paired Wilcoxon test adjusted by Benjamini-Hochberg FDR estimation (78)). 

NMSE computed on random data are larger than those from original data. In addition, 

MENV outperformed MOTU when OTU abundances were randomized.  

 

Variance partitioning 

Environmental variables were z-score-transformed; spatial variables (MEM 

eigenvectors) were calculated based on latitude and longitude (79). Forward selection 

(80) was carried out with function forward.sel in R-package packfor. Significance of 

the selected variables was assessed with 1000 permutations using functions rda and 

anova.cca in vegan. Variance partitioning (81) was performed using function varpart 

in vegan on Hellinger-transformed abundance data, the forward-selected 

environmental variables, and the forward-selected spatial variables and tested for 

significance with 1000 permutations. 

 

Network inference 

Taxon-taxon co-occurrence networks were constructed as in (15), selecting Spearman 

and Kullback-Leibler dissimilarity and discarding any edge not supported by both 

measures. Measure-specific p-values were merged using Brown's method (82) and 
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multiple-testing-corrected with Benjamini-Hochberg (78). Edges with p-values above 

0.05 were discarded.  

Taxon-environment networks were computed with the same procedure, starting with 

8,000 initial positive and negative edges, each supported by both methods. For 

computational efficiency, we computed 23 taxon-taxon and taxon-environment 

networks separately, for two depths (DCM and SRF), four eukaryotic size fractions 

(0.8-5 µm, >0.8 µm, 20-180 µm and 180-2000 µm) and their combinations, the 

prokaryotic size fraction (0.2-1.6µm and 0.2-3.0µm) and its combination with each of 

the eukaryotic and virus (< 0.2 µm) size fractions. We then generated 23 taxon-

environment union networks for environmental triplet detection and merged the 

taxon-taxon networks into a global network with 92,633 edges. 

 

Estimation of false discovery rate 

We estimated the false discovery rate (FDR) of network construction with two null 

models. The first shuffles counts while preserving total OTU count sums. For the 

second, we fitted a Dirichlet-Multinomial distribution to the input matrix using the 

dirmult package in R (83) and generated a null matrix by sampling from this 

distribution, preserving total sample count sums. Null matrices were generated from 

count matrices (0.8-5µm, 20-180 µm and 180-2000 µm eukaryotic and prokaryotic 

size fraction SRF and DCM). Network construction was performed with the 16 null 

matrices and thresholds applied to the original matrices (33). From edge numbers in 

the original and the null networks, we estimated an average FDR of 9% (33).  

 

Indirect taxon edge detection 

For each taxon-environment union network, node triplets consisting of two taxa and 

one environmental parameter were identified. For each triplet, interaction information 

II was computed as: , where CI is the conditional mutual 

information between taxa X and Y given environmental parameter Z and I the mutual 

information between X and Y. CI and I were estimated using minet (84). Taxon edges 

in environmental triplets were considered indirect when II<0 and within the 0.05 

quantile of the random II distribution obtained by shuffling environmental vectors 

(500 iterations). If a taxon was part of more than one environmental triplet, the triplet 

with minimum interaction information was selected. 

II = CI(X,Y | Z )− I(X,Y )
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For each environmental triplet, we also checked whether its sign pattern (the 

combination of positive and/or negative correlations) was consistent with an indirect 

interaction. From 8 possible patterns, 4 indicate indirect relationships (e.g. two 

negatively correlated taxa correlated with opposite signs to an environmental factor).  

Network deconvolution (37) was carried out with beta=0.9. We considered an 

environmental triplet as indirect according to network deconvolution if any of its 

edges were removed.  

All (8,961) negative interaction information triplets were consistent with an indirect 

relationship according to their sign patterns and a majority (6,711) was also supported 

by network deconvolution.   

 

Influence of ocean regions on co-occurrence patterns 

Samples were divided into groups according to region membership. The impact of 

each sample group on the Spearman correlation of each edge in the network was 

assessed by dividing the (absolute) omission score (OS; Spearman correlation without 

these samples) by the absolute original Spearman score. To account for group size, 

the OS was computed repeatedly for random, same-sized sample sets. Nonparametric 

p-values were calculated as the number of times random OSs were smaller than the 

sample group OS, divided by number of random OS (500 for each taxon pair). Edges 

were classified as region-specific when the ratio of OS and absolute original score 

was below 1 and multiple-testing-corrected p-values (Benjamini-Hochberg) were 

below 0.05. 

Over-representation analysis 

Significance of taxon–taxon counts at high taxonomic ranks was assessed with the 

hypergeometric distribution implemented in the R function phyper, as was the 

enrichment of parasites in the network by comparing the intersection between the 

parasites in the network and those in the community (pre-filtered) matrix. 

Mutual exclusion vs copresence analysis was performed using the binomial 

distribution implemented in the R function pbinom, with the background probability 

estimated by the frequency of edges in the network. 

Oceanic region analysis was also assessed using R's pbinom function, with the 

background probablility estimated by dividing total ocean-specific edge number by 

total edge number. The p-value was computed as the probability of obtaining the 

observed number of ocean-specific edges among the edges of a taxon pair. The same 

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



procedure was repeated for each oceanic region separately, with region-specific 

success probabilities. Edges classified as indirect were discarded before the analysis.  

P-values were adjusted for multiple testing according to Benjamini, Hochberg and 

Yekutieli (BY), implemented in the R function p.adjust. 

 

Extracting functional groups from the global plankton interactome  

Functional groups consist of a mix of major monophyletic lineages of parasites, 

together with classical polyphyletic Plankton Functional Types (PFT), as defined in 

(56) (9). (57)Metabarcodes in the network were sorted into 15 parasite groups and 7 

PFTs (57) based on their (i) taxonomical classification, (ii) membership in a given 

size fraction, (iii) trophic mode, and (iv) biogeochemical role in DMS production or 

silicification. After mapping the metabarcodes and their edges onto PFTs and 

parasites, edges are weighted by the number of links they represent. Over-

represention of the number of links included in each edge was assessed with the 

hypergeometric distribution.  

Parasite links in large fractions may point to parasite-host connections. We extracted 

all edges in the large fractions (20-180µm and 180-2000µm) between barcodes 

annotated as parasites and non-parasitic barcodes. Partners of parasites comprised 

potential hosts (Fig 3B) but also organisms that are either too small or without size 

information. The former may represent unknown parasites (e.g. co-infecting a host 

with known parasites) while the latter may represent novel hosts.  

 

Nestedness and modularity analysis  

Nestedness was quantified with the NTC (nestedness temperature calculator) 

algorithm (85) implemented in nestedtemp in vegan and assessed for significance 

with 25 permutations (also confirmed using NTC in BiMAT (86) using 100 

permutations). The analysis was carried out for 1,869 positively correlated phage-

prokaryotic pairs and 3013 putative parasite-host interactions in the 20-180 µm and 

180-2000 µm size fractions. Modularity was computed with the LP (Label 

propagation) BRIM algorithm (87) in BiMAT (86) with 100 permutations. Nestedness 

of the host-phage network as quantified with the NODF (nestedness with overlap and 

decreasing fill) algorithm (88) in BiMAT with 100 permutations was strongly 

significant. To assess the robustness of the results for the host-phage network, we 

tested the impact of random removal or addition of 5%, 10%, 15% and 20% edges. 
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Random addition of edges reduced modularity but not nestedness (according to both 

NODF and NTC), whereas random edge removal did neither change modularity nor 

nestedness scores. 

 

Bacteriophage sequence screening in genomes of predicted hosts 

Contigs of predicted hosts were compared (BLAST) to a set of viral sequences 

detected in draft and single-cell genomes. One virome contig (TARA_36DCM_3902) 

displayed significant similarity to a sequence from a single-cell genome available in 

WGS (AA160P02DRAFT_scaffold_31.32). The taxonomy of this single-cell genome 

was evaluated based on the affiliation of 16S rRNA detected with meta-rRNA (89) 

from this single-cell genome. The comparison of gene content between TARA and 

WGS SAG contigs was generated with Easyfig (90), and genes from these contigs 

were functionally annotated based on a BLAST comparison to the NCBI nr database. 

 

Evaluation of predicted interactions 

A list of 573 known symbiotic interactions sensu lato (i.e., parasitism and mutualism, 

at least 1 protist partner) in marine eukaryotic plankton, covering 197 eukaryotic 

genera, described in 76 publications since 1971 was compiled in three steps: First, we 

manually screened publications linked to each PR2 db ((91);3170 publications) for 

marine eukaryotic phytoplankton interactions. Second, we screened 293 publications 

retrieved from Web of Science with the query:  'TOPIC:(plankton* AND (marin* OR 

ocean*)) AND (parasit* OR symbios* OR mutualis*)'. Finally, we screened GenBank 

18S rDNA sequences of symbionts for which the 'host' field was known. We labeled 

these interactions as  'Unpublished'. 

 

Experimental validation of a predicted interaction 

V9 pairs were searched for organisms of suitable size to allow its isolation from 

morphological samples. This way, we targeted a predicted photosymbiosis between 

an acoel flatworm (V9 rDNA metabarcode 83% similar to Symsagittifera 

psammophila (92)) and a photosynthetic microalga (Tara Oceans V9 metabarcode 

100% similar to a Tetraselmis sp) (93) 

Fifteen acoel specimens (hosts) were isolated from formaldehyde-4% microplankton 

samples of station 22 (A100000458), where both partner OTUs displayed high 

abundances. Prior to imaging, specimens were rinsed with artificial seawater, then 
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DNA and membrane structures were stained for 60 minutes with 10µM Hoechst 

33342 and 1.4µM DiOC6(3) (Life Technologies). Microscopy was conducted using a 

Leica TCS SP8 (Leica Microsystems) confocal laser scanning microscope and a HC 

PL APO 40x/1.10 W motCORR CS2 objective. The DiOC6 signal (ex488nm/em500-

520nm) was collected simultaneously with the chlorophyll signal (ex488nm/em670-

710nm), followed by the Hoechst signal (ex405 nm/em420-470nm). Images were 

processed with Fiji (94), and 3D specimens were reconstructed with Imaris (Bitplane).  

To obtain the sequences of the metabarcodes of each partner, seven acoels were 

isolated from ethanol-preserved samples from station 22 (TARA_A100000451), 

individually rinsed in filtered seawater, and stored at -20°C in absolute ethanol. DNA 

was extracted with MasterPureTM DNA/RNA purification kit (Epicenter) and PCR 

amplified using the universal-eukaryote primers (forward 1389F and reverse 1510R) 

from (9). Chlorophyte-specific primers (Chloro2F: 5'- 

CGTATATTTAAGTTGYTGCAG-3' and Tetra2-rev 5'- 

CAGCAATGGGCGGTGGC GAAC-3') were designed to amplify the microalgae V9 

rDNA as in (4). Purified amplicons were subjected to poly-A reaction and ligated in 

pCR®4-TOPO TA Cloning vector (Invitrogen), cloned using chemically competent 

E. coli cells and Sanger-sequenced with the ABI-PRISM Big Dye Terminator 

Sequencing kit (Applied Biosystems) using the 3130xl Genetic Analyzer, Applied 

Biosystems.  
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Table legends 

 
Table 1. Properties of the merged taxon network. The positive sub-set of the network 
was clustered with the leading eigen vector algorithm (95). 

Figure legends 

 

Figure 1. Global oceanic taxon-environment interaction network properties. (A) 

Major environmental factors affecting abundance patterns. Phosphate concentration 
(PO4), Temperature and Nitrite concentration (NO2) are the top 3 parameters driving 
abiotic associations followed by Mixed Layer Depth (MLD), Particulate beam 
attenuation measured at 660 nm, Nitrite+Nitrate concentration (NO2NO3), Depth 
(here pressure), Silica concentration (Si), Nitracline, Eddy retention (in days) and 
others corresponds to the agglomerated contribution of the rest of parameters tested 
(see Table S1 for a complete listing). (B) Number of inter-domain and intra-domain 
copresences and mutual exclusions. (C) Distribution of edges across size fractions: 
0.2-1.6(3), prokaryote-enriched fractions 0.2-1.6 μ m and 0.2-3 μ m; > 08, non-size-
fractionated samples; 08_5, piconano-plankton; 20_180, micro-plankton; 180_2000, 
meso-plankton; interfrac,  includes interfraction networks 08_5 versus 20_180, 08_5 
versus 180_2000, 20_180 versus 180_2000 and 0.2-1.6(3) versus ≤0.2 (virus-enriched 
fraction). 

 

Figure 2. Taxonomic and geographic patterns within the co-occurrence network. 

(A) Top 15 interacting taxon groups depicted as colored segments in a CIRCOS plot, 
where ribbons connecting two segments indicate copresence and exclusion links, on 
left and right, respectively. Size of the ribbon is proportional to the number of links 
(copresences and exclusions) between the OTUs assigned to the respective segments, 
and color is the one of the segment (of the two involved) with more total links. Links 
are dominated by the obligate parasites syndiniales and by Arthropoda and 
Dinophyceae. (B) Tara Oceans sampling stations grouped by oceanic provinces. (C) 
Frequency of local co-occurrence patterns across the oceanic provinces, showing that 
most local patterns are located in MS. (D-G) Taxonomic patterns of co-occurrences 
across MS (D), SPO (E), IO (F) and RS (G). Edges are represented as ribbons 
between barcodes grouped into their taxonomic order as in A. Links sharing the same 
segment are affiliated to the same taxon (Order), showing that the connectivity 
patterns across taxa are conserved at high taxonomic ranks. The local specificity of 
interactions at higher resolution (OTUs) is apparent by thin ribbons (edge resolution) 
with different starts and end positions (different OTUs) within the shared (taxon) 
segment, section color and ordering correspond to those in panel A. 

Figure 3. Top-down interactions in plankton. (A) Subnetwork of metanodes that 
encapsulate barcodes affiliated to parasites or Plankton Functional Ttypes (PFTs). The 
PFTs mapped onto the network are: phytoplankton dimethyl sulfide (DMS) 
producers, mixed phytoplankton, phytoplankton silicifiers, pico-eukaryotic 
heterotrophs, proto-zooplankton and meso-zooplankton.  Edge width reflects the 
number of edges in the taxon graph between the corresponding metanodes. Over-
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represented links (multiple-test corrected Pval < 0.05, Fisher’s exact test) are colored 
in green if they represent copresences and in red if they represent exclusions; grey 
means non-overrepresented combinations. When both copresences and exclusions 
were significant, the edge is shown as copresence. (B) Parasite connections within 
micro- and zooplankton groups. (C) Number of hosts per phage (inset: phage 
associations to bacterial (target) phyla). (D) Putative Bacteroidetes viruses detected by 
co-occurence and detection in a single-cell genome (SAG). On the left, viral 
sequences from a Flavobacterium SAG (top) and Tara Oceans virome (bottom), 
displaying an average of 89% nucleotide identity. On the right is the correspondence 
between the ribosomal genes detected in the same SAG (top) and the 16S sequence 
associated to the Tara Oceans contig based on co-occurence (79% nucleotide 
identity). For clarity, a subset of contig ARTD0100013 only (from 10,000 to 16,000 
nucleotides) is displayed. This sequence was also reverse-complemented. PurM: 
Phosphoribosylaminoimidazole synthetase, DNA Pol. A: DNA polymerase A. 

 

 Figure 4. Experimental validation of network-predicted interaction 

(photosymbiosis). 

Guided by the predictions from the co-occurrence network and abundance patterns, 
acoel flatworms (Symsagittifera sp.) together with their photosynthetic green 
microalgal endosymbionts (Tetraselmis sp.) were collected in microplankton samples 
from Tara Oceans Station 22 in the Mediterranean Sea. Pictures show a 3D 
reconstructed specimen from LSCM images (Green channel: cellular membranes 
(DiOC6); Blue channel: DNA and the nuclei (Hoechst33342); Red channel: 
chlorophyll autofluorescence). (A) Co-occurrence plot of Symsagittifera and 
Tetraselmis related OTUs along Tara Oceans stations, showing the relatively high 
abundance of the holobiont at Station 22. (B) Dorsal view of the entire acoel flatworm 
specimen (~300µm). The epidermis (green) is completely covered with cilia and 
displays some pore holes. (C) The removal of the green channel reveals the 
widespread distribution of small unicellular algae (red areas) inside the acoel body. 
The worm’s nuclei display a clear signal (compact round blue shapes) while the algal 
nuclei are dimmer. A dinoflagellate theca (arrow head) is located in the central 
syncytium likely indicating predation. (D) Cross-section along a ZY plane allows 
localization of the algae, beneath the epidermis in the parenchyma. Only the external 
cell layer (green signal) from the dorsal view is visible, due to the thickness and 
opacity of the worm. Scale bar: 50 µm. 
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Table 1. Network properties 
 

Nodes Edges Positive 
edges 
(per-cen-
tage) 

Nega-
tive 
edges 

Average 
clus-
tering 
coef-
ficient 

Ave-
rage 
path 
length 

Dia-
meter 

Ave-
rage 
bet-
ween-
ness 

Modu-
larity 
of posi-
tive 
net-
work 

Num-
ber of 
mo-
dules in 
posi-
tive 
net-
work 

9169 92,633 68,856 
(74.33) 

23,777 0.229 3.43 12 11024 0.51 51 
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