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Abstract

Excessive type 2 helper T cell responses to environmental antigens can cause immunopathol-

ogy such as asthma and allergy, but how such immune responses are induced remains

unclear. We studied this process in the airways by immunizing mice intranasally with the anti-

gen ovalbumin together with either of two Toll-like receptor (TLR) ligands. We found the TLR5

ligand flagellin promoted a type 2 helper T cell response, whereas, a TLR9 ligand CpG oligo-

deoxyribonucleotide (ODN) promoted a type 1 helper T cell response. CpGODN induced

mRNA encoding interleukin (IL)-12 p40, whereas, flagellin caused IL-33 secretion and induced

mRNAs encoding IL-1 and thymic stromal lymphopoietin (TSLP). By using mice deficient in the

TLR and IL-1R signaling molecule, myeloid differentiation primary response 88 (MyD88), in

conventional dendritic cells (cDCs) and alveolar macrophages (AMs), and by cell sorting differ-

ent lung populations after 2 hours of in vivo stimulation, we characterized the cell types that rap-

idly produced inflammatory cytokines in response to TLR stimulation. CpGODNwas likely

recognized by TLR9 on cDCs and AMs, which mademRNA encoding IL-12. IL-12 was neces-

sary for the subsequent innate and adaptive interferon-γ production. In contrast, flagellin stimu-

lated multiple cells of hematopoietic and non-hematopoietic origin, including AMs, DCs,

monocytes, and lung epithelial cells. AMs were largely responsible for IL-1α, whereas lung epi-

thelial cells made TSLP. Multiple hematopoietic cells, including AMs, DCs, andmonocytes con-

tributed to other cytokines, including IL-1β and TNFα. MyD88-dependent signals, likely through

IL-1R and IL-33R, andMyD88-independent signals, likely from TSLP, were necessary in cDCs

for promotion of the early IL-4 response by CD4 T cells in the draining lymph node. Thus, the

cell types that responded to TLR ligands were a critical determinant of the innate cytokines pro-

duced and the character of the resulting adaptive immune response in the airways.
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Introduction

The mammalian immune system can mount several different types of innate and adaptive

responses, each of which are specialized to combat different types of infections. Type 1

immune responses and T helper (TH)1 cells promote the host elimination of viruses and intra-

cellular bacteria [1], whereas, type 2 immune responses and TH2 cells promote host defense

against multi-cellular parasites, such as helminthes and bloodsucking insects, but this response

can also cause immunopathology as seen in asthma and allergies [2]. The type of immune

response generated in response to pathogens or allergen exposure likely depends on factors

including the type of tissue the exposure occurs in, which innate immune receptors are

engaged and on which cell types, and which cytokines they produce.

Dendritic cells (DCs) have important roles both in the direct recognition of pathogens and

in the initiation of adaptive immune responses [3]. DCs and other cells express pattern recog-

nition receptors (PRRs), which recognize conserved molecules expressed on pathogens. Often,

DC recognition of pathogens using one family of PRRs, Toll-like receptors (TLRs), leads to

DC production of the cytokine interleukin (IL)-12 [3–5]. IL-12 promotes interferon (IFN)-γ
production by various innate lymphocytes [6]. In turn, IFN-γ promotes TH1 polarization of

activated naïve CD4 T cells. Additionally, DCs take up antigens and migrate from peripheral

tissues to secondary lymphoid tissues where they initiate the T cell adaptive immune response

[3]. IL-12 made by DCs also acts to stabilize polarization of activated T cells to TH1 effectors

[6,7]. Alternatively, DCs may respond to cytokines produced by neighboring cells that recog-

nize infection with their PRRs, and these cytokines may induce DC migration to lymphoid tis-

sues and DC initiation of T cells responses [2].

How various types of stimuli lead DCs to induce TH2 polarization remains incompletely

defined [2]. The cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) have

emerged as important inflammatory cytokines that can drive type 2 immunity. Epithelial cells

that are present at environmental interfaces, can produce these cytokines, which then can act

on neighboring cell types, including DCs [8,9]. In vitro experiments indicate these cytokines

can condition migratory DCs to promote TH2 differentiation [10–12]. However, other inflam-

matory cytokines, such as IL-1α and IL-1β have also been implicated in promoting TH2

responses in the lung [13,14]. IL-1α given intranasally (i.n.) activates migratory DCs [13]. IL-

1α can be expressed by epithelial and hematopoietic cells [15,16], whereas IL-1β is produced

mainly by hematopoietic cells, such as monocytes, macrophages, and DCs [15].

Although innate recognition mechanisms leading to TH2 polarization are still incompletely

understood, a subset of allergens seem to derive their ability to induce type 2 immunity in the

lung from inherent protease activity. Some allergens containing protease activity may act

through members of the protease-activated receptor family or through disruption of epithelial

barrier function. Other allergens alert the immune system by stimulating PRRs, such as C-type

lectin receptors [2,14]. Although TLR stimulation is often associated with TH1 responses, it

can also promote type 2 immune responses in the lung. For example, house dust mites contain

ligands for TLRs, including lipopolysaccharide (LPS), a ligand for TLR4 [17], and contain a

protein that can functionally substitute for the TLR4-associated polypeptide MD2 [18]. In

addition, flagellin, the TLR5 ligand [19], was found to be present at biologically relevant levels

in many house dust extracts [20]. Moreover, TLR ligands such as LPS at low doses [21,22] or

flagellin [20,23] are sufficient adjuvants for priming a robust TH2 response via i.n. immuniza-

tion in mice. The TH2-inducing effect of flagellin involves contributions of both non-hemato-

poietic cells [20,23], most likely lung epithelial cells (LECs), and hematopoietic cells [20], but

how these cells contribute individually to elicit a TH2 response has not been fully defined.

Flagellin and CpGODN Induce Divergent Lung T Cell Responses
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Here, we sought to understand what are the key cell types and cytokines that promote TH2

and TH1 responses in the lung by characterizing the immune responses when the TLR5 ligand,

flagellin, and a TLR9 ligand, CpG motif-containing oligodeoxyribonucleotide (CpG ODN),

were used as adjuvants in the lung. Consistent with previous studies [20,23], our current study

found flagellin promoted a TH2 response. Conversely, we found that CpG ODN induced a

robust TH1 response, in agreement with previous studies [24,25]. The early cytokine responses

to CpG ODN and flagellin had several differences that were important for the subsequent dis-

tinctive adaptive immune responses. CpG ODNmost likely directly stimulated conventional

DCs (cDCs) and alveolar macrophages (AMs) to induce mRNA encoding IL-12 p40. IL-12

was found to be important for innate phase IFN-γ production and TH1 polarization. In con-

trast, flagellin stimulated both hematopoietic cells and LECs to induce synthesis of multiple

inflammatory cytokines, including IL-1α, IL-1β, IL-6, TSLP, and TNFα, and release of IL-33.
In this response, both MyD88-dependent and MyD88–independent signaling contributed to

the activation of DCs, and to their ability to promote subsequent IL-4 production by CD4 T

cells. Thus, lung exposure to an antigen in combination with either CpG ODN or flagellin

induced distinctly polarized adaptive immune responses due to differences in the cell types

responding to these two different TLR ligands, and differences in the inflammatory cytokines

they made during the innate phase of the response.

Results

Flagellin and CpGODN promote distinct adaptive immune responses in
the lung after i.n. immunization

To study how TLR ligands may promote adaptive immune responses in the lung, we slightly

modified a well-studied allergic asthma model in which the TLR4 ligand, LPS, was used as an

adjuvant in the lung [21,22]. Previous studies showed that immunizing mice with the model

antigen ovalbumin (OVA) together with a low dose of LPS resulted in a robust TH2 response

in the lung, whereas using a higher dose of LPS resulted in a TH1 response. We were interested

in whether other TLR ligands were able to induce preferentially TH1 or TH2 responses in a

dose-independent manner, unlike the dose-dependent effects of LPS. Previous studies have

shown that the TLR5 ligand, flagellin, can induce a TH2 response when used as an adjuvant

subcutaneously [26,27], and in the lung [20,23]. Conversely, the TLR9 ligand, CpG ODN has

been found to promote a TH1 response in the lung [24,25], and in other locations [28]. In the

regimen we used in this study (Fig 1A), B6 mice were sensitized by i.n. exposure to OVA, or to

OVA plus various doses of flagellin or CpG ODN three times on successive days. After 2

weeks, mice were rechallenged with OVA alone for up to four times over a six day time period.

Two days after the last i.n. OVA challenge (d22), we found mice sensitized by a TLR ligand as

adjuvant had 2-10-fold increased numbers of inflammatory cells in the lung airspace, by

assessing cells in the bronchoalveolar lavage (BAL) fluid (Fig 1B). Mice sensitized with OVA

plus flagellin had a predominant eosinophil increase in the lung airspace and lung tissue (S1

Fig), using 5 μg and 1 μg flagellin, respectively, consistent with a TH2 type of inflammation. In

contrast, mice sensitized with OVA plus CpG ODN had few eosinophils in the BAL. Instead,

these mice had robust accumulation of CD8 T cells, monocytes, and NK cells, consistent with

a TH1 type of inflammation. Furthermore, using flagellin as an adjuvant in the lung led to sub-

stantial serum titers of OVA-specific IgE, which were not seen when CpG ODN was used as

the adjuvant, or when OVA was administered by itself (Fig 1C). In contrast, when CpG ODN

was used as an adjuvant, mice produced higher titers of OVA-specific IgG2c. The results seen

after OVA challenge are consistent with the notion that flagellin and CpG ODN induced dis-

tinctly polarized adaptive immune responses.

Flagellin and CpGODN Induce Divergent Lung T Cell Responses
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Fig 1. Distinctive adaptive immune responses following i.n. sensitization with OVA plus either flagellin or CpGODN. (A)
Outline of i.n. sensitization and rechallenge regimen used. Mice were exposed i.n. to OVA (O), OVA plus flagellin (OFla), or OVA
plus CpGODN (OCpG) on d0, 1, and 2. In some experiments, mice were rechallenged i.n. with OVA two weeks later on d15, 16,
19, and/or 20. Immune responses were assessed at one or more of the time points. For (B) and (C), mice were administered with
OVA, OVA plus 5 μg flagellin, or OVA plus 3 μg CpGODN i.n., and rechallenged with i.n. OVA. (B) Airway inflammation on d22
was assessed by flow cytometry of the cells in the BAL fluid. (C) Levels of serumOVA-specific antibodies IgG2c and IgE were
measured by ELISA on d21 or d22. For (D)-(F), the mice were administered with OVA or OVA plus 0.2, 1 or 2 μg flagellin, and
rechallenged with OVA. (D) The effect of sensitization and rechallenge on pulmonary resistance was measured on d22. (E)
Representative images of lung sections on d22 stained with Periodic-acid Schiff (PAS) reagent. (F) Semi-quantitative PAS scores
from lung sections in (E). Pulmonary resistance and PAS scores were similar for each dose of flagellin (not shown). Data in (B)
contain 5 mice per group, and similar results were obtained in two other independent experiments pooled together, data in (C)
contain 5 mice per group and are representative of at least three independent experiments, data in (D) are pooled from four
independent experiments with n = 20 for OVA and n = 26 for OVA plus flagellin (except for acetylcholine dose 0.1 μg/g; OVA
n = 14, OVA plus flagellin n = 20), and data in (F) are pooled from four independent experiments with n = 22 for OVA and n = 27
for OVA plus flagellin. Mice sensitized with OVA plus flagellin had positive PAS scores (average score 2–4) for three of four

Flagellin and CpGODN Induce Divergent Lung T Cell Responses
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Because similar i.n. immunization protocols have been used previously as murine models

of asthma, we also examined whether airway hyperresponsiveness (AHR) to acetylcholine and

mucus production were present, as these characteristics are increased during TH2 inflamma-

tion [29]. Mice sensitized with OVA plus flagellin and rechallenged with OVA exhibited a

non-significant trend toward greater AHR compared to mice sensitized and rechallenged with

OVA alone (Fig 1D). A previous study found a more robust and statistically significant AHR

using a somewhat different lung immunization regime with flagellin as adjuvant [20]. The

mice sensitized with OVA plus CpG ODN and rechallenged with OVA had similar AHR to

mice sensitized and rechallenged with OVA alone (S2 Fig). However, consistent with a previ-

ous report [20], we observed that mice sensitized with OVA plus flagellin had substantial pro-

duction of mucus in the lung, as indicated by Periodic-Acid Schiff staining (Fig 1E and 1F).

To directly address which types of T helper cells were being induced, we examined cytokine

production in CD4 T cells present in lung tissue after rechallenge with OVA by using cytokine

reporter mice. The advantages of this approach are that the in vivo response is being measured,

and that the cytokine secretion of other immune cells can also be assessed. In the 4get/KN2 IL-

4 reporter mice (Il44get/KN2), cells that have opened up the IL-4 gene locus express green fluo-

rescent protein (GFP) from the Il44get allele [30,31], and cells that have recently produced IL-4

additionally express cell surface human CD2 from the Il4KN2 allele [32]. In GREAT IFN-γ
reporter mice (IfngGREAT/GREAT), cells that have recently produced IFN-γ express yellow fluo-

rescent protein (YFP) [33]. In the SMART-17A IL-17A reporter mice (Il17SMART/SMART), cells

that have recently produced IL-17A express cell surface human nerve growth factor receptor

(hNGFR) [34]. We first examined at which time point we could optimally detect cytokine

reporter positive cells in the lung in the three different reporter lines after i.n. OVA challenge.

We found the optimal time points to detect IL-4 reporter, IFN-γ reporter, and IL-17-reporter
positive cells were one day after the fourth, first, or second i.n. OVA challenge, respectively

(data not shown). Although after sensitization with either OVA alone, OVA plus flagellin, or

OVA plus CpG ODN, the numbers of CD4 T cells present in the lung tissue were similar (Fig

2A, 2D and 2G) at all time points examined, the in vivo production of cytokines by the effector

T cells in those mice was quite different. Flagellin used as adjuvant induced a greater number

and percentage of IL-4-producing (GFP+hCD2+) CD4 T cells in the lung (Fig 2B and 2C) than

did CpG ODN as adjuvant. In contrast, CpG ODN used as adjuvant induced greater numbers

and percentages of IFN-γ-producing (YFP+) CD4 T cells and CD8 T cells in the lung (Fig 2E

and 2F) than flagellin used as adjuvant. Interestingly, i.n. sensitization with flagellin also led to

increased numbers of basophils in the lung, many of which produced IL-4 (Fig 2A–2C). In

contrast, immunizations with either flagellin or CpG ODN as adjuvant followed by rechallenge

with OVA led to small increases in the percentages of IL-17-producing (hNGFR+) CD4 T cells

and γδ T cells in the lung (Fig 2H and 2I). These data demonstrate that i.n. immunization with

flagellin as adjuvant and subsequent rechallenge with antigen led to a predominant TH2

response in the lung, whereas immunization with CpG ODN as adjuvant and rechallenge led

to a predominant TH1 response in the lung. These results are in agreement with the different

cellular compositions of the inflammatory infiltrates and antibody isotypes. Our findings are

consistent with previous studies showing i.n. administration OVA plus flagellin led to elevated

IgE and eosinophil levels [20], and production of TH2 cytokines by in vitro antigen-stimulated

LN cells [23] and T cells [20].

experiments. Each circle represents one individual mouse. Error bars indicate mean +SD. * P� 0.05, ** P� 0.01, ***

P� 0.001 using one-way anova with Bonferroni post-test or Student’s t-test in (D).

doi:10.1371/journal.pone.0167693.g001
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Flagellin and CpGODN induce robust innate inflammatory infiltrates in
the lung

As the i.n. administration of flagellin or CpG ODN resulted in distinct adaptive immune

responses upon lung rechallenge with the antigen, we wondered whether the innate inflamma-

tory responses induced by these adjuvants in the lung were also distinct. Flagellin promoted a

robust influx of neutrophils in the lung airspace one day after the first i.n. administration (Fig

3A and 3B), which is consistent with previous studies [35–37]. Flagellin can be recognized

extracellularly by TLR5 and intracellularly by nucleotide-binding domain, leucine-rich repeat-

containing (NLR) proteins Naip5 and Naip6 of the NLRC4 inflammasome [38]. Because previ-

ous studies showed that flagellin may be recognized by TLR11 in some circumstances [39], we

examined neutrophil influx in Tlr5-/-11-/-mice. The neutrophil influx after flagellin i.n. admin-

istration was almost completely abrogated in Tlr5-/-11-/-mice (Fig 3A and 3B), but remained

intact in Nlrc4-/-mice (Fig 3A), indicating that the adjuvant effect of flagellin was mainly

dependent on TLR5 and/or TLR11 signaling. Previous studies have similarly reported that the

adjuvant effect of inhaled flagellin in the lung is dependent on TLR5 [20,23,36] and indepen-

dent of NLRC4 [20,23]. In addition, the neutrophil influx after flagellin i.n. administration

remained intact in Tlr4-/-mice (Fig 3B), indicating that contamination of this preparation of

flagellin with LPS, a ligand for TLR4, was minimal.

Similarly, both flagellin and CpG ODN caused the robust accumulation of inflammatory

cells in the lung one day after the third i.n. administration of OVA plus TLR ligand (Fig 3C).

CpG ODN led to increased numbers of monocytes, as did flagellin to a lesser extent. In con-

trast, flagellin induced a larger number of neutrophils in the lung on d3 than did CpG ODN.

Although i.n. sensitization of mice with OVA plus flagellin and repeated rechallenge with

OVA led to robust accumulation of eosinophils in the lung airspace on d22, the early inflam-

matory infiltrate induced by OVA plus flagellin did not include a substantial number of eosin-

ophils in the lung greater than what was seen in mice treated with OVA alone.

Because i.n. administration of OVA plus flagellin and, to a lesser extent, OVA plus CpG

ODN induced a robust infiltration of neutrophils in the lung, we also examined IL-17A pro-

duction during the innate phase of the response by using the SMART-17A cytokine reporter

mice. Flagellin treatment led to increased percentages of IL-17A-producing γδ T cells and CD4

T cells on d3 (S3 Fig). CpG ODN also promoted an increase, but typically to a lesser degree.

Fig 2. Different polarizations of CD4 T cells in the lung after i.n. sensitization with antigen and either flagellin or CpGODN.
(A-C) Presence of activated TH2 cells and IL-4-producing basophils in the lung of OVA- rechallengedmice. IL-4 reporter (4get/KN2)
mice were administered i.n. with OVA, OVA plus 1 μg flagellin, or OVA plus 3 μg CpGODN, and challenged i.n. with OVA. On d21,
expression of IL-4 reporters by lung CD4 T cells and basophils was determined. (A) Numbers of lung CD4 T cells and basophils. (B)
Representative flow cytometry plots of IL-4 production (hCD2+) by IL-4 competent (GFP+) CD4 T cells (CD1d-tet-CD3+CD4+GFP+)
and basophils (CD1d-tet-CD3-CD49b+SSCloGFP+). (C) Percentages IL-4+ (hCD2+) of IL-4 competent (GFP+) CD4 T cells and
basophils, percentages GFP+IL-4+(hCD2+) of total CD4 T cells, and numbers of GFP+IL-4+(hCD2+) CD4 T cells and basophils. (D-F)
Presence of activated TH1 cells and IFN-γ-expressing CD8 T cells in the lungs of rechallenged mice. IFN-γ reporter (GREAT) mice
were administered i.n. with OVA, OVA plus 5 μg flagellin, or OVA plus 3 μg CpGODN, and challenged with i.n. OVA. On d16,
expression of IFN-γ reporter by lung CD4 and CD8 T cells was determined. (D) Numbers of lung CD4 and CD8 T cells. (E)
Representative flow cytometry plots of IFN-γ (YFP+) by CD4 and CD8 T cells. (F) Percentages and numbers of IFN-γ+CD4 and CD8
T cells. (G-I) Presence of activated TH17 cells and IL-17A-expressing γδ T cells in the lungs of rechallengedmice. IL-17 reporter
(SMART-17A) mice were administered i.n. with OVA, OVA plus 1 μg flagellin, or OVA plus 3 μg CpGODN, and challenged with i.n.
OVA. On d17, expression of the IL-17 reporter by lung CD4 and γδ T cells was determined. (G) Total numbers of lung CD4 and γδ T
cells. (H) Representative flow cytometry plots of IL-17 (hNGFR+) expression by CD4 and γδ T cells. (I) Percentages and numbers of
hNGFR+CD4 and γδ T cells. Data in (A-C) contain four mice per group and are representative of one of three independent
experiments, data in (D-F) contain 4–5 mice per group and are representative one of two independent experiments, data in (G-I) are
pooled from three independent experiments with combined totals of 11–13 mice per group. Each circle represents one individual
mouse. Error bars indicate mean + SD. * P� 0.05, ** P� 0.01, *** P� 0.001 using one-way anova with Bonferroni post-test.

doi:10.1371/journal.pone.0167693.g002

Flagellin and CpGODN Induce Divergent Lung T Cell Responses
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The CpGODN-induced type 1 immune response is dependent on IL-12
and on MyD88 signaling in cDCs and/or AMs

Because previous studies have shown that TLR stimulation in DCs can promote IL-12 produc-

tion, and that IL-12 is a potent inducer of IFN-γ in lymphocytes [6], we also examined IFN-γ
production during the innate immune response. Compared to i.n. administration of OVA

alone, OVA plus CpG ODN led to increased production of IFN-γ by several different lympho-

cyte populations (Fig 4A). CpG ODN treatment also induced a robust increase in mRNA

encoding the p40 subunit of IL-12 (Il12b) in the lung (Fig 4B). We observed no difference in

mRNA encoding the p35 subunit of IL-12 (Il12a) (Fig 4C). However, Il12a induction after i.n.

OVA plus CpG ODN treatment in some cell types may have been obscured in this analysis

using whole lung tissue, as some cell types constitutively express Il12a [6]. In contrast, flagellin

treatment induced many fewer lymphoid cells expressing the GREAT IFN-γ reporter and also

did not induce increased amounts of Il12bmRNA.

To determine whether IL-12 was responsible for the production of IFN-γ, we injected mice

with a neutralizing antibody against IL-12 p40, and then sensitized the mice i.n. with OVA

plus CpG ODN as before. Treatment with anti-IL-12 p40 reduced substantially the innate

IFN-γ production in response to CpG ODN (Fig 4D). Moreover, blocking IL-12 during the

sensitization phase abrogated the adaptive TH1 response seen upon rechallenge with OVA in

the mice sensitized with OVA plus CpG ODN (Fig 4E). In contrast, treatment of anti-IL-12

did not decrease either the percentage of CD8 T cells producing IFN-γ or the anti-OVA IgG2c

response after antigen rechallenge (Fig 4F), suggesting these responses required lower levels of

IL-12 [6] or they were promoted by other cytokines, such as type 1 IFNs [3].

Fig 3. Flagellin and CpGODN induce robust innate inflammatory infiltrates in the lung. (A), (B) Neutrophil accumulation in the airways one
day after a single i.n. administration (d1) of OVA (O) or OVA plus flagellin (1 μg) (OFla) in wildtype, Tlr5-/-Tlr11-/-, andNlrc4-/- mice (A) or in
wildtype, Tlr5-/-Tlr11-/- and Tlr4-/- mice (B), as assessed by flow cytometry of the cells in the BAL fluid. (C) Cellular composition of the innate
inflammatory infiltrate in the lung one day after the third i.n. sensitization (d3) with OVA, OVA plus flagellin (1 μg), or OVA plus CpGODN (3 μg)
(OCpG). Data in (A) contain 4 mice per group and are representative of two independent experiments, data in (B) contain 4 mice per group and
are representative of two independent experiments, and data in (C) contain 3–4 mice per group and are representative of three independent
experiments. Error bars indicate mean +SD. * P� 0.05, ** P� 0.01, ***P� 0.001 using one-way anova with Bonferroni post-test. In (A) and (B),
all groups of OVA-treated mice have statistically significant different values compared to OVA plus flagellin-treated wild-type mice (A andB),
Nlrc4-/- (A), and Tlr4-/-mice (B) (*** P� 0.001 for all comparisons; not indicated on the panel).

doi:10.1371/journal.pone.0167693.g003

Flagellin and CpGODN Induce Divergent Lung T Cell Responses
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Fig 4. The CpGODN-induced type 1 immune response is dependent on IL-12 and MyD88 signaling in cDCs and/or AMs. (A) Percentages of
CD4 T cells, CD8 T cells, γδ T cells, NK T cells, and NK cells producing IFN-γ (YFP+) in GREAT reporter mice one day after third i.n. administration
(d3) of OVA, OVA plus flagellin (5 xg), or OVA plus CpGODN (3 μg). (B) Il12b and (C) Il12amRNA induction in whole lung tissue 2 h after one i.n.

Flagellin and CpGODN Induce Divergent Lung T Cell Responses
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To determine how IL-12 was produced in response to i.n. immunization with OVA plus

CpG ODN, we used theMyd88fl/flCD11c-Cremice. In these mice, MyD88, a signaling compo-

nent that is required for signaling by most TLRs [40] and by receptors for IL-1 family cytokines

[41], is deleted in almost all cDCs, ~80% of plasmacytoid DCs, and in some macrophage sub-

sets, including AMs [4,42].Myd88fl/flCD11c-Cremice and control mice were i.n. treated with

OVA plus CpG ODN, and after 2 h the levels of cytokine mRNAs in the lung were determined.

Although the cytokine responses at this early time may result from direct TLR stimulation, we

cannot rule out a rapid response to an IL-1 family cytokine. In response to CpG ODN, the

mutant mice produced dramatically less Il12bmRNA compared to control mice (Fig 4G), indi-

cating that cDCs and/or AMs produced IL-12 in response either to direct stimulation by CpG

ODN via TLR9, or to indirect stimulation by an IL-1 family cytokine that was released very

rapidly by another cell type. Consistent with these genetic data, cDC subsets and AMs sorted

from the lung after OVA plus CpG ODN treatment expressed more Il12bmRNA than the cor-

responding cells sorted from the lung after OVA treatment (Fig 4H). Both major cDC subsets,

CD103+ DCs and CD11b+ DCs, had higher levels of Il12bmRNA normalized to a housekeep-

ing gene compared to AMs. cDC subsets and AMs also had induced Il12a after CpG ODN

treatment (Fig 4I). CD103+ cDCs had a greater fold induction of Il12a and higher relative

mRNA values compared to AMs and CD11b+ cDCs. In theMyd88fl/flCD11c-Cremice, in

which cDCs and AMs cannot respond to CpG ODN and failed to induce Il12bmRNA, the

innate IFN-γ response and adaptive TH1 response were completely abrogated in response to

CpG ODN (Fig 4J–4L). These results are in agreement with the experiments described above

in which blocking IL-12 with an antibody inhibited IFN-γ responses.

Flagellin, but not CpGODN, promotes the appearance of IL-4-producing
CD4 T cells and follicular helper T cells in the lung draining LN

To gain insight into the mechanism by which flagellin induced a TH2 response, we next exam-

ined IL-4-producing cells in the lung-draining mediastinal LN after i.n. immunization with

OVA plus flagellin (Fig 5). Mice sensitized with OVA plus flagellin had a greater number of

LN CD4 T cells that had secreted IL-4 based on hCD2 reporter expression than mice sensitized

with OVA alone or with OVA plus CpG ODN (Fig 5B). Follicular helper T cells (TFH) are

known to be important in the formation and maintenance of germinal centers, where B cells

differentiate into long-lived plasma cells and affinity-matured memory B cells [43]. Addition

of flagellin or CpG ODN as adjuvant increased the fraction of activated CD4 T cells that

administration of OVA, OVA plus flagellin (1 μg), or OVA plus CpGODN (3 μg) in wild-type mice as measured by qPCR. Samples were normalized to
HprtmRNA. (D-F) GREAT reporter mice were treated with anti-IL-12 p40 or with control antibody (rat IgG2a), one day before initial sensitization
(700 μg intraperitoneally (i.p.)) and again on d2 (300 μg i.p.) (E, F). These mice were sensitized i.n. with OVA or OVA plus CpGODN (0.75 μg) on d0,
1 and 2 and rechallenged with OVA alone on d15. (D, E) Percentages of IFN-γ (YFP+) lymphocytes in the lung on d3 (D) and d16 (E). (F) Serum
levels of OVA-specific IgG2c on d16. (G) Il12bmRNA induction in whole lung tissue 2 h after one i.n. administration of OVA, or OVA plus CpGODN
(3 μg) inMyd88fl/flmice (MF) orMyd88fl/flCD11c-Cre (MFCD11c-Cre) as measured by qPCR. Samples were normalized toHprtmRNA. (H-I)
Inductions of Il12b (H) and Il12a (I) mRNAs in sorted cell populations from lung tissue 2 h after i.n. treatment as in (B). (J-L)MF orMFCD11c-Cre

mice expressing the GREAT reporter were sensitized i.n. with OVA or OVA plus 0.75 μg CpGODN on d0, 1, and 2, and rechallenged on d15 with
OVA alone. (J, K) Percentages of IFN-γ reporter+ lymphocytes in the lung on d3 (J) and on d16 (K). (L) Serum levels of OVA-specific IgG2c on d16.
Data in (A) are pooled from two independent experiments with combined totals of 7–8 mice per group, data in (B) contain 5 mice per group and are
representative of two independent experiments, data in (C) contain 4 mice per group and are representative of two independent experiments, data in
(D) are pooled from two independent experiments with 6–7 mice per group, and similar results were obtained in a third independent experiment, data
in (E, F) contain 3–4 mice per group and are representative of one of three independent experiments, data in (G) contain 4 mice per group and
are representative of two independent experiments, data in (H, I) are pooled from two independent experiments with combined totals of 6–7mice per
group, data in (J) are pooled from two independent experiments with combined totals of 5 or 8 mice per group, and data in (K, L) are pooled from
three independent experiments with combined totals of 10 or 12 mice per group. Each circle represents one individual mouse except in (H, I), in
which each circle represents 3–4mice pooled before cell sorting. Error bars indicate mean +SD. * P� 0.05, ** P� 0.01, *** P� 0.001 using one-
way anova with Bonferroni post-test.

doi:10.1371/journal.pone.0167693.g004
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Fig 5. Flagellin, but not CpGODN, promotes development of IL-4-producing CD4 T cells in the draining LN. 4get/KN2 reporter mice were
administered OVA, OVA plus flagellin (1 μg), or OVA plus CpG (0.75 μg) i.n. on d0, 1 and 2. In addition, to block IL-12 action in somemice, mice
were given anti-IL-12 p40 or control antibody (rat IgG2a) twice, one day before initial sensitization (700 μg i.p.) and again on d2 (300 μg i.p.). On d6,
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became TFH, as defined by the dual expression of PD-1 and CXCR5 (Fig 5C). Use of flagellin,

but not CpG ODN, as adjuvant also strongly increased the fraction of TFH that had secreted

IL-4 as assessed with the KN2 reporter, correlating with the production of IgE anti-OVA anti-

bodies (Fig 1C). These data are in agreement with the conclusion that i.n. immunization with

flagellin as adjuvant leads to a predominant TH2 response in the lung.

Flagellin induces innate production of cytokines associated with
induction of TH2 responses

Some investigators have previously suggested that TH2 responses may be a default response

that occurs when there is limited IL-12 and IFN-γ production during an inflammatory

response [44,45]. Therefore, we examined IL-4 production by CD4 T cell in the draining LN of

mice treated with anti-IL-12 p40 antibody and then sensitized with OVA plus CpG ODN.

These mice did not exhibit IL-4 production in CD4 T cells on d6 in the draining LN, based on

lack of expression of the KN2 reporter (Fig 5B and 5C). These results suggest that flagellin, but

not CpG ODN, induced production of one or more cytokines that contributed positively to

the induction of TH2 cells.

Therefore, we next examined the mRNA and protein expression of cytokines that have

been implicated as being important for inducing type 2 immune responses in the lung [10–

12]. Flagellin induced the mRNA that encodes TSLP (Fig 6A), and increased protein levels of

the mature form of IL-33 (Fig 6B). IL-33 production appeared to be a post-transcriptional

response, as there were only small changes in Il33mRNA (Fig 6A). In contrast, CpG ODN

induced little or no Tslp mRNA or IL-33 release. IL-1α and IL-1β have also been implicated in

promoting TH2 responses [13,14], and the mRNAs for these cytokines were also robustly

induced by flagellin (Fig 6A).

We next used theMyd88fl/flCD11c-Cremice to examine the extent to which MyD88 signal-

ing by TLRs or IL-1 family receptors in cDCs and AMs contributed to the innate cytokine

responses induced by flagellin. Deletion of MyD88 in these cell types largely unaffected flagel-

lin’s ability to induce mRNAs that encode CCL20, IL-1β, TNFα, IL-6, IL-23 p19, and TSLP
(Fig 6C), suggesting flagellin stimulated other cell types, such as LECs or a hematopoietic-

derived non-AM, non-cDC population, to induce these cytokines. In contrast, these mutant

mice exhibited a large decrease in the induction of Il1amRNA (Fig 6C). To determine whether

cDCs or AMs were responsible for the induction of Il1amRNA, we usedMyd88fl/flLysM-Cre

mice, which deleteMyd88 in AMs with similar efficiency to theMyd88fl/flCD11c-Cremice, but

do not deleteMyd88 in DCs [42]. Both types of mutant mice exhibited a similar decrease in

Il1amRNA induction (Fig 6D). These results suggest that AMs may be the major cell contribu-

tor of Il1amRNA in the lung.

To further investigate what cell types responded rapidly to flagellin and induced Tslp and

the other inflammatory cytokine mRNAs, we fractionated the lung into two subpopulations,

one enriched for LEC and the other enriched for hematopoietic-derived CD45+ cells 2 h after

treatment with OVA or OVA plus flagellin (Fig 6E). Ccl20 and Tslp mRNAs were induced

after flagellin stimulation in the LEC fraction with similar magnitude as in whole lung tissue,

whereas the CD45+ cell fraction had little to no induction of Ccl20 and Tslp mRNA, indicating

expression of IL-4 reporters (GFP+hCD2+) by CD4 T cells was examined in the mediastinal LN. (A) Gating strategy of CD4 T cells (CD4+),
activated CD4 T cells (CD4+CD44hiB220-CD62L-), and TFH cells (CD4+CD44hiB220-CD62L-PD-1+CXCR5+). (B) Numbers of CD4 T cells,
percentages and numbers of GFP+IL-4+(hCD2+) CD4 T cells. (C) Percentages and numbers of activated CD4 T cells, percentages and numbers of
TFH cells, and percentages and numbers of GFP+IL-4+(hCD2+) TFH. Data are pooled from two independent experiments with combined totals of 8
mice per group. Each circle represents one individual mouse. Error bars indicate mean +SD. * P� 0.05, ** P� 0.01, *** P� 0.001 using one-
way anova with Bonferroni post-test.

doi:10.1371/journal.pone.0167693.g005

Flagellin and CpGODN Induce Divergent Lung T Cell Responses

PLOSONE | DOI:10.1371/journal.pone.0167693 December 15, 2016 12 / 32



Fig 6. Flagellin induces rapid production of inflammatory cytokines by AMs, LECs, Ly6Chimonocytes, and CD103+ cDCs. Inflammatory gene
mRNA inductions and IL-33 protein in whole lung tissue (A-E), enriched lung cell populations (E), or sorted cell populations from the lung (F) after one i.n.
administration of OVA, OVA plus flagellin (1 μg), or OVA plus CpG (3 μg). mRNA inductions were normalized toHprt. (A) Inflammatory gene mRNA
inductions in whole lung tissue 2h after i.n. administration. (B) IL-33 protein in whole lung homogenates at the indicated time points. (C-F) Inflammatory
gene mRNA inductions were measured in whole lung tissue (C, D), in fractionated lung epithelial or hematopoietic-derived cell populations (E), or in sorted
cell populations (F) 2h after i.n. administration ofMyd88fl/flmice (MF),Myd88fl/fl CD11c-Cre (MF CD11c-Cre) mice, orMyd88fl/fl LysM-Cre (MF LysM-Cre)
mice. Data in (A) contain 5 mice per group and are representative of two independent experiments, data in (B) contain 3 mice per group and are
representative of two independent experiments at each time point, data in (C) contain 3–5 mice per group and are representative of three independent
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that LEC are the major producers of Ccl20 and Tslp mRNAs. In contrast, several other inflam-

matory cytokines were induced in both cell populations. Flagellin treatment induced substan-

tial levels of Il6mRNA in both LEC and CD45+ populations, with the LEC population

expressing higher levels of this mRNA. Il23a and Tnfa mRNA was also induced in both the

LEC and CD45+ cell fractions, but for these cytokines, CD45+ cells expressed higher levels of

mRNA. Interestingly, Il1a and Il1bmRNA were induced only to a small degree in the LECs,

and the CD45+ cell fraction was mainly responsible for the robust induction of these cytokines

in the lung after flagellin treatment. Thus, although LECs appeared to be the major contributor

of Ccl20, Tslp, and Il6mRNAs, CD45+ cells also responded rapidly to flagellin and contributed

to early inflammatory cytokine production, especially for Il1a, Il1b, Il23a, and Tnfa.

To elucidate which CD45+ cell types may have been producing the latter cytokines, 2 h after

OVA or OVA plus flagellin stimulation, we sorted AMs, CD103+ cDCs, CD11b+ cDCs, mono-

cyte-derived DCs (moDCs), and Ly6Chimonocytes from the lung, and measured their levels of

mRNAs encoding these cytokines (Fig 6F). Consistent with the genetic evidence described

above indicating that AMs may be the major producer of Il1amRNA, AMs from flagellin-

treated mice induced ~15 fold more Il1amRNA than AMs from OVA-treated mice and had

the highest level of Il1amRNA normalized to a housekeeping gene compared to the other cells

examined. AMs isolated after in vivo flagellin stimulation also exhibited strong inductions of

Il1b, Il23a and Tnfa mRNAs. However, the induced levels of Il1b and Il23amRNAs by AMs

were not higher than the induced levels in some of the other cell types. In particular, the various

DC subtypes examined all had greater than 2-fold higher levels of Il1b and Il23amRNA than

AMs and had ~2-3-fold higher levels frommice stimulated with OVA plus flagellin compared

to mice stimulated with OVA alone. In addition, Ly6Chimonocytes from flagellin-treated mice

had ~5-fold greater induction of Il1b and Tnfa compared to these cells from OVA-treated mice.

Migratory DCs require MyD88 signaling to respond normally to i.n.
exposure to flagellin or CpGODN

DCs are important for bridging innate and adaptive immune responses by their ability to take

up antigens, to migrate from a tissue location to the draining LN, and to present antigens to T

cells [3]. Therefore, we examined migratory DCs (CD11c+I-Ab(hi)) in the mediastinal LN one

day after i.n. administration of OVA with flagellin or CpG ODN (Fig 7A). OVA that was fluo-

rescently labeled with Alexa Fluor 647 (OVA-AF647) was used to track the migratory DC that

had taken up the antigen. Using flagellin or CpG ODN with OVA led to the upregulation of

CD80 and CD86 on the surface of migratory DCs in the mediastinal LN that had taken up

OVA-AF647, whereas using CpG ODN additionally led to the upregulation of CD40 (Fig 7B

and 7C). The draining LN also contained migratory DCs that did not have any fluorescence

and therefore were likely mobilized by responding to the cytokines produced in the lung.

These migratory DCs lacking OVA also upregulated the co-stimulatory molecules, but to a

lesser degree. Thus, both flagellin and CpG ODN led to DC activation, although the patterns

of costimulatory molecule expression differed. In addition, treatment with flagellin or CpG

ODN led to similar degrees of upregulation of CD40, CD80, and CD86 on the surfaces of

migratory CD103+ cDCs and CD11b+ DCs subsets in the mediastinal LNs (S4 Fig).

experiments, data in (D) contain 3 mice per group and are representative of two independent experiments, data in (E) contain 3–4 mice per group and are
representative of two independent experiments, and data in (F) are pooled from two independent experiments with combined totals of 6–7mice per group;
each circle represents the data from sorted cells obtained from 3–4 mice. Error bars indicate mean +SD. In (A), statistical differences (P� 0.05) are
indicated with the following symbols: O vs. OFla (†), and OFla vs. OCpG (00B6).* P� 0.05, ** P� 0.01, *** P� 0.001 using one-way anova with
Bonferroni post-test (A-D) or Student’s t-test within the same tissue/cell population (E).

doi:10.1371/journal.pone.0167693.g006
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Fig 7. Migratory DCs require MyD88 signaling to respond normally to i.n. exposure to flagellin or CpGODN. Expression of activation
markers on migratory DCs in the lung-draining, mediastinal LNs ofMyd88fl/fl (MF) andMyd88fl/fl CD11c-Cre (MF CD11c-Cre) mice one day after i.n.
administration (d1) of OVA-AF647 or OVA-AF647 plus TLR ligand. (A) Migratory DCs were gated as CD11c+I-Ab(hi), then gated according to
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To determine how TLRs and/or IL-1R family member signaling within DCs contributed to

their activated phenotype, we again used theMyd88fl/flCD11c-Cremice. These mice treated

with CpG ODN had little to no upregulation of activation markers on their migratory DCs

(Fig 7D and 7E), suggesting that TLR and/or IL-1R family signaling in DCs was necessary for

their activation. In contrast,Myd88fl/flCD11c-Cremice sensitized with OVA-AF647 plus flagel-

lin, had a lesser, partial defect in CD80 upregulation in migratory DCs that had taken up anti-

gen. Also, mutant migratory DCs showed a partial reduction in the expression of CD86,

although this trend was not statistically significant (Fig 7B and 7C). Thus, in mice treated with

flagellin, the induction of CD80 on migratory DCs from the lungs may be partially dependent

on MyD88-dependent and MyD88-independent stimulation of the DCs.

Multiple cytokines are likely involved in flagellin-induced T cell
polarization

Because i.n. sensitization with OVA plus flagellin led to IL-33 production and induction of

mRNA encoding TSLP, two cytokines implicated in promoting type 2 immune responses, we

tested the requirement for these two cytokines by neutralizing TSLP with anti-TSLP [46] and/

or blocking IL-33R signaling with an antibody against the ST2 subunit of the IL-33R. Mice

that were immunized with OVA plus flagellin after blocking TSLP and IL-33R still exhibited a

statistically significant increase in the fraction of CD4 T cells producing IL-4 on d6 in the

draining LN, compared to these cells in control mice immunized with OVA alone (Fig 8).

Blocking TSLP and IL-33R may have been reduced the fraction of IL-4-producing CD4 T cells,

but this difference was not statistically significant. These results suggested that additional cyto-

kines may have also contributed to the IL-4 response in T cells. As described previously, flagel-

lin also induced the mRNA encoding IL-1α and IL-1β, cytokines that have also been suggested

to be involved in TH2 polarization in some circumstances [13,14]. To address this possibility,

we examined the d6 CD4 T cell response in theMyd88fl/flCD11c-Cremice, which are unable

signal through TLR, IL-1R or IL-33R in cDCs and AMs. When these mice were immunized

with OVA plus flagellin, the fraction of CD4 T cells that had secreted IL-4 was intermediate

between the control mice treated with OVA plus flagellin and the control mice that were

treated with OVA alone (Fig 8). To see if TSLP contributed to the residual response in

Myd88fl/flCD11c-Cremice, we treated these mice with anti-TSLP before i.n. sensitization with

flagellin plus OVA. The percentage of IL-4-producing CD4 T cells in the draining LN was now

clearly less than the control-treated mice immunized with OVA plus flagellin, and the percent-

age was not statistically greater than the response of control mice immunized with OVA alone

(Fig 8). Thus, the early IL-4 production in CD4 T cells in the draining LN induced by flagellin

may be partly due to MyD88-dependent stimulation of DCs. Furthermore, this response may

also be partly due to MyD88-independent stimulation of the DCs, which at least partly

involved TSLP acting on DCs and/or other cell types.

OVA-AF647 expression. (B) and (C) Comparison of different activation markers on migratory DCs betweenMF andMFCD11c-Cremice treated i.n with
OVA-AF647, OVA-AF647 plus flagellin (1 μg), or OVA-AF647 plus CpG (0.75 or 3 μg). (B) Representative histograms of different activation markers
on migratory DCs that did take up OVA-AF647. (C) Level of expression (MFI) of activation markers on migratory DCs that did (OVA+) or did not (OVA-)
take up fluorescent OVA. (D) and (E) Comparison of different activation markers on migratory DCs betweenMF andMFCD11c-Cre treated i.n with
OVA-AF647 or OVA-AF647 plus CpGODN (0.75 μg). (D) Representative histograms of different activation markers on migratory DCs that did take up
OVA-AF647. (E) Level of expression (MFI) of activation markers on migratory DCs that did (OVA+) or did not (OVA-) take up fluorescent OVA. Data in
(B) and (C) contain 3–4 mice per group and are representative of 3 independent experiments using OVA-AF647 and a fourth independent experiment
using non-fluorescent OVA. Data in (D) and (E) contain 4–6mice per group and are representative of two independent experiments. Negative control
histograms (solid light gray) were from CD11c-I-Ab- cells. Each circle represents an individual mouse. Error bars indicate mean +SD. * P� 0.05, **

P� 0.01, *** P� 0.001 using one-way anova with Bonferroni post-test.

doi:10.1371/journal.pone.0167693.g007
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Discussion

To gain insights into the development of allergic immune responses in the lung, we adapted a

previous model of repeated airway immunization that used OVA and low dose LPS as adju-

vant [21,22] to test the effects of other TLR ligands on the resulting adaptive immune response.

Remarkably, we found that two TLR ligands, which each signal primarily via the adaptor mole-

cule MyD88, both enhanced the adaptive immune response to OVA, but induced different

polarized responses. CpG ODN, a TLR9 ligand, induced a TH1 response and IgG2c anti-OVA

antibodies, whereas flagellin, a TLR5 ligand, induced a TH2 response and IgE anti-OVA anti-

bodies. In addition, we characterized the key cells and cytokines that promoted TH1 versus

TH2 responses in the lung using these different adjuvants. CpG ODN administered via the air-

ways most likely was recognized directly by TLR9 on cDCs and AMs, leading to early IL-12

production. IL-12 was necessary for the subsequent IFN-γ production by a variety of innate

and adaptive lymphocytes. Conversely, flagellin apparently stimulated LECs and several types

of hematopoietic cells to produce multiple cytokines implicated in TH2 polarization, including

TSLP, IL-33, IL-1α, and IL-1β. These cytokines likely acted in an overlapping fashion to induce

a TH2 response.

Mice treated with OVA plus CpG ODN induced a high level of IL-12, whereas mice treated

with OVA plus flagellin induced much less IL-12. This difference may have facilitated the

robust TH2 response that developed in the latter case, since a developing TH1 response can

inhibit the generation of a TH2 response [7]. However, mice pre-treated with neutralizing

Fig 8. Multiple cytokines are likely involved in flagellin-induced T cell responses.Myd88fl/fl (MF) andMyd88fl/fl CD11c-Cre expressing the
4get/KN2 reporter were treated with anti-TSLP (IgG2a), anti-IL-33R (IgG1), and/or appropriate control antibodies (rat IgG2a, rat IgG1), one day
before initial sensitization (i.p. 250 μg anti-TSLP, 160 μg anti-IL-33R, or corresponding amounts of appropriate isotype controls), and anti-IL-33R or
rat IgG1 again on d2 (i.p. 160 μg). Thesemice were then administered i.n. OVA or OVA plus flagellin (1 μg) on d0, 1, and 2. On d6, expression of
IL-4 (GFP+hCD2+) by CD4 T cells in the mediastinal LN was examined using the same gating strategy as in Fig 5. (A) Numbers of CD4 T cells, (B)
percentages and (C) numbers of GFP+IL-4+(hCD2+) CD4 T cells. Data are pooled from three independent experiments, one of which did not have
the anti-TSLP and IL-33R treatment group, with combined totals of 7–11 mice per group. The comparisons betweenMFmice treated i.n. with OVA
or OVA plus flagellin, andMFCD11c-Cremice treated i.n. with OVA plus flagellin are representative of three additional independent experiments.
Each circle represents one individual mouse. Error bars indicate mean +SD. * P� 0.05, ** P� 0.01, ***P� 0.001 using one-way anova with
Bonferroni post-test.

doi:10.1371/journal.pone.0167693.g008
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antibody to IL-12 p40 and then sensitized with CpG ODN plus OVA did not have increased

numbers of IL-4-producing CD4 T cells on d6 in the draining LN. These results suggested that

flagellin acted positively to induce a TH2 response to OVA. Indeed, flagellin stimulated the

production of a diverse array of cytokines previously implicated in TH2 polarization, including

TSLP, IL-33, IL-1α and IL-1β [9,13,14,47]. In contrast, CpG ODN induced much lower levels

of these cytokines. In agreement with our observations, a previous study also detected IL-33

and TSLP in the lung airspace after flagellin exposure [20], and other studies have found

mRNA encoding IL-1α in lung after flagellin treatment [23,35].

When we further analyzed the inflammatory cytokines induced 2 h after i.n. treatment with

flagellin, we found LECs had induced mRNAs encoding CCL20, IL-6, TSLP, and to a lesser

extent, TNFα. These results suggest that LECs directly responded to flagellin in vivo, as indi-

cated by previous experiments that showed TLR5 expression on non-hematopoietic cells

played an important role in the innate [23,35,48] and adaptive [20,23] immune responses to

flagellin in the lung. Moreover, a previous study showed that isolated LECs stimulated in vitro

with flagellin produced TSLP [20]. Thus, our results join the emerging view that LECs play an

active role in promoting inflammation and immune responses in the lung from their position

at the barrier with the environment [14].

CD45+ immune cells in the lung also contributed significantly to the early production of

many of the induced inflammatory cytokines. Two hours after flagellin stimulation, the CD45+

cells in the lung had higher expression than LECs of the mRNAs encoding IL-1α, IL-1β, IL-23
p35, and TNFα, whereas the CD45+ cells apparently had less Il6mRNA than LECs and almost

none of the induced Tslp or Ccl20mRNA. AMs, Ly6Chi monocytes, and DCs were substantial

contributors to this cytokine induction, as assessed by sorting these cell types from i.n. immu-

nized mice and measuring their mRNA levels. AMs from flagellin-treated mice induced the

highest mRNA levels of Il1a, whereas the major DC subsets (CD103+ cDCs, CD11b+ cDCs

and monocyte-derived DCs) expressed substantial amounts of mRNA encoding IL-1β and IL-

23 p35. Ly6Chi monocytes expressed similar levels of Il1bmRNA as the DC subsets. The effects

of deleting the gene encoding the signaling component MyD88 in AMs also indicated that

these cells were the major producer of IL-1α mRNA, but that other cells contributed more sub-

stantially to the production of other inflammatory cytokines. Because flagellin led to the rapid

release of IL-33 and induction of IL-1 mRNA, it is not clear from our studies whether the cyto-

kines induced by AMs or DCs were due to direct TLR5 signaling and/or IL-1R/IL-33R signal-

ing. Supporting the idea that CD45+ can be directly stimulated by flagellin, a previous study

showed that AMs can produce cytokines when stimulated with flagellin in vitro [49], and other

studies have shown that TLR5 expression in hematopoietic cells was necessary for some of the

cytokine production seen in response to i.n. exposure to flagellin [35,48]. However, another

study showed TLR5 expression on non-hematopoietic cells, but not hematopoietic cells, was

necessary for induction of the cytokines they examined [23]. The discrepancies between this

study and others [35,48] may be because the analyses varied in terms of time points and cyto-

kines examined, and whether cytokine induction or production in hematopoietic cells were

directly analyzed.

We found that i.n. treatment of OVA plus CpG ODN led to rapid induction of the mRNA

encoding for IL-12 p40, but this induction was completely absent in similarly treatedMyd88fl/fl

CD11c-Cremice, indicating that MyD88 signaling in AMs and/or DCs was required for the

response. Furthermore, we found AMs and cDCs sorted from mice treated with CpG ODN for

2 h induced both Il12a and Il12bmRNA. Previous studies have reported that lung DCs stimu-

lated in vitro with TLR9 ligands produced IL-12 p40 [24,50], and that lung DCs can produce

IL-12 p70 [25]. Although, there are conflicting reports as to whether or not AMs express TLR9
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and are capable of responding to CpG ODN in vitro [23,25,50], our results support the idea

that AMs and DCs can respond directly to CpG ODN in vivo.

The mechanisms by which DCs bridged innate and adaptive immune responses were some-

what different in response to OVA plus CpG ODN versus OVA plus flagellin. DC activation

after i.n. OVA plus CpG ODN likely required direct TLR9/MyD88 signaling in the DCs as

induction of Il12bmRNA, activation of migratory DCs, and induction of innate and adaptive

IFN-γ production were completely abrogated inMyd88fl/flCD11c-Cremice. In contrast, these

mutant mice exhibited a partial, rather than complete, defect in expression of activation mark-

ers on DCs after i.n. OVA plus flagellin. This observation suggests that DC maturation after

flagellin treatment resulted from a combination of signaling through receptors that require

MyD88 and those that do not. In agreement with this conclusion, sensitization with flagellin

induced mRNAs encoding MyD88-dependent cytokines such as IL-1α and IL-1β, and led to

the release of IL-1 family member, IL-33. Flagellin also induced mRNAs encoding for cyto-

kines such as IL-6, TNFα, and TSLP that act via receptors that do not require MyD88.

As discussed above, our study did not directly address whether lung DCs responded

directly to flagellin via TLR5 or whether the MyD88-dependent component of their response

was due to IL-1α, IL-1β, and/or IL-33. A recent study using mixed bone-marrow chimeras

found that DC maturation in response to i.n. flagellin administration can occur in the absence

of TLR5 expression in DCs [36], suggesting that cytokines produced by other cell types, rather

than direct TLR signaling via MyD88 in DCs, may be activating DCs in response to i.n. flagel-

lin. However, another study showed TLR5 expression on hematopoietic cells were important

for some aspects of the adaptive immune response induced by flagellin [20]. Thus, it unclear

which hematopoietic cell type (DCs, AMs, or another cell type) is required to directly respond

to flagellin to promote some aspects of the adaptive immune response.

A previous study showed that CD11b+ cDCs, and not CD103+ cDCs, were important for

flagellin-induced CD4 T response in vitro and in an adoptive-transfer model [36]. In other

model systems, namely the house dust mite model, there are conflicting data on which DC

subset is the most important [51–53]. In our studies, both CD103+ and CD11b+DCs from fla-

gellin-treated mice upregulated CD80 and CD86 more than occurred in those cells from

OVA-treated mice. Furthermore, we did not find any major differences in cytokine induction

in these cell populations, though we only examined a small set of genes, and at one early time

point. Thus, further studies should be performed using mice deficient in Klf4 [52], a transcrip-

tion factor necessary for the development of CD11b+ cDCs, to test which lung DC subset is

necessary in vivo for the induction of the TH2 response when flagellin is used as an adjuvant.

Previous studies have shown that TSLP and IL-33 can individually promote TH2 polariza-

tion in some circumstances [9,47]. Moreover, in some model systems, these cytokines are nec-

essary for TH2 induction [9,47]. However, IL-1α and IL-1β have also been implicated in

promoting TH2 responses [13,14]. When we treated mice with blocking antibodies against

TSLP and IL-33R prior to i.n. administration of OVA plus flagellin, the fraction of CD4 T cells

producing IL-4 in the draining LN was not significantly reduced from control mice. This result

suggests that these two cytokines alone or in combination were not wholly responsible for TH2

polarization in this model. In contrast, IL-4 production by CD4 T cells on d6 following sensiti-

zation with OVA plus flagellin was partially blocked inMyd88fl/flCD11c-Cremice, which are

defective in signaling via TLRs and receptors for IL-1 and IL-33. When these mice were addi-

tionally treated with anti-TSLP, the IL-4 production by CD4 T cells on d6 was indistinguish-

able from that of mice treated with OVA alone. A straightforward interpretation of these

results is that IL-1 and/or IL-33 signaling directly in cDCs and/or in AMs, together with TSLP

signaling in these cells and/or others, contributed importantly to the TH2 response. Alterna-

tively, it is also possible that TLR5 signaling in cDCs and/or AMs contributed, along with
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TSLP and possibly other cytokines. The multiple pathways required for flagellin-induced IL-4

CD4 T cell production were in stark contrast to the more direct mechanism of TH1 induction

by CpG ODN. Neutralizing IL-12 was sufficient to block innate IFN-γ production and the sub-

sequent TH1 response following sensitization with OVA plus CpG ODN. In addition, direct

sensing of CpG ODN by cDCs and/or AMs was required for IL-12 production by these cell

types, and the subsequent innate and adaptive IFN-γ production.
Several previous studies have investigated the adjuvant activity of flagellin when adminis-

tered into the lungs [20,23,36]. Although our and other studies differed somewhat in the

source and endotoxin-level of flagellin, the sensitization and challenge regime, and the experi-

mental read-outs, all our results support that global conclusion that flagellin as an adjuvant

promotes a robust TH2 responses in the lungs in B6 mice. Interestingly, a previous study found

when flagellin was given in the airways of BALB/c mice after sensitization by OVA/alum or by

house dust mite, flagellin inhibited the developing TH2 response [54]. Furthermore, bone-mar-

row-derived DCs stimulated with an OVA-flagellin fusion protein produced IL-10 [55], and

these stimulated DCs could inhibit TH2 cytokine production in vitro [56]. These studies sug-

gest the immunological context in which flagellin is administered is critical in determining fla-

gellin’s effect on the subsequent immune response.

Given the complexity we found in the mechanism by which flagellin conditioned DCs to

promote the type 2 polarized response of draining lymph node CD4 T cells, it is perhaps not

surprising that there are some results that do not fully agree between our studies and some of

the previous studies. One potentially significant methodological difference is that in our stud-

ies, we used cytokine reporter mice to determine whether lung-infiltrating CD4 T cells made

IL-4, IFN-γ or IL-17A in vivo, rather than using in vitro restimulation with antigen. While

each approach has its strengths, cytokine reporter mice allowed us identify other types of

immune cells in the lung that were making the cytokines of interest. For example, we observed

that on d22 there was substantial IL-4 production by basophils, which may have responded via

OVA-specific IgE bound to their FcεRI [29]. It is likely that the CD4 T cells made these cyto-

kines largely in response to antigenic stimulation in vivo, but for other cell types, cytokine pro-

duction may be responsive to other inputs, such as IL-12 promoting IFN-γ production by NK

cells. In any case, the character of the immune responses seen after using CpG ODN or flagel-

lin were consistent with regard to polarization of CD4 T cells, the isotype of anti-OVA anti-

bodies produced, and the character of the induced inflammation seen in the airways during

the challenge phase. Moreover, the data from the cytokine reporter mice were in general agree-

ment with previous studies using in vitro restimulation of mediastinal LN cells with antigen

after similar sensitization [20,23].

While the effector CD4 T cell response in our system was dominated by TH2 effectors, as

indicated both by cytokine reporter expression and by the character of the inflammatory infil-

trate during the challenge phase of the response, there may have been a lesser component of

TH1 or TH17 cells. For example, we found 3–4 fold increases in IFN-γ-producing CD4 T cells

and IL-17-producing CD4 T cells in the lungs of flagellin-treated mice compared to OVA-

treated mice, but these increases were not statistically significant. Van Maele et. al.[23] and

Wilson et. al.[20], using somewhat different sensitization regimes, did observe statistically sig-

nificant increases of IFN-γ and IL-17, respectively, from lymph node and/or lung cells cultured

with OVA, suggesting a partially mixed TH1-TH2-TH17 response in those systems. Also, Fou-

geron et. al. [36] found that CD11b+ cDCs produced IL-12 p40 18 h after flagellin treatment,

which suggests that a partial TH1 response may have been induced.

Extracts of allergenic organisms typically contain multiple classes of allergens that stimulate

the immune system through different pathways, so dissecting how they induce TH2 responses

is highly challenging. Therefore, we developed a reductionist system to understand how one
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component that is present in allergenic extracts and signals through a well characterized innate

immune pathway, namely the TLR5 ligand, flagellin, can promote TH2 responses in the lung.

We based the sensitization and rechallenge regime on previous studies showing that a low

dose of a TLR4 ligand, LPS, as an i.n. adjuvant led to a robust TH2 response and eosinophil

infiltration into the lung, characteristics of acute asthma, whereas, a high dose of LPS led to a

TH1 response and infiltration of neutrophils into the lung upon subsequent challenge with

antigen [21,22]. However, as the high dose of LPS induced a more robust innate inflammatory

response than the lower dose of LPS [57], the magnitude of initial inflammation may be an

important determinant of the TH1 and TH2 polarization in the LPS model. In contrast, flagellin

induced a robust TH2 response over a wide dose response range, whereas CpG ODN induced

a TH1 response at all doses tested (data not shown). Moreover, the doses of flagellin and CpG

ODN used in these experiments induced similar magnitudes of innate inflammatory cell infil-

trates on d3. Therefore, the model immunization developed in these studies provides an

opportunity to dissect robust qualitative differences between two adjuvants acting via TLRs

that signal via the adaptor MyD88, one that promoted a lung TH2 response and another that

promoted a lung TH1 response.

Although asthma is predominantly understood as a dysfunctional TH2 response in the

lung, recent studies have shown that some asthmatic patients have mixed TH2 and TH17

responses, or even predominant TH17 responses in the lung [58]. In our model of immuniza-

tion, although neutrophils were prominent inflammatory cells and substantial percentages of

γδ T cells were producing IL-17 during the innate phase of the response, a robust TH17 adap-

tive immune response was not observed in response to i.n. sensitization and challenge when

flagellin or CpG ODN was used as adjuvant. Correspondingly, the inflammation following

OVA rechallenge was dominated by eosinophils in the case of flagellin or by monocytes in the

case of CpG ODN, consistent with TH2 and TH1 dominated responses, respectively.

Although clinically relevant allergens may stimulate the immune system through both TLR

and other innate pathways, nonetheless, our results with a reductionist system may be relevant

to the development of human asthma in many cases, as Wilson et. al. [20] found that four out

of seven house dust extract samples collected from households in North Carolina contained

flagellin. Mice sensitized and rechallenged with three of these flagellin-containing samples had

eosinophil infiltration in the lung airspace after rechallenge, and this response was TLR5

dependent. House dust extract contains multiple allergens [8,59], so the adjuvant property of

flagellin described here may be a significant contributor to development of asthma in some

individuals.

Materials and Methods

Mice

Mice were used between the ages of 8 and 20 weeks. B6 mice (C57BL/6J or C57BL/6NCr) were

purchased from Jackson Laboratory (Bar Harbor, ME) and National Cancer Institute (Freder-

ick, MD), respectively. C57BL/6J were bred in the laboratory’s colony.Myd88fl/flmice were

crossed to CD11c-Cre, as previously described [4], and LysM-Cre [60].Myd88fl/fl andMyd88fl/fl

CD11c-Cremice were crossed to the following reporter mice to obtain mice with genotypes as

described in the Figure Legends: GREAT–IfngGREAT/GREAT [33], 4get–Il44get/4get [30], KN2 –

Il4KN2/KN2 [32], and SMART-17A –Il17aSmart/Smart [34]. For Fig 2A–2C, two of three experi-

ments usedMyd88fl/+ Il44get/KN2Mcpt8Basopho8/+mice [61], which gave similar results to one

experiment usingMyd88fl/fl Il44get/KN2mice. Tlr5-/-mice [35] were crossed to Tlr11-/- [62] to

generate Tlr5-/-Tlr11-/-. Tlr4-/-mice were obtained from Jackson Laboratory. Nlrc4-/-mice were

obtained from Vishva Dixit (Genentech, Inc.). All mice had been backcrossed for at least 8
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generations to C57BL/6J. Wildtype/control mice used included B6 mice and may have con-

tained 1 or 2 alleles of theMyd88fl allele and/or reporter alleles described above. Previous

experiments have indicated that theMyd88fl allele provides normal MyD88 function [4]. Mice

were euthanized by administering anesthetizing dose of 2.5% 2,2,2-tribromoethyl alcohol solu-

tion (Sigma Aldrich, St. Louis, Mo), followed by bilateral thoracotomy. All mice were main-

tained in specific-pathogen free conditions, and used following UCSF Institutional Animal

Care and Use Committee and NIH animal guidelines. The protocol (AN101733) used was

approved by UCSF Institutional Animal Care and Use Committee.

Reagents

Ovalbumin (OVA) Grade VI was purchased from Sigma Aldrich. Using a protocol from Aida

and Pabst [63], Triton X-114 (EMDMillipore, Billerica, MA) was used to remove endotoxin

from OVA. OVA depleted of endotoxin using this protocol contained<0.04EU/mg protein,

as assayed using the Limulus amebocyte lysate (Lonza, Walkersville, MD). Endotoxin-depleted

OVA was labeled with Alexa Fluor 647 using Alexa Fluor 647 carboxylic acid, succinimidyl

ester (Life Technologies, Grand Island, NY). Phosphorothioate-backbone-containing CpG

ODN 1826 (TCCATGACGTTCCTGACGTT), was purchased from Integrated DNA Technol-

ogies (Coralville, IA).

Flagellin preparation

Flagellin was purified from Salmonella typhimurium TH4778, provided by K. Hughes (Univer-

sity of Utah), using a modified protocol from Smith et al. [64]. Briefly, highly motile bacteria

growing exponentially were collected by centrifugation, suspended in 10 mM Tris buffer (pH

8.0), and blended in a blender (Waring Commercial, Stamford, CT) for 2 min to shear off fla-

gella. After centrifugation for 15 min at 8,000xg to remove the bacteria, the supernatant frac-

tion was serially ultracentrifuged twice for 1.25 h at 105,000xg to pellet the flagella, which were

resuspended in Dulbecco’s (D)-PBS overnight at 4˚C. This suspension was then heat depoly-

merized for 25 min at 70˚C to dissociate flagellin polymers into monomeric flagellin subunits.

The solution was then passed through an Amicon 100kDa MW cut-off filter (EMDMillipore,

Billerica, MA) to remove polymers. The flagellin preparation was passed through an endotoxin

removal column (EndoTrap; Hyglos, Charleston, SC) according to the manufacturer’s instruc-

tions. Protein concentration was quantified using the BCA Protein Assay Kit (Life Technolo-

gies). The preparation contained<0.013 EU/μg protein, as assayed using the Limulus

amebocyte lysate.

In vivo treatment

For i.n. administration, mice were briefly anesthetized with isofluorane and i.n. sensitized with

endotoxin-depleted OVA (100 μg), OVA plus flagellin, or OVA plus CpG ODN in a total vol-

ume of 50 μl in D-PBS. The amounts of flagellin and CpG ODN used are specified in the

Figure Legends. For mice rechallenged i.n. with OVA, 25 μg of OVA was used. For detecting

reporter positive CD4 T cells, the time points examined after sensitization and rechallenge

were chosen based on the most optimal time point (data not shown). In some experiments,

mice were either treated intraperitoneally (i.p.) with neutralizing/blocking antibodies or with

the appropriate rat isotype control(s). Anti-IL-12 p40 (C17.8) and rat isotype control IgG2a

(2A3) were purchased from the UCSF Monoclonal Antibody Core (San Francisco, CA). Anti-

IL-33Rα (IL1RL1, ST2) (DIH9) was purchased from BioLegend (San Diego, CA). The hybrid-

oma producing anti-TSLP antibody (28F12) [46] was obtained from the Developmental Stud-

ies Hybridoma Bank, created by the NICHD and maintained at the Department of Biology, at
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the University of Iowa (Iowa City, IA). Bio X Cell (West Lebanon, NH) cultured the hybrid-

oma and purified the resultant anti-TSLP antibody. Rat isotype control IgG1 (HPRN) and

IgG2a (2A3) used in the anti-IL-33Rα, anti-TSLP experiments were purchased from Bio X

Cell.

Airway hyperresponsiveness (AHR) and mucus production

AHR and lung section preparation were performed on d21 as previously described [65]. Semi-

quantitative scores were given to Periodic-acid Schiff-stained sections for mucus production

by an observer blinded to the source of the samples as follows: grade 0 –none; grade 1 –<25%

of airway epithelial cells; grade 2–25–50%; grade 3–51–75%; and grade 4 –>75%.

SerumOVA-specific antibody quantification

High-binding polystyrene 96 half-well plates (Corning 3690, Sigma-Aldrich), were coated with

OVA in D-PBS at 4˚C overnight, blocked with 1% BSA, washed, and incubated with a dilution

series of serum samples. The plate was then washed, incubated with anti-IgG2c-HRP (South-

ern Biotech, Birmingham, AL) or anti-IgE-biotin (BD Biosciences, San Jose, CA), followed by

washing, and if necessary, incubated with streptavidin-HRP (Southern Biotech). The plates

were then washed, incubated with 3,3’,5,5’-Tetramethylbenzidine (Vector Labs, Burlingame,

CA or KPL, Gaithersburg, MD) and read on a VERSAmax Microplate Reader (Molecular

Devices, Sunnyvale, CA) at OD 450 nm and 570 nm. Relative titers were calculated by first

plotting absorbance (A450-A570) versus antibody dilutions, and then calculating the antibody

dilution (titer) at an absorbance within the linear range. Relative titers were normalized by

comparison to a standard pooled serum frommultiple experiments. Pooled serum frommice

that were sensitized with i.n. flagellin plus OVA and then rechallenged with OVA was used for

the anti-OVA IgE standard. Pooled serum frommice that were sensitized with i.n. CpG ODN

plus OVA and then rechallenged with OVA was used for the anti-OVA IgG2c standard. In the

cases where there was no or very low levels of a particular isotype detected in the least diluted

serum samples, a limit of detection value was estimated using the slope from the standard and

absorbance at the lowest dilution.

Bronchoalveolar lavage (BAL) fluid and preparation of lungs and LNs
into single cell suspensions for flow cytometry analysis and cell sorting

To collect BAL fluid, lungs were lavaged serially 3 times each with 1 ml D-PBS (Fig 1B) or with

1 ml HBSS with 5 mM EDTA (Fig 3A and 3B). To isolate lung cells, lungs were first perfused

by cardiac puncture using 10 ml D-PBS, then excised and placed in a digestion solution con-

taining Liberase TM (0.15–0.3 U/ml) (Roche, Indianapolis, IN) and DNase (40–50 U/mL)

(Sigma Aldrich or Worthington, Lakewood, NJ) in HBSS with Ca2+ and Mg2+, supplemented

with Penicillin-Streptomycin and 10 mMHEPES (pH 7.4) in a total volume of 5 ml. Lungs

were either minced with scissors or dissociated with a tissue dissociator (Miltenyi Biotec,

Auburn, CA), using program “lung_01”, and then incubated for 30 min at 37˚C. For lungs

minced by scissors, the lung suspensions were dispersed halfway during the incubation by

pipetting up and down using a serological pipette. To stop digestion, EDTA and FBS were

added. If using the tissue dissociator, samples were further dissociated using “lung_02”. For

lungs minced by scissors, the lung suspensions were further dispersed by pipetting up and

down using a serological pipette for 1 min. The lung suspension and any remaining lung tissue

chunks were pushed through a 70 μm filter (BD Falcon, San Jose, CA). After centrifugation,

the cells were resuspended in staining buffer (D-PBS/2% FBS/2 mM EDTA/0.1% sodium

azide). Whole cell counts were obtained using the NucleoCounter (Chemometec, Davis, CA).
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For cell sorting, lung cell suspensions were pooled from mice of the same treatment group,

underlaid with 18% (w/v) Nycoprep solution (Accurate Chemical and Scientific Corporation,

Westbury, NJ) and centrifuged at room temperature, at 450xg for 20 min to enrich for macro-

phages, DCs, and monocytes at the interface [66]. Cell suspensions were fractionated into

CD11c+ and CD11c- cells using anti-CD11c magnetic beads and LS columns (Miltenyi Biotec)

according to the manufacturer’s instructions.

For assessing migratory DC phenotypes, mediastinal LNs were dissected and teased open

and placed in tubes with 1 ml solution containing Liberase TM and DNase as described above.

Digested LNs and LNs directly taken out of mice without digestion (Figs 5 and 8) were pushed

through a 70 μm filter.

Lung and LN cells resuspended in staining buffer were incubated with anti-CD16/32

(2.4G2; UCSF Monoclonal Antibody Core), and then stained with a combination of antibodies

for 30 min at 4˚C. For the cell sorting experiments, the CD11c+ fraction was stained for mark-

ers that allow sorting for AMs, CD103+ cDCs, CD11b+ cDCs, and monocyte-derived DCs

(moDCs). The CD11c- fraction was stained for markers that allowed for sorting of Ly6Chi

monocytes. The following antibodies were from BD Biosciences: B220-APC-Cy7 (RA3-6B2);

CD11c-biotin, -BUV395 (HL3); CD3-biotin (145-2C11); CD4-PE-Cy7 (RMA4-4); CD19-PE

(1D3); CD40-PE (3/23); CD80-PE (16-10A1); CD86-PE (GL1); CXCR5-biotin (2G8);

Ly6G-APC, -FITC (1A8); NK1.1-biotin, -PE, -PE-Cy7 (PK136); and SiglecF-PE (E50-2440).

The following antibodies were from BioLegend: CD11b-PE-Cy7 (M1/70); CD11c-APC,

-PerCp-Cy5.5 (N418); CD4-APC-Cy7, -PerCp-Cy5.5 (GK1.5); CD44-APC (IM7); CD49b-

PerCp-Cy5.5 (DX5); CD62L-APC-Cy7 (MEL-14); CD64-PerCp-Cy5.5 (X54-5/7.1);

CD8-PerCp-Cy5.5 (53–6.7); γ/δ TCR-APC, -FITC (GL3); CD103-FITC (2E7); human

NGFR-PE (ME20.4); I-Ab-PerCp-Cy5.5 (AF6-120.1); MHCII (I-A/I-E)-Brilliant Violet 605

(M5/114.152); Ly6C-APC-Cy7 (HK1.4); NK1.1-APC-Cy7 (PK136); and PD-1-PE-Cy7

(RMP1-14). The following antibodies were from eBiosciences (San Diego, CA): CD49b-biotin

(DX5), Ly6C-APC-e780, -PerCp-Cy5.5 (HK1.4). The following antibodies were from Life

Technologies: Mouse anti-human CD2-PE, and mouse IgG2a-PE. The following antibodies

were from Tonbo Biosciences (San Diego, CA): B220-violetFluor 450 (RA3-6B2); CD3-violet-

Fluor 450 (17A2); Ly6G-APC-Cy7 (1A8). The following antibodies were either from BD Bio-

sciences or BioLegend: B220-APC-Cy7 (RA3-6B2); and Ly6G-PE (1A8). The following

antibody was from either BioLegend or Tonbo Biosciences: CD3-PE-Cy7 (145-2C11). The tet-

ramer for mCD1d-PE and -APC (PBSH7) was obtained from the NIH Tetramer Core Facility

(Atlanta, GA). Biotinylated antibodies were labeled by incubation with streptavidin-Qdot605

(Life Technologies). For samples stained for CXCR5, after incubation with CD16/32, cells

were incubated with anti-CXCR5-biotin at room temperature for 45–60 min. After washing,

the cells were then were incubated with fluorophore-conjugated antibodies and streptavidin-

Qdot605 for 30 min at 4˚C. Prior to flow cytometry analysis, the cells were incubated with

DAPI (Life Technologies) to facilitate exclusion of dead cells. Flow cytometry analysis was per-

formed using a LSRII (BD Biosciences). Cell sorting was performed on a FACSAriaIII (BD

Biosciences).

Defining cell populations for flow cytometry analysis and cell sorting

Data were analyzed using FlowJo software (TreeStar, Ashland, OR) and cell sorting gates

defined using FACSDiva 8 (BD Biosciences). For analysis and/or cell sorting of lung and BAL

fluid cell suspensions, DAPI- and DAPIint cells were gated as “live”, because AMs are auto-

fluorescent, and this DAPI-/int gate was used to extrapolate total live cells (S5 Fig). In
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subsequent gating of lung and BAL cells, and for gating LN cells, other cell types were then

identified as “live” based on lack of staining with DAPI.

Gates for cytokine reporter positive cells were based on cells from treated non-reporter con-

trol mice. In experiments using the 4get/KN2 reporter (Il44get/KN2) mice, percentage hCD2+

cells was calculated by percentage hCD2+minus percentage hCD2+ in non-KN2 reporter mice

(Il44get/4get) or, in some experiments by percentage hCD2+minus percentage isotype control

positive.

Gating strategies are shown in the Figures or in Supporting Materials (lymphocyte popula-

tions in the BAL fluid and lungs of GREAT and SMART-17A reporter mice (S6 Fig), 4get

reporter+ cells in the lungs (S7 Fig), non-lymphocyte populations in the BAL fluid and lungs

(S8 Fig), and flow cytometry-sorted cells (S9 Fig)).

Enrichment of LECs and lung CD45+ cells

LECs and CD45+ hematopoietic cells were enriched using a modified protocol described in

Sinha and Lowell [67]. Briefly, lungs were perfused with 5 ml D-PBS via the cardiac right ven-

tricle. After cannulating the trachea, 1.2 ml of Dispase II (50 U/ml, Roche) solution, followed

by 0.6 ml of 1% low-melt agarose (Fisher Scientific, Waltham, MA) were instilled into the

lungs. Ice was placed on the lungs for 2 min to solidify the agarose. Whole lungs, but not the

trachea, were then dissected out, rinsed in D-PBS, then placed in a 50 ml conical tube with 0.5

ml Dispase II, and digested for 45 min at RT, with shaking at 150 rpm. Lung cells were released

by gentle and repeated teasing of the parenchymal tissue with forceps. After sequentially

straining of the cell suspension through 70, 45 and 20 μm strainers, the cells were centrifuged,

resuspended in medium, and stained with the following biotinylated antibodies for 45 min on

ice: CD45 (30F11), Ter119, CD31 (MEC13.3), and CD16/32 (2.4G2). After washing, cells were

incubated with Dynabeads MyOne Streptavidin T1 (Life Technologies) (3 μl/106 cells), that

were pre-rinsed with D-PBS, on a rotator for 30 min at 4˚C. Afterwards, they were separated

into CD45+ and LEC fractions with a DynaMag-2 magnet (Life Technologies). In the LEC

fraction, ~78% of the cells, on average, were positive for the epithelial cell adhesion molecule

(EpCAM), a pan-epithelial cell marker (S10A Fig). This fraction was also minimally contami-

nated with CD45 positive cell (~0.53%). Of the EpCAM+ cells, ~88% were alveolar type II cells

(intracellular staining of surfactant protein C). The remaining EpCAM+ cells were most likely

club cells (previously known as Clara cells) and distal lung progenitor cells. Compared to

whole lungs, the CD45 fraction was enriched with mRNA encoding CD45 (Ptprc) and depleted

of mRNA encoding EpCAM (S10B Fig).

RNA isolation and quantitative PCR

Total RNA was isolated from whole lungs, enriched LECs, and CD45+ cells using RNeasy Mini

Kit (Qiagen, Valencia, CA), with on-column DNase digestion. Total RNA was isolated from

sorted cells using RNeasy Micro Plus Kit (Qiagen), using a genomic DNA removal column.

RNA was reverse transcribed to generate cDNA using iScript cDNA synthesis kit (Bio-Rad).

In most experiments, RNA was quantified using iTaq Universal SYBR Green Supermix (Bio-

Rad) on a Step-One Plus real-time PCR machine (Life Technologies) using the primers in

Table 1. In some experiments, RNA was quantified using Taqman Gene Expression Assays

and Taqman Universal Master Mix II with UNG (both from Life Technologies). The experi-

ments that used Taqman Expression Assay were as follows: Ccl20 (Fig 6E), Il12a (Fig 4C and

4I), Il23a (Fig 6C, 6E and 6F), and Tslp (Fig 6E). Quantification cycles (Cq) of the gene of inter-

est (GOI) were normalized toHprt (ΔCq = CqGOI-CqHprt), and relative expression (2-ΔCq) was

calculated and plotted.
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IL-33 protein quantification

Protein extracts of whole lungs were made after snap freezing treated lungs in liquid nitrogen,

followed by homogenization using a disperser/homogenizer (IKA, Wilmington, NC) in 500 μl

TNT (0.1 M Tris-Cl, 150 mMNaCl, 0.1% Tween 20) lysis buffer and cOmplete mini protease

inhibitors (Roche). The amounts of mature IL-33 protein were assayed using Mouse IL-33

DuoSet ELISA Kit (R&D Systems, Minneapolis, MN) according to the manufacturer’s

instructions.

Statistical tests

Statistics were performed using Prism 5 (GraphPad Software, La Jolla, CA) as described in the

Figure Legends. Outliers identified using Grubb’s test after pooling data from all experiments

of one type were removed from analysis. The data from the following mice were removed

from analysis: 1 OVA-treated mouse in Fig 2D–2F, and 1 OVA-treated mouse in Fig 4K.

Supporting Information

S1 Fig. Flagellin leads to increased eosinophils in the lung.Mice were administered with

OVA (O), OVA plus flagellin (1 μg), or OVA plus CpG (3 μg) i.n., and challenged with i.n.

OVA. On d21, numbers of eosinophils were assessed in the lung. Data contain four mice per

group and are representative of one of three independent experiments. Error bars indicate

mean +SD. � P� 0.05 using one-way anova with Bonferroni post-test.

(TIF)

S2 Fig. I.n. sensitization with OVA plus CpG ODN does not lead to increased pulmonary

resistance.Mice were sensitized with OVA plus 3 μg CpG i.n. and challenged with i.n. OVA.

On d22, pulmonary resistance was assessed. Data are pooled from two independent experi-

ments with 12 mice total per group. Error bars indicate mean +SD.

(TIF)

S3 Fig. Flagellin and CpG ODN induce IL-17 production in γδ and CD4 T cells during the

innate immune response. Percentages of CD4 T cells, γδ T cells, and iNKT cells producing

IL-17A (hNGFR+) in SMART-17A reporter mice (SMART-17A) one day after third i.n.

administration (d3) of OVA, OVA plus flagellin (1 μg), or OVA plus CpG (3 μg). Data are

Table 1. Primer pairs for quantitative PCR.

Forward primer Reverse Primer

Ccl20 GCCTCTCGTACATACAGACGC CCAGTTCTGCTTTGGATCAGC
Csf2 AGCAGGGTCTACGGGGC TGAAATCCGCATAGGTGG
Epcam GGTGGTGTCATTAGCAGTCA GGATCTCACCCATCTCCTTTATC
Hprt AGGTTGCAAGCTTGCTGGT TGAAGTACTCATTATAGTCAAGGGCA
Il1a CCCATGATCTGGAAGAGACCA CAAACTTCTGCCTGACGAGC
Il1b GCCACCTTTTGACAGTGATGAG GACAGCCCAGGTCAAAGGTT
Il12b TGCTGGTGTCTCCACTCAT CTTCAGGCGTGTCACAGG
Il23a TATCCAGTGTGAAGATGGTTGTG CACTAAGGGCTCAGTCAGAGTTG
Il33 GCTGCGTCTGTTGACACATTGAG GGTCTTGCTCTTGGTCTTTTCCAG
Il6 GTTCTCTGGGAAATCGTGGA TGTACTCCAGGTAGCTATGG
Tnfa TCTTCTGTCTACTGAACTTCGGGGT GGCCATAGAACTGATGAGAGGG
Ptprc TTCCAAGAGGAAGGAGCCCA AGAACAACCCTGTCTGCTGG
Tslp TCGAGGACTGTGAGAGCAAGCCAG CTGGAGATTGCATGAAGGAATACCA
doi:10.1371/journal.pone.0167693.t001
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pooled from three independent experiments with combined totals of 10 or 12 mice per group.

Error bars indicate mean +SD. � P� 0.05, �� P� 0.01, ��� P� 0.001 using one-way anova

with Bonferroni post-test.

(TIF)

S4 Fig. Both CD103+ and CD11b+migratory DCs upregulate activation markers to i.n.

exposure to flagellin or CpG ODN. Expression of activation markers on migratory DCs in

the lung-draining (mediastinal) LNs ofMyd88fl/fl (MF) one day after i.n. administration (d1)

of OVA-AF647 or OVA-AF647 plus TLR ligand. (A) Migratory DCs were gated as CD11c+I-

Ab(hi), then gated on CD103 and CD11b. (B) Comparison of different activation markers on

migratory DC subsets that have taken up OVA inMFmice treated i.n with OVA-AF647,

OVA-AF647 plus flagellin (1 μg), or OVA-AF647 plus CpG (0.75 or 3 μg). Data contain 3–4

mice per group and are representative of at least 3 independent experiments. Error bars indi-

cate mean +SD. � P� 0.05, �� P� 0.01, ��� P� 0.001 using one-way anova with Bonferroni

post-test.

(TIF)

S5 Fig. Defining live cells for flow cytometry analysis and cell sorting. (A) For flow cytome-

try analysis and cell sorting of lung and BAL fluid cell suspensions, DAPI- and DAPIint cells

were gated as “live”. (B) In subsequent gating, other cell types were then identified as “live”

based on lack of staining with DAPI.

(TIF)

S6 Fig. Gating strategies for defining lymphocyte populations from the BAL fluid and the

lungs of GREAT and SMART-17A reporter mice. (A) Lymphocytes in the BAL fluid (Fig

1B) were identified as SiglecF-, then gated as followed: B cells (B220+TCRβ-), NK cells

(CD49b+B220-TCRβ- and GFP- to exclude basophils in Il44get/4getmice [31]), CD4 T cells

(TCRβ+CD4+B220-CD8-), and CD8 T cells (TCRβ+CD8+B220-CD4-) (B) Gating strategy for
defining lymphocyte populations using CD1d-tetramer (CD1d-tet) to identify invariant (i)

NKT cells in the experiments shown in Fig 2G–2I, Fig 4D and 4E, and Fig 4J and 4K. Cells

were identified by the following cell surface markers: iNKT cells (CD1d-tet+CD3+), NK

cells (NK1.1+CD3-CD1d-tet-TCRγδ-), γδ T cells (TCRγδ+CD3+CD1d-tet-), CD4 T cells

(CD4+CD3+CD1d-tet-TCRγδ-CD8-), and CD8 T cells (CD8+CD3+CD1d-tet-TCRγδ-CD4-).
(C) Gating strategy for defining lymphocytes using NK1.1 and CD3 to identify NKT cells in

the experiments shown in Fig 2D–2F and Fig 4A. For these experiments, cells were identified

by the following cell surface markers: γδ T cells (TCRγδ+CD3+), NK cells (NK1.1+TCRγδ-CD3-),
NKT cells (NK1.1+CD3+TCRγδ-), CD4 T cells (CD4+CD3+TCRγδ-NK1.1-CD8-), and CD8 T cells

(CD8+CD3+CD1d-tet-TCRγδ-NK1.1-CD4-).
(TIF)

S7 Fig. Gating strategy for 4get reporter+ cells in the lung. Gating strategy for 4get

reporter+ CD4 T cells and basophils in the lungs of 4get/KN2 reporter mice as shown in Fig

2A–2C. Cells were identified by using the following markers: 4get+(GFP+) CD4 T cells

(GFP+CD4+CD3+CD1d-tet-) and basophils (GFP+CD49b+SSCloCD3-CD1d-tet-CD4-). Baso-

phils and eosinophils are constitutively 4get+ [31]. The gating strategy shown is fromMyd88fl/+

Il44get/KN2Mcpt8Basopho8/+mice.Mcpt8Basopho8mice express both YFP and Cre in basophils

[61]. Both GFP from 4get reporter and YFP from Basopho8 reporter were read using the same

filter/channel on the flow cytometer, and additional markers were used to distinguish baso-

phils as described above.

(TIF)
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S8 Fig. Gating strategy for non-lymphocyte populations in the lung and BAL fluid. Gating

strategy for identifying non-lymphocyte populations in the lung and BAL fluid in experiments

shown in Fig 1B and Fig 3A–3C. Cells were identified by using the following cell surface mark-

ers: eosinophils (SiglecF+CD11b+CD11c-Ly6G-), neutrophils (Ly6G+Ly6C+CD11b+), and

monocytes (Ly6C+CD11b+CD11c-/intSiglecF-Ly6G-).

(TIF)

S9 Fig. Gating strategy for cell-sorted cells. Gating strategy for experiments shown in For Figs

4H and 4I and 6F. (A) AMs, CD103+ cDCs, CD11b+ cDCs, and moDCs from CD11c-enriched

cell suspensions were sorted as follows: AMs (SiglecF+CD11c+B220-CD3-NK1.1-Ly6G-), CD103+

cDCs (CD11c+MHCII+CD103+B220-CD3-NK1.1-Ly6G-SiglecF-) CD11b+ cDCs (CD11c+MH

CII+CD11b+CD64-B220-CD3-NK1.1-Ly6G-SiglecF-), andmoDCs (CD11c+MHCII+CD11b+CD

64+B220-CD3-NK1.1-Ly6G-SiglecF-). (B) Ly6Chimonocytes from CD11c-depleted lung cell sus-

pension were sorted as follows: Ly6Chi CD11b+SiglecF-CD11c-CD19-CD3-CD64- Ly6G-NK1.1-

(TIF)

S10 Fig. Enrichment of LECs and CD45 cell fractions. Cell enrichments were assessed after

the LEC and CD45 cell separation from the lung. (A) Representative flow cytometry plots of

LEC fraction stained with CD45, EpCAM, and SPC, and percentages EpCAM+ of LEC frac-

tion, percentages SPC+ of EpCAM+ LEC fraction, and percentages of CD45+ of LEC fraction.

(B) Epcam and Ptprc RNA analysis of CD45 fraction as compared to whole lung. Data contain

3–4 mice per group and are representative of two independent experiments. Error bars indi-

cate mean +SD.

(TIF)
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