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1 Introduction

Over the last two decades, hundreds of empirical studies have attempted to iden-
tify the determinants of growth. This is not to say that growth theories are of
no use for that purpose. Rather, the problem is that growth theories are, using
a term due to Brock and Durlauf (2001a), open-ended. This means that di¤er-
ent growth theories are tipically compatible with one another. For example, a
theoretical view holding that trade openness matters for economic growth is not
logically inconsistent with another theoretical view that emphasizes the role of
geography in growth. This diversity of theoretical views makes it hard to identify
the most e¤ective growth-promoting policies. The aim of this paper is to shed
some light on this issue.
From an empirical point of view, the problem this literature faces is known

as model uncertainty, which emerges because theory does not provide enough
guidance to select the proper empirical model. In the search for a satisfactory
statistical model of growth, the main area of e¤ort has been the selection of
appropiate variables to include in linear growth regressions. The cross-country
regression literature concerned with this task is enormous: a huge number of
papers have claimed to have found one or more variables correlated with the
growth rate, resulting in a total of more than 140 variables proposed as growth
determinants.
A more speci�c issue was raised by Levine and Renelt (1992). From an

extreme-bounds analysis, they concluded that very few variables were robustly
correlated with growth. In contrast, Sala-i-Martin (1997a,b) constructed weighted
averages of OLS coe¢ cients and found that some were fairly stable across speci-
�cations.
Many researchers consider that the most promising approach to accounting

for model uncertainty is to employ model averaging techniques to construct para-
meter estimates that formally address the dependence of model-speci�c estimates
on a given model. In this context, Sala-i-Martin, Doppelhofer and Miller (2004)
-henceforth SDM- employ their Bayesian Averaging of Classical Estimates (here-
after, BACE) to determine which growth regressors should be included in linear
cross-country growth regressions, making an attempt to con�rm in a Bayesian-
inspired framework the results obtained by Sala-i-Martin (1997a,b). In a pure
Bayesian spirit, Fernandez, Ley and Steel (2001) -henceforth FLS- apply the
Bayesian Model Averaging approach with di¤erent priors but the same objective.
Moreover, both methodologies allow constructing a ranking of variables ordered
by their robustness as growth determinants. In spite of the focus on robustness
of this approach, Ley and Steel (2007) show that the results are fairly sensitive to
the use of di¤erent prior assumptions. Moreover, Ciccone and Jarocinski (2005)
employ exactly the same methodologies and conclude that the list of growth deter-
minants emerging from these approaches is sensitive to arguably small variations
in the international income data used in the estimations.
The main objective of this paper is to extend the Bayesian Model Averaging
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(BMA) methodology to a panel data framework. The use of panel data in empiri-
cal growth regressions has many advantages with respect to typical cross-country
regressions. First of all, the prospects for reliable generalizations in cross-country
growth regressions are often constrained by the limited number of countries avail-
able, therefore, the use of within-country variation to multiply the number of
observations is a natural response to this constraint. On the other hand, the use
of panel data methods allows to solve the inconsistency of empirical estimates
which typically arises with omitted country speci�c e¤ects which, if not uncorre-
lated with other regressors, lead to a misspeci�cation of the underlying dynamic
structure, or with endogenous variables which may be incorrectly treated as ex-
ogenous. Since the seminal work of Islam (1995), a lot of studies such as Caselli,
Esquivel and Lefort (1996) have employed panel data models with country speci�c
e¤ects in empirical growth regressions.
In our case, to simultaneously address both omitted variable bias and issues

of endogeneity, we employ a Maximum Likelihood estimator which is able to use
the within variation across time and also the between variation across countries.
Against this background, the paper presents a novel approach, Bayesian Aver-

aging of Maximum Likelihood Estimates (BAMLE), which is easy to interpret and
easy to apply since it only requires the elicitation of one hyper-parameter, the ex-
pected model size, m. Moreover, the impact of di¤erent prior assumptions about
m is minimal with the prior structure employed. On the other hand, empirical
results indicate that the sensivity of the list of robust growth determinants emerg-
ing from our approach to the choice of alternative sources of international income
data is considerably smaller than found in the previous literature. The reason is
that the number of potential regressors we include in our dataset is much smaller
than the number considered in previous studies. Therefore, we conclude that the
sensitivity of the results to variations in the source of international income data
found by Ciccone and Jarocinski (2005) is also present when we consider country
speci�c e¤ects. However, given our results, we can also conclude that the fewer
the regressors the smaller the sensitivity. For the purposes of robustness, this sug-
gests that the set of candidate variables should avoid inclusion of multiple proxies
for the same theoretical e¤ect.
The remainder of the paper is organized as follows. Section 2 describes the

BMA methodology and extends to the panel data case the prior structures pro-
posed by SDM and FLS. Section 3 constructs the likelihood function, describes
the use of the BIC approximation in the BMA context, and introduces the prior
assumptions employed for implementation of the BAMLE approach. In Section
4 we brie�y describe the data set. The empirical results employing two di¤erent
sources for international income data (World Development Indicators 2005 -WDI
2005- and Penn World Table 6.2 -PWT 6.2-) are presented in Section 5. The �nal
section concludes.
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2 Bayesian Model Averaging

A generic representation of the canonical growth regression is:

 = �X + "; (1)

where  is the vector of growth rates, and X represents a set of growth determi-
nants, including those originally suggested by Solow as well as others 1. There
exist potentially very many empirical growth models, each given by a di¤erent
combination of explanatory variables, and each with some probability of being
the �true�model. This is the starting point of the Bayesian Model Averaging
method.
However, there is one variable for which theory o¤ers strong guidance, and

is therefore exempt from the problem of model uncertainty: initial GDP, which
should always be included in growth regressions (see Durlauf, Johnson and Temple
2005). As a result, in the remainder of the paper initial GDP will be included
with probability 1 in all models under consideration.
Using the Bayesian jargon, a model is formally de�ned by a likelihood function

and a prior density. Suppose we have K possible explanatory variables. We will
have 2K possible combinations of regressors, that is to say, 2K di¤erent models
- indexed by Mj for j = 1; :::; 2K- which all seek to explain y -the data-. Mj

depends upon parameters �j. In cases where many models are being entertained,
it is important to be explicit about which model is under consideration. Hence,
the posterior for the parameters calculated using Mj is written as:

g
�
�jjy;Mj

�
=
f
�
yj�j;Mj

�
g
�
�jjMj

�
f (yjMj)

; (2)

and the notation makes clear that we now have a posterior, a likelihood, and a
prior for each model. The logic of Bayesian inference suggests that we use Bayes�
rule to derive a probability statement about what we do not know (i.e. whether
a model is correct or not) conditional on what we do know (i.e. the data). This
means the posterior model probability can be used to assess the degree of support
for Mj. Given the prior model probability P (Mj) we can calculate the posterior
model probability using Bayes Rule as:

P (Mjjy) =
f (yjMj)P (Mj)

f (y)
: (3)

Since P (Mj) does not involve the data, it measures how likely we believe
Mj to be the correct model before seeing the data. f (yjMj) is often called the
marginal (or integrated) likelihood, and is calculated using (2) and a few simple
manipulations. In particular, if we integrate both sides of (2) with respect to

1The inclusion of additional control variables to the regression suggested by the Solow (or
augmented Solow) model can be understood as allowing for predictable and additional hetero-
geneity in the steady state
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�j, use the fact that
R
g
�
�jjy;Mj

�
d�j = 1 (since probability density functions

integrate to one), and rearrange, we obtain:

f (yjMj) =

Z
f
�
yj�j;Mj

�
g
�
�jjMj

�
d�j: (4)

The quantity f (yjMj) given by equation (4) is the marginal probability of the
data, because it is obtained by integrating the joint density of (y; �j) given y over
�j. The ratio of integrated likelihoods of two di¤erent models is the Bayes Factor
and it is closely related to the likelihood ratio statistic, in which the parameters
�j are eliminated by maximization rather than by integration.
Moreover, considering � a function of �j for each j = 1; :::; 2K , we can also

calculate the posterior density of the parameters for all the models under consid-
eration:

g (�jy) =
X2K

j=1
P (Mjjy) g (�jy;Mj) (5)

If one is interested in point estimates of the parameters, one common procedure
is to take expectations across (5):

E (�jy) =
X2K

j=1
P (Mjjy)E (�jy;Mj) : (6)

Following Leamer (1978), we calculate the posterior variance as:

V (�jy) =
X2K

j=1
P (Mjjy)V (�jy;Mj) + (7)

+
X2K

j=1
P (Mjjy) (E (�jy;Mj)� E (�jy))2 :

Inspection of (7) shows that the posterior variance incorporates both the es-
timated variances of the individual models as well as the variance in estimates of
the ��s across di¤erent models.
In words, the logic of Bayesian inference implies that one should obtain results

for every model under consideration and average them using appropiate weights.
However, implementing Bayesian Model Averaging can be di¢ cult since the num-
ber of models under consideration -2K-, is often huge. This has led to various
algorithms which do not require dealing with every possible model. In particu-
lar we will employ the so called Markov Chain Monte Carlo Model Composition
(MC3) algorithm. (see the Computational Appendix for more details).
Given the above, we are now ready to introduce our measure of robustness.

We estimate the posterior probability that a particular variable h is included in
the regression, and we interpret it as the probability of that the variable belongs in
the true growth model. In other words, variables with high posterior probabilities
of being included are considered as robust determinants of economic growth. This
is called the posterior inclusion probability for variable h, and it is calculated as
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the sum of the posterior model probabilities for all of the models including that
variable:

posterior inclusion probability = P (�h 6= 0jy) =
X

�h 6=0
P (Mjjy) : (8)

2.1 BACE-SDM Approach in a Panel Data Context

For a given group of regressors, that is, for a given model Mj, the estimated
econometric model consists of the following equation and assumptions:

yit � yit�� = �yit�� + x
0j
it�

j + �i + �t + vit (t = 1; :::; T ) (i = 1; :::; N) (9)

yit = �yit�� + x
0j
it�

j + �i + �t + vit (� = �+ 1)

E
�
vijyi; xji ; �i

�
= 0; (A1)

where vi = (vi1; :::; viT )
0, xji =

�
xji1; :::; x

j
iT

�0
and yi = (yi1; :::; yiT )

0. We observe yit
(the log of per capita GDP for country i in period t) and the kjx1 vector of ex-
planatory variables xjit included in modelMj, but not �i, which is an unobservable
time-invariant regressor. Additionally, we assume:

V ar
�
vijyi; xji ; �i

�
= �2IT : (A2)

Under assumptions (A1) and (A2), the within-group estimator (henceforth,
WG) is the optimal estimator of � and �j for a given model.
Note that in addition to the individual speci�c �xed e¤ect �i, we have also

included the term �t in (9). That is to say, we are including time dummies in
the model in order to capture unobserved common factors across countries and
therefore we are not ruling out cross-sectional dependence. In the practice, this
is done by simply working with cross-sectional de-meaned data. In the remaining
of the exposition, we assume that all the variables are in deviations from their
cross-sectional mean.
Following Sala-i-Martin et al. (2004) we have implemented the denominated

BACE approach in this context. The idea of BACE is to assume di¤use priors
(as an indication of our ignorance) and make use of the result that, in the lin-
ear regression model, for a given model Mj, standard di¤use priors and Bayesian
regression yield posterior distributions identical to the classical sampling distrib-
ution of OLS.
With the assumptions stated above we can rewrite (6) as:

E (�jy) =
P2K

j=1 P (Mjjy)b�j; (10)

where b�j is the WG2 estimate for � with the regressor set that de�nes model j.
Moreover, as the posterior odds�behavior is problematic with di¤use priors, SDM

2Despite assumption (A1) does not hold by de�nition in this context, we should remark that
this is the easiest way of applying the methodology to panel data estimates and we can consider
it as the starting point of our research.
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propose to use instead the Schwarz aymptotic approximation to the Bayes factor;
therefore:

P (Mjjy) =
P (Mj) (NT )

�kj=2 SSE
�(NT )=2
jP2K

i=1 P (Mi) (NT )
�ki=2 SSE

�(NT )=2
i

; (11)

where NT is the number of observations, K is the total number of regressors, kj

is the number of regressors included in model j and SSEj is the sum of squared
residuals of the j-model�s regression. Regarding the prior model size (W ), the
BACE approach assumes that each variable is independently included in a model:

W � Bin (K; �) (12)

E (W ) = K� ) � =
m

K
:

Note that with this prior structure, the researcher only needs to �x the prior
expected model size m which implies di¤erent prior inclusion probabilities for a
given regressor (�).

2.2 BMA-FLS Approach in a Panel Data context

One question arises when we think in terms of bayesian econometrics: how sen-
sitive are the results to the choice of priors by the researcher? In this section,
instead of the BACE approach based on di¤usse priors, we implement the full
Bayesian approach with the benchmark priors proposed by Fernández, Ley and
Steel (2001b). These priors can be easily applied to the panel data case (�xed-
e¤ects model) if we rewrite the Mj model in the previous section as:

yit = �yit��+x
0j
it�

j+�1D1+ :::+�NDN+�t+vit (t = 1; :::; T ) (i = 1; :::; N); (13)

where the coe¢ cients (�1:::�N) are the individual unobservable e¤ects for each
country, (D1:::DN) are N dummy regressors and again, all variables will be in
deviations from their cross-sectional means given the presence of the time dummy
�t. Assumptions (A1) and (A2) also hold here, and the error term is supposed to
follow a normal distribution. Fernández et al. (2001b) propose a natural conjugate
prior distribution which allows employing the exact Bayes factor instead of using
asymptotic approximations. For the variance parameter, which is common for all
the models under consideration, the prior is improper and non-informative:

p (�) / ��1: (14)

The g-prior (Zellner (1986)) for the slope parameters is a normal density with
zero mean and covariance matrix equal to:

�2
�
g0Z

0jZj
��1

; (15)
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where Zj = (y�1; xj; D1; :::; DN) and:

g0 = min

�
1

NT
;

1

(kj +N)2

�
:

With this prior, both the posterior for each model and the Bayes factor have
a closed form. Concretely, the Bayes factor (the ratio of integrated likelihoods)
for model Mj versus model Mi is given by:

Bji =

�
goj

1 + goj

� kj+1

2
�
goi + 1

goi

� ki+1

2

 
1

goi+1
SSEi +

goi
goi+1

(y0y)
1

goj+1
SSEj +

goj
goj+1

(y0y)

!NT
2

: (16)

Once we have speci�ed the distribution of the observables given the parameters
and the prior for these parameters, we only need to de�ne the prior probabilities
for each of the models. In particular, FLS assume that every model has the same
a priori probability of being the true model:

P (Mj) = 2
�K : (17)

The prior in (17) is the Binomial prior of SDM but employingm = K=2 instead
of m = 73.

2.3 On the E¤ect of Prior Assumptions

We have presented and described two di¤erent prior structures employed in the
BMA context. Both approaches give very similar results, and this is often mis-
interpreted as a symptom of robustness with respect to prior assumptions. Ley
and Steel (2007) show that this similarity arises mostly by accident. The reason
is that the di¤erent choices of the prior inclusion probability of each variable (�) �
treated as �xed in both approaches �compensates the di¤erent penalties to larger
models implied by the di¤use priors of SDM and the informative g-priors of FLS.
The e¤ect of weakly-held prior views (as those that apply in the growth re-

gression context) should be minimal. In search of this minimal e¤ect, Ley and
Steel (2007) propose a model prior speci�cation and model size (W ) given by the
following assumptions:

W � Bin (K; �) (18)

� � Be (a; b) ; (19)

where a; b > 0 are hyper-parameters to be �xed by the researcher. The di¤erence
with respect to SDM and FLS is to make � random rather than �xed. Model size
W will then satisfy:

E (W ) =
a

a+ b
K: (20)

3This represents another di¤erence with respect to the priors of the BACE-SDM approach in
the previous subsection. Note that Sala-i-Martin et. al. (2004) propose m = 7 as a reasonable
prior mean model size in the cross-country context. Here, I propose m = 5 for the panel data
case.
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The prior model size distribution generated in this way is the so-called Binomial-
Beta distribution. Ley and Steel (2007) propose to �x a = 1 and b = (K �m)=m
through equation (20), so we only need to specify m, the prior mean model size,
as in the BACE-SDM and BMA-FLS approaches.
As shown by Ley and Steel (2007), this prior speci�cation with � random

rather than �xed implies a substantial increase in prior uncertainty about model
size, and makes the choice of m much less critical. Moreover, as we can see in
Table 1, with random � the e¤ects of prior assumptions are much less severe.
Therefore, we only need to specify the prior structure for the parameters of

each of the models under consideration. As we shall see, in order to minimize the
e¤ect of prior assumptions we will avoid this prior elicitation by using a Maximum
Likelihood estimator.

3 Bayesian Averaging of Maximum Likelihood
Estimates (BAMLE)

3.1 The Likelihood Function

The panel data methods employed in the aforementioned approaches only permit
use of the within variation in the data, and therefore cannot exploit the informa-
tion contained in regressors without time variation. This situation implies that
we are not considering all the potential determinants of economic growth. For in-
stance, some theories argue that geographic factors without time variation matter
for growth. Moreover, as it is well-known, since assumption (A1) does not hold
in dynamic panels, the within estimator of � is biased when T is small, as will be
our case. Given the importance of this parameter -the convergence parameter- in
the growth context, it is desirable to get an unbiased estimator of �. Given the
Bayesian spirit of the approach, we propose here to use a maximum likelihood
estimator - for a given model - which permits addressing the two drawbacks just
described.
For a given model Mj we can write:

yit = �yit�� + x
0j
it�

j + zji 
j + �i + �t + vit

Moreover, we can go further and assume4:

vitjyit�1:::yi0; xji ; z
j
i ; �i � N

�
0; �2v

�
(A3)

�ijyi0; x
j
i ; z

j
i � N

�
'yi0 + �

jxji ; �
2
�

�
(A4)

4Keep in mind that all data will be cross-sectional de-meaned given the inclusion of time
dummies.
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Under assumptions (A3) and (A4) we can write the likelihood as5:

log f
�
yijyi0; xji ; z

j
i

�
/ �T � 1

2
log �2v � (21)

� 1

2�2v

�
y�i � �y�i(�1) � x

�j
i �

j
�0 �
y�i � �y�i(�1) � x

�j
i �

j
�
�

�1
2
log!2 � 1

2!2
�
yi � �yi(�1) � jz

j
i � �jx

j
i � 'yi0

�2
;

where �j = �j + �j, ' and !2 are the linear projection coe¢ cients of ui on x
j
i

and yi0, and y�i , y
�
i(�1) and x

�j
i denote orthogonal deviations of yi, yi(�1) and x

j
i

respectively.
Thus, the Gaussian log-likelihood given yi0; x

j
i and z

j
i can be decomposed into

a within-group and a between-group component. This allows us to obtain an
unbiased and consistent estimator for � (Alvarez and Arellano (2003)). Further-
more, the between-group component together with the orthogonality assumption
between zji and �i allow for identi�cation of 

j. We should emphasize that as-
sumption (A4) implies that the regressors with and without temporal variation
are treated di¤erently. While the x�s can be correlated with the unobservable
�xed e¤ect, the z�s are independent. One interpretation is that, in addition to
the traditional unobserved heterogeneity between countries given by the �i term,
there also exists a second type of �xed but observable heterogeneity given by the
zi variables. Moreover, both types of heterogeneity must be uncorrelated. For
instance, we may think about observable geographic factors such as land area,
which are independent from unobservables of each country as could be the ability
of its population. With the BAMLE approach, we will be able to conclude which
observable �xed factors are more important in promoting economic growth. This
conclusion could also be obtained by using standard random e¤ects estimation,
but it is important to remark that with our approach we do not need to assume in-
dependence between the country speci�c e¤ect and time varying regressors, which
seems to be implausible in this context.

3.2 The BIC Approximation

Once we have speci�ed the likelihood function of the data, we need a few more
ingredients for the implementation of the BMA methodology. An essential one is
the derivation of the integrated likelihood for a given model presented in equation
(4). In our case, this requires the speci�cation of a prior distribution for the
parameters and the computation of a high-dimensional and intractable integral
for each of the 2K models under consideration. Various analytic and numerical
approximations have been proposed to address this problem. In particular, we
will make use of the Bayesian Information Criterion (BIC) approximation, which

5See Alvarez and Arellano (2003) for the demonstration in the pure autorregresive model.
We add here additional exogenous explanatory variables with and without temporal variation.
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is both simple and accurate. The Schwarz criterion gives a rough approximation
to the logarithm of the Bayes factor, which is easy to use and does not require
evaluation of subjective prior distributions.
We can approximate the Bayes factor between models Mi and Mj, Bij =

f(yjMi)
f(yjMj)

such that (Raftery (1995)):

S= log f
�
yjb�i;Mi

�
� log f

�
yjb�j;Mj

�
�(ki � kj)

2
log (NT ) ; (22)

where b�i is the MLE under Mi, ki is the dimension of b�i, and NT is the sample
size. As NT !1, this quantity, often called the Schwarz criterion, satis�es:

S � logBij
logBij

! 0 (23)

Minus twice the Schwarz criterion is often called the Bayesian information
criterion (BIC):

BIC = �2S = �2 logBij: (24)

The relative error of exp(S) in approximating Bij is generally O(1). Thus even
for very large samples, it does not produce the correct value. On the other hand,
we must keep in mind that in our approach, testing two competing hypothesis is
not the �nal objective, and therefore we do not need the exact value of the Bayes
factor. Instead we only need a rough interpretation of Bij in a logarithmic scale
such that6:

2 logBij Bij Interpretation by the MC3 algorithm
> 0 > 1 Strong evidence against Mj

< 0 < 1 Not strong evidence against any model

Equation (23) shows that in large samples the Schwarz criterion is equivalent
to the logarithm of the Bayes factor and therefore it should provide a reasonable
indication of this evidence.
The value of BIC for model Mj denoted BICj, is the approximation to

�2logB0j given by (24), where B0j is the Bayes factor for model Mj against
M0 (which could be the null model with no independent variables). Moreover, we
can manipulate the previous equations in the following manner:

Bij =
f (yjMi)

f (yjMj)
=

f(yjMi)
f(yjM0)

f(yjMj)

f(yjM0)

=
Bi0
Bj0

=
B0j
B0i

:

2 logBij = 2 [logB0j � logB0i] = �BICj +BICi:
6This is the interpretation we need for the implementation of our approach with the MC3

algorithm. See Computational Appendix for more details on the MC3 algorithm.
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In addition, we can rewrite equation (3) as:

P (Mjjy) =
f (yjMj)P (Mj)P2K

i=1 f (yjMi)P (Mi)
= (25)

=

f(yjMj)

f(yjMh)
f (yjMh)P (Mj)P2K

i=1
f(yjMi)
f(yjMh)

f (yjMh)P (Mi)
=

=
Bjhf (yjMh)P (Mj)P2K

i=1Bihf (yjMh)P (Mi)
=

=

1
B0j
P (Mj)P2K

i=1
1
B0i
P (Mi)

=
Bj0P (Mj)P2K

i=1Bi0P (Mi)
;

where since B00 = 1, BIC0 = 0, then Bj0 = exp
�
1
2
BICj

�
.

Given the above, instead of integrating the marginal likelihood in (4), we will
use the following result:

f (yjMj) / exp
�
1

2
BICj

�
; (26)

and therefore:

P (Mjjy) =
P (Mj) exp

�
1
2
BICj

�P2K

i=1 P (Mi) exp
�
1
2
BICi

� : (27)

Furthermore, the posterior odds (posterior odds = prior odds xBayes Factor)
becomes:

P (Mijy)
P (Mjjy)

=
P (Mi)

P (Mj)

exp
�
1
2
BICi

�
exp

�
1
2
BICj

� : (28)

3.3 The Choice of Priors

Bayesian inference may be controversial because it requires speci�cation of prior
distributions which are subjectively chosen by the researcher. However, in large
samples this choice has very little in�uence, its contribution to the posterior mean
and variance is on the order of (1=NT )-th of the total. In large samples, the pos-
terior mode is very close to the maximum likelihood estimator, and Bayesian
con�dence intervals are very similar to standard non-Bayesian con�dence inter-
vals. Thus, for estimation in regular models with large samples, Bayesian and
maximum likelihood methods give answers that are essentially the same. There-
fore, for the implementation of BMA using the BIC approximation, one can use
the maximum likelihood estimates to avoid the need to specify a particular prior
for the parameters of a given model. On the other hand, in an attempt to limit the
e¤ects of weakly held prior views, we will employ the Binomial-Beta prior struc-
ture proposed by Ley and Steel (2007) for the prior on model size, as described
in the previous section.
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As a result, for the implementation of the BAMLE approach, the researcher
only needs to specify one prior hyper-parameter, expected model size m. More-
over, as we have seen, employing the Binomial-Beta prior structure, the impact
of di¤erent choices of this hyper-parameter is minimal.

4 Data

A huge number of variables have been proposed as growth determinants in the
cross-country literature, including variables with and without time variation.
However, data for many of the latter is not available over the entire sample period
under consideration in this paper7. Since our main goal is to work with a panel
data set, we limit our selection of time-varying variables to those for which data
is available over the entire period 1960-2000.
In the construction of our data set, we have considered two di¤erent criteria.

The �rst selection criterion derives from our aim of obtaining comparable results
with the existing literature, and the second criterion comes from the fact that we
need to work with a balanced panel.
With these restrictions, the total size of our data set becomes 35 variables

(including the dependent variable, the growth rate of per capita GDP) for 73
countries and for the period 1960-2000. In order to avoid the problem of serial
correlation in the transitory component of the disturbance term, we have split
our sample in �ve year periods. Therefore we have eight observations for each
country , that is to say, we have a sample of 584 observations. Among the 19
regressors with temporal variation in our data set, there are both stock and �ow
variables. Following Caselli, Esquivel, and Lefort (1996), stock variables such as
population and years of primary education are measured in the �rst year of each
�ve-year period. On the other hand, �ow variables such as population growth and
investment rate are measured as �ve-year averages.

4.1 Determinants of Economic Growth

The augmented Solow model can be taken as the baseline empirical growth model.
It comprises four determinants of economic growth, initial income, rates of human
and physical capital accumulation, and population growth. We capture these
growth determinants through the ratio of real investment to GDP, the stock of
years of education and demographic variables such as life expectancy, the ratio
of labor force to total population and population growth. In addition to those
four determinants, Durlauf, Johnson, and Temple�s (2005) survey of the empirical
growth literature identi�es 43 distinct growth theories and 145 proposed regressors
as proxies; each of these theories is found to be statistically signi�cant in at least

7For instance, the fraction of GDP in mining and the fraction of Muslim population (both
considered in Fernández et. al. (2001a) and Sala-i-Martin et. al. (2004)) are only available for
the year 1960.
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one study. Due to data availability, our set of growth determinants is a subset
of that identi�ed by Durlauf, Johnson and Temple (2005). We consider the three
broad variable categories below.

� Macroeconomic and external environment: A stable macroeconomic envi-
ronment characterized by low and predictable in�ation, sustainable budget
de�cits, and limited departure of the real exchange rate from its equilibrium
level sends important signals to the private sector about the commitment
and credibility of a country�s authorities to e¢ ciently manage their economy
and increase the opportunity set of pro�table investments. In this paper,
the impact of macroeconomic stability is captured by the government con-
sumption relative to GDP. Moreover, we also consider the investment price
level as a proxy for the level of distortions that exists in the economy and the
trade regime/external environment are captured by the degree of openness
measured by the trade openness, imports plus exports as a share of GDP.
We aslo consider an alternative measure of openness, the SW openness in-
dex constructed by Sachs and Warner. The objective is to conclude which
measure of openness is a better (in the sense of more robust) proxy.

� Institutions and governance: The role of democracy and institutions in the
process of economic growth has been the source of considerable research
e¤ort. In this paper we examine the hypothesis that political freedom and
institutional quality are signi�cant determinants of economic growth using
political rights and civil liberties indices to measure the quality of institu-
tions and capture the occurrence of free and fair elections and decentralized
political power.

� Geography and �xed factors: The relationship between geography and growth
is complex. While the majority of empirical evidence concludes that some
geographic attributes of countries (such as tropical climate or landlocked-
ness) correlate negatively with recent rates of economic growth, other re-
search �nds evidence that geography explains nothing after controlling for
institutions. In order to examine the extent to which geography matters for
growth, we use a variety of geographic indicators such as minimal distance
to New York, Rotterdam or Tokio, the fraction of land area near navigable
water or the percentage of land area in the geographical tropics.

A list of variables with their corresponding description and sources can be
found in the Data Appendix, as well as the list of countries included in the sample.

5 Results

Table 1 reports the posterior inclusion probability of the 19 regressors with time
variation included in our data set after applying BACE-SDM and BMA-FLS pro-
cedures. The table highlights the sensivity of the results to the di¤erent prior
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assumptions. Concretely, comparison of columns 1 and 3, and 2 and 4, shows
that with �xed � di¤erent assumptions about the prior mean model size, m = 5 or
m = K=2, generate quite di¤erent posterior inclusion probabilities. More specif-
ically, when we do not penalize larger models in any way �that is to say, when
we employ m = K=2 instead of m = 5 in the BACE-SDM approach (columns
3 and 1 respectively) �the posterior inclusion probabilities are higher. On the
other hand, when we do penalize bigger models in both ways employing m = 5
in the BMA-FLS approach (column 2), the posterior inclusion probabilities are
smaller. This also highlights the "fortuitous robustness" which emerges when we
compare the BMA-FLS and BACE-SDM�s results in columns 1 and 4, that is
to say, di¤erent prior assumptions on model size have substantial e¤ects on the
results. Furthermore, analyzing columns 5 to 8 of Table 1, we can conclude that
the e¤ects of prior assumptions on model size are much less important in the case
of random �. Moreover, the last row of the table indicates that expected model
size should be close to 5 in the panel data framework.
Table 2 shows the posterior inclusion probability, the posterior mean and the

posterior standard error for the parameters corresponding to the 19 variables of
our data set with time variation when we apply the BACE-SDM and BMA-FLS
approaches in a panel data context. These results are based on the whole sample,
that is, 73 countries for the period 1960-2000. The main conclusion from the
table is that, in addition to initial GDP, there are several covariates which appear
robustly related to economic growth. Note that given the nature of the paper, our
main conclusions will be obtained according to the results presented in Table 4.
In Tables 3 and 5, we follow the methodology employed by Ciccone and

Jarocinski (2005). Employing the same sample period for both sources of in-
come data8, we can assess the sensitivity to changes in data source of the results
in terms of posterior inclusion probability and posterior mean. The measures
shown are self-explanatory: the results are considerably less sensitive to di¤er-
ences in income data source than found in the previous literature, at least for the
comparison between World Bank and Penn World Table income data9. In order
to further explore this issue, we redo the sensivity analysis using the BACE-SDM
approach without considering the panel structure of the data. By doing this, the
only di¤erence between vis-a-vis Ciccone and Jarocinsky (2005) is the number of
regressors considered in the exercise. While they consider 67 potential explanatory
variables, we consider 34. Looking at the results, presented in Table 6, we can see
that the sensivity with K = 34 is much smaller than with K = 67. Therefore, we
conclude that the number of potential explanatory variables under consideration
is critical for the sensivity of the results to changes in the source of international
income data used. Concretely, the fewer the regressors, the smaller the sensivity.
Results when applying the BAMLE Approach with PWT 6.2 income data

for the whole period are summarized in Table 4. Addionally to initial GDP, a
fair number of regressors could be considered as robust determinants of economic

8Note that WDI 2005 income data only covers the period 1975-2000.
9See Ciccone and Jarocinski (2005) for more details on the cross-country context.
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growth accordingly to the Bayesian robustness check used in the approach. The
most conclusive evidence is for investment price, air distance to big cities and
political rights. All the three regressors a¤ect growth with the expected sign: a
low level of distorsions in the economy (i.e. lower investment price), a better
geographic situation and a higher quality of the institutions (i.e. lower value for
the political rights index) would promote economic growth. On the other hand,
since their posterior inclusion probability is higher than their prior inclusion prob-
ability, many other variables such as demographic indicators, a measure of trade
openness, the dummy for landlocked countries, the investment share, the civil lib-
erties index and the government share can be considered as robust determinants
of economic growth. Finally, there is one regressor, life expectancy, that poses a
puzzle. In spite of having the highest posterior inclusion probability, we think it
cannot be viewed as robust because its posterior standard error is bigger than its
posterior mean.
It is worth mentioning that the posterior mean conditional on inclusion of the

lagged dependent variable (initial GDP) in Table 4 implies a rate of conditional
convergence of � = 0:006. This suggest that after controlling for model uncertainty
and other potential inconsistencies (arising from omitted variable and endogeneity
biases), the estimated rate of convergence is surprisingly similar to the standard
cross-section �nding.

6 Concluding Remarks

In spite of a huge amount of empirical research, the drivers of economic growth
are not well understood. This paper attempts to provide insights on the growth
puzzle by searching for robust determinants of economic growth. We propose a
Bayesian Averaging of Maximum Likelihood Estimates (BAMLE) method in a
panel data framework to determine which variables are signi�cantly related to
growth. Similarly to the BACE approach, our method is more appealing than a
standard Bayesian Model Averaging since it does not require the speci�cation of
prior distributions for the parameters of every model under consideration, and it
involves only one hyper-parameter, expected model sizem. Moreover, the BAMLE
approach introduces two improvements with respect to previous model-averaging
and robustness-checking methods applied to empirical growth regressions: (i) it
adressess the problem of inconsistent empirical estimates by using a dynamic panel
estimator, and (ii) it minimizes the impact of prior assumptions about the only
hyper-parameter in the approach. An additional advantage of our approach is that
the list of growth determinants emerging from our set of 34 potential explanatory
variables is less sensitive to the use of alternative sources of international income
data than in the case of other approaches which considered a larger number of
potential regressors.
The empirical �ndings suggest that country speci�c e¤ects correlated with

other regressors play an important role since the list of robust growth determi-

16



nants is not the same when we do not take into account their presence. Our
results indicate that once model uncertainty and other potential inconsistencies
are accounted for, there exist economic, institutional, geographic and demographic
factors that robustly a¤ect growth. The most robust determinants are investment
price, distance to big cities and political rights. Other variables which can be
considered as robust include demographic factors (population growth, urban pop-
ulation and population), geographical dummies (such as the dummy for landlocked
countries), measures of openness and civil liberties, and macroeconomic indica-
tors such as the investment share and the government share. On the other hand,
our empirical estimate of the rate of convergence, after controlling for both model
uncertainty and endogeneity, is surprisingly similar to that commonly found in
cross-section studies.
As a �nal remark, it is worth mentioning that the dynamic panel estimator

proposed in this paper addresses the endogeneity of regressors with time variation
with respect to the permanent component of the error term as well as the endo-
geneity of the lagged dependent variable with respect to the transitory component
of the error term. However, many other regressors such as the labor force or the
investment share should ideally be considered as predetermined instead of strictly
exogenous with respect to the transitory component of the error term, and this
point remains unresolved in the BMA context. Hence, the estimates might change
under less stringent exogeneity assumptions. This issue is left for future research.
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A Appendix

A.1 Computational Appendix

For the implementation of the empirical approaches described in the paper, we
need to resort to the algorithms proposed in the literature because of the ex-
tremely large number of calculations required for obtaining the posterior mean
and variance described in equations (6) and (7). This is because the number of
potential regressors determines the number of models under consideration, for ex-
ample, in our case, with K = 35 potential regressors, the number of models under
consideration is 3:4x1010. These algorithms carry out Bayesian Model Averaging
without evaluating every possible model.
Concretely, for the BACE, BMA and BAMLE approaches we have made use

of the Markov Chain Monte Carlo Model Composition (MC3) algorithm pro-
posed by Madigan and York (1995), which generates a stochastic process that
moves through model space. The idea is to construct a Markov chain of mod-
els fM(t); t = 1; 2; :::g with state space �. If we simulate this Markov chain
for t = 1; :::; N , then under certain regularity conditions, for any function h(Mi)
de�ned on �, the average bH =

1

N

NX
t=1

h (M (t))

converges with probability 1 to E (h (M)) as N ! 1. To compute (6) in this
fashion, we set h(Mi) = E(�jMi; y).
To construct the Markov chain, we de�ne a neighborhood nbd(M) for each

M 2 � that consists of the model M itself and the set of models with either
one variable more or one variable fewer than M . Then, a transition matrix q is
de�ned by setting q(M ! M 0) = 0 8 M 0 =2 ndb(M) and q(M ! M 0) constant
for all M 0 2 ndb(M). If the chain is currently in state M , then we proceed by
drawing M 0 from q(M !M 0). It is the accepted with probability

min

�
1;
Pr (M 0jy)
Pr (M jy)

�
Otherwise, the chain stays in state M 10.
After some experimentation with generated data, we verify the proper conver-

gence properties of our Gauss code which implements the described MC3 algo-
rithm.

10Koop (2003) is a good reference for the reader interested in developing a deeper understand-
ing of the MC3 algorithm.
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A.2 Data Appendix
Table A1: Variable De�nitions and Sources

Variable Source De�nition
Dependent Variable PWT 6.2 Growth of GDP per capita over 5-year periods

(2000 US dollars at PPP)
Initial GDP PWT 6.2 Logarithm of initial real GDP per capita

(2000 US dollars at PPP)
Population Growth PWT 6.2 Average growth rate of population
Population PWT 6.2 Population in thousands of people
Trade Openness PWT 6.2 Export plus imports as a share of GDP
Government Share PWT 6.2 Government consumption as a share of GDP
Investment Price PWT 6.2 Average investment price level
Labor Force PWT 6.2 Ratio of workers to population
Consumption Share PWT 6.2 Consumption as a share of GDP
Investment Share PWT 6.2 Investment as a share of GDP
Urban Population WDI 2005 Fraction of population living in urban areas
Population Density WDI 2005 Population divided by land area
Life Expectancy WDI 2005 Life expectancy at birth
Population under 15 Barro and Lee Fraction of population younger than 15 years
Population over 65 Barro and Lee Fraction of population older than 65 years
Primary Education Barro and Lee Stock of years of primary education
Secondary Education Barro and Lee Stock of years of secondary education
Political Rights Freedom House Index of political rights from 1 (highest) to 7
Civil Liberties Freedom House Index of civil liberties from 1 (highest) to 7
Malaria Gallup et. al. Fraction of population in areas with malaria
Navigable Water Gallup et. al. Fraction of land area near navigable water
Landlocked Country Gallup et. al. Dummy for landlocked countries
Air Distance Gallup et. al. Logarithm of minimal distance in km from

New York, Rotterdam, or Tokio
Tropical Area Gallup et. al. Fraction of land area in geographical tropics

Notes:
1. PWT 6.2 refers to Penn World Table 6.2
2. WDI 2005 refers to World Development Indicators 2005 from The World Bank
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Table A1 - Continued

Variable Source De�nition
Tropical Pop. Gallup et. al. Fraction of population in geographical tropics
Land Area Gallup et. al. Area in km2

Independence Gallup et. al. Timing of national independence measure: 0
if before 1914; 1 if between 1914 and 1945; 2
if between 1946 and 1989 and 3 if after 1989

Socialist Gallup et. al. Dummy for countries under socialist rule for
considerable time during 1950 to 1995

Climate Gallup et. al. Fraction of land area with tropical climate
War Dummy Barro and Lee Dummy for countries that participated in ex-

ternal war between 1960 and 1990
SW Openness Index Sachs, Warner Index of trade opennes from 1 (highest) to 0
Europe Dummy for EU countries
Sub-Saharan Africa Dummy for Sub-Saharan African countries
Latin America Dummy for Latin American countries
East Asia Dummy for East Asian countries
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Table A2: List of Countries

Algeria Indonesia Peru
Argentina Iran Philippines
Australia Ireland Portugal
Austria Israel Rwanda
Belgium Italy Senegal
Benin Jamaica Singapore
Bolivia Japan South Africa
Brazil Jordan Spain
Cameroon Kenya Sri Lanka
Canada Lesotho Sweden
Chile Malawi Switzerland
China Malaysia Syria
Colombia Mali Thailand
Costa Rica Mauritius Togo
Denmark Mexico Trinidad & Tobago
Dominican Republic Mozambique Turkey
Ecuador Nepal Uganda
El Salvador Netherlands United Kingdom
Finland New Zealand United States
France Nicaragua Uruguay
Ghana Niger Venezuela
Greece Norway Zambia
Guatemala Pakistan Zimbabwe
Honduras Panama
India Paraguay
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Tables

Table 1: Posterior Inclusion Probability of the Regressors

� Fixed � Random
Variable m = 5 m = K=2 m = 5 m = K=2

SDM FLS SDM FLS SDM FLS SDM FLS
(1) (2) (3) (4) (5) (6) (7) (8)

Initial GDP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Population 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Population under 15 0.950 0.961 0.937 0.953 0.953 0.965 0.949 0.963
Investment Share 0.826 0.847 0.783 0.835 0.822 0.841 0.816 0.843
Urban Population 0.651 0.392 0.781 0.596 0.608 0.358 0.638 0.387
Consumption Share 0.305 0.100 0.682 0.229 0.303 0.088 0.351 0.099
Trade Opennes 0.287 0.106 0.656 0.218 0.289 0.094 0.336 0.103
Government Share 0.237 0.064 0.549 0.173 0.231 0.058 0.273 0.068
Investment Price 0.222 0.088 0.376 0.176 0.206 0.083 0.229 0.092
Population Density 0.031 0.013 0.061 0.024 0.029 0.011 0.033 0.013
Labor Force 0.029 0.013 0.064 0.022 0.028 0.010 0.033 0.012
Primary Education 0.026 0.010 0.061 0.023 0.026 0.009 0.030 0.010
Civil Liberties 0.023 0.007 0.053 0.017 0.022 0.006 0.025 0.008
Population Growth 0.018 0.005 0.050 0.013 0.019 0.005 0.022 0.005
Life Expectancy 0.018 0.006 0.051 0.013 0.019 0.005 0.023 0.006
Malaria 0.020 0.005 0.043 0.014 0.018 0.006 0.021 0.006
Population over 65 0.017 0.005 0.044 0.013 0.018 0.004 0.021 0.006
Secondary Education 0.017 0.005 0.046 0.012 0.017 0.005 0.020 0.005
Political Rights 0.016 0.005 0.044 0.012 0.016 0.004 0.020 0.005
Prior Mean Model Size 5 5 9 9 5 5 9 9
Post. Mean Model Size 5.69 4.63 7.28 5.34 5.62 4.55 5.83 4.63
Column heading SDM refers to the BACE-SDM Approach in a panel data context.
Column heading FLS refers to BMA-FLS approach in a panel data context.
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Table 2: SDM-FLS Approaches in a Panel Data Context
with PWT 6.2 Income Data 1960-2000*

Posterior Inclusion Posterior Posterior
Variable Probability Mean Standard Error

SDM FLS SDM FLS SDM FLS
Initial GDP 1.000 1.000 -0.271 -0.265 0.029 0.030
Population 1.000 1.000 0.918 0.905 0.176 0.176
Population under 15 0.953 0.965 -1.122 -1.183 0.287 0.279
Investment Share 0.822 0.841 0.343 0.351 0.097 0.095
Urban Population 0.608 0.358 -0.426 -0.433 0.147 0.147
Consumption Share 0.303 0.088 -0.210 -0.202 0.068 0.091
Trade Opennes 0.289 0.094 0.102 0.100 0.028 0.046
Government Share 0.231 0.058 -0.336 -0.315 0.140 0.149
Investment Price 0.206 0.083 -0.031 -0.033 0.014 0.014
Population Density 0.029 0.011 0.042 0.063 0.054 0.057
Labor Force 0.028 0.010 0.225 0.363 0.415 0.477
Primary Education 0.026 0.009 -0.169 -0.194 0.179 0.186
Civil Liberties 0.022 0.006 -0.044 -0.047 0.060 0.060
Population Growth 0.019 0.005 -0.488 -0.317 1.156 1.091
Life Expectancy 0.019 0.005 0.063 -0.011 0.241 0.250
Malaria 0.018 0.006 0.010 0.013 0.024 0.026
Population over 65 0.018 0.004 -0.220 -0.200 0.824 0.801
Secondary Education 0.017 0.005 -0.051 -0.034 0.186 0.191
Political Rights 0.016 0.004 -0.009 -0.004 0.048 0.049

*All results presented in this Table are based on prior assumptions m = 5 and �
Random. The results with m = K=2 are not presented here for the sake of brevity, but
they were practically identical.
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Table 3: Sensivity Analysis PWT 6.2 vs. WDI 2005
with SDM-FLS Approaches in a Panel Data Context

MAX/MIN [MAX-MIN]/ABS(MIN)
Variable Posterior Inclusion Posterior

Probability Mean
SDM FLS SDM FLS

Initial GDP 1.000 1.000 0.113 0.114
Population 1.002 1.007 0.057 0.063
Population under 15 1.024 1.021 0.128 0.133
Investment Share 1.482 1.647 0.328 0.307
Urban Population 2.758 3.677 0.204 0.204
Consumption Share 1.064 1.139 0.110 0.129
Trade Opennes 1.933 2.580 0.352 0.341
Government Share 1.104 1.180 0.031 0.038
Investment Price 1.644 1.610 0.049 0.034
Population Density 1.068 1.222 2.095 2.445
Labor Force 1.182 1.184 2.022 1.931
Primary Education 2.420 2.700 0.959 0.986
Civil Liberties 4.308 4.536 0.537 0.521
Population Growth 4.062 6.144 4.286 6.333
Life Expectancy 1.265 1.335 6.041 3.465
Malaria 1.004 1.129 0.728 0.833
Population over 65 5.651 6.582 0.880 0.856
Secondary Education 1.171 1.070 0.058 0.020
Political Rights 1.557 1.650 0.409 0.410
Average 1.932 2.232 1.020 1.009
Median 1.265 1.335 0.352 0.341
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Table 4: BAMLE Approach with PWT 6.2 Income Data 1960-2000*

Posterior Inclusion Posterior Posterior
Variable Probability Mean Standard Error

Initial GDP 1.000 -0.033 0.035
Life Expectancy 1.000 0.145 0.287
Investment Price 0.863 -0.049 0.015
Air Distance 0.759 -0.962 0.381
Political Rights 0.722 -0.053 0.013
Population Growth 0.688 -1.082 1.081
Urban Population 0.650 -0.475 0.163
Population 0.639 0.602 0.201
Trade Openness 0.467 0.056 0.020
Landlocked Country 0.320 -0.346 0.359
Investment Share 0.238 0.271 0.105
Civil Liberties 0.176 0.048 0.017
Government Share 0.161 -0.160 0.148
Latin America 0.147 0.038 0.015
Population Density 0.087 -0.014 0.081
East Asia 0.073 -0.012 0.006
Consumption Share 0.057 0.036 0.062
Navigable Water 0.057 0.043 0.026
Europe 0.052 -0.036 0.018
Tropical Area 0.034 -0.252 0.201
Sub-Saharan Africa 0.029 0.027 0.021
Climate 0.028 -0.014 0.013
Primary Education 0.028 0.024 0.022
Tropical Pop. 0.025 -0.144 0.212
Labor Force 0.023 0.028 0.394
Population over 65 0.022 -0.012 0.018
SW Openness Index 0.018 -0.033 0.069
Land Area 0.017 0.021 0.056
War Dummy 0.017 0.001 0.019
Population under 15 0.017 0.010 0.012
Secondary Education 0.017 -0.008 0.016
Independence 0.016 -0.002 0.015
Socialist 0.016 -0.009 0.013
Malaria 0.013 0.001 0.012

*All results presented in this Table are based on prior assumptions m = 5 and �
Random.
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Table 5: Sensivity Analysis PWT 6.2 vs. WDI 2005 with BAMLE Approach

MAX/MIN [MAX-MIN]/ABS(MIN)
Variable Posterior Inclusion Posterior

Probability Mean
Initial GDP 1.000 0.140
Life Expectancy 1.000 2.038
Investment Price 1.182 0.063
Air Distance 4.019 0.789
Political Rights 1.149 0.061
Population Growth 2.102 2.526
Urban Population 3.645 0.486
Population 1.215 0.221
Trade Openness 3.268 3.667
Landlocked Country 1.011 0.010
Investment Share 4.289 0.368
Civil Liberties 2.721 0.182
Government Share 2.895 1.964
Latin America 1.412 0.161
Population Density 1.738 0.878
East Asia 1.048 1.286
Consumption Share 1.792 0.456
Navigable Water 6.784 0.088
Europe 2.308 0.667
Tropical Area 1.154 0.878
Sub-Saharan Africa 1.042 0.343
Climate 2.079 0.346
Primary Education 1.059 5.000
Tropical Pop. 1.286 2.935
Labor Force 1.571 0.448
Population over 65 6.000 0.870
SW Openness Index 4.333 0.424
Land Area 1.882 0.518
War Dummy 1.000 0.222
Population under 15 1.643 0.250
Secondary Education 1.067 1.000
Independence 1.308 0.833
Socialist 1.571 1.304
Malaria 1.125 0.556
Average 2.138 0.940
Median 1.571 0.502
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Table 6: Sensivity Analysis PWT 6.2 vs. WDI 2005
with BACE Approach and K=34*

MAX/MIN [MAX-MIN]/ABS(MIN)
Posterior Inclusion Posterior

Probability Mean
POOLED OLS POOLED OLS

Average 2.889 1.892 1.513 1.306
Median 1.288 1.402 0.422 0.329
*Results based on BACE-SDM approach with cross-section OLS and
panel POOLED estimation for a given model without considering
the presence of unobservable �xed e¤ects.
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