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DETERMINANTS OF NORMALIZED BOHEMIAN UPPER HESSENBERG MATRICES∗

MASSIMILIANO FASI† AND GIAN MARIA NEGRI PORZIO‡

Abstract. A matrix is Bohemian if its elements are taken from a finite set of integers. A upper Hessenberg matrix

is normalized if all its subdiagonal elements are ones, and hollow if it has only zeros along the main diagonal. All possible

determinants of families of normalized and hollow normalized Bohemian upper Hessenberg matrices are enumerated. It is shown

that in the case of hollow matrices the maximal determinants are related to a generalization of Fibonacci numbers. Several

conjectures recently stated by Corless and Thornton follow from these results.
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1. Introduction. Matrices whose entries are drawn from a finite discrete set D are said to be Bohemian.

The term is a partial acronym for “BOunded HEight Matrix of Integers”, and is due to the fact that D is

bounded, being finite, and is typically a subset of the integers. This terminology is of recent introduction [5],

but Bohemian matrices have been a subject of interest for at least a century and a half, with early work of

Sylvester [10] and Hadamard [9] dating back to the second half of the nineteenth century.

The study of families of matrices with integer elements flourished in the sixties: multiple authors ex-

amined theoretical [11] as well as practical [7] applications of Bohemian matrices, and many important

conjectures on the subject were first stated in that decade. A good example is the expository survey of “com-

putational problems involving integral matrices” collected by Taussky [12], where combinatorial problems

involving matrices of integers are tackled, for small dimensions, by means of a brute force, computer-aided

approach.

More recently, Chan et al. studied the distribution of the eigenvalues and the height of the characteristic

polynomials of families of Bohemian upper Hessenberg [3] and upper Hessenberg Toeplitz matrices [2].

Many observations made by the authors while preparing these two manuscripts were collected in the form

of conjectures in the Characteristic Polynomial Database [13].

Some of these conjectures have been either proved or disproved since, but many remain open. Here we

focus on those that state properties of the determinants of families of normalized upper Hessenberg matrices,

that is, upper Hessenberg matrices with ones on the subdiagonal and elements in the upper triangular part

drawn from the sets {0, 1}, {0,−1}, {−1, 1}, {−1, 0, 1}, and {0, 1, 2}. Our goal will be to enumerate all

possible determinants for matrices with these structures: this will allow us to count the number of distinct

determinants and find the maximum absolute determinant of each of these matrix families. We will often
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be able to work with more general domains, thus proving the aforementioned conjectures as special cases.

The next section introduces our notation and recalls background definitions and results that will be

used later on. In Sections 3 and 4, we discuss the determinants of families of normalized and normalized

hollow Bohemian upper Hessenberg matrices, respectively, and prove a generalization of most of the open

conjectures in the Characteristic Polynomial Database. Finally, in Section 5, we prove [13, Conjecture 8],

the only conjecture we were not able to prove in its generalized form, and state our generalization.

2. Background and notation. Here and in the following sections, n and d always denote positive

integers. We say that the matrix H ∈ Cn×n is upper Hessenberg if hij = 0 for i > j + 1. An upper

Hessenberg matrix H ∈ Cn×n is normalized if hi+1,i = 1, for i = 1, . . . , n − 1, and is hollow if hii = 0, for

i = 1, . . . , n. For any D ⊂ Z, we denote by Hn(D) the family of normalized upper Hessenberg matrices

with elements from D in the upper triangular part, and by Hn
0 (D) the family of hollow normalized upper

Hessenberg matrices with elements from D in the strictly upper triangular part.

It is useful to introduce a shorthand notation for integer intervals. For any i1, i2 ∈ Z such that i1 < i2
we denote by 〈i1, i2〉 the set of integers between i1 and i2 inclusive, and if i1 < 0 < i2 we denote by 〈i1, i2〉◦
the set 〈i1, i2〉 \ {0}.

Finally, we recall a well-known result that can be used to write the determinant of a normalized upper

Hessenberg matrix in terms of its leading principal minors.

Lemma 2.1. ([6, Section 7.11]) Let H ∈ Hn(D). Then

detH = (−1)n+1

(
h1n +

n∑
i=2

(−1)i−1hin detH(i−1)
)
,

where H(i) ∈ Hi(D) is the ith leading principal submatrix of H.

Proof. The identity can be verified by expanding along the last column of H.

3. Normalized Bohemian upper Hessenberg matrices. In this section, we consider normalized

Bohemian upper Hessenberg matrices with elements in the upper triangular part drawn from 〈−d, d〉, 〈−d, 0〉,
and 〈−d, d〉◦. First we will find a closed expression for the maximum absolute value of the determinant of

matrices in these classes, then we will show how to build matrices with a given determinant.

Proposition 3.1. We have that

max
H∈Hn(〈−d,d〉)

|detH| = max
H∈Hn(〈−d,0〉)

|detH| = max
H∈Hn(〈−d,d〉◦)

|detH| = d(d+ 1)n−1,

where the maximum is attained by the matrix K(d,n), defined by

(3.1) k
(d,n)
ij =


0, i > j + 1,

1, i = j + 1,

−d, i ≤ j,

for which

(3.2) detK(d,n) = (−1)nd(d+ 1)n−1.
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Proof. We begin by showing (3.2). It is easy to verify that the identity holds for n = 1. For the inductive

step, from Lemma 2.1 we have that

(3.3)

detK(d,n) = (−1)n+1

(
k
(d,n)
1n +

n∑
i=2

(−1)i−1k
(d,n)
in detK(d,i−1)

)

= (−1)n
(
d+

n∑
i=2

d2(d+ 1)i−2
)

= (−1)n
(
d+ d2

1− (d+ 1)n−1

1− (d+ 1)

)
= (−1)nd(d+ 1)n−1.

Using the notation in Lemma 2.1 gives, for any H ∈ Hn(〈−d, d〉),

|detH| =

∣∣∣∣∣h1n +

n∑
i=2

(−1)i−1hin detH(i−1)

∣∣∣∣∣
≤ d+

n∑
i=2

d2(d+ 1)i−2

= |detK(d,n)|,

where the last equality follows from (3.3). Observing that K(d,n) belongs to Hn(〈−d, 0〉) and Hn(〈−d, d〉◦)
and that both sets are subset of Hn(〈−d, d〉) concludes the proof.

Note that Proposition 3.1 generalizes [13, Conjecture 4], since for d = 1 it shows that the sequence of

maximal absolute determinants of normalized upper Hessenberg matrices with entries from the set 〈−1, 1〉
is given by the OEIS sequence A03433.

Next we prove three technical results that will be necessary in order to construct a Bohemian matrix

with a given determinant.

Lemma 3.2. For any γ ∈ 〈0, d(d+ 1)n−1〉, there exist β, α0, . . . , αn−2 ∈ 〈0, d〉 such that

(3.4) γ = β + d

n−2∑
i=0

αi(d+ 1)i.

Proof. If γ is strictly smaller than d(d+ 1)n−1, then there exists a unique pair of integers µ ∈ 〈0, d− 1〉
and ν ∈ 〈0, (d+ 1)n−1 − 1〉 such that γ = µ+ dν. Since ν ≤ (d+ 1)n−1 − 1, we can write

ν =

n−2∑
i=0

αi(d+ 1)i,

and the representation (3.4) is obtained by setting β to µ and α0, . . . , αn−2 ∈ 〈0, d〉 to the n− 1 digits in the

representation of ν in radix d+ 1. If γ = d(d+ 1)n−1, on the other hand, setting β, α0, . . . , αn−2 to d gives

d+ d

n−2∑
i=0

(d+ 1)i = d+ d((d+ 1)n−1 − 1) = d(d+ 1)n−1,

which concludes the proof.
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Algorithm 1: Convert representation coefficients from 〈0, d〉 to 〈−d, d〉◦.
Input: β′, α′0, . . . , α

′
n−2 ∈ 〈0, d〉 that satisfy (3.7).

Output: β, α0, . . . , αn−2 ∈ 〈−d, d〉◦ that satisfy (3.6).

(β, α0, . . . , αn−2)← (β′, α′0, . . . , α
′
n−2);

for i = n− 2 down to 1 do

if αi = 0 or αi = −d− 1 then

(αi−1, αi)← (αi−1 − d− 1, αi + 1);

if α0 = 0 or α0 = −d− 1 then

(β, α0)← (β − d, α0 + 1);

if β = 0 then

if α0 6= 1 and α0 6= −d then

(β, α0)← (d, α0 − 1);

else

(β, α0)← (−d, α0 + 1);

Corollary 3.3. For any γ ∈ 〈−d(d + 1)n−1, d(d + 1)n−1〉, there exist β, α0, . . . , αn−2 ∈ 〈−d, d〉 such

that

(3.5) γ = β + d

n−2∑
i=0

αi(d+ 1)i.

Proof. If γ is nonnegative, then the result follows from Lemma 3.2. Otherwise, β, α0, . . . , αn−2 can be

obtained by changing the sign of the corresponding coefficients in the representation (3.4) for −γ.

A consequence of Lemma 3.2 and Corollary 3.3 is that all integers in the intervals 〈0, d(d+ 1)n−1〉 and

〈−d(d+ 1)n−1, d(d+ 1)n−1〉 have at least one representation of the form (3.4) and (3.5), respectively. In the

remainder of this section, we will obtain determinantal formulae of the forms (3.4) and (3.5) and will exploit

the representation results above to construct Bohemian matrices with a given determinant.

The next result shows that the representation (3.5) can be rewritten so to have only nonzero coefficients.

Lemma 3.4. If d > 1, for any γ ∈ 〈−d(d + 1)n−1, d(d + 1)n−1〉, there exist β, α0, . . . , αn−2 ∈ 〈−d, d〉◦
such that

(3.6) γ = β + d

n−2∑
i=0

αi(d+ 1)i.

Proof. If γ ≥ 0, then by Lemma 3.2, there exist β′, α′0, . . . , α
′
n−2 in 〈0, d〉 such that

(3.7) γ = β′ + d

n−2∑
i=0

α′i(d+ 1)i.

Algorithm 1 shows how the coefficients of the representation (3.6) can be computed from those of (3.7). In

order to prove the correctness of the algorithm, note that the two sets of coefficients represent the same

number, that all zero coefficients in (3.7) are changed into a positive or negative number smaller than
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d in absolute value, and that no new zero coefficients are introduced. If γ < 0, it suffices to find the

representation (3.7) for −γ in 〈0, d〉 and change the sign of its coefficients.

The result in Lemma 3.4 is not true for d = 1. In order to represent n = 3 in the form (3.6), for instance,

we would have to find β, α0, and α1 in {−1, 1} such that β + α0 + 2α1 = 3. But such a triple cannot exist:

the right-hand side is odd, but the left-hand side is even, being the sum of the two even numbers β+α0 and

2α1. Therefore, we will need two different strategies to prove the result for d 6= 1 and d = 1.

Proposition 3.5. If d > 1, then the set of possible determinants of matrices in the family Hn(〈−d, d〉◦)
is 〈−d(d+ 1)n−1, d(d+ 1)n−1〉.

Proof. In this case, we show how to construct a matrix H ∈ Hn(〈−d, d〉◦) such that detH = k for any

k ∈ 〈−d(d+ 1)n−1, d(d+ 1)n−1〉. Here we take the matrix

(3.8) H =


b

a0
...

K(d,n−1)

an−3
0 · · · 1 an−2

 ,

where K(d,n−1) is defined in (3.1). From Lemma 2.1 and Proposition 3.1, it follows that

detH = (−1)n+1b+

n−2∑
i=0

(−1)n+iai detK(d,i+1)

= b̃+ d

n−2∑
i=0

ãi(d+ 1)i,

where b̃ = (−1)n+1b and ãi = (−1)n+1ai, for i = 0, . . . , n − 2. The coefficients b, a0, . . . , an−2 belong

to 〈−d, d〉◦, and in view of Lemma 3.4 the last column of H can be chosen so that detH = k for any

k ∈ 〈−d(d+ 1)n−1, d(d+ 1)n−1〉.

Proposition 3.6. The set of possible determinants of matrices in the family Hn(〈−1, 1〉◦) is

{2k | k ∈ 〈−n+ 1, n− 1〉}.

Proof. As noted by Ching [4], there are only 2n−1 possibly nonzero terms in the determinant expansion

of an n×n Hessenberg matrix. If the matrix is in Hn(〈−1, 1〉◦), then each of these 2n−1 monomials evaluates

to either +1 or −1, which implies that the determinant of any such matrices must be even and cannot be

larger than 2n−1 in absolute value. Now we explain how to construct a matrix H ∈ Hn
0 (〈−1, 1〉◦) such that

detH = 2k for any k ∈ 〈0, n − 1〉. Matrices with negative determinants can be obtained by changing the

sign of the last column of the matrices thus obtained.

Let us consider the matrix

H =


(−1)n+1

a0
...

K(1,n−1)

an−3
0 · · · 1 (−1)n+1,

 ,
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where K(1,n−1) is defined in (3.1). Using Lemma 2.1 followed by Proposition 3.1, we obtain that

detH = 1 +

n−3∑
i=0

(−1)n+1ai detK(1,i+1) + (−1)n+1 detK(1,n−1)

= 1 + (−1)n+1
n−3∑
i=0

ai2
i + 2n−2.

Let k′ := 2n−2 − k and let b0, . . . , bn−3 ∈ {0, 1} be such that

k′ =

n−3∑
i=0

bi2
i =

∑
i∈I

bi2
i,

where I := {i ∈ N : bi 6= 0}. If we set ai = (−1)n+1+bi , we are taking the coefficients that would create

the matrix K(d,n) with the last column multiplied by (−1)n+1 and changing the signs in the corresponding

nonzero coefficients of the binary representation of k′. It follows that

detH = 1 + (−1)b0 + · · ·+ (−1)bn−32n−3 + 2n−2

= 1 +

n−2∑
i=0

2i − 2
∑
i∈I

bi2
i

= 2n−1 − 2k′ = 2k,

which concludes the proof.

Proposition 3.7. For any d ∈ N, the set of possible determinants of matrices in the family Hn(〈−d, d〉)
is 〈−d(d+ 1)n−1, d(d+ 1)n−1〉.

Proof. The proof is analogous to that of Proposition 3.5, if Lemma 3.4 is replaced by Corollary 3.3.

Proposition 3.8. For any d ∈ N, the set of possible determinants of matrices in the family Hn(〈−d, 0〉)
is {(−1)nk | k ∈ 〈0, d(d+ 1)n−1〉}.

Proof. This proof follows the steps of the proof of Proposition 3.5. Note thatHn(〈−d, 0〉) ⊂ Hn(〈−d, d〉),
and that since K(d,n−1) ∈ Hn(〈−d, 0〉), the matrix H in (3.8) is in Hn(〈−d, 0〉) if b, a0, . . . , an−2 ∈ 〈−d, 0〉.
Combining Lemma 2.1 and Proposition 3.1 in this case gives

detH = (−1)n+1b+

n−2∑
i=0

(−1)n+iai detK(d,i+1)

= (−1)n
(
b̃+ d

n−2∑
i=0

ãi(d+ 1)i
)
,

where b̃ = −b and ãi = −ai, for i = 0, . . . , n−2. Since b̃, ã0, . . . , ãn−2 ∈ 〈0, d〉, by Lemma 3.2 we can choose

the last column of H so that detH = (−1)nk for all k ∈ 〈0, d(d+ 1)n−1〉.

Note that Propositions 3.8, 3.7, and 3.6 prove [13, Conjecture 18], [13, Conjecture 19], and [13, Conjec-

ture 20], respectively: they show that the number of distinct determinants of normalized Bohemian upper

Hessenberg matrices with entries from the sets 〈−1, 0〉, 〈−1, 1〉, and 〈−1, 1〉◦ is given by a suitable shift of

the OEIS sequence A000051.
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4. Hollow normalized Bohemian upper Hessenberg matrices. In the previous section, we ex-

plained how to build a Bohemian upper Hessenberg matrix for every possible determinant, and by doing so

we generalized some of the conjectures in [13]. Now, we follow the same steps and prove the corresponding

conjectures for the normalized hollow Bohemian upper Hessenberg matrices in the family Hn
0 (D) for the

same finite domains as in the previous section.

We will rely on the sequence of d-weighted Fibonacci numbers, which are generated by the two-term

recurrence

(4.9)


fd0 = 0,

fd1 = d,

fdn = fdn−1 + d fdn−2, n ∈ N \ {0, 1} .

Note that for d = 1 one obtains the sequence of Fibonacci numbers. In that case we drop the superscript

and write fn := f1n to indicate the term in position n in the OEIS sequence A000045.

The next lemma shows one possible way of constructing a matrix with maximum absolute determinant

for all families of interest in this section.

Proposition 4.1. We have that

(4.10) max
H∈Hn

0 (〈−d,d〉)
|detH| = max

H∈Hn
0 (〈−d,0〉)

|detH| = max
H∈Hn

0 (〈−d,d〉◦)
|detH| = fdn−1,

where the maximum is attained by the matrix K̂(d,n), defined by

(4.11) k
(d,n)
ij =


0, i > j + 1 or i = j,

1, i = j + 1,

−d, i < j,

for which

(4.12) det K̂(d,n) = (−1)nfdn−1.

Proof. First we prove (4.12) by induction. For the base case, it is easy to verify that that det K̂(d,1) = 0

and det K̂(d,2) = d. For the inductive step, by subtracting the ith row from the row above it, for i from 2 to

n, we obtain

det K̂(d,n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −d −d · · · −d
1 0 −d · · · −d

1
. . .

. . .
...

. . . 0 −d
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −d
1 −1 −d

1
. . .

. . .

. . . −1 −d
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By using the Laplace expansion by minors along the first column of the tridiagonal matrix thus obtained,
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we get

det K̂(d,n) = −det K̂(d,n−1) −

∣∣∣∣∣∣∣∣∣∣∣∣∣

−d
1 −1 −d

1
. . .

. . .

. . . −1 −d
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and by expanding along the first row, we can conclude that

det K̂(d,n) = − det K̂(d,n−1) + ddet K̂(d,n−2)

= (−1)nfdn−2 + (−1)n−2d fdn−3 = (−1)nfdn−1.

In order to prove the optimality result in (4.10), we define the family of Bohemian Hessenberg matrices

Bn = {H + x ene
T
n : H ∈ Hn

0 (〈−d, d〉), x ∈ 〈−d, d〉}, and show by induction that for all H ∈ Hn
0 (〈−d, d〉) and

all B ∈ Bn, we have that |detH| ≤ fdn−1 and |detB| ≤ fdn.

The only matrix inH1
0(〈−d, d〉) has determinant 0, and it is easy to check by exhaustion that the absolute

value of the determinant of matrices in H2
0(〈−d, d〉), B1, and B2 is at most d. For the inductive step, let us

consider the matrices

H =



0 × × · · · ×
1 0 × · · · ×

1
. . .

. . .
...

. . . 0 ×
1 0


∈ Hn

0 (〈−d, d〉) and B =



0 × × · · · ×
1 0 × · · · ×

1
. . .

. . .
...

. . . 0 ×
1 bnn


∈ Bn.

For the first matrix, we have that |detH| = |−detB′| for some B′ ∈ Bn−1, and by the inductive hypothesis

we can conclude that |detH| ≤ fdn−1. For the matrix B, by observing that detB = bnn detH ′ − detB′, for

some H ′ ∈ Hn−1
0 (〈−d, d〉) and B′ ∈ Bn−1, we obtain that

|detB| = |bnn detH ′ − detB′| ≤ |bnn||detH ′|+ |detB′| ≤ d fdn−2 + fdn−1 = fdn.

We conclude that the absolute value of the determinant of matrices in the family Hn
0 (〈−d, d〉) is bounded

by fdn−1, and observing that K̂(d,n) belongs to Hn
0 (〈−d, d〉) shows that the bound is attained by a matrix

in that family. The optimality result in (4.10) follows from the fact that Hn
0 (〈−d, 0〉) and Hn

0 (〈−d, d〉◦) are

subfamilies of Hn
0 (〈−d, d〉) and that K̂(d,n) belongs to Hn

0 (〈−d, 0〉) ∩Hn
0 (〈−d, d〉◦).

For d = 1, the three equalities in (4.10) prove [13, Conjecture 13], [13, Conjecture 15], and [13, Conjec-

ture 17]. We stress that K̂(d,n) is not the only matrix H ∈ Hn
0 (〈−d, d〉) such that |detH| = fdn−1.

Now we can use these results to build matrices with specific determinants, but first we need to show the

counterpart of Lemma 3.2, Corollary 3.3, and Lemma 3.4 for d-weighted Fibonacci numbers.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 352-366, June 2020.

Massimiliano Fasi and Gian Maria Negri Porzio 360

Lemma 4.2. For any γ ∈ 〈0, fdn−1〉, there exist β, α0, . . . , αn−3 ∈ 〈0, d〉 such that

γ = β +

n−3∑
i=0

αif
d
i ,

where the sequence (fdi )i∈N is defined in (4.9).

Proof. The proof is by induction on n. The base cases n = 1 and n = 2 are trivially satisfied.

For the inductive step, if γ ≤ fdn−1, then the statement is true by the inductive hypothesis. Otherwise,

we have that fdn−1 < γ ≤ fdn, which implies that γ − dfdn−2 ≤ fdn−1. Therefore, there exist β′, α′0, . . . , α
′
n−3

in 〈0, d〉 such that

(4.13) γ − dfdn−2 = β′ +

n−3∑
i=0

α′if
d
i .

It follows that

γ = β′ +

n−3∑
i=0

α′if
d
i + dfdn−2 = β +

n−2∑
i=0

αif
d
i ,

where β = β′, αi = α′i for i = 0, . . . , n− 3, and αn−2 = d.

Lemma 4.2 can be related to a famous and perhaps surprising result for standard Fibonacci numbers,

known as Zeckendorf’s theorem [1], which we now state.

Theorem 4.3. (Zeckendorf’s theorem) Every nonzero natural number m ∈ N can be written as the

sum of one or more distinct Fibonacci numbers so that the sum does not contain two consecutive Fibonacci

numbers, i.e.,

(4.14) m =

k∑
i

fci ,

where ci ≥ 2 and ci+1 > ci + 1. Moreover, this representation is unique.

Corollary 4.4. For any γ ∈ 〈−fdn−1, fdn−1〉, there exist β, α0, . . . , αn−3 ∈ 〈−d, d〉 such that

(4.15) γ = β +

n−3∑
i=0

αif
d
i ,

where the sequence (fdi )i∈N is defined in (4.9).

Proof. If γ ≥ 0, then (4.15) follows from Lemma 4.2. For γ < 0, the coefficients in (4.15) can be obtained

by changing the sign of those in the representation of −γ in (4.13).

Lemma 4.5. If d > 1, for any γ ∈ 〈−fdn−1, fdn−1〉, there exist β, α0, . . . , αn−3 ∈ 〈−d, d〉◦ such that

(4.16) γ = β +

n−3∑
i=0

αif
d
i ,

where the sequence (fdi )i∈N is defined in (4.9).
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Algorithm 2: Convert representation coefficients from 〈0, d〉 to 〈−d, d〉◦.
Input: β′, α′0, . . . , α

′
n−3 ∈ 〈0, d〉 that satisfy (4.17).

Output: β, α0, . . . , αn−3 ∈ 〈−d, d〉◦ that satisfy (4.16).

(β, α0, . . . , αn−3)← (β′, α′0, . . . , α
′
n−3);

for i = n− 3 down to 3 do

if αi = 0 or αi = −d− 1 then

(αi−2, αi−1, αi)← (αi−2 − d, αi−1 − 1, αi + 1);

if α2 = 0 or α2 = −d− 1 then

(α1, α2)← (α1 − 1, α2 + 1);

if α1 = 0 or α1 = −d− 1 then

(β, α1)← (β − d, α1 + 1);

if β = 0 then

if α1 6= 1 and α1 6= −d then

(β, α1)← (d, α1 − 1);

else

(β, α1)← (−d, α1 + 1);

Proof. From Lemma 4.2, if γ ≥ 0 then there exist β′, α′0, . . . , α
′
n−3 in 〈0, d〉 such that

(4.17) γ = β′ +

n−3∑
i=0

α′if
d
i .

The pseudocode in Algorithm 2 shows that the coefficients in the representation (4.16) can be computed

from those of (4.17). The case γ < 0 is analogous, it suffices to consider the representation in (4.17) for −γ
and change the sign of the coefficients thus obtained.

We need one last technical lemma. In Proposition 3.6, we use a result by Ching [4] to count the number

of nonzero terms in the determinant expression of a Hessenberg matrix. Lemma 4.6 achieves the same goal

for matrices in Hn
0 (D).

Lemma 4.6. Let H ∈ Hn
0 (D), let pn(h12, . . . , h(n−1)n) be the determinant of H seen as a polynomial in

the n(n− 1)/2 variables h12, . . . , h(n−1)n, and let aj denote a monomial of pn. Then

(4.18) pn(h12, . . . , h(n−1)n) = (−1)n
fn−1∑
j=0

(−1)deg ajaj ,

where fn is the nth Fibonacci number and deg aj is the total degree of the monomial aj.
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Proof. We will prove this claim by induction on the matrix

H =



0 h12 h13 · · · h1n
1 0 h23 · · · h2n

1
. . .

. . .
...

. . . 0 h(n−1)n
1 0


.

The claim is true for the base cases n = 1, n = 2, and n = 3, since p1(0) = 0,

p2(h12) = −h12 = (−1)2 · (−1) · h12,

and

p3(h12, h13, h23) = h13 = (−1)3 · (−1) · h13.

Then, by using the Laplace expansion twice, we get

detHn = −h12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h34 h35 h36 · · · h3n
1 0 h45 h46 · · · h4n

1 0 h56 · · · h5n

1
. . .

. . .
...

. . . 0 h(n−1)n
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h13 h14 h15 · · · h1n
1 0 0 0 · · · 0

1 0 h45 · · · h4n
. . .

. . .
. . .

...

1 0 h(n−1)n
1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which reads, using the inductive hypothesis,

pn(h12, . . . , h(n−1)n) = −h12pn−2(h34, . . . , h(n−1)n)− pn−1(h13, . . . , h(n−1)n)

= h12(−1)n−1
fn−3∑
k=0

(−1)deg âk âk + (−1)n
fn−2∑
j=0

(−1)deg ajaj

= (−1)n
fn−3∑
k=0

(−1)deg akak + (−1)n
fn−2∑
j=0

(−1)deg ajaj ,

where h12 âk = ak. This proves the claim about the sign of the monomials.

For the number of terms in the formula, note that the total number of monomials in pn(h12, . . . , h(n−1)n)

cannot exceed fn−2 + fn−3 = fn−1, but could be smaller as some monomials might cancel out. However,

these cancellations cannot occur, because every monomial in pn−2(h34, . . . , h(n−1)n) contains one coefficient

among h34, h35, . . . , h3n that does not appear in pn−1(h13, . . . , h(n−1)n). This concludes the proof.
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Proposition 4.7. If d > 1, then the set of possible determinants of matrices in the family Hn
0 (〈−d, d〉◦)

is 〈−fdn−1, fdn−1〉, where fdn is the nth d-weighted Fibonacci number as defined in (4.9).

Proof. In this case, we show how to construct a matrix H ∈ Hn
0 (〈−d, d〉◦) such that detH = k for any

k ∈ 〈−fdn−1, fdn−1〉. Let

(4.19) H =


b

a0
...

K̂(d,n−1)

an−3
0 · · · 1 0,

 ,

where K̂(d,n−1) is defined in (4.11). By Lemma 2.1 and Proposition 4.1, it follows that

detH = (−1)n+1b+

n−3∑
i=0

(−1)n+iai det K̂(d,i+1)

= b̃+

n−3∑
i=0

ãif
d
i ,

where b̃ = (−1)n+1b and ãi = (−1)n+1ai, for i = 0, . . . , n−3. Since b, a0, . . . , an−3 ∈ 〈−d, d〉◦, by Lemma 4.5

we can conclude that the last column of H can be chosen so that detH = k for any k ∈ 〈−fdn−1, fdn−1〉.

Proposition 4.8. The set of possible determinants of matrices in the family Hn
0 (〈−1, 1〉◦) is

{−fn−1,−fn−1 + 2,−fn−1 + 4, . . . , fn−1 − 4, fn−1 − 2, fn−1},

where fn is the nth Fibonacci number as defined in (4.9).

Proof. By Lemma 4.6, there are only fn−1 possibly nonzero terms in the determinant expression of a n×n
Hessenberg matrix with a zero diagonal. If a matrix is in Hn

0 (〈−1, 1〉◦), then each of these fn−1 monomials

evaluates to either +1 or −1, which implies that the determinant of any such matrices must have the same

parity as fn−1. Now we explain how to build a matrix H ∈ Hn
0 (〈−1, 1〉◦) such that detH = fn−1 − 2k for

k ∈ 〈0, fn−1〉. Let

H =


b

a0
...

K̂(1,n−1)

an−3
0 · · · 1 0,

 ,

where K̂(1,n−1) is defined in (4.11). By Lemma 2.1 and Proposition 4.1, we have that

detH = (−1)n+1b+

n−3∑
i=0

(−1)n+iai det K̂(1,i+1)

= b̃+

n−3∑
i=0

ãifi,

where b̃ = (−1)n+1b and ãi = (−1)n+1ai, for i = 0, . . . , n − 3. By Lemma 4.2, we can choose b̃ and ãi in

{0, 1} so that b̃+
∑n−3

i=0 ãifi = k for k ∈ 〈0, fn−1〉. If we then substitute the coefficients that are zeros with



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 36, pp. 352-366, June 2020.

Massimiliano Fasi and Gian Maria Negri Porzio 364

−1, then the last column is such that

detH = b̃+

n−3∑
i=0

ãifi = fn−1 − 2k,

which concludes the proof.

Proposition 4.9. For any d ∈ N, the set of possible determinants of matrices in the family Hn
0 (〈−d, d〉)

is 〈−fdn−1, fdn−1〉, where fn is the nth Fibonacci number as defined in (4.9).

Proof. The proof is analogous to that of Proposition 4.7: it suffices to use Corollary 4.4 in lieu of

Lemma 4.5.

Proposition 4.10. For any d ∈ N, the set of possible determinants of matrices in the family Hn
0 (〈−d, 0〉)

is (−1)n · 〈0, fdn−1〉, where fn is the nth Fibonacci number as defined in (4.9).

Proof. This proof follows the lines of the proof of Proposition 4.7. Note that Hn
0 (〈−d, 0〉) ⊂ Hn

0 (〈−d, d〉),
and that since K̂(d,n−1) ∈ Hn

0 (〈−d, 0〉), the matrix H in (4.19) is in Hn
0 (〈−d, 0〉) if b, a0, . . . , an−3 ∈ 〈−d, 0〉.

Combining Lemma 2.1 and Proposition 4.1 in this case gives

detH = (−1)n+1b+

n−3∑
i=0

(−1)n+iai det K̂(d,i+1)

= (−1)n
(
b̃+

n−3∑
i=0

ãif
d
i

)
,

where b̃ = −b and ãi = −ai, for i = 0, . . . , n − 3. Since b̃, ã0, . . . , ãn−2 ∈ 〈0, d〉, by Lemma 4.2, we can

choose the last column of H so that detH = (−1)n · k for all k ∈ 〈0, fdn−1〉.

Propositions 4.10, 4.9, and 4.8 show [13, Conjecture 12], [13, Conjecture 14], and [13, Conjecture 16],

respectively. For d = 1, these results show that the number of distinct determinants of normalized hollow

Bohemian upper Hessenberg matrices of size n with entries from the sets 〈−1, 0〉 and 〈−1, 1〉◦ is given by the

nth element of the OEIS sequence A001611. For the family of matrices with elements drawn from 〈−1, 1〉,
an analogous result holds for the OEIS sequence A001588.

5. Future developments. In the previous sections, we generalized all conjectures in [13] dealing with

upper Hessenberg matrices, except [13, Conjecture 8] and [13, Conjecture 9]. The latter has so far resisted

our efforts, and will be the subject of future investigation. In this section, we show that the former is true

and state a generalization we were unable to prove. We will make use of the numbers defined by the recursion

(5.20)


gd1 = d,

gd2 = d2,

gdn = dgdn−1 + gdn−2, n ∈ N \ {0, 1, 2}.

The sequence in (5.20) is a generalization of Fibonacci numbers which grows significantly faster than that

in (4.9).
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Conjecture 5.1. We have that

(5.21) max
H∈Hn(〈0,d〉)

|detH| = detL(d,n) = gdn,

where gn is defined in (5.20) and

(5.22) `
(d,n)
ij =


0, i > j + 1 or i < j and i+ j is odd,

1, i = j + 1,

d, i ≤ j and i+ j is even.

Evidence of this is the fact that the entries in the upper triangular part of a matrix with largest absolute

determinant must be either 0 or d. This can be easily seen by noting that the determinant is just the signed

sum of the product of entries of L(d,n). The proof for d = 1 is a special case of [4, Theorem 1]. In the

following we supply a proof for the case d = 2.

Proof of Conjecture 5.1 for d = 2. The second equality in (5.21) can be proven easily by induction,

by expanding along the last row of L(2,n) and noting that `
(2,n)
nn = d. The first equality can also be proven

by induction. It is straightforward to check that the result holds for n = 1, 2, and 3. For n ≥ 4, let

H ∈ Hn(〈0, 2〉). By expanding along the first column of H we have

detH = h11

∣∣∣∣∣∣∣∣∣
h22 h23 · · · h2n
1 h33 · · · h3n

. . .
. . .

...

1 hnn

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
h12 h13 · · · h1n
1 h33 · · · h3n

. . .
. . .

...

1 hnn

∣∣∣∣∣∣∣∣∣ .
If h11 6= 2 or h12 = 0, then |detH| ≤ 2g2n−1 + g2n−2 = g2n, and the proof is completed. Otherwise, we can

expand along the first column of the two resulting matrices, to obtain

(5.23) detH = (2h22 − h12)

∣∣∣∣∣∣∣∣∣
h33 h34 · · · h3n
1 h44 · · · h4n

. . .
. . .

...

1 hnn

∣∣∣∣∣∣∣∣∣− 2

∣∣∣∣∣∣∣∣∣
h23 h24 · · · h2n
1 h44 · · · h4n

. . .
. . .

...

1 hnn

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
h13 h14 · · · h1n
1 h44 · · · h4n

. . .
. . .

...

1 hnn

∣∣∣∣∣∣∣∣∣ .
If h13 = 0, then |detH| ≤ 5g2n−2 + g2n−3 < g2n, which as above would conclude the proof. Otherwise, the last

two determinants can be rewritten, by expanding along the last row and collecting like terms, as

(5.24) (h13 − 2h23)

∣∣∣∣∣∣∣∣∣
h44 h45 · · · h4n
1 h55 · · · h5n

. . .
. . .

...

1 hnn

∣∣∣∣∣∣∣∣∣+ 2

∣∣∣∣∣∣∣∣∣
h24 h25 · · · h2n
1 h55 · · · h5n

. . .
. . .

...

1 hnn

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
h14 h15 · · · h1n
1 h55 · · · h5n

. . .
. . .

...

1 hnn

∣∣∣∣∣∣∣∣∣ ,
and substituting (5.24) into (5.23) yields

|detH| ≤ |2h22 − h12| g2n−2 + |h13 − 2h23| g2n−3 + 3g2n−3 ≤ 3g2n−2 + 6g2n−3 < g2n,

which concludes the proof.

This proof does not generalize to d > 2, but shows that [13, Conjecture 8] is true, since the maximum

absolute determinant of matrices in Hn
0 (〈0, 2〉) is the nth element of the OEIS sequence A052542.
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