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Abstract We analyze common factors that affect returns on S&P 500 index options
and find that 93% of the variation in option returns can be explained by three factors,
which respectively account for 87%, 4%, and 2% of the variation in option returns.
Furthermore, we test diffusion option pricing models by using mean–variance span-
ning properties implied in the models. The spanning tests reject one-factor diffusion
models, as well as the hypothesis that the underlying asset and an equally weighted
option index span options. Our results fail to reject that the underlying asset and an
at-the-money option can span out-of-the-money options, but does reject that they span
in-the-money options.
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1 Introduction

Since the seminal work of Black and Scholes (1973) and Merton (1973), there have
been extensive studies to extend one-factor option pricing models. Examples of

C. Cao (B) · J.-Z. Huang
Smeal College of Business, Pennsylvania State University, University Park,
PA 16802, USA
e-mail: qxc2@psu.edu

C. Cao
China Center for Financial Research, Beijing, China

J.-Z. Huang
e-mail: jxh56@psu.edu

123



2 C. Cao, J.-Z. Huang

multifactor pricing models and related tests include, among others, Bakshi et al. (1997,
2000), Bates (1996, 2000), Buraschi and Jackwerth (2001), Chernov and Ghysels
(2000), Cochrane and Saa-Requejo (2000), Heston (1993), Hull and White (1987),
Scott (1987, 1997), Stein and Stein (1991), and Wiggins (1987). Recent work of Bak-
shi et al. (2003), Bondarenko (2003) and Jones (2006) focuses on understanding the
nature of option returns. However, several important questions remain unanswered.
They include: How many factors are sufficient to describe most of the variation in
option returns? What is the contribution of each factor and what are good proxies for
these factors? In this paper, we empirically determine and analyze the common fac-
tors that affect option returns. Exploring the number of common factors and the nature
of these factors provides insights into how important each factor is, how many state
variables should be selected in the option modeling framework, and how to construct
hedging portfolios.

Our empirical investigation focuses on option returns and is based on daily prices of
S&P 500 index options from 1988 to 1994. We begin our analysis with the construction
of representative option returns with constant moneyness and maturity. These options
allow us to use both cross-sectional and time-series information in option prices, and to
separate the effect of moneyness and maturity on option returns from other systematic
factors. We identify the number of common factors using factor analysis. To interpret
the unobservable common factors obtained through factor analysis, we follow Knez
et al. (1994) and adopt a particular factor rotation scheme. Under this scheme, rotated
factors best mimic the variables that can be justified based on normative grounds, such
as the underlying asset return, the option index return, and the volatility. Further, we
directly examine what fraction of the variation in option returns can be explained by
observable proxies for the factors.

In factor analysis, we examine three-factor models and find that such factors explain
an average of 93% of the total variation in option returns. The first, second, and third
factors, respectively account for 87%, 4%, and 2% of the total variation in option
returns. In particular, the first factor explains more than 90% of the variation in the
at-the-money and the in-the-money option returns, while the second factor explains
9% of the variation in the out-of-the-money option returns. Thus, the contribution of
the second factor to the out-of-the money options is expected to be larger. We interpret
the first factor as the underlying factor and the second factor as the volatility factor.

Since the true factors are not observable, we construct proxies for the three factors
and examine what fraction of option returns can be explained by these proxies. A
natural candidate variable for the first factor is the underlying S&P 500 index returns.
For the second factor, we consider two alternative proxies: one is the equally weighted
option index (a “market” portfolio for options), and the other is the option-implied
volatility. Results from the regression analysis indicate that call (put) option returns
are positively (negatively) associated with S&P 500 returns, positively related to the
equally weighted option index returns, and positively associated with the implied vol-
atility. When the second factor is proxied by the option index, it offers significantly
incremental explanatory power for option returns, especially for the out-of-the-money
options. Further, our results indicate that the equally weighted option index is a better
proxy for the second factor than the option implied volatility.
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Determinants of S&P 500 index option returns 3

Hedging effectiveness is an important yardstick for evaluating the performance of
an option pricing model. The essential element of any hedging test is whether selected
hedging instruments (for example, the underlying asset and the risk-free bonds) can
span the space of target option returns. While most hedging tests require the speci-
fication of a parametric option pricing model, spanning tests are model independent,
as long as one knows how many factors, and what factors, are in the modeling frame-
work. The rejection of the spanning tests implies that selected hedging instruments
cannot effectively hedge the target options, which makes it unnecessary to test each
parametric option model in the same class.

We perform mean–variance spanning tests based on the framework of Hansen and
Jagannathan (1991), Huberman and Kandel (1987) and Kan and Zhou (2001). We use
the underlying asset and an equally weighted option index (or an at-the-money option)
as benchmark assets to span out-of-the-money, at-the-money or in-the-money option
returns, both individually and jointly. Our evidence rejects the null hypothesis that the
underlying asset and an equally weighted option index span option returns. We find
that the underlying asset and the at-the-money option can span the out-of-the-money
option returns, but not the in-the-money option returns. Our results indicate that one, or
more than one, option instrument(s) should be used in conjunction with the underlying
asset in order to devise hedging strategies when the hedging target is an out-of-the
money or in-the-money option.

This paper is organized as follows: Section 2 provides a description of the S&P 500
index options data along with the procedures we use to construct returns of constant
moneyness and maturity options. Section 3 discusses our factor analysis, the rotation
method, and the related empirical results. Section 4 presents results of the regression
analysis from one-, two-, and three-factor models, using observable variables as prox-
ies for factors. In Sect. 5, we conduct mean–variance spanning tests for index option
returns. Section 6 examines the robustness of our results. Concluding remarks are
offered in Sect. 7.

2 Data

2.1 Data description

We use the prices of S&P 500 index options in our empirical investigation for several
reasons. The most important reason is that these options are the most actively traded
European-style contracts. Many empirical studies focus on S&P 500 index options and
test alternative option pricing models [see, e.g., Bakshi et al. (1997), Bates (1991),
Dumas et al. (1998), Rubinstein (1994)]. Further, many contracts with different strike
prices and maturities are traded, and their prices are actively quoted. On a typical
day, the strike price of these option contracts ranges from 15% out-of-money to 15%
in-the-money, and the days-to-expiration ranges from less than 30 days to 1 year. Since
there are many different contracts, it is possible to construct prices of options with
constant moneyness and maturity.

The initial sample is obtained from the Berkeley Option Database and consists of
the intra-daily transaction prices and bid-ask quotes for S&P 500 index options traded
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on the CBOE. Our sample period extends from June 1, 1988 through May 31, 1994. To
eliminate the potential impact of the option bid-ask spread, our analysis uses the mid-
point of the bid-ask quotes as a proxy for the market value of the option contract. We
note that for each of the bid-ask quotes for S&P 500 index options, the recorded index
value is the index level at the moment the option price is recorded, not the daily closing
index level. We apply two standard filters to our option sample: (1) Observations with
obvious recording errors are excluded; (2) Option prices that are time-stamped later
than 3:00 pm Central Time are dropped. The second filter ensures that the spot price
and the option price are synchronized. The final sample comprises 92,637 calls and
83,020 puts prices placed during 1,506 trading days of the sample period.

In addition to the option data, we obtain daily S&P 500 index levels from the Center
for Research in Security Prices (CRSP). The daily dividend distributions for the S&P
500 index are obtained from the S&P 500 Information Bulletin. Daily Treasury-bill
rates with various maturities are from Datastream International. To obtain the yield
corresponding to the maturity of a given option contract, we use the two Treasury bills
that straddle the option’s expiration date.

2.2 Options with constant moneyness and maturity

To separate the effect of moneyness and maturity on option returns from other
systematic factors, we must have returns of option contracts with constant money-
ness and time-to-expiration. However, we cannot directly observe options with con-
stant moneyness and maturity because the moneyness of an option contract constantly
changes (as the underlying index changes), and because the option’s time-to-expira-
tion always decreases as time goes by. In this subsection, we discuss how to construct
returns of options with constant moneyness and maturity.

During our sample period, there are an average of 100 S&P 500 index option
contracts available on each day (49 calls and 51 puts, respectively). These contracts
are different in their strike prices (e.g., moneyness) and days-to-expiration. From these
contracts, we obtain six representative option prices for calls and another six for puts
using interpolations.1 Each of the resulting option contracts is characterized by a par-
ticular combination of a moneyness and a maturity. These options are listed as below:

• CSTOTM: short-term out-of-the-money calls
• CSTATM: short-term at-the-money calls
• CSTITM: short-term in-the-money calls
• CLTOTM: long-term out-of-the-money calls
• CLTATM: long-term at-the-money calls
• CLTITM: long-term in-the-money calls
• PSTOTM: short-term out-of-the-money puts
• PSTATM: short-term at-the-money puts
• PSTITM: short-term in-the-money puts
• PLTOTM: long-term out-of-the-money puts

1 Bates (1991) interpolates option prices across strikes. Buraschi and Jackwerth (2001) use interpolated
Black-Scholes implied volatilities to obtain corresponding option prices.

123



Determinants of S&P 500 index option returns 5

• PLTATM: long-term at-the-money puts
• PLTITM: long-term in-the-money puts

We define short-term options as 30-day options and long-term options as 180-day
options.2 The out-of-the-money (OTM), at-the-money (ATM), and in-the-money

(ITM) calls (or puts) are those with S
K

(
or K

S

)
close to 0.95, 1.00, and 1.05, respec-

tively, where S is the spot price and K the strike price.
We use short-term OTM calls (e.g., τ = 30 days and S

K ≈ 0.95) as an example to
illustrate how to obtain prices of options with constant moneyness and maturity. Let
K and τ be the strike price and days-to-expiration, and C(t, τ, K ) denote the observed
price at t . For convenience, we assume there are no 30-day options available on day
t , i.e., a contract’s days-to-expiration is either less than or greater than 30 days. We
adopt the following procedure:

1. For a given day t , find all available strike prices for S&P 500 call options. For each
strike price K , identify the contract whose days-to-expiration is less than, but the
closest to, 30 days. Next, find another contract whose days-to-expiration is greater
than, but the closest, to 30 days. Denote these two call prices by C(t, τ1, K ) with
τ1 < 30 and C(t, τ2, K )with τ2 > 30, respectively. Use the two prices and linear
interpolation to obtain the price of a 30-day call option, C(t, 30, K ).

2. For day t −1, repeat Step 1 and obtain the 30-day call option price C(t −1, 30, K )
for each strike price K .

3. Among all available strike prices on day t , find the one in which S
K is the closest

to 0.95. Let K ∗ denote the resulting strike price. Calculate the 30-day out-of-the
money call-option return on day t as Rt = log C(t,30,K ∗)

C(t−1,30,K ∗) .
4. Repeat Steps 1 through 3 for each day to obtain a return time series for call options

that have a constant moneyness
( S

K ≈ 0.95
)

and a constant maturity (30 days).

Returns on other call and put options can be constructed in a similar manner.
Table 1 presents descriptive statistics for the 12 representative daily option returns

and the underlying S&P 500 index. It reveals several systematic patterns. First, call-
option returns are persistently positive, and put-option returns are persistently nega-
tive, regardless of the moneyness or the maturity of the contract. Returns on short-term
options are generally higher (lower) than their long-term counterparts for calls (puts),
and returns on OTM calls (puts) are higher (lower) than those on ITM calls (puts). For
example, daily option return averages 1.16% (0.46%) and ranges from −10.38% to
12.34% (from −4.02% to 4.71%) for short-term (long-term) ATM calls. Second, for
a fixed maturity, the return volatility decreases monotonically from OTM to ATM and
then to ITM calls (or puts). For instance, for short-term calls, CSTOTM, CSTATM, and
CSTITM, the standard deviations of daily returns are 29.76%, 21.47%, and 10.18%,
respectively. For a given moneyness, short-term options are more volatile than their
long-term counterparts. Finally, option returns are more volatile than the underlying

2 We choose 30 and 180 days based on several reasons. First, the corresponding option contracts should
have distinct characteristics in terms of days-to-expiration. Second, option contracts with days-to-expiration
surrounding the two chosen values are available on a typical day. To examine the robustness of our results,
we use alternative definitions of short- or long-term options (e.g., we define long-term options as 240-day
options) and find the results are qualitatively similar.
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6 C. Cao, J.-Z. Huang

Table 1 Sample statistics for returns on S&P 500 index options and on equally weighted option indexes

Return series Mean SD 25% Quartile Median 75% Quartile

Calls
CSTOTM 1.085 29.762 −15.708 1.040 16.983
CSTATM 1.165 21.479 −10.383 0.725 12.345
CSTITM 0.385 10.181 −4.157 0.335 5.525
CLTOTM 0.655 12.897 −6.503 0.435 7.307
CLTATM 0.467 8.054 −4.022 0.265 4.715
CLTITM 0.278 5.374 −2.572 0.215 3.105
Puts
PSTOTM −1.121 23.842 −15.290 −2.170 11.797
PSTATM −1.176 22.649 −14.110 −1.435 11.138
PSTITM −0.589 13.306 −7.712 −0.590 6.263
PLTOTM −0.366 9.923 −6.198 −0.300 4.547
PLTATM −0.339 9.075 −5.488 −0.420 4.390
PLTITM −0.271 6.524 −3.743 −0.370 2.943
Option indexes
EW 0.014 2.950 −1.734 −0.167 1.549
EW short-term −0.042 4.716 −2.695 −0.344 2.414
EW long-term 0.071 2.139 −1.120 0.019 1.163
EW OTM 0.063 6.488 −3.783 −0.159 3.571
EW ATM 0.029 2.875 −1.643 −0.178 1.422
EW ITM −0.050 1.856 −0.831 −0.051 0.729
Underlying asset
S&P 500 index 0.035 0.805 −0.355 0.033 0.460

This table presents summary statistics for returns on S&P 500 index options and on option indexes. Results
are reported for 12 option-return time series (six for calls and six for puts) with different moneyness-matu-
rity categories: (1) CSTOTM (short-term out-of-the-money calls), (2) CSTATM (short-term at-the-money
calls), (3) CSTITM (short-term in-the-money calls), (4) CLTOTM (long-term out-of-the money calls),
(5) CLTATM (long-term at-the-money calls), (6) CLTITM (long-term in-the-money calls), (7) PSTOTM
(short-term out-of-the-money puts), (8) PSTATM (short-term at-the-money puts), (9) PSTITM (short-term
in-the-money puts), (10) PLTOTM (long-term out-of-the-money puts), (11) PLTATM (long-term at-the-
money puts), and (12) PLTITM (long-term in-the-money puts)
These return series are used to construct six equally weighted option indexes. They are equally weighted
“market” (EW), equally weighted short-term (EW short-term), equally weighted long-term (EW long-term),
equally weighted OTM (EW OTM), equally weighted ATM (EW ATM), and equally weighted ITM (EW
ITM) option indexes. Return is defined as logarithmic price change (in %)
The sample period extends from June 1, 1988 through May 31, 1994 for a total of 1,506 daily observations

asset return by a large margin. The standard deviation of daily return on S&P 500
index is 0.80%, while the standard deviation of each daily option return is above 5%.

We construct six equally weighted option return indexes from the above 12 option
return series.3 These option indexes are:

• EW: equally weighted “market” option index
• EW short-term: equally weighted short-term option index
• EW long-term: equally weighted long-term option index
• EW OTM: equally weighted OTM option index
• EW ATM: equally weighted ATM option index
• EW ITM: equally weighted ITM option index

3 In a later section, we will elaborate on how these option indexes relate to common factors.
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Determinants of S&P 500 index option returns 7

As shown in Table 1, the average return on the equally weighted “market” option
index is close to zero, but the option index’s standard deviation is more than three
times as large as that of the underlying index (2.95% compared to 0.80%). Between
the short- and long-term option indexes, the former’s volatility is much larger. Among
the OTM, ATM, and ITM option indexes, the return volatility decreases as the mon-
eyness increases.

Table 2 reports the correlation matrix for the 12 individual option-return time series.
There is a considerably high correlation between any two option returns. For a given
pair of call (or put) option returns, the correlation is positive, and ranges from 0.77 to
0.96 (or from 0.83 to 0.94). Notice that the correlation between a call option return and
a put option return is always negative, ranging from −0.92 to −0.69. This evidence
indicates that prices of call options generally move in the same direction, and they
move in the opposite direction to those of put options. However, these correlations are
significantly different from those predicted by the one-dimensional diffusion option
models (1.0 between two call, or two put, option returns and −1.0 between a call and
a put option returns).

To get a sense of how strongly option returns are related to the underlying asset and
other factors, Table 3 reports correlations among option returns and the underlying
S&P 500 index returns, as well as among option returns and option index returns. It
is noted that the correlation between the S&P 500 returns and short-term call returns
increases as the option’s moneyness increases from the OTM to the ATM, then to
the ITM. The correlations are 0.78, 0.89 and 0.90, respectively, for short-term OTM,
ATM, and ITM calls. We observe a similar pattern for put options, except that the
correlation between the underlying and put-option returns is negative. The high cor-
relation between the underlying and option returns suggests that the underlying asset
return is the primary factor affecting option returns. However, its impact depends on
the option’s moneyness.

The correlation between a given option and the equally weighted “market” option
index (EW) is substantially lower than that between the same option and the S&P 500
index. For example, correlations between CSTOTM and EW and between CSTOTM
and the S&P 500 index are 0.36 and 0.78, respectively. We also observe that the corre-
lation between EW and option returns decreases as the option’s moneyness increases
from OTM to ITM. This is true for both short- and long-term options, and for both calls
and puts. Finally, the correlation between any option and an option index is positive.
Consequently, if any of the option index is used as a proxy for a systematic factor, its
impact on call- and put-option returns is unidirectional, and its impact is larger on the
OTM options than on the ITM options.4

Our results suggest that the correlation between each of the six option indexes and
the S&P 500 index is close to zero. For instance, the correlations between the EW, EW
short-term, or EW long-term option index and the S&P 500 index are −0.01, −0.01
and 0.00, respectively.5 The moderate correlations between individual option returns
and option indexes and the low correlations between option indexes and the S&P 500

4 Recall that call-option return is positively, put-option return negatively, associated with the underlying
return.
5 For brevity, these results are not reported in the table.
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10 C. Cao, J.-Z. Huang

index suggest that option indexes could relate to some additional orthogonal factors
that affect option returns.

3 Factor analysis of option returns

In this section, we use factor analysis to empirically determine the number of common
factors underlying option returns. This section starts with a brief review of the linear
factor model and the estimation procedure, followed by the estimation results.

3.1 The linear factor model

We assume that the option returns follow a linear k-factor structure:

ri = µi +
k∑

j=1

bi j f j + εi , i = 1, . . . , p, (1)

where µi = E[ri ] denotes the expected return for option i , and { f1, f2, . . . . . . , fk}
represents the k unobservable common factors. The coefficient bi j represents the load-
ing of the i th option on the j th factor. The residual term εi is the idiosyncratic risk
component. Rewriting Eq. 1 in matrix notation, we have:

R − µ = B f + ε, (2)

where R, µ and ε are (p × 1)-vectors, B = (bi j ) is a (p × k)-matrix, and f is a
(k × 1)-vector.

As is standard in the literature, we assume that:

E[ f ] = 0, Cov( f ) = E[ f f ′] = I,
E[ε] = 0, Cov(ε) = E[εε′] = �,

Cov(ε, f ) = E[ε f ′] = 0,
(3)

where I is a (k × k) identity matrix and � = diag(ψ1, ψ2, . . . , ψp), which is a
(p × p) diagonal matrix. Equations 2 and 3 define an orthogonal factor model. In this
model, the variance-covariance matrix of R, denoted by � = (σi j ), has the following
structure:

� = B B ′ +�. (4)

Notice that Eqs. (2–4) remain unchanged under the transformation:

B∗ = BG and f ∗ = G ′ f with GG ′ = I. (5)

As a result, factor loadings B are unique only up to an orthogonal transformation G.
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Determinants of S&P 500 index option returns 11

3.2 Estimation of factor loadings

The two methods that are commonly used to estimate the loadings matrix B are the
principal component and the maximum likelihood methods. The former is simple and
computationally more efficient. The latter has desirable asymptotic properties, but
requires the assumption that option returns are normally distributed. To maintain min-
imum assumptions about option returns, we use the principal component method to
estimate the matrix B.

Let the option return covariance matrix � have eigenvalue-eigenvector pairs
(λi , ei )1≤i≤p, with λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. Using the principal component method,
the loadings matrix B for a k-factor (k < p) model is given by:

B = (b1, b2, . . . , bk) =
(√
λ1e1,

√
λ2e2, . . . ,

√
λkek

)
,

where bi , 1 ≤ i ≤ k, is a (p × 1)-vector that represents the loadings on the i th factor.
It follows that the idiosyncratic covariance matrix is given by:

� = diag(ψ1, ψ2, . . . , ψp) with ψi = σi i −
p∑

j=1

b2
i j .

We obtain the principal component solution of the loadings matrix B and idiosyn-
cratic covariance matrix� by replacing� by the sample covariance matrix S = (si j ).
Let B̂ and �̂ be the estimates of B and �, respectively. We have:

B̂ =
(√

λ̂1ê1,

√
λ̂2ê2, . . . ,

√
λ̂k êk

)
,

�̂ = diag(ψ̂1, ψ̂2, . . . , ψ̂p) with ψ̂i = sii −
p∑

j=1

b̂2
i j ,

where (λ̂i , êi )1≤i≤p are eigenvalue-eigenvector pairs of S with λ̂1 ≥ λ̂2 ≥ · · · ≥
λ̂p ≥ 0.

It is noted that the contribution of each factor to the variance of option i (or the
total variance of p options) can be written as a function of eigenvalues and eigen-
vectors of �. For example, the contribution to option i’s variance σi i from the j th
factor is b2

i j = λ j ei j , where ei j is the i th element of eigenvector e j . The contribution

to option i’s variance σi i from all k common factors is
∑k

j=1 b2
i j = ∑k

j=1 λ j ei j .
The contribution to the total variance of p options, tr(�), from the j th factor is∑p

i=1 b2
i j = ∑p

i=1 λ j ei j = λ j (eigenvectors have unity length), and the contribution to

the total variance of p assets from all k common factors is
∑k

j=1
∑p

i=1 b2
i j = ∑k

j=1 λ j .
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12 C. Cao, J.-Z. Huang

3.3 Estimation of factors

We can estimate the k unobservable common factors by using the weighted least
squares, the cross-sectional regression, or by constructing mimicking portfolios, which
are perfectly correlated with the k factors (see Grinblatt and Titman 1987, Huberman
et al. 1987, Lehmann and Modest 1988).

Given the estimated loadings matrix B̂, we can treat R and B in Eq. 2 as depen-
dent and independent variables and estimate the factors f by using a cross-sectional
regression. This yields:

f = (B ′�−1 B)−1 B ′�−1(R − µ).

Notice that estimates of f are obtained by minimizing the sum of weighted squared
errors [(R −µ)− B f ]′�−1[(R −µ)− B f ], and therefore, they are the weighted least
squares estimator of f . It follows that the estimated factor values at t are given by:

f̂t =
[
(B̂ ′�̂−1 B̂)−1 B̂ ′�̂−1

] (
Rt − R̄

)
, (6)

where R̄ is the sample mean of R. Using Eq. 6 for each t, t = 1, . . . , T , yields a time
series of the factor scores. Equation 6 implies that the factor scores are a linear function
of option returns Rt . This indicates that option-return portfolios can be constructed
from the p option returns, ri , i = 1, . . . , p, to mimic the factors. In fact, the matrix
in the brackets in Eq. 6 represents the set of k-mimicking portfolios. Once we obtain
mimicking portfolios, we can use their returns as estimates of the factors.

When we estimate B̂ and �̂ by using the principal component solution, we follow
a standard practice to assume that the residual variances ψi i , i = 1, . . . , p, are almost
equal. It follows from Eq. 6 that:

f̂t = (B̂ ′ B̂)−1 B̂ ′(Rt − R̄) =
⎛
⎝ ê1√

λ̂1

,
ê2√
λ̂2

, . . . ,
êk√
λ̂k

⎞
⎠

′
(Rt − R̄).

We use the above equation to obtain estimates of factor values.

3.4 Factor rotations

Both factor loadings and factors are unique only up to an orthogonal transformation
(rotation). Since we examine option returns in this article, a guide to the rotation is
that the most important factor affecting option returns should be the underlying asset,
and that the second most important, the volatility factor. There is abundant evidence
showing that return volatility changes stochastically over time, and it has important
implications for pricing options [see e.g., French et al. (1987), Madan et al. (1998),
Melino and Turnbull (1990), Schwert (1989, 1990), Scott (1987, 1997), and Wiggins
(1987)].
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Determinants of S&P 500 index option returns 13

To facilitate our interpretation of the factors, we rotate the estimated loadings matrix
B̂ in such a way that the first factor implied by the rotated loadings is the closest to
the underlying S&P 500 index returns (e.g., the distance between the two vectors
is minimized), and the second factor is the closest to the change in volatility.6 This
requires the construction of an orthonormal transformation matrix G to achieve the
desired rotation. Following Knez et al. (1994), we use the k-mimicking portfolios
obtained earlier to construct G. Specifically, we adopt a three-step procedure to obtain
the matrix G and use the three-factor (k = 3) model for the point of discussion.

First, we regress S&P 500 index returns on returns of the k(= 3) mimicking port-
folios and use the regression coefficients as the first column of G:

g1 = (F̂ ′ F̂)−1 F̂ ′ RS&P 500, (7)

where F̂ = ( f̂1, f̂2, f̂3) is a (T × 3) matrix that represents initially estimated factor
values, and RS&P 500 is the (T × 1) vector of the S&P 500 returns. Next, we regress
the second observable factor, say a measure of volatility, on the three mimicking port-
folios, with the constraint that the vector of the regression coefficients is orthogonal
to g1. The resulting regression coefficients are used as the second column of G. As
shown in Appendix A:

g2 = g0
2 − α0(F̂

′ F̂)−1g1, (8)

with

g0
2 = (F̂ ′ F̂)−1 F̂ ′ R2, and α0 = g′

1g0
2

g′
1(F̂

′ F̂)−1g1
, (9)

where R2 is the (T × 1) vector of the second observable factor, and g0
2 is the (3 × 1)

vector of the unconstrained regression coefficients.
Finally, we regress the residual from the previous regression against the three mim-

icking portfolios, with the constraint that the vector of the regression coefficients is
orthogonal to both g1 and g2. The regression coefficients, g3, are taken as the last
column of G, and are given by:

g3 = g0
3 − (F̂ ′ F̂)−1(α1g1 + α2g2), (10)

with

g0
3 = (F̂ ′ F̂)−1 F̂ ′e∗, α1 = c1a2 − c2a1

a0a2 − a2
1

, α2 = c2a0 − c1a1

a0a2 − a2
1

. (11)

6 Our subsequent empirical analysis indicates that a three-factor model can explain about 93% of the
variation in option returns. Therefore, our discussion is based on the three-factor model. Implicit in our
discussion is the assumption that the underlying asset is the most important, and that volatility is the next
most important factor. The rotation method discussed here is applicable when other variables are used as
proxies for common factors. We also redo the factor rotation by using the equally weighted option index as
the second observable factor and find the results are qualitatively similar.
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14 C. Cao, J.-Z. Huang

(See Appendix A.) Note that e∗ is the (T × 1) vector of residuals from the second
regression and:

a0 = g′
1(F̂

′ F̂)−1g1, a1 = g′
1(F̂

′ F̂)−1g2, a2 = g′
2(F̂

′ F̂)−2g2,

c1 = g′
1g0

3, c2 = g′
2g0

3 .

With the orthogonal transformation matrix G = (g1, g2, g3), we use Eq. 5 to obtain
a new loadings matrix and new factor scores by rotating the initial loadings matrix B̂
and initial factors f̂ .

3.5 Estimation results

To present estimation results from the three-factor (k = 3) model, we begin with the
results based on the original factor loadings reported in Table 4. First, according to the
original factor loadings matrix, all six call-option returns have a large positive sensi-
tivity, and all six put-option returns have a large negative sensitivity, to the first factor.
The estimated loading monotonically decreases (increases) from OTM to ITM calls
(puts). This is true for both short- and long-term options. For example, the estimated
loadings are 26.10 and 9.32 for short-term OTM and ITM calls, and −8.79 and −6.21
for long-term OTM and ITM puts. Thus, the OTM option returns are the most sensitive
to the first factor. Second, all call- and put-option returns have a positive loading on
the second factor, indicating that the impact of the second factor on both call and put
option returns is in the same direction. This contrasts with signs of loadings on the first
factor, which are all positive for calls and all negative for puts. The estimated loading
on the second factor is the largest for the OTM options, and the smallest (close to zero)
for the ITM options. Finally, the loadings on the third factor are relatively small.

The rotated factor loadings on the first and second factors are similar to the original
ones, in both sign and magnitude. For example, all six call (put) option returns have
positive (negative) loadings on the rotated first factor. Since we choose the rotation so
that the rotated first factor is consistent with returns on S&P 500 index, this factor can
be interpreted as representing the return of the underlying asset. Next, all 12 option
returns have positive loadings on the rotated second factor. Recall that the rotation
is such that the new loadings are consistent with the second factor being a proxy for
volatility. Thus, the rotated second factor can be interpreted to be a volatility proxy.7

The loadings on the third factor change noticeably after the rotation. However, the
rotated loadings on the third factor do not seem to have a systematic pattern. The
interpretation of this factor remains open.

Table 5 reports proportions of the variance explained by the three original (and
rotated) factors for each of the 12 option returns. This decomposition shows the rel-
ative importance of each factor. In addition, this table presents summary results for
options in a given maturity category (e.g., short- or long-term options) and a given
moneyness category (e.g., OTM, ATM, or ITM options). On average, the three factors

7 There might be alternative interpretations of the second factor. As demonstrated in the next section, the
equally weighted option index also has a positive impact on both call and put option returns.
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Determinants of S&P 500 index option returns 15

Table 4 Factor loadings from the principal component method

Return series Original factor loadings Rotated factor loadings

F1 F2 F3 F1 F2 F3

Calls
CSTOTM 26.10 9.62 −0.54 25.67 9.56 4.81
CSTATM 20.48 3.17 −2.56 20.55 3.63 0.88
CSTITM 9.32 0.37 −3.12 9.64 0.96 −1.70
CLTOTM 11.26 4.29 2.67 10.68 3.73 4.93
CLTATM 7.72 1.01 0.86 7.51 0.85 2.08
CLTITM 5.17 0.33 0.53 5.04 0.24 1.29
Puts
PSTOTM −21.55 6.42 0.42 −21.58 6.19 −1.31
PSTATM −21.82 2.81 2.61 −22.04 2.23 0.10
PSTITM −12.85 0.38 1.40 −12.93 0.08 −0.30
PLTOTM −8.79 2.90 −2.30 −8.48 3.27 −2.89
PLTATM −8.67 1.58 −0.33 −8.59 1.60 −1.20
PLTITM −6.21 0.77 −0.12 −6.15 0.77 −0.82

This table presents estimates of the original and rotated factor loadings from the principal component
method
Results are reported for the 12 option-return time series: (1) CSTOTM (short-term out-of-the money calls),
(2) CSTATM (short-term at-the-money calls), (3) CSTITM (short-term in-the-money calls), (4) CLTOTM
(long-term out-of-the money calls), (5) CLTATM (long-term at-the-money calls), (6) CLTITM (long-term
in-the-money calls), (7) PSTOTM (short-term out-of-the money puts), (8) PSTATM (short-term at-the-
money puts), (9) PSTITM (short-term in-the-money puts), (10) PLTOTM (long-term out-of-the money
puts), (11) PLTATM (long-term at-the-money puts), and (12) PLTITM (long-term in-the-money puts)
The sample period extends from June 1, 1988 through May 31, 1994 for a total of 1,506 daily observations

explain 92.82% of the variation in all 12 option returns. The first, second, and third
factors, explain 86.73%, 3.97%, and 2.11%, respectively, of the variation. The results
for short- and long-term options are similar. For example, the three factors explain,
on average, 92.41% (93.23%) of the variation in all six short-term (long-term) option
returns. Among the three moneyness categories, the first factor accounts for a sig-
nificantly larger percentage of the variation in the ATM option returns (91.75%) and
the ITM option returns (90.13%) than it does in the OTM option returns (78.31%).
In contrast, the second factor is significantly more important for the OTM options
(9.33%) than it is for the ATM (2.09%) and the ITM options (0.50%).

For each of the 12 option returns, the first factor accounts for the largest percent-
age variation in returns, ranging from 76.22% for long-term OTM calls (CLTOTM),
to 93.33% for short-term ITM puts (PSTITM). The second factor explains the sec-
ond largest percentage variation in option returns (except CSTITM, CLTITM, and
PSTITM), especially for the OTM options.

Judging by the fraction of the total variance explained by each of the factors, we
conclude that the first factor dominates all other factors, and that it is more important
for the ATM and ITM options than for the OTM options. And yet, the contribution of
the second factor toward the variation in option returns is significant, especially for
the OTM options. The fact that results from rotated factor loadings are qualitatively
similar (see Table 5) further substantiates our earlier argument that the first and second
factors can be interpreted as the “underlying” factor and the “volatility” factor.
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16 C. Cao, J.-Z. Huang

Table 5 Factor analysis of S&P 500 index option returns

Return series Original factor loadings Rotated factor loadings Total (%)

F1 (%) F2 (%) F3 (%) F1 (%) F2 (%) F3 (%)

Calls
CSTOTM 76.89 10.44 0.03 74.36 10.39 2.61 87.37
CSTATM 90.94 2.17 1.42 91.51 2.85 0.17 94.54
CSTITM 83.89 0.13 9.39 89.72 0.90 2.78 93.41
CLTOTM 76.22 11.06 4.31 68.59 8.35 14.64 91.60
CLTATM 92.01 1.60 1.16 86.95 1.11 6.70 94.77
CLTITM 92.75 0.39 1.00 88.18 0.19 5.76 94.15
Puts
PSTOTM 81.65 7.26 0.03 81.90 6.74 0.30 88.94
PSTATM 92.77 1.54 1.33 94.67 0.96 0.00 95.64
PSTITM 93.33 0.08 1.11 94.48 0.00 0.05 94.53
PLTOTM 78.46 8.55 5.38 73.03 10.84 8.51 92.40
PLTATM 91.27 3.05 0.13 89.57 3.12 1.76 94.46
PLTITM 90.55 1.40 0.03 89.00 1.40 1.58 92.00
Average
All 86.73 3.97 2.11 85.16 3.91 3.74 92.82
Short-term 86.58 3.60 2.22 87.77 3.64 0.98 92.41
Long-term 86.88 4.34 2.00 82.56 4.17 6.49 93.23
OTM 78.30 9.33 2.44 74.47 9.08 6.52 90.08
ATM 91.75 2.09 1.01 90.68 2.01 2.16 94.86
ITM 90.13 0.50 2.88 90.35 0.62 2.54 93.52

Reported below are proportions of the total variance explained by factors 1, 2 or 3, respectively
Results are reported for the 12 option-return time series: (1) CSTOTM (short-term out-of-the money calls),
(2) CSTATM (short-term at-the-money calls), (3) CSTITM (short-term in-the-money calls), (4) CLTOTM
(long-term out-of-the money calls), (5) CLTATM (long-term at-the-money calls), (6) CLTITM (long-term
in-the-money calls), (7) PSTOTM (short-term out-of-the money puts), (8) PSTATM (short-term at-the-
money puts), (9) PSTITM (short-term in-the-money puts), (10) PLTOTM (long-term out-of-the money
puts), (11) PLTATM (long-term at-the-money puts), and (12) PLTITM (long-term in-the-money puts)
The sample period extends from June 1, 1988 through May 31, 1994 for a total of 1,506 daily observations
OTM, ATM, and ITM denote out-of-the money, at-the-money, and in-the-money options, respectively

3.6 Correlations between factors and their proxies

Since option contracts are derivative securities, we consider the underlying asset return
as a proxy for the first factor. However, the choice of a proxy for the second factor
is not straightforward. One candidate is a measure of the volatility of the underlying
asset return. Since the volatility is not observable, we use the option’s implied volatil-
ity as a proxy for the second factor. Specifically, we use the Black-Scholes model to
back out the implied volatility. The Black-Scholes model implied volatility on day t
is estimated by using all available call and put option (closing) prices on that day, and
by minimizing the sum of squared pricing errors.8 Bates (1991), Dumas et al. (1998),
Longstaff (1995), and Whaley (1982) have used a similar procedure.

8 Appendix B provides details on how to use daily cross-sectional option prices to estimate implied vol-
atility from the Black-Scholes model. The results based on the implied volatility from more complicated
models (e.g., the stochastic volatility models) will be discussed in Sect. 6.
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Determinants of S&P 500 index option returns 17

An alternative proxy for the second factor is the return on the equally weighted
option index that is constructed from both call and put options in different moneyness-
maturity categories. The rationale for choosing this index is as follows: Components
of the index are pairs of call and put options with similar strike prices and maturities
(e.g., short-term OTM calls and short-term ITM puts). Therefore, the first-order effect
of the underlying asset on calls and puts cancels itself out. As a result, the second
factor becomes dominant.

This point can be illustrated by the following example. Consider an equally weighted
option portfolio consisting of an S&P 500 call option and an otherwise identical put
option. For simplicity, assume that option returns are driven by two factors, the under-
lying index and a volatility factor. Returns on this portfolio over a short period of time
can be decomposed as:

	C

C
+ 	P

P
= (·)	t + (
c

s +

p
s )
	S

S
+ (
c

v +
p
v )
	v

v
,

where the superscripts c and p denote the call and put options. Variables 
c
s and 
c

v

are the call option’s elasticities with respect to the underlying asset and the volatility
respectively, 
c

s ≡ S
C
∂C
∂S , and 
c

v ≡ v
C
∂C
∂v

. The put option’s elasticities are defined
similarly. In general,
c

s and
p
s have opposite signs, and the call and put prices move

in the opposite directions with the underlying asset. In contrast, 
c
v and 
p

v have
the same sign as the volatility changes. As a result, we expect the coefficient on the
change in the underlying (	S/S) to be small relative to the coefficient on the change
in volatility (	v/v).

To investigate whether the equally weighted option index return (EW) is a good
proxy for the second factor, we regress it on the three factor scores obtained earlier.
Panel A of Table 6 reports the regression result. The estimated coefficients on the first
and the third factors are both small. However, the coefficient on the second factor is
large, positive, and significant, and the adjusted R2 is as high as 90.6%. Panel B of
Table 6 displays proportions of the variance in EW explained by each of the three
factors. We note that the first and third factors together explain less than 1% of the
total variation, but the second factor explains more than 90% of the total variation in
the equally weighted option return. Two additional option index returns, “EW short-
term” and “EW long-term,” are also used in the regression. The results (reported in
Table 6) are qualitatively similar. Finally, as shown in Table 6, the regression results
based on the rotated factors are similar to those based on the original factors. Taken
together, these results indicate that the equally weighted option index return is strongly
associated with the second factor, and is essentially uncorrelated with the other two
factors.

We also examine whether a factor proxy is good by looking at its correlation with
the factor itself. Table 7 presents a correlation matrix for each of the three factors
(both the original and the rotated) and their proxies. The proxy for the first factor is
the S&P 500 index return. The proxy for the second factor includes three measures of
the change in Black-Scholes implied volatility (e.g., all-options-, short-term-options-,
and long-term-options-based volatility), and three option index returns (e.g., EW, EW
short-term and EW long-term). We begin our discussion with the original factors.
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Table 6 Regression analysis of equally weighted option return indexes

Return series Original factors Rotated factors Adj. R2 (%)

β0 β1 β2 β3 β0 β1 β2 β3

Panel A: Regression results
EW 0.01 0.01 2.80 −0.03 0.01 −0.07 2.09 0.10 90.60

(0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.00)
EW short-term −0.04 −0.05 3.79 −0.29 −0.04 −0.15 2.86 0.09 65.22

(0.07) (0.07) (0.07) (0.07) (0.07) (0.09) (0.05) (0.01)
EW long-term 0.07 0.08 1.81 0.22 0.07 0.00 1.32 0.12 73.44

(0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.02) (0.01)

Return series Original factors loadings Rotated factors loadings Total (%)

F1 (%) F2 (%) F3 (%) F1 (%) F2 (%) F3 (%)

Panel B: Proportion of the total variance explained by each factor
EW 0.00 90.59 0.01 0.03 87.83 2.74 90.60
EW short-term 0.01 64.82 0.39 0.06 64.40 0.76 65.22
EW long-term 0.14 72.24 1.06 0.00 66.47 6.97 73.44

This table reports results from the following regression:

Rt = β0 + β1 f̂1t + β2 f̂2t + β3 f̂3t + εt ,

where Rt is an equally-weighted option-index return, and f̂1t , f̂2t and f̂3t denote estimates of the three
common factors. Three equally weighted option return indexes are used as the dependent variable sepa-
rately. They are equally weighted “market” (EW), equally weighted short-term (EW short-term), and equally
weighted long-term (EW long-term) option indexes, respectively
The sample period extends from June 1, 1988 through May 31, 1994 for a total of 1,506 daily observations.
Panel A reports coefficient estimates and corresponding standard errors. The standard errors (in parenthe-
ses) are White’s (1980) heteroskedasticity consistent estimator
Panel B reports proportions of the total variance explained by each of the common factors

First, factor 1 has a large positive correlation (0.92) with the S&P 500 index return,
and a large negative correlation (−0.56) with all-options-based volatility change. We
note that the correlation between the S&P 500 index return and all-options-based
volatility change is also −0.56. Thus, interpreting the first factor as the underlying
asset return is consistent with the observed correlation pattern. Second, the correla-
tion between factor 2 and the underlying asset is close to zero. However, the second
factor has a large, positive correlation with the volatility factor. This result supports
the view that the second factor can be interpreted as the change in volatility. Among
the three volatility measures, the long-term volatility measure is weakly associated
with the third factor. Third, the equally weighted option index is uncorrelated with
the first factor, but strongly correlated with the second factor. In fact, the option index
EW and the second factor have a correlation of 0.95. For both short- and long-term
option indexes, correlations with the second factor are also high. This confirms that
the equally weighted option index is a good proxy for the second factor. Finally, the
equally weighted long-term option index is weakly correlated with the third factor. It
shows a correlation of 0.10 (and a correlation of 0.26 with the rotated third factor).
This suggests that the option index can be used as a proxy for the third factor. The
results based on rotated factors yield similar patterns.
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Table 7 Correlations of changes in implied volatility and factors

S&P 500 index BS implied volatility Original factors Rotated factors

All Short Long F1 F2 F3 F1 F2 F3

S&P 500
index

−0.56 −0.51 −0.44 0.92 −0.02 −0.12 0.93 0.00 0.00

BS Implied volatility
All 0.71 0.84 −0.56 0.61 −0.03 −0.56 0.60 0.00
Short 0.45 −0.52 0.52 −0.01 −0.53 0.51 0.00
Long −0.40 0.46 0.06 −0.42 0.44 0.09
Original factors
Factor 1 0.99 0.00 0.13
Factor 2 −0.02 0.98 0.18
Factor 3 −0.13 −0.18 0.97
Option indexes
EW −0.01 0.55 0.56 0.38 0.01 0.95 −0.01 −0.01 0.94 0.16
EW short-

term
−0.01 0.42 0.55 0.24 −0.01 0.81 −0.06 −0.02 0.80 0.09

EW long-
term

0.00 0.58 0.32 0.52 0.03 0.85 0.10 0.00 0.82 0.26

Reported below is the correlation matrix among changes in the Black-Scholes implied volatility, the original
factors, the rotated factors, and the option return indexes. For each day, the Black-Scholes implied volatility
is obtained by minimizing sum of squared pricing errors. The results under “All” are obtained by using
all call and put options on a given day. Those under “Short” and “Long” are obtained by using all call/put
options with days to expiration less than 45 days, or more than 180 days, respectively
The estimates of the original and rotated factors are from the factor analysis. “EW”, “EW short-term” and
“EW long-term”, respectively, represent equally weighted option return index, equally weighted short-term
option return index, and equally weighted long-term option return index
The sample period extends from June 1, 1988 through May 31, 1994 for a total of 1,506 daily observations

4 Regression analysis

The preceding section has demonstrated that the first, second, and third factors explain
87%, 4%, and 2% of the total variation in option returns. Further, we have found that
the underlying S&P 500 index return is a good proxy for the first factor, and that both
the equally weighted option index and the volatility are good proxies for the second
factor. From a practical perspective, the true factors are not directly observable, and
one is bounded to use proxies of factors and to explain option returns. We ask what
fraction of the variation in option returns can be explained by these proxies. The answer
to this question guides us on how to choose, among many observable proxies, the right
set of observable variables for our option modeling framework. In this section, we use
a regression analysis to study the association between option returns and proxies of
factors. Specifically, we consider the one-factor, two-factor, and three-factor models.

4.1 The one-factor model

The one-factor model we investigate is specified as:

Rit = αi0 + αi1 RS&P 500
t + εi t , (12)
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where Rit is one of the following option returns at t : CSTOTM, CSTATM, CSTITM,
CLTOTM, CLTATM, CLTITM, PSTOTM, PSTATM, PSTITM, PLTOTM, PLTATM,
or PLTITM. RS&P 500

t is the return on the S&P 500 index. This specification is con-
sistent with the discretized version of the one-factor diffusion option pricing model.
To appreciate this point, let St denote the level of the underlying S&P 500 index at t ,
and τ and K be the time-to-expiration and strike price of a European call option, and
Ct = C(St , K , τ ) be the value of the call option. Assume that the index level evolves
according to the one-dimensional diffusion process:

d St = µs(·) St dt + σs(St , t) St dzs,

whereµs and σs are the drift and volatility functions, respectively, and zs is a standard
Brownian motion under a real probability measure.

Using Ito’s lemma and the partial differential equation (PDE) of the pricing function
C , we have:

dCt

Ct
= rt (1 −
c

s)dt +
c
s

d St

St
,

where 
c
s = S

C
∂C
∂S denotes the elasticity of the call option with respect to S, and rt is

the risk-free rate. Rewriting the above equation in terms of logarithmic return yields:

d(ln Ct ) =
(

rt + 1

2
σ 2

s 

c
s

) (
1 −
c

s

)
dt +
c

s d(ln St ). (13)

The regression model given in Eq. 12 can be justified under two conditions: (1) The
first term on the RHS of Eq. 13, namely, the time-decay component during dt , is con-
stant; and (2) the variation in
c

s is small. The dependent variables in Eq. 12 are daily
option returns with a constant moneyness and maturity. Given that dt is small, the
time-decay component is close to zero, and the first condition is expected to hold. The
second condition requires the option elasticity to be a function of the time-to-expira-
tion and the moneyness (or the ratio of the underlying price S to the strike K ) only,
and not sensitive to the interest rate and the underlying return volatility. Elasticity 
c

s
is a function of τ if the underlying process is stationary. One sufficient condition for

c

s to depend on S and K only through the ratio S/K is that the price function of
a call (or put) option is homogeneous of degree one in S and K .9 It is known that
the Black-Scholes option pricing model has such a homogeneity property. Merton
(1973) and Ingersoll (1987) provide sufficient conditions for the option price to be
first-degree homogeneous in S and K . We assume that the interest rate is constant
and the variation in 
c

s due to rt is small. Daily variations in 
c
s due to volatility are

expected to be small. However, there could be large variations over a long horizon.
Nonetheless, results from our regressions are still useful, qualitatively.

9 From the homogeneity property, C(aS, aK ) = a C(S, K ) ∀ a > 0, we have 
c
s (aS, aK ) =

aS
C(aS,aK )

∂C(aS,aK )
∂(aS) = 
c

s (S, K ), ∀ a > 0. Setting a = 1/K leads to 
c
s (S, K ) = 
c

s (S/K , 1).
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In Table 8 we report estimated regression coefficients and corresponding standard
errors, which are White’s (1980) heteroskedasticity consistent estimator. The estima-
tion is done for each of the 12 option returns. The estimated constant is small and
insignificant from zero. This indicates that time decay over one day is indeed small.
However, there is a strong positive (negative) association between a call (put) option
return and S&P 500 index return. All 12 estimated coefficients of α1 are significant
at a 5% level. For a fixed maturity, the coefficient of α1 monotonically decreases
from OTM to ITM call options. Between a pair of short- and long-term call options
(e.g., CSTOTM and CLTOTM), the coefficient for short-term options is larger. These
conclusions also hold for put options, except that the coefficient of α1 is negative.
Thus, returns on short-term and out-of-the money options are far more sensitive to the
underlying asset than are those on the long-term and in-the-money options.

Although all option returns are significantly related to the underlying asset return,
the explanatory power varies substantially across option’s moneyness or maturity.
Overall, the average adjusted R2 is 74.7% for the 12 regressions. Across money-
ness categories, the average adjusted R2 is 63.4% for OTM options, 79.3% for ATM
options, and 81.3% for ITM options.10 Clearly, the underlying asset return explains a
significant percentage of the variation in the option return. This is particularly true for
the ITM options. Yet, about 20–40% of the variation in option returns cannot be attrib-
uted to changes in the underlying value. Therefore, it is necessary to include additional
factors to explain variations in option returns that are not otherwise explained by the
S&P 500 index return.

4.2 Multifactor regressions based on option return indexes

Since the one-factor model does not satisfactorily explain variations in option returns,
we examine multifactor regression models. Our objective is to investigate incremental
explanatory power, over the underlying S&P 500 index, that the second and the third
factors offer.

We begin with a two-factor regression model, with the second factor being the
return on the equally weighted option index. The estimated regression model is:

Rit = βi0 + βi1 RS&P 500
t + βi2 REW

t + εi t , (14)

where Rit is one of the 12 option returns, RS&P 500
t is the return on the S&P 500 index,

and REW
t is the return on the equally weighted option index.

Similar to the one-factor model given in Eqs. 12 and 14 can be considered as a dis-
cretized version of a two-factor diffusion option pricing model. To see this point, let
St denote the underlying S&P 500 index and yt the value of the second state variable
at t . Assume that the dynamics of St and yt are given by:

10 Recall that the rotated first factor explains 85.17% of the total variation in option returns. One reason
why the R2 from the principal component analysis is higher than the regression R2 is that we obtain the
principal component solution by maximizing the variance explained by factors.
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d St = µs(·) St dt + σs(St , t) St dzs,

dyt = µy(·) yt dt + σy(yt , t) yt dzy,

where zs and zy are two standard Brownian motions with a correlation coefficient of
ρsy . Further assume that the value of a call option written on the S&P 500 index is
given by C = C(St , yt , K , τ ). Using Ito’s lemma and the PDE of the option price, we
have:

dCt

Ct
= [rt (1 −
c

s)− (µy − σyλy)

c
y]dt +
c

s
d St

St
+
c

y
dyt

yt
, (15)

where 
c
y = y

C
∂C
∂y is the elasticity of the option price with respect to y. Parameter λy

represents the market price of risk associated with the second factor. Note that if the
factor represented by y is a traded asset, then (µy − σyλy) = rt . Rewriting Eq. 15,
we have:

d(ln Ct ) =
[(

rt − σ 2
c

2

)
−
c

s

(
rt − σ 2

s

2

)
−
c

y

(
µy − σyλy − σ 2

y

2

)]
dt

+ 
c
sd(ln St )+
c

yd(ln yt ), (16)

where σ 2
c = (
c

s)
2σ 2

s + (
c
y)

2σ 2
y + 2
c

s

c
yσsσyρsy . Equation 16 provides a basis for

the regression model in Eq. 14.
Table 8 reports estimation results of the two-factor model for each of the 12 option

returns. The estimated coefficients for the S&P 500 index return are close to those from
the one-factor model; they are positive for calls and negative for puts. More important,
the coefficients of the equally weighted option index are positive and significant at 5%
for all call and put option returns. When we compare estimates of β1 and β2, we find
that the estimated β1 is much larger than the estimated β2. This is an indication that
option returns are more sensitive to the underlying return than to the second factor. The
estimated coefficient for the equally weighted option index monotonically decreases
from the OTM to the ITM options. Thus, the OTM options bear a stronger relation to
the second factor than to the ITM options. For example, for a point change in the EW,
the corresponding changes in CSTOTM, CSTATM, and CSTITM are 3.82, 1.32, and
0.28 points, respectively. Further, the regression results show that including the second
factor increases the adjusted R2 in general. Yet, the most noticeable increase in the
R2 is for the OTM options (e.g., for CSTOTM, CLTOTM, PSTOTM, and PLTOTM).
For example, the adjusted R2 is 61.8% for the one-factor model, and 76.2% for the
two-factor model, for CSTOTM. Therefore, the second factor is more important in
explaining variations in the OTM option returns than in the ATM and ITM option
returns.

Finally, we estimate a three-factor regression model that includes the underlying
asset and the two equally weighted option indexes as independent variables. The model
is specified as:

Rit = γi0 + γi1 RS&P 500
t + γi2 REWshort-term

t + γi3 REWlong-term
t + εi t , (17)
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Determinants of S&P 500 index option returns 25

where REWshort-term
t and REWlong-term

t denote equally weighted short- and long-term
option return indexes, respectively. The regression results are displayed in Table 8.
For coefficient estimates of γ0 and γ1, they are very close to those from the two-fac-
tor model. The coefficient estimates of γ2 are positive and significant at 5%, but the
estimates of γ3 are only weakly significant (or insignificant) for each of short-term
option returns.

For long-term option returns, the opposite is true. Replacing the equally weighted
option index by two maturity-specific option indexes does not lead to a signifi-
cant increase in the adjusted R2, except for long-term OTM options (CLTOTM and
PLTOTM). Thus, the overall contribution of the proxy of the third factor toward the
variation in option returns is not significant.

4.3 Multifactor regressions based on implied volatility

In the preceding regression analysis, we used the equally weighted option index as a
proxy for the second factor. In this subsection, we use an alternative proxy, the option
implied volatility, for the second factor in the regression. The estimated two- and
three-factor models are the same as those in Eqs. 14 and 17, except that we replace
the option return index with the logarithmic change in the implied volatility. These
models are:

Rit = βi0 + βi1 RS&P 500
t + βi2log

(
σAll

t

σAll
t−1

)
+ εi t ,

and

Rit = γi0 + γi1 RS&P 500
t + γi2log

(
σ Short-term

t

σ Short-term
t−1

)
+ γi3log

(
σ

Long-term
t

σ
Long-term
t−1

)
+ εi t ,

where σAll
t is the volatility on day t implied by the Black-Scholes model using all

call and put options, σ short-term
t is the volatility implied by the BS model using all

short-term call/put options (with days-to-expiration less than 45 days), and σLong-term
t

is the volatility implied by the BS model using long-term call/put options (with days-
to-expiration more than 180 days).

Table 9 presents the estimation results. The estimated coefficients for the S&P 500
return are similar to those from the two-factor model reported in Table 8. The coef-
ficients of the change in the implied volatility (β2) are positive and significant at 5%
for all option returns except for CSTITM and CLTITM, indicating that the larger the
change in the volatility, the higher the option return. The sensitivity of option returns to
the change in volatility is largest for the OTM options, followed by the ATM options,
and then the ITM options. This result holds true for both short- and long-term options,
and for both calls and puts. Between alternative specifications of the two-factor mod-
els, the adjusted R2 is generally higher for the model with the option index as the
proxy for the second factor (see Table 8). Taking short-term call option returns as an
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Table 9 Regression analysis of S&P 500 index option returns: Two- and three-factor models with S&P
500 index return and implied volatility as factors

Return series 100× Adj. R2 100× Adj. R2

β0 β1 β2 γ0 γ1 γ2 γ3

CSTOTM 0.07 32.72 2.41 63.9 0.00 33.91 0.86 1.44 65.4
(0.45) (0.69) (0.25) (0.45) (0.68) (0.09) (0.24)

CSTATM 0.31 25.26 0.93 80.6 0.30 25.60 0.32 0.46 80.9
(0.24) (0.36) (0.09) (0.24) (0.36) (0.05) (0.13)

CSTITM −0.01 11.41 0.04 80.6 −0.01 11.44 0.03 0.01 80.6
(0.11) (0.17) (0.06) (0.11) (0.17) (0.02) (0.06)

CLTOTM 0.19 14.30 1.20 63.5 0.19 14.19 0.10 1.12 64.0
(0.20) (0.30) (0.11) (0.20) (0.30) (0.04) (0.10)

CLTATM 0.15 9.28 0.36 77.0 0.16 9.23 −0.06 0.62 78.4
(0.10) (0.14) (0.06) (0.10) (0.14) (0.02) (0.05)

CLTITM 0.07 5.94 0.03 78.1 0.07 6.00 −0.05 0.26 78.9
(0.06) (0.09) (0.04) (0.06) (0.09) (0.02) (0.03)

PSTOTM −0.33 −20.08 2.75 71.4 −0.38 −19.50 1.36 −0.19 74.5
(0.32) (0.50) (0.18) (0.31) (0.46) (0.06) (0.17)

PSTATM −0.32 −23.22 1.34 81.8 −0.36 −22.58 0.87 −0.42 83.9
(0.24) (0.37) (0.14) (0.23) (0.35) (0.05) (0.12)

PSTITM −0.06 −14.80 0.28 85.1 −0.07 −15.00 0.11 −0.13 85.1
(0.13) (0.19) (0.07) (0.13) (0.20) (0.03) (0.07)

PLTOTM −0.06 −7.23 1.74 74.1 −0.05 −7.81 0.32 0.74 70.0
(0.13) (0.20) (0.07) (0.14) (0.21) (0.03) (0.08)

PLTATM −0.01 −8.41 1.10 86.6 −0.01 −8.80 0.20 0.47 82.6
(0.09) (0.14) (0.05) (0.09) (0.14) (0.02) (0.05)

PLTITM −0.02 −6.53 0.52 83.5 −0.03 −6.75 0.08 0.21 82.5
(0.06) (0.10) (0.03) (0.07) (0.10) (0.02) (0.04)

This table reports results from the following two regressions:

Regression 1: Rit = βi0 + βi1 RS&P 500
t + βi2 log

(
σAll

t
σAll

t−1

)
+ εi t ,

Regression 2: Rit = γi0 + γi1 RS&P 500
t + γi2 log

(
σ short-term

t
σ short-term

t−1

)
+ γi3 log

(
σ

long-term
t

σ
long-term
t−1

)
+ εi t ,

t = 1, . . . , T ,

where Rit is one of the following option return series: (1) CSTOTM (short-term out-of-the money calls),
(2) CSTATM (short-term at-the-money calls), (3) CSTITM (short-term in-the-money calls), (4) CLTOTM
(long-term out-of-the money calls), (5) CLTATM (long-term at-the-money calls), (6) CLTITM (long-term
in-the-money calls), (7) PSTOTM (short-term out-of-the money puts), (8) PSTATM (short-term at-the-
money puts), (9) PSTITM (short-term in-the-money puts), (10) PLTOTM (long-term out-of-the money
puts), (11) PLTATM (long-term at-the-money puts), and (12) PLTITM (long-term in-the-money puts)
RS&P 500

t is the S&P 500 index return. Return is defined as logarithmic price change. σAll
t is the volatility

on day t implied by the Black-Scholes (BS) model using all call and put options, σ short-term
t is the volatility

on day t implied by the BS model using all short-term call/put options (with days-to-expiration less than

45 days), and σ long-term
t is the volatility on day t implied by the BS model using long-term call/put options

(with days-to-expiration more than 180 days)
The sample period extends from June 1, 1988 through May 31, 1994, for a total of 1,506 daily observations
The standard errors (reported in parentheses) are White’s (1980) heteroskedasticity consistent estimator
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example, the adjusted R2s are 76.2%, 83.3%, and 81.2% when the EW is used as the
second factor. These statistics are 63.9%, 80.6%, and 80.6%, respectively, when the
implied volatility is used as a proxy for the second factor. It appears that the equally
weighted option index is a better proxy for the second factor than is the option-implied
volatility.

Next we examine a three-factor model and see if maturity-specific volatilities can
explain option returns better than can a single-volatility factor. Since the short- and
long-term implied volatilities are different in their levels and variabilities (e.g., the
variation of volatility), using maturity-specific volatilities might improve estimation
results. Table 9 presents results for the three-factor model. Among the 12 regres-
sions, nine pairs of coefficients for short- and long-term volatility are significant at
5%. Further, for a given short-term (long-term) option, the t-statistic associated with
the short-term (long-term) volatility is more significant than that associated with the
long-term (short-term) volatility. Thus, the short-term volatility plays a dominant role
in explaining short-term option returns. However, the long-term volatility also con-
tributes significantly to the variation in short-term option returns, and vice versa.11

Finally, the adjusted R2s from the three-factor model are close to those of the two-factor
model with a single-volatility factor. This result suggests that performance difference
between the two-factor model (with one volatility factor) and the three-factor model
(with two volatility factors) is small. The two-factor model is sufficient to explain
most of the variation in option returns.

5 Mean–variance spanning tests

In the preceding analysis we investigated the common factors affecting option returns
and the characteristics of these factors. Another approach to examining this issue is to
use mean–variance spanning tests within the framework of Hansen and Jagannathan
(1991). While factor analysis purports to identify the factors and the option return-gen-
erating process, spanning tests examine whether a certain set of (basis) assets can span
or, equivalently, replicate payoffs of options. Motivated by the equivalence between
the Hansen and Jagannathan tests and the Huberman and Kandel (1987) regression-
based tests for spanning (see Bekaert and Urias (1996); Ferson (1995)), we reformalize
our tests within the framework of Huberman and Kandel. The likelihood ratio test is
then used to test the Huberman and Kandel spanning restrictions (HK-restrictions).

5.1 Restrictions of the test

Let Rt+1 represent an (n×1)-vector of asset returns at time t+1, mt+1 be the stochastic
discount factor or pricing kernel, � be an (n×1) unit vector, and Ft denote the informa-
tion available at time t . By a standard result, the Euler equation gives a general pricing
restriction: E[mt+1 Rt+1|Ft ] = �n . Applying the law of iterated expectations yields:

11 The estimated coefficient of γ2 is negative, but small in magnitude, when we use CLTATM and CLTITM
as dependent variables. This can be partially explained by the correlation between the short- and long-term
volatility factors (see Table 7).
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E[mt+1 Rt+1] = �n, (18)

which forms the basis of mean–variance spanning tests for option returns. Equation
18 places restrictions on stochastic discount factors that should be consistent with
the given set of asset returns Rt+1. Hansen and Jagannathan (1991) show that among
these discount factors, the linear projection of mt+1 onto Rt+1 and a constant has
the minimum variance. Thus we consider: mt+1 = E[mt+1] + [Rt+1 − E(Rt+1)]′β̄,
where β̄ is an n × 1 vector of parameters to be determined.

Following Bekaert and Urias (1996) and DeSantis (1995), we consider partitions:

Rt+1 =
⎡
⎣

Ra
t+1

Rb
t+1

⎤
⎦, β̄ =

⎡
⎣
β̄a

β̄b

⎤
⎦,

where Ra
t+1 and β̄a are na × 1 vectors and Rb

t+1 and β̄b are nb × 1 vectors. For
convenience, we refer to the assets with returns Ra

t+1 as test assets and the assets
with returns Rb

t+1 as benchmark assets. If the pricing kernel mt+1 depends only on
Rb

t+1, then benchmark assets span returns on both benchmark and test assets. To test
whether returns Rb

t+1 span Rt+1, we can examine the Hansen and Jagannathan pricing
restrictions (HJ-restrictions):

�n = E[(E[mt+1] + [Rt+1 − E(Rt+1)]′β̄)Rt+1], β̄a = 0na .

Since these restrictions hold for any given arbitrary value of E[mt+1], we can choose
two different values for E[mt+1] and then test the HJ-restrictions.

Bekaert and Urias (1996) and Ferson (1995) show that the HJ-restrictions are equiv-
alent to the HK-restrictions. Specifically, the HK-restrictions are given by:

Ra
t = a + B Rb

t + εt

E[εt ] = 0na , E[εi t Rb
t ] = 0nb , i = 1, . . . , na (19)

a = 0na , B�nb = �na , (20)

where a represents an na × 1 vector of parameters, B is an na × nb matrix of parame-
ters, and εt is an na ×1 vector of error term. The HK-restrictions imply that, if returns
Rb

t span Ra
t , then, up to an orthogonal (zero-mean) error factor, a test asset can be

replicated by a portfolio of the benchmark assets. Notice that this interpretation is
also reflected in (15), in which an option return is spanned by the underlying asset
and the equally weighted option index. Our subsequent spanning tests focus on the
HK-restrictions.

5.2 Test statistics

Here, we describe how to use the generalized method of moments (GMM) (Hansen
1982) to test the HK-restrictions. Let β = vec[(a, B)′] represent the na(nb + 1)× 1
vector of parameters. The moment conditions corresponding to Eq. 19 are:
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gT (β) = 1

T

T∑
t=1

gt (β) ≡ 1

T

T∑
t=1

[
εt

εt ⊗ Rb
t

]
,

where T denotes the number of observations in each option-return time series and the
symbol ⊗ represents the Kronecker product. The GMM estimator of β is given by:

β̂ = argminβ{JT (β) ≡ gT (β)
′ WT gT (β)}.

WT is a positive semi-definite matrix and satisfies plimWT = W0, where W0 is a
positive definite matrix. For any such WT , the GMM estimator is a consistent estima-
tor of β under some regularity conditions. Hansen (1982) shows that the (asymp-
totically) efficient GMM estimator is obtained by choosing the weighting matrix
W ∗

0 = 
−1
0 , where 
0 = ∑∞

�=−∞ E
[
gt (β)gt−�(β)′

]
. The asymptotic covariance

matrix of the efficient GMM estimator is given by avar(β̂∗) = [G ′
0


−1
0 G0]−1, where

G0 = E [∂gt (β)/∂β].
To conduct the spanning tests using the GMM, we substitute the HK-restrictions

into moment conditions, estimate the restricted system, and then test the overidenti-
fied restrictions. This test is a likelihood ratio test. Since there are na(nb + 1)moment
conditions and na(nb − 1) unknown parameters, the system is overidentified. As a
result, the GMM estimator depends on the weighting matrix WT , and we use an iter-
ation over WT to improve the small sample properties of the GMM estimator (see
Ferson and Foerster 1994). A likelihood ratio statistic can be constructed to test the
HK-restrictions. Let β̂r denote the restricted estimator of β. Under the null hypothesis
that the test assets can be spanned by the benchmark assets, we have:

TJ (β̂r ) = T gT (β̂r )
′
−1

T gT (β̂r )
a∼ χ2(2na).

5.3 Spanning results

In conducting the mean–variance spanning tests, we choose three sets of benchmark
assets:

(1) RS&P 500
t and REW

t ;

(2) RS&P 500
t , REW short-term

t , and REW long-term
t ;

(3) RS&P 500
t , REW OTM

t , REW ATM
t , and REW ITM

t .

We first test if any set of benchmark assets can span any of the 12 option returns.
Table 10 reports the likelihood ratio statistic and corresponding p-values for the mean–
variance spanning test. Regardless of which one of the three sets of benchmark assets
we use, we strongly reject mean–variance spanning for each of option returns (all
p-values are less than 1%).12 Put differently, a given option return, say short-term
OTM call-option return, cannot be replicated (spanned) by the underlying S&P 500
index and the equally weighted option index, nor can it be replicated by the underly-
ing, the short- and long-term option indexes. Further, using the underlying and three

12 The Newey and West (1987) weighting matrix with lag 5 is used throughout our GMM tests.
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Table 10 Mean–variance spanning tests using returns on S&P 500 index and option indexes as benchmark
assets

Benchmark assets

Test asset RS&P 500, REW RS&P 500,
REWshort-term,
REWlong-term

RS&P 500, REWOTM,
REWATM, REWITM

CSTOTM 108.79 171.15 12.16
(<0.01) (<0.01) (<0.01)

CSTATM 91.18 111.09 16.45
(<0.01) (<0.01) (<0.01)

CSTITM 57.89 71.95 13.67
(<0.01) (<0.01) (<0.01)

CLTOTM 97.68 124.55 18.38
(<0.01) (<0.01) (<0.01)

CLTATM 100.04 141.25 16.36
(<0.01) (<0.01) (<0.01)

CLTITM 90.61 139.77 15.55
(<0.01) (<0.01) (<0.01)

PSTOTM 102.91 160.93 14.16
(<0.01) (<0.01) (<0.01)

PSTATM 99.63 110.45 16.98
(<0.01) (<0.01) (<0.01)

PSTITM 88.46 110.41 13.60
(<0.01) (<0.01) (<0.01)

PLTOTM 98.80 127.22 12.74
(<0.01) (<0.01) (<0.01)

PLTATM 96.81 129.82 13.99
(<0.01) (<0.01) (<0.01)

PLTITM 92.12 129.90 13.77
(<0.01) (<0.01) (<0.01)

This table reports likelihood ratio statistics and p-values (in parentheses) for the mean–variance spanning
tests. The null hypothesis is that returns on benchmark assets span the return on the test asset.
We estimate the following regression models and test the null hypothesis using Generalized Method of
Moments (GMM):

Regression 1: Rit = βi0 + βi1 RS&P 500
t + βi2 REW

t + εi t ,

H0 : β0 = 0, β1 + β2 = 1

Regression 2: Rit = βi0 + βi1 RS&P 500
t + βi2 REWshort-term

t + βi3 R
EWlong-term
t + εi t ,

H0 : β0 = 0, β1 + β2 + β3 = 1

Regression 3: Rit = βi0 + βi1 RS&P 500
t + βi2 REWOTM

t + βi3 REWATM
t + βi4 REWITM

t + εi t ,

H0 : β0 = 0, β1 + β2 + β3 + β4 = 1

where Rit 0is the return on a test asset. RS&P 500
t is the S&P 500 index return, REW

t , REWshort-term
t ,

R
EWlong-term
t , REW OTM

t , REW ATM
t , and REW ITM

t , respectively, represent returns on equally weighted
“market”, equally weighted short-term, long-term, OTM, ATM, and ITM option indexes
The sample period extends from June 1, 1988 through May 31, 1994, for a total of 1,506 daily observations

moneyness-based option indexes (e.g., REW OTM
t , REW ATM

t , and REW ITM
t ), we still

cannot span option returns, although the rejection of the mean–variance spanning is
the weakest in this case.
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We then implement the spanning tests for a given set of test assets, and test whether
benchmark assets can span a set of test assets jointly. We use the following three sets
of test assets:

(1) all call-option returns (CSTOTM, CSTATM, CSTITM, CLTOTM, CLTATM and
CLTITM);

(2) all put-option returns (PSTOTM, PSTATM, PSTITM, PLTOTM, PLTATM and
PLTITM);

(3) all 12 call- and put-option returns.

Our likelihood ratio tests reject the null that a given set of benchmark assets span a
set of test assets jointly. For all tests, the p-values are less than 1%. For the sake of
brevity, detailed results are not reported here.

Finally, we test if returns of an out-of-the money (or in-the-money) option can be
spanned by the underlying asset and an at-the-money option. For example, we see
if RS&P 500

t and CSTATM can span CSTOTM, and RS&P 500
t and CLTATM can span

CLTOTM. Intuitively, we can use any option contract, say short-term ITM option, as
the benchmark asset to span returns of other options. We choose the ATM option as
a benchmark asset because it is usually the most liquid and has low transaction costs,
and it is more likely to be used as a hedging instrument. The results of the spanning
tests are presented in Table 11. When we use the underlying asset and the ATM option
to span the OTM-option returns (e.g., CSTOTM, CLTOTM, PSTOTM, or PLTOTM),
we fail to reject the spanning for each of the OTM-option returns. Furthermore, among
the four regressions, the estimated coefficients for the underlying S&P 500 index are
insignificant in three cases, but the coefficients for the ATM option return are close
to one. Between the underlying and the ATM option, the latter is more important in
spanning the OTM-option returns.13 In contrast, the likelihood ratio tests strongly
reject the null that the underlying and the ATM option span returns of ITM options
(e.g., CSTITM, CLTITM, PSTITM, or PLTITM). The regression coefficients for the
underlying asset return are large (positive for calls and negative for puts) and far from
one. The coefficients for the ATM option are small, although significantly different
from zero. Taken together, the results from Tables 10 and 11 suggest that the under-
lying asset is not sufficient to hedge option contracts. Additional instruments, such as
the ATM options, should be used to devise efficient hedging strategies.

6 Robustness of empirical results

Using the entire sample period data, we have concluded that almost all of the varia-
tion in option returns can be explained by three factors. Further, the mean–variance
spanning tests have rejected the one-factor diffusion models and the hypothesis that
the underlying asset and an equally weighted option index span options. However, we
wish demonstrate that these conclusions still hold when alternative test designs and
different sample periods are used. Below, we briefly report results from four controlled
experiments.

13 Cochrane and Saa-Requejo (2000) show that for a given option, other options with different strikes are
better hedging instruments than is the underlying asset.
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Table 11 Mean–variance spanning tests using returns on S&P 500 index and at-the-money options as
benchmark assets

Test asset Benchmark assets LR-statistic (p-value)

CSTOTM RS&P 500, CSTATM 1.32 (0.52)
CSTITM RS&P 500, CSTATM 26.22 (0.00)
CLTOTM RS&P 500, CLTATM 1.64 (0.44)
CLTITM RS&P 500, CLTATM 9.52 (0.01)
PSTOTM RS&P 500, PSTATM 1.89 (0.39)
PSTITM RS&P 500, PSTATM 67.34 (0.00)
PLTOTM RS&P 500, PLTATM 0.27 (0.87)
PLTITM RS&P 500, PLTATM 48.78 (0.00)

This table reports likelihood ratio statistics and p-values (in parentheses) for the mean–variance spanning
tests
The null hypothesis is that returns on benchmark assets span the return on the test asset
We estimate the following regression model and test the null hypothesis using Generalized Method of
Moments (GMM):

Rit = βi0 + βi1 RS&P 500
t + βi2 RATM

t + εi t ,

H0 : β0 = 0, β1 + β2 = 1,

where Rit is the return on a test asset. RS&P 500
t is the S&P 500 index return, and RATM

t is the return on a
chosen ATM option
The sample period extends from June 1, 1988 through May 31, 1994, for a total of 1,506 daily observations

We partition the sample into two subsamples, June 1988 to May 1991, and June
1991 to May 1994. For both subsamples, we re-implement each of the tests, and find
that the results are similar to those for the full sample. For example, the first, sec-
ond, and third factors explain, on average, 88%, 5%, and 2% of the variation in option
returns during the first subsample, and 86%, 4%, and 2% during the second subsample.

Using moneyness-specific option indexes (e.g., REW OTM, REW ATM, and REW ITM)
as proxies for factors, and repeating the regression analysis in Table 5, we find that the
overall fitting results are similar to those reported in Table 5. In addition, we use alter-
native definitions of option returns in the factor analysis and regression analysis, such
as the percentage returns (which are more skewed than the logarithmic return), the
standardized returns, and the de-meaned returns. Again, the results are qualitatively
similar to those using the logarithmic returns.

In Sect. 5.3 we use the underlying asset and the equally weighted option index
(or an ATM option) as benchmark assets to span option returns. We also test the null
hypothesis that the underlying asset and the risk-free bond span option returns. The
results, again, strongly reject the null hypothesis.

Note that we use the Black-Scholes model implied volatility as a proxy for the
second factor in factor analysis and regression analysis. Admittedly, the BS model is
mis-specified and its implied volatility is not the best measurement of volatility. Extant
studies have found that the BS implied volatility obtained from the ATM options is
similar to that from other option models e.g., the stochastic volatility models. For
this reason, we use the ATM option volatility implied by the Black-Scholes model to
perform factor analysis and regression analysis. The results remain the same as those
from all-options-based implied volatility. To check whether our results are robust with
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respect to which model we use to obtain the implied volatility, we implement the
stochastic volatility (SV) model of Heston (1993), infer the implied volatility from
this model, and then redo the regression analysis.14 We find that, although the regres-
sion coefficients for the volatility factor are smaller, the adjusted R2s and the overall
explanatory power of factor models are similar to those reported in Table 9. Take the
two-factor model as an example. Using the BS model implied volatility, the coefficient
estimate β2 for the second factor is 0.93 and the adjusted R2 is 80.6% for CSTATM
(see Table 9). With the SV model implied volatility, the coefficient estimate is 0.25 and
the R2 is 80.2%. To summarize, our empirical results are robust to different sample
periods and test designs.

7 Conclusion

This paper has studied the common factors that affect option returns. Using prices of
S&P 500 index options, we construct daily returns on the index option with constant
moneyness and maturity. The results from factor analysis indicate that three factors
can explain, on average, 93% of the total variation in option returns. The first and
second factors represent the underlying security factor and the volatility factor, and
account for 87% and 4% of the total variation in option returns, respectively. The third
factor accounts for an average of 2% of the total variation in option returns. Therefore,
an option pricing model with two-state variables is sufficient to describe almost all of
the variation in option returns.

We have also examined what fraction of the variation in option returns can be
explained by proxies for the factors. The underlying asset return is used as the first
factor. We construct two alternative proxies for the second factor: the equally weighted
option index and the option implied volatility. When proxied by the option index, the
second factor provides significantly incremental explanatory power for option returns,
especially for the out-of-the-money option returns. Our results also suggest that the
equally weighted option index is a better proxy for the second factor than is the option
implied volatility. Further, compared to two-factor models based on the underlying
asset and a single volatility factor, three-factor regression models based on the under-
lying asset and two maturity-specific volatility factors (one from short-term and the
other from long-term options) yield little improvement in explaining option returns.

The question of how many assets are sufficient to span the space of option returns
interests both academics and practitioners, because it is the foundation of all hedg-
ing strategies. The mean–variance spanning tests, which we base on the framework
of Hansen and Jagannathan (1991) and Huberman and Kandel (1987), show that the
underlying asset and the option index cannot span returns on the OTM, ATM, or ITM
options, either individually or jointly. The underlying asset and the ATM option suc-
cessfully span the OTM option returns, but they fail to span the ITM option returns.
These results highlight the importance of using one or more options with different
characteristics as hedging instruments when hedging targets are options.

14 Appendix C presents the option price formula under the SV model and parameter estimation procedure.
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Appendix A: Construction of the orthonormal matrix G

We derive the orthonormal transformation matrix G used in Sect. 3.4 to rotate the
initial factors. The first column of G, g1, is the OLS regression coefficients given by
Eq. 7. The second column of G solves:

min
g
(R2 − F̂g)′(R2 − F̂g)

s.t. g′g1 = 0

Introduce the Lagrangian multiplier 2α0. The first-order conditions become:

∂L

∂g
= 2F̂ ′(R2 − F̂g)+ 2α0g1 = 0, (21)

∂L

∂α0
= 2g′g1 = 0. (22)

Solving (21) for g yields:

g =(F̂ ′ F̂)−1 F̂ ′ R2−α0(F̂
′ F̂)−1g1 = g0

2 −α0(F̂
′ F̂)−1g1, (23)

where g0
2 is defined in (9). Multiplying g′

1 on both sides of Eq. 23, we have:

α0 = g′
1g0

2

g′
1(F̂

′ F̂)−1g1
.

The third column of G solves:

min
g
(e∗ − F̂g)′(e∗ − F̂g)

s.t. g′g1 = 0 and g′g2 = 0

Introduce the Lagrangian multipliers 2α1 and 2α2. The first-order conditions become:

∂L

∂g
= 2F̂ ′(e∗ − F̂g)+ 2α1g1 + 2α2g2 = 0, (24)

∂L

∂α1
= 2g′g1 = 0, (25)

∂L

∂α2
= 2g′g2 = 0. (26)
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Solving (24) for g yields:

g =(F̂ ′ F̂)−1 F̂ ′e∗−(F̂ ′ F̂)−1(α1g1+α2g2)= g0
3 −(F̂ ′ F̂)−1(α1g1 + α2g2), (27)

where g0
3 is defined in Eq. 11. Multiplying g′

1 on both sides of Eq. 27 and using (25)
yields:

0 = g′
1g = g′

1g0
3 − g′

1(F̂
′ F̂)−1(α1g1 + α2g2).

Repeating the same procedure with g′
2 leads to:

0 = g′
2g = g′

2g0
3 − g′

2(F̂
′ F̂)−1(α1g1 + α2g2).

The above two equations define a system of linear equations of α1 and α2. One can
verify that the solutions for α1 and α2 are given by Eq. 11. This completes the proof.

��

Appendix B: Estimation of the implied volatility from the Black-Scholes model

Using a set of observed option prices (both calls and puts) on day t , we estimate the
implied variance V (t)(=σ 2

t ) by minimizing the sum of squared pricing errors. Let N
be the number of observed option prices, τn and Kn be the time-to-expiration and the
strike price of the nth option, Ôn(t, τn, Kn) and On(t, τn, Kn; V (t)) be respectively
the observed and the Black-Scholes model price of the n-th option. We find V (t) by
solving:

SSE(t) ≡ min
V (t)

N∑
n=1

| Ôn(t, τn, Kn)− On(t, τn, Kn; V (t)) |2,

where SSE(t) represents a goodness-of-fit statistic of day t’s option prices by the
Black-Scholes model. Repeat this procedure for each day of the sample to produce a
time series of the BS model implied volatility.

Appendix C: Estimation of the implied volatility from the Stochastic Volatility
Model

In the stochastic-volatility model of Heston (1993), the underlying price and its return
variance V (t) follow (under the equivalent martingale measure) the respective pro-
cesses below:

d S(t)

S(t)
= r dt +√

V (t) dzs(t),

dV (t) = [θv − κvV (t)] dt + σv
√

V (t)dzv(t),
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where the structural parameter, κv , reflects the speed at which V (t) approaches its long-
run mean θv

κv
, σv is its variation coefficient, and zs and zv are two standard Brownian

motions with a correlation of ρ. Heston (1993) shows that the European call-pricing
formula is:

C(t, τ ) = S(t)�1(t, τ )− K e−rτ �2(t, τ ), (28)

where the probabilities, � j (t, τ ) = 1
2 + 1

π

∫∞
0 Re

[
K −i φ

i φ f j (t, τ ;φ)
]

dφ , for j =
1, 2, with the characteristic functions, f1 and f2, given by:

f1 = exp

{
− θv

σ 2
v

[
2 ln

(
1 − [ξv − κv + (1 + iφ)ρσv] (1 − e−ξvτ )

2ξv

)]

− θv

σ 2
v

[ξv − κv + (1 + iφ)ρσv)] τ + iφrτ + iφ ln[S(t)]

+ iφ(iφ + 1)(1 − e−ξvτ ) V (t)

2ξv − [ξv − κv + (1 + iφ)ρσv](1 − e−ξvτ )

}
,

f2 = exp

{
− θv

σ 2
v

[
2 ln

(
1 − [ξ∗

v − κv + iφρσv](1 − e−ξ∗
v τ )

2ξ∗
v

)]

− θv

σ 2
v

[
ξ∗
v − κv + iφρσv

]
τ + iφrτ + iφ ln[S(t)]

+ iφ(iφ − 1)(1 − e−ξ∗
v τ ) V (t)

2ξ∗
v − [ξ∗

v − κv + iφρσv](1 − e−ξ∗
v τ )

}
.

The put price is obtained by using the put-call parity.
Let� ≡ {κv, θv, σv, ρ}, and Ôn(t, τn, Kn) and On(t, τn, Kn; V (t),�) be, respec-

tively, the observed and the SV model price of the nth option at t . For a set of N
observed option prices on day t , we choose values for � and V (t) to minimize the
sum of squared pricing errors:

SSE(t) ≡ min
V (t),�

N∑
n=1

| Ôn(t, τn, Kn)− On(t, τn, Kn; V (t),�) |2 .

Applying this procedure to each day, we obtain a time series for the spot volatility.
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