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Abstract 

Background: Genome shuffling (GS) is a widely adopted methodology for the evolutionary engineering of desirable 

traits in industrially relevant microorganisms. We have previously used genome shuffling to generate a strain of Sac-

charomyces cerevisiae that is tolerant to the growth inhibitors found in a lignocellulosic hydrolysate. In this study, we 

expand on previous work by performing a population-wide genomic survey of our genome shuffling experiment and 

dissecting the molecular determinants of the evolved phenotype.

Results: Whole population whole-genome sequencing was used to survey mutations selected during the experi-

ment and extract allele frequency time series. Using growth curve assays on single point mutants and backcrossed 

derivatives, we explored the genetic architecture of the selected phenotype and detected examples of epistasis. Our 

results reveal cohorts of strongly correlated mutations, suggesting prevalent genetic hitchhiking and the presence of 

pre-existing founder mutations. From the patterns of apparent selection and the results of direct phenotypic assays, 

our results identify key driver mutations and deleterious hitchhikers.

Conclusions: We use these data to propose a model of inhibitor tolerance in our GS mutants. Our results also sug-

gest a role for compensatory evolution and epistasis in our genome shuffling experiment and illustrate the impact of 

historical contingency on the outcomes of evolutionary engineering.

Keywords: Evolutionary engineering, Genome shuffling, Evolution, Lignocellulosic hydrolysate tolerance, Stress 

tolerance in yeast
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Background

Genome shuffling (GS) is an evolutionary engineering 

method based on recursive recombination and selection 

in populations of mutants (Fig.  1). It aims to speed the 

rate of evolution of desired traits by exploiting sexual, 

parasexual or artificial recombination to promote purify-

ing selection, positive epistasis, and the accumulation of 

beneficial mutations, while reducing clonal interference. 

It has been widely and successfully adopted for the evo-

lutionary engineering of industrial traits in microbes [1]. 

GS and other evolutionary engineering methodologies 

are notably useful to enhance complex phenotypes for 

which a detailed molecular level understanding is lacking. 

Studies aimed at uncovering the genetic architecture of 

strains evolved by genome shuffling may thus contrib-

ute to an understanding of the genetic basis of complex 

and industrially relevant traits. Targeted approaches such 

as candidate gene sequencing [2] and qPCR [3, 4] have 

been used to uncover the genetic determinants of traits 

evolved by GS. System-level approaches, like array-com-

parative genome hybridization [5], RNAseq [5, 6], and 

whole genome sequencing [6–8], as well as proteomics 

methods [9–11] have also been used to investigate the 

complex genetic architecture of strains derived from GS 

experiments.

Massively parallel sequencing technologies have ena-

bled monitoring of the appearance, frequency and fluc-

tuation of mutant alleles in experimental evolution 

experiments [12]. A growing body of work on adaptive 

evolution takes advantage of evolve-and-resequence 

experiments to explore evolutionary dynamics under 
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various sets of experimental constraints and environ-

ments [13]. Several evolutionary behaviors and dynam-

ics predicted by evolutionary theory and their effects 

on adaptation have been illustrated in this way. Notable 

examples include clonal interference and genetic hitch-

hiking in asexual populations [14], the effect of sign 

epistasis on adaptive landscapes [15] and the mecha-

nisms by which sexual recombination speeds adaptation 

[16]. Recently, whole population sequencing of evolu-

tionary time points has been extended to the study of 

industrially relevant phenotypes, probing the dynamics 

and molecular processes affected during adaptation of S. 

cerevisiae to high ethanol stress [17]. �is study identi-

fied specific mutations conferring increased tolerance to 

high ethanol and illustrated the diversity of evolutionary 

mechanisms involved in the adaptive response to com-

plex stresses.

Most evolve-and-resequence studies have studied evo-

lution from isogenic starting populations of asexually 

reproducing microbes [13]. �ese experimental setups, in 

which selection is applied on diversity that strictly derives 

from de novo mutations, have demonstrated pervasive 

clonal interference and widespread genetic hitchhiking 

[14, 18, 19]. Parallel evolution is observed in these experi-

ments, despite high levels of molecular diversity [20–22]. 

More relevant to the context of genome shuffling, evolu-

tion of S. cerevisiae populations with sexual reproduction 

and high levels of initial diversity were shown to follow 

similarly deterministic paths while granting a marginal 

role for de novo mutations [23]. A similar methodology 

was used to compare the rate and dynamics of adapta-

tion in the absence and presence of sexual recombination 

events, showing that sex accelerates the rate of adapta-

tion by reducing clonal interference and enabling effi-

cient purifying selection [16].

We have previously used GS to successfully evolve 

strains of Saccharomyces cerevisiae tolerant to spent 

sulfite liquor (SSL), a toxic lignocellulosic hydrolysate 

and byproduct of the acid bisulfite wood pulping process 

[24]. �ese mutants were characterized as highly toler-

ant to osmotic and oxidative stresses, organic acids and 

phenolic compounds. A strain, designated R57, with high 

inhibitor tolerance and ability to ferment hydrolysate 

sugars to ethanol was identified [6]. Whole-genome 

sequencing, RNAseq and whole population amplicon 

sequencing were used to probe the genetic architecture 

of R57. �e strain differs from its parent by 21 single 

nucleotide changes affecting 17 genes [6].

�is study aims to explore the evolutionary dynam-

ics of genome shuffling by identifying the molecu-

lar and evolutionary determinants of selection in our 

experiment. To our knowledge, it is the first study to use 

genome sequencing of a GS population at several evolu-

tionary time points. It completes our survey of selected 

mutations and retrieves allele frequency time series span-

ning our evolutionary engineering experiment. Inhibitor 

tolerance assays and genotyping by amplicon sequencing 

of meiotic segregants of R57 provided data for a multi-

variable linear model predicting the contribution of indi-

vidual mutations to the hydrolysate tolerance phenotype. 

�e phenotypic effects of single mutations reconstituted 

Fig. 1 Outline of the genome shuffling experiment. Wild-type 

haploid cells of both mating types were UV irradiated to generate 

pools of haploid mutants. Mutants with tolerance to hydrolysate 

superior to their wild-type ancestors were selected using plates 

displaying a gradient of hydrolysate concentration. The pools of 

tolerant haploid mutants thus obtained were mated, generating 

diploids. Tolerant diploids were selected on gradient plates, and 

sporulated. Resulting haploids were mated at random, effecting the 

shuffling of mutations. Five cycles of diploid selection on gradient 

plates, sporulation and mating were performed. Genomic DNA from 

each round of shuffling and selection was submitted to population 

genome sequencing and mutation analysis
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in wild type or deleted from the R57 background were 

also tested. Based on these results, we propose a descrip-

tive model of the evolutionary dynamics of our GS exper-

iment. We discuss the impact of historical contingency 

and compensatory evolution on the outcomes of GS, 

and demonstrate prevalent genetic hitchhiking. We also 

identify key genetic determinants of hydrolysate inhibitor 

tolerance.

Results

Pooled sequencing of evolving populations

Mutant populations with increased tolerance to hydro-

lysate inhibitors were generated by genome shuffling as 

described in Fig.  1 and previous publications [6, 24]. In 

short, two pools of random mutants were generated by 

UV mutagenesis of wild-type MATa and MATα hap-

loids. Haploid mutants with tolerance above wild-type 

levels were selected on gradient plates, which consist in 

dishes of agar medium displaying increasing concentra-

tion of hydrolysate from one end to the other. MATa and 

MATα mutants were mated to generate diploids carrying 

random combinations of mutations. �ese diploids were 

selected on gradient plates to enrich for individuals with 

superior hydrolysate tolerance. After mating, diploids 

were sporulated, digesting and sonicating to disrupt asci 

and eliminate non-sporulated vegetative cells. Resulting 

haploids were mated to effect genome shuffling. In total, 

the mutant pool was submitted to 5 rounds of recursive 

mating, selection, and sporulation, generating popula-

tions with increasing tolerance to hydrolysate inhibitors. 

Strain R57, which displays high tolerance to hydrolysate 

inhibitors, was isolated from the fifth and final round 

of genome shuffling. Its genome differs from the CEN.

PK113-7D reference sequence [25] by the 21 single nucle-

otide substitutions listed in Additional file 1: Table S2.

To gain insight into the genetic landscape of our pop-

ulations evolved by genome shuffling, we investigated 

the metagenome of seven populations from six time 

points (Fig.  1). For sequencing, we selected time points 

covering the entire length of the experiment, including 

both populations of selected UV haploids and shuffled 

mutants from each of the five rounds of genome shuffling 

(R1–R5). Each population was re-sequenced, generating 

upwards of 300 million reads, for an average of 40 billion 

nucleotides per sample with a mean base quality score 

of 35.07 (Additional file  1: Table  S1). �e 100 nucleo-

tide reads were aligned to the CEN.PK113-7D reference 

genome [25], which is one of the parental strains used 

in the experiment. Mean depth of coverage oscillated 

between 712× and 1551×, for an average of 1091×, ena-

bling the detection of SNPs represented in < 1% of the 

population (Additional file 1: Table S1).

A base error model was used for calling SNPs, distin-

guishing genuine mutations from sequencing errors. Fil-

tering and manual examination resulted in a list of 188 

SNPs (Tab “All_mutations” in Additional file 2). A further 

reduced list was prepared by excluding mutations that 

either were synonymous or escaped detection in at least 

one of the six time points (Tab “Non_synonymous_non_

zero” in Additional file  2). We detected the majority of 

SNPs previously identified in R57 [6] most of which are 

found at medium to high frequency in the re-sequenced 

populations (Fig.  2). Previous sequencing of strain R57 

found mutations in genes TOF2, DOP1 and FIT3, but 

they could not be detected by population sequencing, 

implying that their frequencies fall below our detection 

threshold.

Correlated evolutionary trajectories suggest genetic 

hitchhiking

All the 105 SNPs have their origin in either the MATa (33 

SNPs) or MATα (72 SNPs) parental strains (Fig.  2 and 

Additional file  3: Figure S1). Visual examination of the 

allele frequencies suggested that SNPs could be further 

clustered in cohorts with strongly correlated evolution-

ary trajectories. For example, mutations aro1-CC1283-

4TT and ste5-C512T, both on chromosome IV, display 

similar frequencies at all time points and originate in the 

MATa population. �is observation suggested the exist-

ence of subgroups of SNPs of common origin hitchhik-

ing on a few driver mutations. To test this hypothesis and 

identify cohorts of SNPs potentially linked by origin, we 

performed hierarchical clustering on the evolutionary 

trajectories of all SNPs (Fig.  2 and in Additional file  3: 

Figure S1). Nine cohorts of mutations were deduced from 

the resulting dendrograms. �e majority of mutations are 

found at very low frequency (≤ 0.02) in all sampled time 

points, with varying levels of apparent selection. �ose 

mutations are assigned to cohorts α1 and a2.

�ree mutations show unique trajectories. Mutation 

mal11-G310A stands out as displaying the strongest 

apparent selection, with a mean allele frequency change 

of 1.69. Similarly, the gdh1-G47A mutation, with a mean 

allele frequency change of 1.53, is not clustered with 

other mutations. �e gdh1-A68G mutation, displaying 

one of the strongest apparent selections (M = 1.60), is 

placed with the α3 cluster by the algorithm, but its tra-

jectory is markedly different from other mutations in that 

cohort. It has a much lower initial frequency and displays 

stronger positive selection. We, therefore, also assigned 

gdh1-A68G to its own cohort (α4).

�e most frequent MATa-derived cohorts are a5 and 

a6. In both cohorts, mutations start at a frequency of 

approximately 0.03 and increase steadily to reach maxi-

mum frequency after 3 cycles of mating and selection 
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(R3) followed by a decline in subsequent cycles (R4 and 

R5). With similar trajectories but varying allele frequen-

cies, it is not clear whether SNPs clustered in a5 and a6 

belong to two independent cohorts or a single group of 

hitchhikers.

Cohort α3 consists of seven SNPs remarkable for their 

high and virtually identical initial frequency. SNPs from 

this group display a frequency of ~ 0.88 in the MATα 

population, indicating that they nearly swept the popu-

lation at early selection steps. �is group benefits from 

the founder effect, remaining highly represented until the 

end of the experiment. �e general pattern followed by 

all but one mutation (ubp7-T2466A) suggests an absence 

of selection, or a slow decline in frequency (M = 0.903–

0.970). �e mutation in gene UBP7 diverges from the rest 

of the group, on average increasing in frequency. Large 

increases in frequency in the early mating and selection 

cycles (0.49–0.74 between R2 and R3) are followed by 

a decline, amounting to a modest measure of apparent 

selection for ubp7-T2466A (M = 1.070).

Five SNPs were detected in all reads of their original 

mutant population; srb8-C3787G and art5-G454T in 

the MATa and mtm1-A943T, avl9-C1806G and sro77-

G(-160)T in the MATα. �e frequency of these muta-

tions oscillates around 0.50 in all 5 genome shuffled 

populations, indicating relative neutrality with respect 

to the selected phenotype (Additional file 2). �ese two 

observations suggest that they spontaneously arose in the 

parental clones before UV mutagenesis.

�e signature of genetic hitchhiking observed in our 

data indicates that a large proportion of the SNPs iden-

tified by sequencing arose together in a few founding 

individuals. From the list of mutations detected by popu-

lation sequencing, a restricted subset of mutations is thus 

expected to contribute to the phenotype of interest.

Certain genes are mutation hotspots

We observed several independent occurrences of dis-

tinct point mutations mapping to the same genes. A sys-

tematic survey revealed eight genes to which more than 

one mutation could be mapped (Additional file 4: Figure 

S2). Four strongly correlated mutations in genes STE5 

and ARO1 were excluded because their correlated evolu-

tionary trajectories suggested that they resulted from the 

same mutation event. Among the 25 remaining SNPs, 9 

escape detection in at least one of the sampled time points 

(Tab “All_mutations” in Additional file  2). Most hotspot 

mutations displayed low frequency, with the exception of 

four SNPs, one of which mapped to MAL11 and the three 

others to GDH1. Mutations mapping to these two genes, 

Fig. 2 Evolutionary trajectories of the most prominent clusters of mutations. Mutations arose either in the MATa (left) or MATα (right) pools. On 

the vertical axis are the names of the mutations, giving the closest gene, coordinates relative to that gene, and the nature of the nucleotide 

substitution. On the horizontal axis are each of the six evolutionary timepoints (UV, R1, R2, R3, R4, R5), and the mean allele frequency change (M). 

Frequency of the mutant alleles is represented by shades of green. Mean allele frequency changes are represented in shades of red (M < 1, declining 

frequency) to blue (M > 1, increasing frequency). Hierarchical clustering of individual evolutionary trajectories is represented by dendrograms on the 

left. Mutations were assigned to cohorts of mutations (a1-5, α1-3) on the basis of this clustering. Mutations present in highly tolerant mutant R57 are 

highlighted in bold. The large and low frequency cohort a2 is omitted from the figure for clarity and brevity. See Additional file 3: Figure S1 for full 

dataset
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as well as those mapping to NRG1, display a pattern of 

strongly positive apparent selection (Additional file  4: 

Figure S2). Remaining hotspots, mapping to genes VHR1, 

SSN2, YHR045W, UBP1 and COS111 display either nega-

tive or nearly neutral selection.

�e most remarkable hotspot maps seven non-synon-

ymous mutations to GDH1. A strong positive selection 

was observed for most of these mutations and three of 

them rapidly rose to prominence in the course of evolu-

tion (Fig. 3a). �ree mutations cluster at the N-terminus 

of Gdh1p and four at the C-terminus (Fig. 3b). Multiple 

sequence alignment of Gdh1p homologs did not suggest 

a high level of sequence conservation for the affected res-

idues (data not shown), but mapping of Gdh1p substitu-

tions on a homology model (see Additional file 5) showed 

that both N- and C-terminal substitutions are grouped 

near the hinge region separating the two structural 

domains of the protein (Fig. 3c). Together, these observa-

tions convincingly argue for the strong selection of gdh1 

alleles by our genome shuffling experiment.

To test the effect of gdh1 mutations on the phenotype, 

the seven-point mutants were reconstructed in a wild-

type parental haploid background. Under non-selective 

conditions, with the exception of the crippling D411S 

mutation, all haploid gdh1 mutants grow as well as their 

wild-type parent but showed decreased fitness upon 

expose to the inhibitory substrate (Fig.  3d). Reversion 

of the S16F or F23S mutations found in strain R57 did 

not alter growth in permissive conditions, but resulted 

in loss of fitness in a wild-type homozygous background 

(Fig. 3d). In R57, the GDH1/GDH1 genotype is associated 

with a growth defect both in the presence and absence of 

inhibitors. Mutations in gene GDH1 are important for 

the inhibitor tolerance phenotype of R57, with reduced 

Fig. 3 Mutations in GDH1 played a critical role in the evolution of 

SSL tolerance. a Seven independent mutations result in amino acid 

substitutions in the Gdh1 protein. Their evolutionary trajectories 

cluster into a high (blue) and low (red) frequency group. b The 

high-frequency group maps at the N-terminus of Gdh1p, while the 

low frequency cohort affects residues clustered at the C-terminus. 

c Mapping of the seven substitutions onto a homology model of 

Gdh1p reveals that they all cluster in or near the hinge connecting 

the two structural domains of the protein, an area rich with known 

ubiquitination sites (displayed in orange). d Introduction of the gdh1 

mutations into haploid and diploid wild-type backgrounds leads to a 

loss of fitness. Removal of mutant gdh1 alleles from the SSL-tolerant 

R57 background is also associated with a loss of tolerance. Error bars 

represent ± 1 standard deviation

▸
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tolerance most obvious when S16F is reverted either 

alone or in combination with F23S. Together, these 

observations suggest reciprocal sign epistasis between 

gdh1 alleles and the wild-type and mutant backgrounds.

E�ect of individual mutations on inhibitor tolerance 

phenotype

To estimate the contribution of individual mutations on 

the selected phenotype, we backcrossed random haploid 

segregants of R57 with the wild-type MATα parent strain 

and the fitness of 86  second-generation derivatives was 

assayed under permissive and inhibitory conditions. �e 

result revealed a continuous distribution in their level 

of tolerance, with some mutants displaying a phenotype 

superior to the R57 parent (Additional file 6: Figure S3). 

A Kolmogorov–Smirnov test (α = 0.05) suggests a normal 

distribution for the fitness of the isolates, in agreement 

with the hypothesis of a polygenic quantitative trait.

We used amplicon sequencing to genotype the 86 

segregants. For the vast majority of strains and loci, we 

achieved depth of coverage well above 30 with an average 

of 794, enabling confident genotyping (Additional file 1: 

Table S2). Multiple linear regression analysis was applied 

separately on the haploid and diploid data sets to predict 

the effect of each SNP on the phenotype (summarized 

in Fig.  4a, Additional file  7: Figure S4). Fewer variables 

and more data points mean that we have higher confi-

dence in the haploid model than in the diploid model (see 

Additional file 5). Accordingly, there is better agreement 

between predictions of the haploid model and measured 

phenotypes. In both haploids and diploids, the strong-

est predictor for enhanced tolerance is the nrg1-G137T 

mutation. Examination of the genotype heatmap in 

Fig. 4a shows a clear clustering of nrg1 isolates at higher 

inhibitor tolerance levels. In haploids, the gsh1-T(-73)

A mutation is also strongly associated with a high toler-

ance phenotype, although the model proposes negative 

epistasis between the nrg1 and gsh1 alleles. Mutations 

ssa1-C91A, tof2-C2141T and gdh1-C47T are also asso-

ciated with modest increases in haploid tolerance, albeit 

the effect of the latter is proposed to be enhanced by 

interaction with gsh1-T(-73)A. Deleterious for haploids 

are mutations mal11-C310T, ubp7-T2466A and espe-

cially sgo1-C575A. Mutation mal11-C310T has virtually 

no effect (p value = 0.254 that linear coefficient is equal 

to 0), but is proposed to interact with nrg1-G137T to fur-

ther increase tolerance.

Reconstruction and reversion of SNPs

To confirm the contribution of individual mutations to 

the tolerance phenotype, a subgroup of 27 was recon-

structed into the MATα parental strain. In agreement 

with our backcross experiment, gsh1-T(-73)A and nrg1-

G137T both increased fitness of wild-type haploids 

(Fig.  4b). In contrast, the same SNPs in hetero- and 

homozygous wild-type diploids did not increase fitness 

(Additional file 8: Figure S5). Fitness of haploid and dip-

loid nrg1 gsh1 double mutants is not higher than that 

of the fittest mutant, suggesting that the effect of these 

SNPs is non-cumulative. Further supporting a contribu-

tion of these SNPs to the phenotype, reversion to wild-

type abolished the enhanced phenotype of haploid single 

mutants (Additional file 9: Figure S6).

To narrow the physicochemical stresses to which nrg1 

and gsh1 mutations conferred resistance, we compared 

the fitness of haploid single mutants with wild type and 

R57 cells exposed to acetic acid or hydrogen peroxide 

(Fig. 4b). �e nrg1-G137T mutation bestowed increased 

fitness in the presence of both compounds, enabling 

faster growth than wild type and R57. �e gsh1-T(-73)A 

mutation does not seem to confer the same advantage. 

Among mutations identified by population sequencing, a 

subset of the most positively selected was also introduced 

in the MATα haploid, but an increase in tolerance was 

not observed for those strains.

Each SNP was also reverted to wild type in strain R57 

(Additional file  10: Figure S7A). At most loci, reversion 

did not cause a detectable loss of fitness. �e only excep-

tion was reversion of the gdh1-G47A mutation, which 

led to a pronounced decrease in fitness in the R57, R57 

GDH1-68 and R57 SGO1 backgrounds. �e loss of fit-

ness associated with reversion of gdh1 alleles in the R57 

background contrasts with the deleterious effect of these 

mutations in wild-type backgrounds (Fig. 3) and indicates 

reciprocal sign epistasis. We hypothesized that gdh1 

alleles complement secondary deleterious mutations 

found in R57. We further reverted single mutations to 

wild type in the GDH1 or SGO1 gdh1-T68G backgrounds 

to identify those that would rescue the growth defects. 

�e R57 GDH1 growth defect could not be rescued by 

reversion of single secondary SNPs. While we could not 

fully reproduce the R57 SGO1 gdh1-T68G growth defect, 

possibly because of batch-to-batch variations in hydro-

lysate composition, we identified two double revertants 

with reduced tolerance (Additional file  10: Figure S7B). 

Removal of mutation ynl058c-A7G in this background 

confers wild-type tolerance to SSL. Consistent with other 

observations, reversion of nrg1-G137T also leads to a loss 

of tolerance in the R57 SGO1 gdh1-T68G background. 

�is effect is not observed in the R57 GDH1 background 

because loss of both gdh1 alleles leads to a loss of fit-

ness that is too important to observe the effect of revert-

ing to NRG1 or YNL058C. �e partial loss of fitness in 

the homozygous gdh1-A68G derivative of R57 leaves 

room to observe the additional effect of reverting other 
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mutations. Together, these results show that gdh1 alleles 

exert their effect via an epistatic mechanism. �e precise 

mechanism is still elusive, but from the growth defect of 

R57 GDH1 cells in the presence and absence of inhibi-

tors, we speculate that they act by complementation in a 

complex network of genetic interactions.

Discussion

�e results of this study identified key molecular deter-

minants of hydrolysate tolerance. Our evidence identifies 

genes NRG1, GSH1 and GDH1 as having the strongest 

impact on the selected phenotype. Below, we discuss 

their significance along with hypotheses on the contri-

bution of other mutant alleles identified in this study. 

Knowledge on the genetic architecture of inhibitor-

tolerant mutants also informs our understanding of the 

evolutionary determinants that dictated the outcomes of 

our genome shuffling experiment. Further below, we dis-

cuss these evolutionary determinants and how they may 

impact the outcomes of genome shuffling experiments.

Fig. 4 Mutations in NRG1 and GSH1 are the main determinants of hydrolysate tolerance. Multiple linear regression (a) on the genotypes of 

segregants of an SSL-tolerant mutant identifies mutations nrg1-G137T and gsh1-T(-73)A as the strongest predictors of high tolerance. This prediction 

is confirmed in point mutants (b), with both mutations conferring increased tolerance to SSL. The nrg1-G137T mutation also increases tolerance to 

acetic acid and hydrogen peroxide in haploids. Bars in the graphs report area under the growth curve for the indicated mutants recorded in the 

presence (solid bars) and absence (striped bars) of inhibitors. Error bars represent ± 1 standard deviation
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Molecular determinants of �tness in lignocellulosic 

hydrolysates

Our evidence indicates that the low frequency but 

strongly selected mutation nrg1-G137T confers the 

strongest direct gains in hydrolysate inhibitor toler-

ance among all SNPs considered in this study (Fig.  4, 

Additional file  4: Figure S2, Additional file  7: Figure S4, 

Additional file 9: Figure S6 and Additional file 10: Figure 

S7). �ese results are consistent with previous RNAseq 

results in R57 that showed considerable upregulation of 

five targets of transcriptional regulator Nrg1p, including 

NRG1 itself [6].

NRG1 and its close paralog NRG2 encode DNA-

binding proteins first identified as mediators of glucose 

repression [26, 27]. �e Nrg1/2p repressors have been 

implicated in the response to various stresses, including 

glucose [28] and zinc limitation [29], alkaline pH [30], 

salt tolerance [31, 32] and organic acid challenge [33]. 

Identification of transcripts with altered expression in 

null mutants of NRG1 and NRG2 established their role in 

the regulation of the general stress response [34]. Dele-

tion of NRG1 or NRG2 changes the transcription of 150 

genes, many of which display stress response elements 

(STREs) or related sequences in their promoter regions. 

A significant overlap between the Nrg1/2p and Msn2/4p 

regulons further supports a role for Nrg proteins in the 

regulation of the general stress response [26, 35]. We, 

therefore, propose that nrg1-C137A is a loss of function 

mutation that leads to the upregulation of general stress 

response genes.

Our models predict that mutation gsh1-T(-73)A makes 

the second largest contribution to inhibitor tolerance in 

haploids (Fig.  4a). Accordingly, haploids carrying this 

single mutation display enhanced growth in the pres-

ence of high concentrations of hydrolysate (Fig. 4b). �e 

near sweep of the MATα mutant pool by the gsh1-T(-73)

A allele also suggests a significant selective advantage in 

the presence of high concentrations of hydrolysate. We 

have previously shown that haploids carrying the mutant 

gsh1-T(-73)A allele accumulate lower levels of reactive 

oxygen species (ROS) than their wild-type parents when 

exposed to high concentrations of hydrolysate [36]. �is 

is consistent with the role of Gsh1p in the synthesis of the 

antioxidant glutathione [37]. �e mutation identified in 

our mutants is located 73 bp upstream of the start codon, 

outside Yap1p and other hydrogen peroxide respon-

sive sequences [38–40]. �e position of this SNP in the 

region proximal to the start codon identifies alteration 

of the basal promoter as the most likely mechanism. We 

propose that upregulation of GSH1 by this modified pro-

moter increases glutathione synthesis and reduces accu-

mulation of ROS in gsh1-T(-73)A mutants.

Several lines of evidence point to GDH1 as a key deter-

minant of selection in our genome shuffling experiment. 

Notably, this gene is the most populated mutation hot-

spot (Fig. 3a) and gdh1 alleles appear required for hydro-

lysate tolerance in mutant R57 (Fig.  3d). However, their 

effect appears epistatic, since their introduction into 

wild-type backgrounds is associated with growth defects, 

perhaps suggesting a compensatory role in hydrolysate 

tolerant strain R57 (Fig.  3d).Glutamate dehydrogenase 

Gdh1p, along with close homolog Gdh3p, catalyzes 

amination of α-ketoglutarate, yielding glutamate [41]. 

Under fermentative conditions, Gdh1p is the dominant 

glutamate dehydrogenase, while carbon limitation, non-

fermentable carbon sources and entry into the stationary 

phase induce the expression of Gdh3p [42, 43]. Tran-

scription of GDH1 is sustained at all phases of growth, 

but entry into the stationary phase triggers ubiquitin-

mediated degradation of Gdh1p. Gdh3p is specifically 

expressed during the stationary phase. Gdh1p is a faster 

enzyme, suited for growth-sustaining glutamate synthe-

sis. Gdh3p is slower, better suited to sustain glutathione 

synthesis during the stationary phase and under stress-

ful conditions [42]. Accordingly, Gdh3p has been impli-

cated in stress tolerance in yeast, while transient loss of 

tolerance to hydrogen peroxide is observed during early 

phases of growth in gdh1Δ mutants [43]. From the map-

ping of the seven amino acid substitutions on the Gdh1 

protein, we suggest two potential mechanisms for their 

action. One possibility is that they affect inter-domain 

flexibility and, thus, catalytic activity, as suggested by 

structural studies of bacterial homologs [44]. �e substi-

tutions are located near known ubiquitination sites [43, 

45]. A second hypothesis is thus that they impair degra-

dation of Gdh1p in conditions of stress or during the sta-

tionary phase. Regardless of its underlying mechanism, 

we propose that the gdh1 hotspot was selected to com-

pensate the pull on glutamate exerted by upregulation of 

glutathione biosynthesis in gsh1-T(-73)A mutants, espe-

cially under hydrolysate inhibitor stress. �is hypothesis 

would explain the strong growth defect incurred by R57 

upon reversion of gdh1 mutations and, therefore, the 

reciprocal sign epistasis observed with these mutations.

�e role of MAL11 in the transport of the stress-

protectant molecule trehalose suggests involvement of 

mutations of this hotspot in hydrolysate tolerance [46]. 

Our model of hydrolysate tolerance in haploids suggests 

interactions between the nrg1-C137A and mal11-C310T 

mutations. MAL11 is repressed by glucose, notably via 

the action of Mig1p [47–49]. Overlap between the Mig1p 

and Nrg1p regulons suggests a potential mechanism for 

this regulation [26].

Reversion of the ynl058c-A7G mutation in R57 does 

not cause a detectable loss of tolerance to the hydrolysate 
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inhibitors. However, in a derivative of R57 wild type 

at the SGO1 locus and homozygous for the gdh1-A68G 

allele, reversion to wild type at the YNL058C locus leads 

to a loss of SSL tolerance. �is suggests a role for this 

gene in inhibitor tolerance. �e function of YNL058C is 

essentially unknown, but the protein it encodes appears 

to localize to the vacuole [50]. Both YNL058C and its 

paralog PRM5 are induced via the cell wall integrity path-

way, indicating a role in the response to cell wall damage 

[51, 52]. Downregulation of YNL058C was also observed 

upon DNA damage [53]. Together, these reports indi-

cate a role for YNL058C in the response to stress and 

cell damage, in agreement with an involvement in hydro-

lysate tolerance.

Mutation ste5-C512T displays the highest apparent 

selection and average frequency in cohort a6. �e model 

of R57 backcrosses indicates that it makes the second 

highest contribution to inhibitor tolerance in diploids 

(Additional file  7: Figure S4). STE5 encodes a scaffold 

protein involved in facilitation and integration of pher-

omone-induced MAPK signaling [54]. Components of 

the pheromone-induced MAPK pathway were also impli-

cated in stress signaling [55–59]. Because Ste5p binds 

the Kss1p MAPK, it mediates signals involved in stress. 

It is thus likely that the ste5-C512T mutation modulates 

the Ste20p-Ste11p-Ste7p-Kss1p pathway to stimulate the 

execution of a stress response program.

Our understanding of the hydrolysate inhibitor tol-

erance phenotype selected in our genome shuffling 

mutants, as described above, is summarized in Fig.  5. 

In brief, our results indicate that mutant alleles nrg1-

G137T and gsh1-T(-73)A are the main determinants of 

hydrolysate inhibitor tolerance in our evolved mutants. 

Our evidence also ascribes a critical role for gdh1 alleles. 

�e phenotype associated with these alleles in parental 

and mutant strains demonstrates reciprocal sign epista-

sis and is coherent with a compensatory mechanism. We 

propose putative mechanisms for other potential con-

tributing alleles. �ese alleles may help in the rational 

engineering of hydrolysate inhibitor tolerance strains. 

However, a recent study showed that the genetic deter-

minants of hydrolysate inhibitor tolerance in yeast can 

prove highly strain-dependent [60]. �erefore, it would 

be interesting to test the impact of mutations identified 

herein in various industrial strain backgrounds.

Evolutionary determinants of selection by genome 

shu�ing

Our experiment is characterized by a set of early genetic 

features that had a determining effect on its overall out-

comes. �ese features are the presence of mutations in 

the parental strains, prevalent genetic hitchhiking, and 

a selective sweep that severely reduced diversity at early 

selection steps. We argue that these features favored spe-

cific evolutionary solutions and elicited a strong selective 

pressure in favor of compensatory mechanisms.

�e MATα parental strain contained mutations mtm1-

A943T, avl9-C1806G and sro77-G(-160)T, while the 

MATa parent carried SNPs srb8-C3787G and art5-

G454T. We draw parallels between these founding muta-

tions and mutational hotspots identified by population 

genome sequencing. Both MTM1 and YHR045W have 

been implicated in iron metabolism [61–63]. Similarly, 

the ssn2 hotspot can be linked to the srb8-C3787G sub-

stitution. Both genes encode subunits of the RNA poly-

merase II mediator complex [64–68]. �e ubp1 hotspot is 

notable, owing to the high frequency of the ubp7-T2466A 

mutation in our pool. Both genes encode ubiquitin-spe-

cific proteases [69, 70]. �e prevalence of the founding 

art5-G454T mutation, mapping to a gene involved in 

the regulation of membrane protein homeostasis [71], 

suggests that complementing mutations involved in this 

cell process were selected during our experiment. �e 

yhr045w, ssn2 and ubp1 mutations all remain at low fre-

quency, with either weakly positive or negative apparent 

selection. �is would suggest that complementation of 

founder mutations confers marginal competitive advan-

tages. However, the prevalence and persistence of muta-

tion ubp7-T2466A are hypothesized to result from the 

same epistatic dynamics. �e coincidental presence of 

this mutation in the same mutant as the α3 driver gsh1-

T(-73)A likely caused the selection of ubp7-T2466A by 

Fig. 5 Network map model of SSL tolerance in genome shuffled 

mutants. Nodes represent mutations or phenotypes and edges 

represent effects or interactions. Curvature of the edges is clockwise 

with respect to effector nodes and counter-clockwise with respect 

to target nodes. Green edges indicate a stimulating or enhancing 

effect, while red lines indicate an inhibition of the target. Orange lines 

indicate persisting doubts on the relationship between the nodes 

that they connect. Thickness of the edges is related to the amount of 

evidence available for the indicated interactions
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hitchhiking, while its arguably minor role in comple-

menting art5-G454T was seemingly sufficient to ensure 

its persistence, in contrast with other hitchhikers of the 

same cohort.

Clustering of mutations in cohorts with correlated evo-

lutionary trajectories is commonly observed in experi-

mental evolution experiments as a signature of genetic 

hitchhiking [14]. In the context of our genome shuffling 

experiment, this observation suggests that a large pro-

portion of mutant alleles arose together in a few found-

ing individuals. Prominent examples are cohorts a5, a6 

and α3, putatively driven by ste5-C512T or gdh1-G299A, 

and gsh1-T(-73)A, respectively (Fig.  2). We expect that 

most examples of genetic hitchhiking negatively affected 

the fitness of mutants, because the majority of mutations 

tend to be neutral or deleterious [72]. Previous studies in 

yeast on the evolutionary effects of sexual recombination 

suggest that it favors purifying selection of hitchhikers 

[16]. Accordingly, the majority of putative hitchhikers in 

our experiment either display consistently low frequency 

or negative apparent selection (Fig. 2). Despite evidence 

of purifying selection, putative hitchhikers of cohort α3 

persist at high frequency until the end of the GS experi-

ment. �is could in part be due to vegetative cells escap-

ing the sporulation and mating process. Yet, sporulation 

efficiency was high (40% on average) and both digestion 

and sonication of vegetative cells after sporulation should 

have minimized the impact of non-shuffled mutants on 

the evolutionary dynamics of the experiment. Further, 

cohort α3 nearly swept the initial pool of MATα mutants 

likely due to an aggressive early selection. �is first selec-

tion was performed before the onset of sexual recombi-

nation cycles and illustrates the well-documented effect 

of clonal interference on the evolution of asexually repro-

ducing populations [14, 16].

We propose that the founding features discussed above 

caused major evolutionary responses, and that those are 

critical to understanding the dynamics of the experiment. 

For example, the presence of mutational hotspots iden-

tifies loci under strong selective pressure and we have 

shown that many appear related to founding mutations. 

Similarly, the mechanism proposed above for epista-

sis between gdh1 and gsh1 mutant alleles would explain 

the evolutionary signal detected at the GDH1 hotspot. 

�e convergence of the gsh1-driven selective sweep 

with founding mutation art5-G454T also appears to 

have driven the persistence of the ubp7-T2466A hitch-

hiker allele. Finally, the minor evolutionary role played 

by the tolerance-conferring nrg1-G137T mutation may 

be caused at least in part by the founder effect favoring 

gsh1-T(-73)A coupled to negative epistasis between the 

two alleles, as suggested by our linear model of hydro-

lysate tolerance (Fig. 4a). �is observation resonates with 

experimental evolution studies of sexually reproduc-

ing yeast that showed a major role for standing diver-

sity and ascribed a minor evolutionary role to rare or 

de novo mutations [23]. It also illustrates the dominant 

role played by compensatory mechanisms over direct 

enhancement of hydrolysate tolerance in our experiment.

In contrast to previous experimental studies of com-

pensatory evolution, the examples proposed in this study 

rely on convergent signals at specific loci. Convergent 

compensatory evolution at the functional rather molecu-

lar level has previously been reported [73]. Because the 

path of compensatory evolution was shown to be con-

strained both by environmental factors and the genetic 

background, the level of molecular convergence that we 

observe would indicate a targeted response to highly spe-

cific conditions [74].

Descriptive model of evolutionary dynamics 

in the genome shu�ing experiment

Based on the proposed model of SSL tolerance and on 

the allele frequency time series obtained from population 

sequencing (Fig. 2), we propose a model to describe the 

evolutionary dynamics of our genome shuffling experi-

ment. Mutagenesis generated equally diverse pools of 

mutants from the MATα and MATa parental strains. An 

aggressive selection regimen restricted genetic diversity 

in the MATα pool, leading to a near sweep by mutants 

carrying the gsh1-T(-73)A allele and α3 hitchhikers. 

Mutations mal11-A482T and gdh1-A68G were found at 

a low frequency in this pool. A more relaxed selection 

generated a more diverse pool of MATa mutants, among 

which were tolerance enhancing nrg1-C137A and ste5-

C512T mutations. Cohorts a6 and perhaps a5 hitchhiked 

on this latter mutation. �e gdh1 mutations (with the 

exception of A68G) and mal11-G310A were also selected 

into this initial pool. Initial recombination created the 

first epistatic pairs between tolerance-conferring and 

compensatory mutations. Combinations of founders with 

their complementing mutations also occurred on a large 

scale at this stage. Selection on these shuffled mutants 

brought a large increase in the frequency of complement-

ing mutations; thanks to the competitive advantage they 

imparted onto SSL-tolerant but metabolically imbal-

anced mutants. Further shuffling and selection brought 

several of these epistatic relationships into single cells, 

increasing their fitness in the presence of SSL. �e strong 

selective advantage of nrg1-C137A and perhaps its sepa-

ration from deleterious alleles to which it was initially 

linked led to its steady increase in frequency from a low 

initial frequency. Additional rounds of shuffling could 

have witnessed the rise to prominence of this nrg1 allele.
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Conclusions

In this study, we identified some of the key determi-

nants of selection in a genome shuffling experiment. We 

ascribed critical roles to loci NRG1, GSH1 and GDH1 

to the hydrolysate inhibitor tolerance phenotype. With 

regard to recent results [60], the applicability of these 

evolutionary solutions to different strain backgrounds 

remains to be established.

More fundamentally, we have illustrated the impact 

that a few, early features can have on the course of evolu-

tionary engineering by genome shuffling. It also suggests 

that this regimen of recursive recombination leads to 

the widespread selection of compensatory mechanisms, 

illustrating the construction of strains in which delicate 

complementation networks operate to offset the fitness 

cost incurred by founding mutations, hitchhikers and the 

pleiotropic effects of core beneficial alleles. To expand 

on the specific outcomes of our experiment, we propose 

that purposefully designed genome shuffling experiments 

performed on diverse genetic backgrounds with precise 

variations in initial conditions could aid the design of 

future strain development endeavors, and contribute to 

our understanding of evolution in sexually reproducing 

populations, especially as it pertains to compensatory 

evolution.

Methods

Evolution by genome shu�ing

All strains of S. cerevisiae used in this study are derived 

from prototrophic strains CEN.PK113-1A (wild-type 

MATα) and CEN.PK113-7D (wild-type MATa). Mating of 

the haploids was used to generate the wild-type diploid. 

�e genome shuffling experiment is described in detail in 

a previous publication [24] and is summarized in Fig. 1. 

Briefly, to generate genetically diverse starting popula-

tions, MATα and MATa haploid mutant pools were gen-

erated by UV irradiation. �ese initial pools were spread 

onto gradient plates for selection of cells with inhibitor 

tolerance above the wild type. Irradiated cells growing 

above the wild type were scraped off the plate and ali-

quots from both populations were preserved as glycerol 

stocks at − 80  °C for later sequencing. �e two popula-

tions of selected haploid were mixed 1:1 for mating and 

diploids were selected on gradient plates. �is first pop-

ulation of selected diploids was sporulated, digesting 

vegetative cells with Zymolyase (MP Biomedicals) and 

sonicating them before mating, generating a first genome 

shuffled population R1. Four additional recursive cycles 

of selection, sporulation and mating were performed 

resulting in populations R2–R5, which showed increas-

ing tolerance to the inhibitory substrate at each mating 

cycle. Genome shuffled populations selected on gradient 

plates were propagated overnight in YPD at 30  °C and 

aliquots were preserved as glycerol stocks at − 80 °C for 

later sequencing.

Pool-seq of evolved populations

Prior to genomic DNA extractions, cells from glycerol 

stocks of the two UV irradiated (a-UV and α-UV) and 

five genome shuffled populations (R1–R5) were thawed 

and incubated in YPD for 1 h. �ey were then sus-

pended in 50  mM Tris–HCl pH 8.0,10  mM EDTA, 5% 

2-mercaptoethanol (v/v), 200  U/ml yeast lytic enzyme 

(MP Biomedicals) for 1  h at 37  °C. Genomic DNA was 

extracted using the DNeasy Blood and Tissue Kit (Qia-

gen) according to the manufacturer’s instructions and 

quantified using the QuantiFluor dsDNA System (Pro-

mega). Genomic DNA was sequenced at the McGill Uni-

versity and Genome Quebec Innovation Centre using the 

TrueSeq library preparation reagents and an Illumina 

HiSeq 2500 sequencer (100 bp paired-end reads). Each of 

the 7 populations was sequenced on a separate lane of a 

HiSeq chip to maximize depth of coverage.

Quality control of raw sequencing data was performed 

using FastQC [75] and overlapping read pairs were 

merged with PEAR [76]. Alignment to the CEN.PK113-

7D reference genome [25] was done using bwa mem 

[77] and performed separately for overlapping and non-

overlapping reads. Output SAM files for overlapping and 

non-overlapping reads were merged with the MergeSam-

Files utility in Picard Tools [78]. Picard was next used to 

add read groups, sort reads, then mark and remove dupli-

cates prior to indel realignment with the Genome Analy-

sis Toolkit [79–81]. Alignment metrics were extracted 

using Picard Tools.

SNPs were called and filtered using a base error model 

inspired from Barrick and Lenski [18] as detailed in 

Additional file 5.

Mutant allele frequency, strength of selection 

and hierarchical clustering of evolutionary trajectories

�e proportion of mismatch reads at given genomic 

coordinates was considered to reflect the frequency (p) of 

the associated mutant allele within the sequenced popu-

lations. �e frequency of all mutations was extracted for 

the seven sequenced populations. �e frequency of each 

mutation was necessarily zero in one of the haploid pop-

ulations, allowing the identification of its origin (MATα 

or MATa). Furthermore, because the two haploid popula-

tions represented a single evolutionary time point, their 

frequency was averaged to obtain the pre-shuffling allele 

frequencies (i.e., pUV = (pα + pa)/2). Allele frequencies of 

the R1–R5 populations each represented time points of 

their own.

Strength of the positive or negative selection was esti-

mated from allele frequency change across the time 
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points (Δpt1−t2 = pt2/pt1). �e geometric mean frequency 

change (noted M) was used as a synthetic measure of 

selection to smooth the effect of proportionally large fre-

quency changes often observed between time points UV 

and R1. Hierarchical clustering of evolutionary trajecto-

ries was performed by running the clustermap routine of 

the Seaborn Python library [82].

Backcrossing experiment

To assess the contribution of each SNP to the inhibitor 

tolerance phenotype, strain R57 was backcrossed with 

parental wild-type MATα. Cells from the resulting  F2 

population were scored for tolerance to inhibitors (Addi-

tional file 6: Figure S3). Haploids of R57 were generated 

on sporulation medium (1% potassium acetate, 0.1% 

yeast extract, 0.05% dextrose, 2% agar) incubated at room 

temperature for 6  days, resulting in > 50% sporulation 

efficiency. Cells were scraped from the plate and digested 

overnight at 30 °C with 100 U of yeast lytic enzyme (MP 

Biomedicals) in 5 ml of  H2O containing 10 μl of 2-mer-

captoethanol. Five microlitre of 1.5% IGEPAL was added 

to the digest, incubated on ice for 15 min and sonicated 

3× for 30  s. Spores were harvested by centrifugation at 

12,000×g for 10  min and suspended in 5  ml 1.5% IGE-

PAL. �e sonication procedure was repeated once more 

and the spores were suspended in 250 μl of YPD broth. 

For mating, spores were mixed with an approximately 

equal amount of MATα cells (CENPK113-1A), spotted 

on YPD agar and incubated overnight at 30  °C. Result-

ing R57 × 1A spores were spotted on YPD agar and then 

allowed to germinate and mate for 48  h. �e resulting 

diploids were submitted to a second round of sporulation 

and mating to further shuffle mutations. After mating, 

cells were streaked for single colonies on YPD agar and 

86 isolated colonies were picked for genotyping and fit-

ness assays.

Preparation of yeast genomic DNA template for PCR

Cells from 1.5 ml of culture were harvested in a tabletop 

microcentrifuge and the resulting pellet was suspended 

in 250 μl of 50 mM Tris–Cl pH 8.0 supplemented by 20 U 

of yeast lytic enzyme. �is digestion solution was incu-

bated at 37  °C for 1 h. Cell lysis was induced by adding 

250 μl of 200 mM NaOH, 1% SDS, vortexing, and incu-

bating for 5 min at room temperature. �e lysates were 

neutralized with the addition of 350 μl of 3 M potassium 

acetate pH 5.5 and clarified by centrifugation at 13,300×g 

for 10  min. DNA from the resulting supernatants was 

precipitated by adding 600  μl of 2-propanol and centri-

fuged at 13,300×g for 10 min. �e resulting DNA pellet 

was air dried for 15 min, suspended in 100 μl of  H2O, and 

vortexed before incubation for 15 min in a water bath at 

55 °C.

Genotyping of backcrossed isolates

We genotyped 86 backcrossed isolates at 18 of the mutant 

loci identified in R57 by PCR amplicon sequencing. Both 

forward and reverse primers consisted of a common 5′ 

heel sequence (forward: 5′-CGT TCA ACC TTG TCC AAC 

AGTG-3′ and reverse: 5′-GAA GCG ATG ACT CGA GCG 

TATT-3′) and a 24–28 nucleotide gene-specific sequence 

at the 3′ end. PCRs contained genomic DNA template, 

0.5  μM primers, 200  μM dNTPs, 1× high fidelity Phu-

sion buffer (�ermo Fisher), 1.5% DMSO and 1 U of Phu-

sion High Fidelity DNA polymerase (�ermo Fisher) in 

50 μl. Cycling conditions were as follows: 98 °C for 30 s, 

then 35 cycles of 98 °C for 10 s, 55 °C for 20 s, 72 °C for 

4 s, followed by a 5 min final extension at 72 °C. Ion tor-

rent sequencing adapters and barcodes were added in a 

second PCR. �is second reaction was performed using 

a common reverse primer consisting of the ion torrent 

P1 adapter (5′-CCT CTC TAT GGG CAG TCG GTGAT-

3′) and the reverse heel sequence. �e 96 forward prim-

ers consisted of the ion torrent A adapter (5′-CCA TCT 

CAT CCC TGC GTG TCT CCG ACT CAG -3′), a unique 8 

nucleotide barcode and the forward heel sequence. Com-

position of this second PCR was the same as for locus-

specific amplification, using 1 μl of a 1:10 dilution of the 

first reaction as template. Cycling conditions were: 98 °C 

for 30 s, then 35 cycles of 98 °C for 10 s, 70 °C for 20 s, 

72 °C for 6 s, followed by a 5 min final extension at 72 °C. 

All primers used for genotyping are listed in Additional 

file  1: Table  S3. PCR products carrying the same bar-

code were pooled and DNA migrating between 100 and 

400 bp was purified on a 2% agarose gel using the Gene-

Jet gel extraction kit (�ermo Fisher). Equal amounts 

of all pools were mixed to make the sequencing library. 

�e DNA concentration of this pool was measured on 

a Qubit 2.0 fluorometer (Life Technologies). Ion tor-

rent sequencing template was prepared from our pooled 

library with an Ion PGM Template OT2 400 Kit accord-

ing to the manufacturer’s instructions. Sequencing was 

performed with an Ion PGM sequencer using the Ion 

PGM Hi-Q sequencing kit and an Ion 316 Chip v2 BC, all 

following manufacturer’s protocols and instructions.

Reads from the Ion PGM were sorted and trimmed 

using a custom python script, and then aligned to the 

CEN.PK113-7D reference genome [25] using bwa mem 

[77]. Read counts for each of the SNP positions were 

extracted with bam-readcount [83] setting both mini-

mum mapping quality and minimum base quality at 

30. Genotypes were called from read counts as follows: 

heterozygotes were distinguished from homozygotes by 

assuming that in homozygotes, the most frequent base 

call would have a frequency of 0.997 and all other base 

calls 0.001 each. A G test was performed to test whether 

the base count distribution differed significantly from 
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this assumption. If it did, a heterozygous genotype was 

called. Otherwise, the identity of the most frequent base 

call was checked. If the most frequent base call was the 

reference base, a wild-type genotype was called, oth-

erwise a homozygous mutant genotype was called. In 

strains previously identified as haploid, heterozygosity 

calls were corrected and genotype was called based on 

the identity of the most frequent base call. All genotype 

calls were reviewed visually.

Reconstruction and reversion of SNPs using CRISPR-Cas9

To probe their contribution on the observed pheno-

type, point mutations were reintroduced in wild-type 

backgrounds (CEN.PK113-1A, MATα or CEN.PK113-

7D, MATa) or reverted to wild type in strain R57 using 

CRISPR-Cas9 as described previously [36]. Briefly, 

gRNAs were designed to introduce double-stranded 

breaks (DSBs) in the vicinity of the mutation. DSBs 

were repaired by homologous recombination with 

donor DNAs replacing the 20-nt protospacer sequence 

by a heterologous stuffer sequence. �is stuffer was tar-

geted by a second gRNA and the resulting DSBs were 

repaired by a stuffer-free donor DNA carrying the point 

mutations. �e result was the seamless introduction of 

single nucleotide changes.

Fitness assays

Cell growth when exposed to varying concentrations of 

the inhibitory substrate was used to measure the fitness 

of the strains. Prior to the assays, cells we pre-adapted 

with overnight incubations in undiluted inhibitory sub-

strate at 30  °C. For fitness assays, adapted cells were 

washed 3× in 10 mM sodium citrate pH 5.5 and inocu-

lated to a final concentration of ~ 2 × 105 into YNB 1% 

glucose supplemented with varying concentrations 

(0–85%) of the inhibitory substrate in 96-well plates 

(Costar 3595, Corning). Plates were incubated at 30 °C 

with shaking in a Tecan Sunrise absorbance reader, 

measuring absorbance at 595 nm every 20 min. Because 

inhibitors may affect growth rate, lag time, maximum 

cell density or any combination thereof, we used the 

area under the growth curves as a measure of fitness. 

�e lignocellulosic inhibitory substrate was kindly sup-

plied by Tembec (Témiscaming, Québec) and AV Cell 

(Atholville, New Brunswick). �e pH of the substrate 

was adjusted to 5.5 with 10  M NaOH prior to use in 

culture medium.

Multiple linear regression model

Detailed description of multiple linear regression 

methodology is provided in Additional file  5. Briefly, 

contribution of individual SNPs to the phenotype was 

predicted from linear models. �ese models were built 

by multiple linear regression, using genotype at each 

of the mutant loci as explanatory variables and area 

under growth curves in 85% inhibitor substrate as the 

response variable. Distinct models were built for hap-

loid and diploid mutants. A single binary variable was 

used for each locus in haploids, with wild type = 0 and 

mutant = 1. In diploids, each locus was represented by 

three binary variables representing the wild type, het-

erozygous mutant and homozygous mutant genotypes, 

respectively. For the haploid model, fitting using all 

possible combinations of variables was performed and 

the model that minimized Mallows Cp and variance 

of residuals was chosen. �e large number of variables 

involved with diploids made this approach impractical 

and so it was performed in a stepwise manner. Inter-

action between loci was modeled in an ad hoc manner, 

using a stepwise methodology similar to what was used 

for diploids.

Additional �les

Additional �le 1: Table S1. Population sequencing and alignment 

metrics. Table S2. Amplicon sequencing and alignment metrics for 

genotyping of R57 backcrossing isolates. Table S3. List of primers used for 

production of Ion Torrent sequencing libraries.

Additional �le 2. List of single nucleotide polymorphisms detected by 

whole population sequencing.

Additional �le 3: Figure S1. Evolutionary trajectories for all non-silent 

mutations identified by population genome sequencing at 6 time points. 

Mutations arose either in the MATα (left) or MATa (right) haploid popula-

tions. On the vertical axis are the names of the mutations, giving the 

closest gene, coordinates with respect to that gene and the nature of the 

nucleotide substitution. On the horizontal axis are each of the six evolu-

tionary time points (UV, R1, R2, R3, R4, R5) and the mean allele frequency 

change (M). Frequencies of the mutant alleles are represented by shades 

of green. Mean allele frequency changes are represented in shades of red 

(M < 1, declining frequency) or blue (M > 1, increasing frequency). Hierar-

chical clustering of individual evolutionary trajectories is represented by 

dendrograms on the left. Mutations were assigned to groups of mutations 

(a1-5, α1-4) on the basis of this clustering. Mutations present in highly 

tolerant mutant R57 are highlighted in bold.

Additional �le 4: Figure S2. Evolutionary trajectories and apparent selec-

tion of all mutation hotspots identified by population sequencing. Muta-

tions arose either in the MATα (left) or MATa (right) as indicated immediately 

to the left of each mutation. On the vertical axis are the names of the muta-

tions, giving the closest gene, coordinates with respect to that gene and 

the nature of the nucleotide substitution. On the horizontal axis are each of 

the six evolutionary time points (UV, R1, R2, R3, R4, R5) and the mean allele 

frequency change (M). Frequencies of the mutant alleles are represented by 

shades of green. Mean allele frequency changes are represented in shades 

of red (M < 1, declining frequency) or blue (M > 1, increasing frequency). 

Mutations linked by connectors and marked with an asterisk indicate pairs 

with significantly similar initial frequency (binomial test, p > 0.05).

Additional �le 5: Supporting methods. Detailed methods are provided 

for our SNP calling methodology, structural study of Gdh1p, determina-

tion of mating type and ploidy by PCR, and modeling of SSL tolerance by 

multiple linear regression.

https://doi.org/10.1186/s13068-018-1283-9
https://doi.org/10.1186/s13068-018-1283-9
https://doi.org/10.1186/s13068-018-1283-9
https://doi.org/10.1186/s13068-018-1283-9
https://doi.org/10.1186/s13068-018-1283-9


Page 14 of 16Biot-Pelletier et al. Biotechnol Biofuels  (2018) 11:282 

Additional �le 6: Figure S3. Backcrossing of R57 with wild type cells 

generates strains presenting a wide spectrum of fitness in SSL. Growth 

in the presence and absence of SSL is reported for R57, various wild type 

cell types and 86 F2 isolates from backcrossing of R57 and CEN.PK113-1A. 

Error bars represent plus or minus one standard deviation. The dashed line 

is a visual reference for the level achieved by the wildtype.

Additional �le 7: Figure S4. Genotyping of second generation seg-

regants from backcrossing of R57 and wild type yeast suggest a model 

of SNP contributions to the SSL tolerance phenotype. Haploid (A) and 

diploid (B) isolates are scored in green for the genotypes indicated at 

the bottom. Growth in 85% SSL is scored in shades of blue on the right. 

Each row represents a single strain. Contribution to the phenotype of the 

indicated genotypes was inferred by multiple linear regression, yielding 

coefficients represented at the top in shades of red (diminishes fitness) to 

blue (increases fitness). Modeling of genetic interactions was attempted 

and the resulting coefficients are represented as circles at the top of the 

heatmaps. Growth in SSL predicted by the linear model is reported in 

shades of blue in the rightmost column, showing the level of agreement 

between the model and the data.

Additional �le 8: Figure S5. Single mutations are not sufficient to detect 

an increase in SSL tolerance in diploid cells. Area under the growth curve 

in the presence and absence of SSL for heterozygous (A) and homozy-

gous (B) single diploid mutants is reported. Error bars represent plus or 

minus one standard deviation. The dashed line is a visual reference for the 

level achieved by the wildtype.

Additional �le 9: Figure S6. Reversion of nrg1 and gsh1 mutations 

leads to loss of the SSL tolerance phenotype in haploid single mutants. 

Area under the growth curve for nrg1 and gsh1 double mutants, haploid 

(nrg1 gsh1) and diploid (nrg1/nrg1 gsh1/GSH1) is also reported. Error bars 

represent plus or minus one standard deviation. The dashed line is a visual 

reference for the level achieved by the wildtype.

Additional �le 10: Figure S7. Growth in the presence and absence of SSL 

of single and double revertants identifies mutations contributing to the 

SSL tolerance phenotype. Area under the growth curve in the presence 

and absence of SSL is reported for (A) single haploid mutants, (B) single 

revertant derivatives of R57 and (C) revertant derivatives of R57 SGO1 

gdh1-2/2, wild type for the indicated genes. Error bars represent plus or 

minus one standard deviation. The dashed line is a visual reference for the 

level achieved by the wildtype.
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