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Abstract

There are four major quantities that are measured in sexual behavior surveys that are thought to be especially relevant for
the performance of sexual network models in terms of disease transmission. These are (i) the cumulative distribution of
lifetime number of partners, (ii) the distribution of partnership durations, (iii) the distribution of gap lengths between
partnerships, and (iv) the number of recent partners. Fitting a network model to these quantities as measured in sexual
behavior surveys is expected to result in a good description of Chlamydia trachomatis transmission in terms of the
heterogeneity of the distribution of infection in the population. Here we present a simulation model of a sexual contact
network, in which we explored the role of behavioral heterogeneity of simulated individuals on the ability of the model to
reproduce population-level sexual survey data from the Netherlands and UK. We find that a high level of heterogeneity in
the ability of individuals to acquire and maintain (additional) partners strongly facilitates the ability of the model to
accurately simulate the powerlaw-like distribution of the lifetime number of partners, and the age at which these
partnerships were accumulated, as surveyed in actual sexual contact networks. Other sexual network features, such as the
gap length between partnerships and the partnership duration, could–at the current level of detail of sexual survey data
against which they were compared–be accurately modeled by a constant value (for transitional concurrency) and by
exponential distributions (for partnership duration). Furthermore, we observe that epidemiological measures on disease
prevalence in survey data can be used as a powerful tool for building accurate sexual contact networks, as these measures
provide information on the level of mixing between individuals of different levels of sexual activity in the population, a
parameter that is hard to acquire through surveying individuals.
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Introduction

The transmission dynamics and epidemiology of sexually

transmitted infections (STI) are shaped by the sexual network

through which they propagate. Sexual networks are characterized

by their dynamic nature and large heterogeneity that reflects the

diversity of human sexual behavior. For long now, mathematical

modelers have attempted to describe the essential features of that

behavior and the resulting networks in various types of models in

order to understand the infection dynamics and possible impact of

STI interventions [1–6]. It has remained extremely challenging to

take all aspects that determine the structure of a sexual network

into account in a comprehensive way, while at the same time not

cluttering models with too much detail that makes them difficult to

handle. One approach has been the design of individual based

simulation models that follow certain algorithmic rules to describe

the formation and dissolution of partnerships explicitly [7–11].

This approach has the advantage above models that assume a

mass-action style of mixing between individuals, that partnerships

of different durations are explicitly present in the model, and thus

that important aspects of Chlamydia trachomatis (Ct) transmission

dynamics, such as the duration of the gap/overlap between

sequential partnerships [12–14], and re-infection events between

partners [15,16] are not ignored. Individual based models have

proven to be a flexible and useful tool in this regard.

In designing an individual based model, decisions have to be

taken in how to implement partnership formation and dissolution

and intervention strategies in terms of simple rules that can be

coded into a computer program. While striving at parsimony and

simplicity in order to be able to understand the resulting dynamics,

one also wants to capture the essential features of human sexual

behavior that impact on the transmission dynamics and interven-

tion effectiveness of STI. By doing that one usually validates the

model using aggregate data for some quantities describing sexual

behavior such as lifetime number of partners, or partnership

duration. One can analyze how well models are able to reflect

those summary measures of sexual behavior and consequently the

distribution of STI prevalence in a population [11]. However, it is

also known that macrostructure of an individual based model does

not uniquely determine the microstructure of a sexual network

[17] and consequently models with similar macrostructures can

lead to different results about intervention impact [18].

There are four major quantities that are routinely measured in

sexual behavior surveys that are thought to be especially relevant

for the performance of sexual networks in terms of disease

transmission. These are (i) the cumulative distribution of lifetime
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number of partners [19,20], (ii) the distribution of partnership

durations [14,20], (iii) the distribution of gap lengths between

partnerships [14,20,21], and (iv) the distribution of the number of

recent partners [11,22]. Fitting a network model to these

quantities as measured in sexual behavior surveys is expected to

result in a good description of Ct transmission in terms of the

heterogeneity of the distribution of the infection within a

population [11].

In this paper we investigate how these population level

summary measures of sexual activity relate to the underlying

sexual behaviors of the population and their heterogeneity on the

individual level. We use an individual based simulation model, in

which pair formation and separation are described as a dynamic

process. The model is based on an earlier model of Kretzschmar

et. al. [7], but has been extensively restructured to accommodate

for more detail and heterogeneity in individual behaviour. Central

to the model implementation is the function that describes the

number of partnerships that an individual can simultaneously

maintain during different periods of his/her life. This changing

‘‘capacity’’ of individuals controls their onset of sexual availability,

as well as their propensity for acquiring concurrent partnerships.

In addition, we demonstrate how including heterogeneity of sexual

behavior on the individual level improved the performance of the

model in describing population level measures of sexual behavior.

Results

The sexual network model presented here consists of a

heterosexual population of +50,000 individuals, uniformly

distributed over the ages 13 to 64. Connections in the network

represent sexual partnerships between individuals. The network is

dynamic: partnerships are continuously formed and dissolved. The

model keeps the population size constant over the 40 years of

simulation by adding young individuals to the network at age 13,

as old individuals retire from the network (by no longer forming

new partnerships) when reaching age 65. Individuals in the model

are defined by their date of birth, gender, their current

partnership(s), the maximum number of partners that they can

concurrently maintain (i.e., their ‘‘capacity’’), and their Chlamydia

trachomatis infection status. In this model we studied how individual

heterogeneity influences population-level summary measures of

the sexual contact network.

Cumulative lifetime number of partners
The large heterogeneity of individuals in their sexual behaviour

is perhaps most apparent in the distribution of the number of

partners that individuals in a population have had partnerships

with. This lifetime number of partnerships ranges from 1 to 600–

1000 partners for sexually active individuals [11,19,20], and is

commonly presented as a cumulative lifetime number of

partnerships (CLNP) plot. One of the remarkable features of the

CLNP is that the higher end of its distribution (w20 partners) has

a powerlaw-like distribution [19] (Fig. 1).

Whether simulation models can accurately reproduce the

heterogeneity in the lifetime number of partners depends on their

implementation of the ‘‘core group’’: a label introduced by Yorke

et. al. in 1978 [23,24] for sexually highly active individuals that

have many, possibly concurrent partnerships in a short period of

time. Many models struggle with reproducing the powerlaw-like

distribution of the CLNP, and typically end up with a distribution

that reflects the two or three levels of sexual activity defined in

these models (e.g., moderate, intermediate, and core-group

individuals [7,9–11]).

We concluded that behavioural heterogeneity in sexually highly

active individuals is underestimated in models that distinguish a

limited number of sexual activity levels, even if there is stochastic

variation among individuals. Rather than using a limited number

of sexual activity levels, we correlated the capacity for concurrent

partnerships in core-group individuals with two pre-determined

characteristics of high risk behaviour, namely the onset and the

duration of the core-group period for an individual (Table 1). The

earlier the onset, and the longer the duration, the higher would be

their maximum number of concurrent partnerships (see methods

for details). Furthermore, we controlled the total number of

partnerships within the moderate group and within the core-group

separately (Table 2). This allowed us to independently regulate

Figure 1. Cumulative plots of the lifetime number of partner-
ships (CLNP). Empirical data on the CLNP is available as a range for
the Dutch sexual survey data (black solid lines), and as absolute
numbers for the UK survey data (black dashed line). The Kretzschmar
model (gray lines) struggles in reproducing the powerlaw-like
distribution of the survey data, whereas the current model can closely
reproduce such a distribution (orange lines).
doi:10.1371/journal.pcbi.1002470.g001

Author Summary

Although many diseases spread so easily between humans
that someone could be infected by any of his or her daily
social contacts, such is not the case for sexually transmitted
diseases. Most of us have a very limited number of
concurrently ongoing sexual partnerships, and thus the
contact network over which sexually transmitted diseases
spread tends to be very sparsely connected. The exact
structure of these sexual networks plays an important role
in how easy and fast sexually transmitted diseases spread
through a population, and how effective various health care
interventions will be. In this paper we use a simulation
model to understand how the collective sexual behaviour of
individuals relates to the summary measures of network
structure (such as ‘‘lifetime number of partners’’, and
‘‘duration of previous partnership’’) that are typically used
to build models of disease transmission over sexual
networks. Based on our understanding of this relationship,
we simulated sexual networks which have summary
measures of network structure that are very similar to that
of a real sexual network. Using these networks in disease
transmission models will increase our ability to predict the
effectiveness of health care interventions.

Determinants of Sexual Contact Networks

PLoS Computational Biology | www.ploscompbiol.org 2 April 2012 | Volume 8 | Issue 4 | e1002470



how close the number of partnerships within each group would be

to the maximum number of partnerships that that group could

maintain (i.e. the sum of their capacities). For example, a high

number of partnerships in the core-group, relative to the sum of

their capacities would result in high lifetime number of

partnerships per core-group member without affecting the rate

at which moderate individuals acquired new partners. These

adjustments gave us considerable control on the shape of the

CLNP plot (Fig. 1), and resulted in a powerlaw-like distribution of

the CLNP that is similar to that of real sexual contact networks

[11,19,20].

Number of recent partners
The current model accurately replicates the CLNP observed in

real sexual contact networks. However, similar CLNP distributions

can be the result of very different age distributions at which the

individuals acquire most of their lifetime number of partners [17].

This was recently demonstrated in a comparison study of three

models of sexual contact networks [11]. Because the age at which

individuals are exposed to many sexual partners is also the age at

which they are most vulnerable for contracting, as well as most

efficient at transmitting STIs [11,22], it is necessary for sexual

network models to accurately simulate the distribution of recent

number of partners for different age groups.

In the model described by Kretzschmar et. al. in 1996 [7], all

individuals were available for sexual partnership from the moment

they entered the population at age 15, and 5% of these individuals

were labeled as core-group members, and will remain so until the

age of 35. The homogeneous age of sexual debut and onset of

core-group behaviour of individuals results in a premature age of

sexual debut (Fig. 2, gray line), and an overestimation of the mean

number of recent partners in the population younger than 35

(Fig. 3 gray line). By adding heterogeneity in the age at which

individuals become available for sexual partnerships, and (if

applicable) in the onset and duration of their core-group period

(Table 1), the current model could accurately match the observed

mean number of recent partners per age-group (Fig. 3 orange

line).

Table 1. Model parameters for constructing capacity vectors.

Parameter Subcategory Value

Onset of sexual availability (OSA) all 13zC(1:2,0:24)

Onset of core-group behaviour (OC) men OSAz2zC(0:6,0:4)

women OSAz2zC(0:6,0:6)

Duration of core-group behaviour (DC) men 1zC(1,0:2)

women 1zC(1,0:4)

Capacity of moderate individuals all 0 prior to OSA, 1 after OSA

Capacity level function for core-group men 3zDC=(0:28 �OC)

women 3zDC=(0:14 �OC)

Capacity after core-group period max capacity w4 2

otherwise 1

doi:10.1371/journal.pcbi.1002470.t001

Table 2. Model parameters at the population level.

Parameter Category Value

Population size 50,000 individuals between age 13–64

Number of partnerships moderate men - moderate women 17,750 (35.5%)

core men - core women 150 (0.3%)

core men - moderate women 1650 (3.3%)

moderate men - core women 500 (1%)

Fraction core during lifetime men 7%

women 5%

Mean duration partnershipa short-term 13 1/3 days

medium-term 150 days

long-term 5882 days (16.1 years)

Model timestepb 4 days

Age-dependent chance of participating in the pair formation process (for
moderates only)

men e{0:005 �min(0,age{20)

women e{0:03 �min(0,age{20)

aDurations of partnerships are sampled from an exponential distribution with the listed mean, and a minimum of 1 day.
bIndividuals are capable of acquiring multiple partnerships in a single timestep.
doi:10.1371/journal.pcbi.1002470.t002

Determinants of Sexual Contact Networks
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As the level of sexual activity is such an important indicator of

STD risk, we further stratified the recent sexual activity of the

Dutch population into the fraction of the population with 1+, 2+,

3+ or 6+ partners in the last half year, as well as by age and gender

(Fig. 4). We found that the current model could match many of the

features of this more detailed measure of recent sexual activity of

the Dutch population. Furthermore, at this level of detail, the

recent number of sexual partners appears to be sensitive to most of

the model parameters. It can therefore serve as an excellent

measure to validate a sexual network model on, but at the same

time is difficult to interpret how it depends on these model

parameters. What follows is a discussion of how different parts of

Fig. 4 relate to the underlying model mechanics.

The fit of the model for individuals with 1+ partnership is

predominantly determined by the difference between the total

number of partnerships that the model maintains in the moderate

group of individuals (Table 2), and the maximum number of

partnerships that this group can maintain, given their capacity. If

the difference between the two is small individuals will quickly find

partners, and few individuals will have been without partner in the

last 6 months. A second important factor that influences the fit for

individuals with 1+ as well as for those with 2+ partnerships is the

duration and relative frequency of different partnership types. The

model defines three types of partnerships (short-, medium-, and

long-term), all of which have exponentially distributed durations,

but with different average lengths of a partnership (see next

section, and methods). If, for example, the relative frequency of

Figure 2. the age of sexual debut is the result of age of sexual
availability, and the time it takes to find a first sexual partner.
Data from the Dutch sexual survey is plotted in for both genders
(dashed lines), and the model output (thick lines). The Kretzschmar
model (gray line) results in a too-early age of sexual debut for both men
and women (for clarity plotted together as one line).
doi:10.1371/journal.pcbi.1002470.g002

Figure 3. Mean number of partners in the last 6 months. This
measurement is indicative of the age at which individuals accumulate
most of their lifetime number of partnerships. The early age of sexual
debut and early onset of core-group behaviour results in an
overestimation of the mean number of partners in the Kretzschmar
model (gray line), which was resolved in the current model by adding
host heterogeneity in the onset of availability for sexual partnerships
and onset and duration of core-group membership (orange line).
doi:10.1371/journal.pcbi.1002470.g003

Figure 4. Number of partners in the last 6 months, stratified by
age, gender, and sexual activity. Panel A shows the number of
recent partners for men, and panel B for women. Stratification of the
number of partners by sexual activity give a detailed insight in many
aspects of a sexual networks’ structure. The percentage of people with
1+ partners is given on the right-hand axis, and the percentage for 2+,
3+ and 6+ partners is given on the left-hand axis.
doi:10.1371/journal.pcbi.1002470.g004

Determinants of Sexual Contact Networks
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short-term partnerships is increased, more of the moderate

individuals can acquire 1, 2 or even 3+ partnerships in 6 months.

Finally, transitional concurrency [25] is a third factor that

influences the recent number of partners of moderate individuals.

Transitional concurrency is the overlap between the end of one

partnership and the beginning of the next. Transitional concur-

rency is implemented in the model by defining the cost of a

partnership as 0 as it nears the end of its duration, thus freeing up

‘‘capacity’’ for the individual (see section on gap length, and

methods). If transitional concurrency is set to become possible

earlier during partnerships, it will increase the number of

moderate individuals that have had 2+ recent partner, but also

increases the number of moderate individuals that had no

partnerships in the last 6 months.

The group of 3+ recent partnerships (Fig. 4 green lines) past age

30 is predominantly formed by a fraction of the former core-group

members that continues to keep an increased capacity (~2) after

their main period of core-group behaviour (Table 1). Many

moderate individuals will by chance be locked into a long-term

partnership at that age, and thus have few opportunities to

accumulate recent partners. The group with 6+ recent partner-

ships is almost exclusively defined by the characteristics of the

core-group, i.e. its overall size, the age at which core-group

behaviour starts, its duration, and how many partnerships the

model maintains within the core-group, compares to the sum of

the capacities of that group (Table 1,2).

Partnership duration
Partnership duration has been recorded in limited detail and

only for the current partner in the Dutch sexual survey (Fig. 5),

and thus predominantly reflects the duration of long-term

partnerships in the Netherlands. Therefore, we also use the more

detailed Natsal 2000 UK survey data [11,26] to fit the model,

which also includes information on the duration of previous

partnerships. From the UK survey data it appears that there are

three typical durations of partnerships (short-, medium- and long-

term, Fig. 5 dashed black line), each of which is exponentially

distributed (Table 2).

As mentioned in the previous section, partnership duration (or

put more precisely, the relative frequency of long-term partner-

ships) predominantly affects the number of recent partners of the

moderate population; a high relative frequency of long-term

partnerships means that many moderate individuals will have had

only 1 sexual contact in the last 6 months. Partnership duration

has less effect on the number of recent partners of core-group

individuals, because core-group members have a capacity of §3,

and are limited to a maximum of 2 concurrent long-term

partnerships (see methods). Therefore, core-group members

always have capacity available for at least one short or medium-

term partnership.

In the model there are no individual sexual behaviour that

directly affect the duration of partnerships: durations are

determined when a partnership forms, and are independent of

the further actions of the individuals involved (such as concurren-

cy). One small exception is that individuals that stop being core-

group members have to reduce their current number of

concurrent partnerships to match their new maximum capacity

(see methods). We conclude that partnership duration shape the

sexual network relatively independent from the distribution of the

number of partnerships of individuals in the population.

Gap length
The time between sequential partnerships (e.g. the gap length

[21]) is an important factor related to Ct prevalence [12–14]:

negative gap length (e.g. an overlap in partnerships) signals the

amount of concurrency in the population: in contrast to serial

monogamy, concurrent partnerships provide a two-way channel

for Ct to spread, and not just from a previous partner to a new

partner. In contrast, positive gap length indicates the chance that

an individual has had to spontaneously clear Ct prior to engaging

in a new partnership [13]. The precise definition of gap length is

the ‘‘time between the end of the second most recent partnership,

and the start of the most recent partnership’’, in which the order of

recentness is determined by the last date that partnerships were

still ongoing. Where two or more partnerships are tied for

recentness, their order is randomly determined.

The Dutch sexual survey data has insufficient information to

reconstruct gap lengths, so the current model was fitted to UK

survey data on gap length [11,20] (Fig. 6), and subsequently

adjusted as to fit Dutch survey data on transitional concurrency in

recently started (v6 months) steady partnerships (Fig. 7), where

‘‘steady’’ was interpreted as being either a medium-term or a long-

term partnership.

About 3% of the UK population reports a negative gap length

of more than 500 days between the last two partnerships (Fig. 6,

black line), and up to 35% of the population has had overlap

between his/her last two partnerships. These percentages indicate

that a model of a sexual contact network should allow concurrency

of long-term partnerships (to see overlaps of 500+ days), and

should not limit the occurrence of concurrent partnerships to the

small core-group of the population, as was the case in the

Kretzschmar model. The current model allows transitional

concurrency [25] during the last 15% of a partnership for men,

and the last 7.5% for women (Fig. 6, orange line). The positive gap

length in the UK is relatively short compared to the duration of an

untreated Ct infection: only 15% of the population takes more

than 1 year to find a new partner.

Figure 5. Duration of current and second-most recent partner-
ship. The distribution of partnership duration of the current
partnership (solid black lines, Dutch data), and of the second-most
recent partnership (dashed black line, UK data). The Kretzschmar model
has only short- and long-term partnerships, and thus provides a less
precise fit to the data. The discrepancy between the UK data on long-
term partnership duration and the model (bottom orange line) is the
consequence of fitting the model to both the UK second-most recent
partnership data and the Dutch survey data on the duration of the
current partnership (top orange line).
doi:10.1371/journal.pcbi.1002470.g005

Determinants of Sexual Contact Networks
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In the model, the positive gap length is determined by the

chance of individuals to participate in the pair-formation process

for each timestep (Table 2), and by the total number of

partnerships that the model tries to maintain: if either is too low,

the time between partnerships (i.e. positive gap size) increases.

Positive gap length is also affected by transitional concurrency, as

an increase in concurrency increases the fraction of the population

that is available for new partnerships, and thus increases the

competition for those that are single and seeking a new

partnership. The result is that the average positive gap length

becomes larger with higher levels of transitional concurrency.

Ct prevalence distribution
The distribution of Ct prevalence in the population, stratified by

level of sexual activity was introduced as a new summary measure

by Althaus et. al. [11] that combines sexual behaviour with

epidemiological data. As expected, the Ct prevalence within a

stratum rises as the level of sexual activity of its individuals rises

from 0 to 3 partners in the last year (Fig. 8). Remarkably, however,

is that in the UK survey data the Ct prevalence in the subsequent

strata (4 and 5+ partners) drops again to the prevalence levels

halfway between that of the strata of 2 and 3 partners per year.

Neither the current model, nor earlier sexual contact network

models [11] are capable of reproducing this observation, or shed

light on the mechanism behind it. Two possible mechanisms are

explored in Supporting Text S1, namely 1) that prolonged and

frequent exposure to Ct could result in a protective immune

response [27–30], and thus reduce the Ct prevalence in those

population groups that are most likely to have experienced a

prolonged infection, and 2) that due to coital dilution, that is the

decrease in coital frequency when maintaining concurrent

partnerships, those with concurrent partnerships will have a

reduced chance of acquiring Ct [31–33].

A second important feature of the distribution of Ct prevalence

in the population is that it provides information about the amount

of mixing between moderate and core-group individuals in the

population. The level of assortative mixing is an important

measure for disease spread [13,24], but is difficult to measure in

surveys, as the surveyed individuals need to have accurate

knowledge about the life history of their (possibly short-term)

partners. Therefore, models of sexual contact networks typically

Figure 6. Gap length, i.e. the time between the two most recent
partnerships. Negative gaps indicate overlapping partnerships,
whereas positive gaps indicate the time it takes to acquire a new
partner. The current model (orange line) does not fully match the UK
survey data (black line). It would require a higher level of transitional
concurrency in the simulated population, but one that is incompatible
with the Dutch survey data on Fig. 6.
doi:10.1371/journal.pcbi.1002470.g006

Figure 7. Transitional concurrency in partnerships that are less
than 6 months old. The model (solid lines) matches Dutch sexual
survey data (dashed lines) well when transitional concurrency is
possible during the last 15% of a partnership (from a man’s
perspective), or the last 7.5% of a partnership from a woman’s
perspective. The y-axis shows the percentage of individuals with a
medium- or long-term partnerships that is less than 6 months old,
which had a period of transitional concurrency during this partnership.
doi:10.1371/journal.pcbi.1002470.g007

Figure 8. The distribution of Ct prevalence, stratified by
number of partners in the last year. Although the current model
is fitted to the Dutch sexual contact network, the Ct prevalence
distribution for those with 0, 1, and 2 partners in the last year
corresponds well to the UK survey data. At higher levels of sexual
activity, the model underestimates the Ct prevalence in individuals with
an intermediate level sexual activity, and overestimates the Ct
prevalence of the core group. The Ct prevalence in the highest
category for the model is 22%. The Ct distribution shown here is the
average of 15 years of sampling from 10 instances of the sexual contact
network.
doi:10.1371/journal.pcbi.1002470.g008

Determinants of Sexual Contact Networks
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rely on assumptions on the level of mixing [7,9,11]. However, as Ct

becomes more concentrated in individuals with a high level of

sexual activity [2,13,23]

(Fig. 8), in strongly assortative populations, and less so in more

well-mixed populations, one can use the difference between the

average Ct prevalence of the population, and the Ct prevalence of

for example the group of individuals with 1 partnership in the last

year, as an observation against which to fit the amount of

assortative mixing in the model.

The level of mixing on sexual activity in the model (Table 2)

that well describes the UK survey data is a situation in which 87%

of the partnerships of the core-group are with moderate members.

If we define core-group members as those individuals with 5+
partnerships in the last 12 months, the model results are

comparable to earlier investigations on mixing of sexual activity

[34,35], and the amount of mixing in the model can be

characterized as having a moderate assortativity coefficient of

0.25 [35].

Discussion

In this paper we investigated how four population level

summary measures of sexual activity, are related to the underlying

sexual behaviours of individuals, and to the heterogeneity in

behaviour on the individual level. We showed that the ‘‘recent

number of sexual partners’’ summary measure is very sensitive to

many of the sexual characteristics of simulated individuals,

whereas ‘‘gap length’’ and ‘‘partnership duration’’ are predomi-

nantly defined by homogeneous traits in the model (i.e. the

amount of transitional concurrency, and the relative frequency

and duration of short, medium and long-term partnerships).

Heterogeneity of sexual behaviour in individuals, and especially

the heterogeneity in sexual capacity of core-group individuals, was

found to play a large role in the summary measure ‘‘cumulative

lifetime number of partners’’, and instrumental in recreating the

measure’s powerlaw-like distribution [19]. We therefore conclude

that an extensive heterogeneity in the behaviour of individuals in

terms of acquiring partners, is likely to play an important role in

the network structure of real sexual networks. Whether heteroge-

neity in individual behaviour plays a similar role for the summary

measures of gap length and partnership duration is undecided: we

find that, given the level of detail with which we studied these two

summary measures, we could accurately recreate them in

simulation models using homogeneous descriptions of sexual

behaviour. However, a more detailed study of these summary

measures is necessary (for example by stratifying by age and

gender, or by studying them in terms of the life history of

individuals) to conclude whether heterogeneity in behaviour in

transitional concurrency and in partnership duration plays an

important role in the structure of sexual networks.

The summary measure introduced by Althaus et. al. [11] that

describes the distribution of Ct prevalence in the population

highlight our incomplete understanding of disease transmission

through sexual networks. We currently do not know whether the

lower than expected Ct prevalence in individuals with the highest

levels of sexual activity [11] is a feature of the structure of real

sexual networks, or that it is related to some form of protective

immunity upon frequent exposure to, but not necessarily infection

with Ct [30]. The summary measure has an additional important

quality: the distribution of Ct prevalence in a population can be

used to inform sexual network models on the degree of mixing

between individuals of different levels of sexual activity. This

parameter is known to be very important for the structure of

sexual contact networks [13,35], but is unfortunately not present in

current sexual behaviour survey data (for ways to set up an

unbiased sexual survey of mixing patterns, see Boily et. al [36]). In

this paper we presented a clear way, based on existing theory

[2,13,23], how to indirectly extract the mixing between individuals

with different levels of sexual activity from disease prevalence

distributions.

As sexual network models are now routinely used throughout

the world to determine both the feasibility and cost-effectiveness of

nation-wide healthcare interventions [37–39], it is critical that

these models move towards a state where they are able to make

accurate predictions. By increasing our understanding of the

complex relations between population-level summary measures,

and the heterogeneity of individual sexual behaviour, we were able

to make large qualitative improvements in reproducing sexual

network summary measures in comparison to earlier versions of

sexual network models [11,18], at the price of a moderate amount

of additional complexity.

In conclusion, shifting the models’ perspective from a population-

level description to that of the heterogeneity in individual sexual

behaviour opened up new ways to fit sexual contact network models

to sexual survey data. In the future, a modeling approach in which

sexual network structure more and more emerges from individuals’

sexual behavior as studied in social psychology may further improve

the realism of sexual network models.

Methods

Dutch and UK sexual survey data
The population-level summary measures are based on data

from the Rutgers Nisso Group Dutch population survey on sexual

health in 2009 [40]. This survey entails 6428 individuals that are

weighted on gender, age, ethnicity, and the degree of urbanization

of their hometown. Individuals that fell outside the age-range of

13–64 were excluded from the data, as were those that reported

having had homosexual partnerships, that were paid for

partnerships, or had included prostitute visits in their answers on

sexual activity. This procedure left a total of 5402 individuals

(Table 3). For population-level summary measures which could

not be derived from the Dutch sexual survey, we used the Natsal

2000 UK sexual survey [26] as presented in Althaus et. al. [11].

All Dutch survey population measures presented in the

manuscript take into account the weighted value of individuals

(e.g. individuals that had a weight ww1 associated with them

because they were sampled from an underrepresented population

group also contribute w times as much to the population level

summary measures as individuals with a weight of 1). The

population measure on ‘‘sexual activity in the last 6 months’’ and

the model data (Fig. 4) were smoothened to facilitate a visual

comparison, using a Savitzky-Golay non-linear smoothing filter

[41,42] (parameters: window size 5, coefficient 4, left-padding 0,

right-padding recent mean for 1+ and 2+ partners, and 0 for 3+
and 6+ partners). The smoothing filter works similar to a running

average, but performs better at preserving the trends of the survey

data.

Chlamydia trachomatis disease parameters
To measure the Ct distribution in the simulated population, we

implemented the Ct infection process as described in Althaus et. al.

[11] (Table 4), in which the rate of (unprotected) sexual contacts

drops from once every 2 days to once every 7 days after the first

two weeks of a partnership. The transmission rate of Ct in our

simulations was set to 2.5% per partner per sexual contact, such

that the average Ct prevalence in the age-group 18–44 matched

the estimated Ct prevalence of 1.7% of the UK in the same age-
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group [11,22]. A more in-depth study of the relationship between

the decline of condom use and coital frequency during a

partnership, and its (limited) effect on the distribution of Ct is

presented as Supporting Text S1.

Pair formation process
The model keeps track of the total number of partnerships

between moderate individuals, between core-group members, and

between core-group members and moderate individuals (Table 2).

Every timestep of the model, any shortage of partnerships in the

simulated population is supplemented by randomly sampling pairs of

individuals from the population and attempting to form partnerships

between them. Once enough new partnerships have been formed,

the model moves one timestep ahead and repeats the same process.

Because partnerships are continuously dissolved as time progresses,

their total number constantly needs to be supplemented.

Not all individuals are available for sampling on a particular

day. Individuals have to have the necessary free ‘‘capacity’’ for an

additional partnership (taking into account that partnerships that

are in their transitional concurrency phase no longer take up

capacity). In addition, for moderate individuals there is an age-

and gender-based probability that they are available for sampling

that day (Table 2). This additional probability is not applied to

core-group members. All individuals that are available for pair

formation can be sampled to supplement the total number of

partnerships in any of the appropriate combinations between core-

group members and/or moderate individuals.

From the subset of the population that participates in the pair

formation process on a given day, pairs of individuals are

randomly sampled, and tested for three necessary conditions for

pair formation:

1. The two individuals are of opposite gender

2. The two individuals are not already in a partnership with each

other

3. Both individuals aim for a partnership of the same type (i.e.

short-, medium-, or long-term partnerships, see methods)

If those conditions were all met, the probability of partnership

formation was determined by the age disparity between the

partners. To calculate this conditional probability, we use a folded

cumulative normal distribution function (CDF) [9,43] whose mean

m and variance s2 depend on the age a of the woman. The

properties of this function are as follows: when the age disparity

(male age - female age) corresponds to the mean of the folded

CDF, the probability is 0.5, and any deviation from the mean

results in a lower probability. To prevent unnecessary computa-

tions in the model by rejecting at least 50% of the partnerships, all

probabilities generated by the folded CDF are multiplied by two.

The equation that defines the mean age disparity, m, is described

by

m~maxf1:5,4:25|ln(0:6a{7){ exp (0:07a{0:4)g ð1Þ

This equation is plotted in Fig. 9A (solid pink line). Similarly,

the variance s2 of the age disparity can be described by

Table 3. Dutch sexual survey summary data.

Category Gender Subcategory Count Mean, Range

Total 5402

By gender Men 2499

Women 2903

By age Men 15–44 y 69, 51{99a

45–64 y 18, 11–35

By age Women 15–44 y 81, 55–140

5–64 y 20, 11–40

By sexual
activity (v45y)

Men 1zb 55, 11–17

2+ 10, 3–17

3+ 3.7, 1{8c

6+ 1.3, 1{2c

By sexual
activity (v45y)

Women 1+ 66, 18–104

2+ 5.7, 1{20c

3+ 2.5, 1{9c

6+ 1, 1{1c

aIndicates mean and minimum-maximum number of individuals in this
category.
b1+ is defined as having 1 or more partners in the last six months.
cdata is not available for all ages due to small sample size.
doi:10.1371/journal.pcbi.1002470.t003

Table 4. Chlamydia trachomatis infection parameters.

Parameter Category Value

Incubation time 14 days

Fraction asymptomatic 75%

Duration sympt. Ct 35 days

asympt. Ct 433 days

Sexual activity during partnership first 2 weeks ave. of 1 time per 2 days

wafter 2 weeks ave. of 1 time per 7 days

Transmission ratea Kretzschmar model [7] 4.4% per sex act

Current model 2.5% per sex act

Timestep of Ct transmission 1 day

aTransmission rate is fitted to match a Ct prevalence of 1.7% in the age-group 17–44, as per Althaus et. al. [11].
doi:10.1371/journal.pcbi.1002470.t004
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s2
(a)~maxf23|ln(0:45a{7){ exp (0:13a{0:1),

3:3z2:4|ln(12{a){ exp (0:26
ffiffiffi

a
p

)g
ð2Þ

The shape and parameters of these equations were initially

fitted to the observed age disparity and variance in the Dutch sexual

survey data, but as these equations represent the preferred age

disparity within partnerships of the simulated population, they

needed to be subsequently adjusted (by trial and error) such that

the resulting age disparity in the model matched that of the sexual

survey data (Fig. 9). Among the adjustments were the addition of a

necessary condition based on the age of male partner: for men

below the age of 18, a partners’ age should not be more than 2

years older than their own.

Partnership type and duration
Based on the UK survey data on the duration of the second-

most recent partnership (Fig. 5), partnerships in the model are

categorized into three types (short, medium and long-term

partnerships). Each type of partnership represents an exponential

distribution with a minimum duration of 1 day, and a mean

duration of 13
1

3
days (short), 250 days (medium), and 5880 days

(long) (Table 2). The preferred duration of a partnership is

determined by first picking the type of partnership from a ratio of

14 (short) to 13 (medium) to 12 (long), and subsequently sampling

the exponential distribution associated with that type. As detailed

in the previous section, a partnership will only be formed between

two individuals if both select the same type of partnership.

Capacity
The maximum number of partnerships that an individual can

simultaneously maintain is described in the model by their sexual

capacity, meaning that an individual with a sexual capacity of n
can maintain n simultaneous partnerships. The sexual capacity of

an individual reflects how much time, attention, money,etc he/she

is willing to invest in partnerships [44].

In the model, the development of the sexual capacity of an

individual during his/her life is stored in a vector that is

constructed at its birth, by sampling from gamma distributions

that determine the age at which an individual starts participating

in the pair formation process (and thus when its capacity goes from

0 to 1), and if applicable, the onset, and duration of a period

during which its capacity is larger than 1 (Table 1). Individuals

with a capacity larger than 1 are part of the so-called ‘‘core-group’’

[23,24] and are able to start and maintain multiple concurrent

partnerships. The maximum capacity of a core-group member is a

function of the onset of their core-group period, and the length of

that period (Table 1). Core-group members that have a capacity of

5 or higher (about 15% of the core-group), will keep a higher base

capacity of 2 after their core-group behaviour period.

Core-group members are not allowed to have more than two

non-transitional (i.e. costly, see next section) long-term partner-

ships at the same time. This constraint makes it possible for some

core-group individuals to accumulate up to 600 partnerships over

their lifetime, as is observed in the empirical data (see results), and

not become tied up in 5 long-term partnerships. When the

capacity of an individual drops at the end of its core-group period,

he/she will randomly break up a number of partnerships, until he/

she is no longer over capacity.

Transitional concurrency
Transitional concurrency (i.e. the period prior to the end of an

existing partnership during which an individual acquires a new

partnership [25]) is implemented as follows: partnerships that are

near the predetermined end date of that partnership no longer

carry a maintenance cost, and thus free up capacity for an

individual. Transitional concurrency becomes a possibility during

the last 15% of the duration of an existing partnership for men,

and the last 10% for women. In effect, it allows individuals that

have a maximum capacity of 1 to temporarily maintain two

concurrent partnerships.

Model initiation
The model has a burn-in period of 60 years, during which a

stable sexual contact network is built up in the model population.

Ten years prior to the end of the burn-in period, Ct is introduced

in the simulated population by infecting 100 core-group

individuals with asymptomatic Ct. After 35 years, the average Ct

prevalence distribution is measured over a period of 15 years.

Model implementation
The model is implemented in Clojure 1.21, a modern dialect of

lisp (http://clojure.org). The source code of the model and an

example of the sexual networks that are generated by the model

are included as Protocol S1, and Dataset S1 & S2.

Supporting Information

Dataset S1 Dataset S1 & S2 contain a textfile split in two parts,

and together form an example of a simulated sexual network over

a 100 year period. Each line in the dataset represents the life

history of a single individual, and records the day they were born,

how their sexual capacity developed (per year) during their

lifetime, and with whom and from what day to what day they had

a partnership. This sexual network was initialized with no existing

partnerships, and thus needs about 60 years before it has

stabilized. Linefeeds in the dataset are in linux format (LF and

not CR-LF) and may need conversion on windows.

(BZ2)

Figure 9. Age disparity of individuals in the network. The
partnership formation probability function results in an age disparity in
the model (solid lines) that closely matches the observed mean age
disparity (dashed lines), as well as its standard deviation (not shown
here) of the Dutch survey data.
doi:10.1371/journal.pcbi.1002470.g009
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Dataset S2 Dataset S1 & S2 contain a textfile split in two parts,

and together form an example of a simulated sexual network over

a 100 year period. Each line in the dataset represents the life

history of a single individual, and records the day they were born,

how their sexual capacity developed (per year) during their

lifetime, and with whom and from what day to what day they had

a partnership. This sexual network was initialized with no existing

partnerships, and thus needs about 60 years before it has

stabilized. Linefeeds in the dataset are in linux format (LF and

not CR-LF) and may need conversion on windows.

(BZ2)

Figure S1 The relationship between partnership duration,

condom use and a proxy of coital frequency. The fraction of

coital events during which condoms are used (black line) starts at

+80%, and decreases to 16% as partnership duration increases

(black circles [45]). The fraction of the population with an above-

average (w7) number of coital acts per month [46] (red squares)

was used as a proxy for coital frequency (red line). The first

datapoint in this series (the 100% at day 5) was not reported by

Klusmann et. al [46], but is based on the assumption that partners

would have had a coital event during the first five days of their

partnership, and thus 100% would at 5 days have a coital

frequency of w7 times per 4 weeks. The resulting relationship

between partnership duration, the fraction of individuals not using

condoms and a proxy of coital frequency is given by the orange

line.

(EPS)

Figure S2 The relationship between the number of recent partners,

and the estimated number of sex acts in the last year, with (left)

and without coital dilution (right). The figure shows the mean

values, as well as the interquartile ranges of a single (typical)

timepoint in the sexual contact network.

(EPS)

Figure S3 The relationship between the number of recent partners,

and the number of days without partner. The figure shown here is

a snapshot moment of the sexual contact network, and shows the

mean values, as well as the interquartile ranges. Individuals with a

high numbers of partners in the last year tend to be core-group

members involved in concurrent partnerships, and have little or no

days without sexual partners in a year, with the exception of

individuals that during the year entered or left the core-group.

(EPS)

Figure S4 The effect of different assumptions on the Ct

prevalence distribution. Compared to the main model (orange

blocks, zoomed in version of Fig. 8., main manuscript), the various

scenarios tested in this supporting text had a limited effect on the

Ct prevalences of those with 3, 4 or 5+ sexual partners in the last

year, and did not result in a pattern where for an overall Ct

prevalence of 1.7%, the highest prevalence would be found in the

group with 3 recent partners (as observed in the UK). The scenario

with coital dilution includes a constant Ct transmission rate per

day, and the immunity scenarios include both the constant

transmission rate and coital dilution effects (of strength 0.7).

(EPS)

Protocol S1 Contains the source code of the individual-based

model, together with the directory structure, documentation and

the tools necessary to download the libraries and to create

standalone JAR files with which to generate sexual network

datafiles.

(BZ2)

Text S1 Contains a more in-depth study of the relationship

between the decline of condom use and coital frequency during a

partnership, and its (limited) effect on the distribution of Ct, as well

as our exploratory study of two possible mechanisms that might

explain the observed Ct prevalence distribution, in which Ct

prevalence after an initial increase, appears to decrease with an

increase in sexual activity [11].

(PDF)
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