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Abstract 35 

Context 36 

Urban landscapes are a mixture of built structures, human-altered vegetation, and 37 

remnant semi-natural areas. The spatial arrangement of abiotic and biotic 38 

conditions resulting from urbanization doubtless influences the establishment and 39 

spread of non-native species in a city.  40 

 41 

Objectives 42 

We investigated the effects of habitat structure, thermal microclimates, and species 43 

coexistence on the spread of a non-native lizard (Anolis cristatellus) in the Miami 44 

metropolitan area of South Florida (USA).  45 

 46 

Methods 47 

We used transect surveys to estimate lizard occurrence and abundance on trees and 48 

to measure vegetation characteristics, and we assessed forest cover and impervious 49 

surface using GIS.  We sampled lizard body temperatures, habitat use, and relative 50 

abundance at multiple sites. 51 

 52 

Results 53 

At least one of five Anolis species occupied 79% of the 1,035 trees surveyed in 54 

primarily residential areas, and non-native A. cristatellus occupied 25% of trees. 55 

Presence and abundance of A. cristatellus were strongly associated with forest 56 

patches, dense vegetation, and high canopy cover, which produced cooler 57 
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microclimates suitable for this species. Presence of A. cristatellus was negatively 58 

associated with the ecologically similar non-native A. sagrei, resulting in reduced 59 

abundance and a shift in perch use of A. cristatellus.  60 

 61 

Conclusions 62 

The limited spread of A. cristatellus in Miami over 35 years is due to the patchy, low-63 

density distribution of wooded habitat, which limits dispersal by diffusion. The 64 

presence of congeners may also limit spread. Open habitats — some parks, yards 65 

and roadsides — contain few if any A. cristatellus, and colonization of isolated forest 66 

habitat appears to depend on human-mediated dispersal. 67 

 68 

Keywords   69 

Anolis - body temperature - canopy cover - GIS - forest cover - impervious surface - 70 

thermal microclimates - tree characteristics - urban heat island - urban vegetation 71 

 72 

  73 



 4 

Introduction 74 

 Upon arrival in a city, non-native species encounter a spatially 75 

heterogeneous environment that varies in the types and densities of buildings, 76 

vegetation, infrastructure, and remnant natural areas (Pickett et al. 2001; Cadenasso 77 

et al. 2007; Forman 2014).  This variability in habitat structure and its spatial 78 

patterning will likely influence the ability of invaders to establish and spread within 79 

an urban area.  For example, exotic grey squirrels in the UK are positively associated 80 

with increased canopy cover, larger trees, and the presence of seed-bearing trees as 81 

well as supplementary feeders for birds (Bonnington et al. 2014).  Thus, the 82 

arrangement of vegetation and non-vegetative features within the urban landscape 83 

influences where exotics establish and the routes by which they spread. Identifying 84 

those features associated with the occurrence of exotic species is important for 85 

understanding their current distributions and potential for future spread. 86 

 As a consequence of habitat structure modification during urbanization, city 87 

temperatures can be several degrees higher than surrounding rural areas (Akbari et 88 

al. 2001; Arnfield 2003; Chen and Jim 2008; Rizwan et al. 2008).  These urban heat 89 

islands are spatially and temporally heterogeneous (Ramalho and Hobbs 2011), 90 

reflecting variation in the matrix of built structures and local vegetation and 91 

creating a thermal mosaic (Georgi and Zafiriadis 2006; Hamdi and Schayes 2008; 92 

Huang et al. 2008).  This variation influences the microclimates available in a city, 93 

including air and surface temperatures, relative humidity, solar radiation, and wind 94 

speed.  Thermal microclimates are critically important to ectotherms (e.g., insects, 95 

lizards, frogs), which rely on external sources of heat to regulate their body 96 
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temperatures. Because temperature is fundamentally important for development, 97 

growth, survival, and reproduction in ectotherms (Angilletta 2009), organisms 98 

living in a city are likely to be sensitive to variation in vegetation and urban features 99 

that affect thermal microclimates (Ackley et al. 2015a).     100 

 In addition to the habitat structure of a city, interactions with potential 101 

competitors and predators can influence occurrence and abundance patterns 102 

(Shochat et al. 2006; Anderson and Burgin 2008).  For example, abundance of a 103 

native gecko, Lepidodactylus lugubris, throughout the Pacific is strongly influenced 104 

by interactions with a competitively superior non-native gecko, Hemidactylus 105 

frenatus (Case et al. 1994), which better exploits insect resources concentrated 106 

under artificial night lighting (Petren and Case 1996).  In general, more ecologically 107 

similar species are predicted to have stronger negative effects on each other at local 108 

scales through competition (Pianka 1981; Losos 1994).  Thus, both biotic and 109 

abiotic factors may influence the establishment, spread, and ultimately the 110 

distribution of non-native species in a city.   111 

 In this study, we investigate the effects of habitat structure, thermal 112 

microclimates, and species interactions on the spread of introduced Anolis lizards in 113 

the Miami metropolitan area. Our study group, Anolis lizards (or anoles), comprise a 114 

species-rich genus of small, insectivorous, diurnal lizards found in the Neotropics 115 

from the southeastern United States to South America including Caribbean islands 116 

(Losos 2009).  Many Anolis species occupy both natural and human-modified areas 117 

in their native and non-native ranges (Perry et al. 2008; Irschick et al. 2005; 118 

Marnocha et al. 2011; Kolbe et al. 2015).  There are nine Anolis species established 119 
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in Miami, only one of which — A. carolinensis — is native to the U.S. (Lever 2003; 120 

Kolbe et al. 2007; Kraus 2009).  Four species have very restricted distributions (A. 121 

chlorocyanus, A. cybotes, A. garmani and A. porcatus), two are distributed throughout 122 

the Miami area (A. distichus and A. equestris), and one is found throughout Florida, 123 

the Gulf Coast, and southern Georgia and South Carolina (A. sagrei). In contrast to 124 

these either very restricted or widespread species, an eighth non-native species, A. 125 

cristatellus (Fig. 1, inset), is expanding its distribution in Miami, but is not yet 126 

ubiquitous.  We can therefore identify factors related to its current distribution and 127 

predict whether future spread in urban areas is likely.   128 

 Anolis lizards have a number of advantages for this study.  First, anoles in 129 

Miami are conspicuous, easy to detect, and sufficiently different in ecology and 130 

morphology to accurately identify to species when present.  Second, the 131 

introduction history of A. cristatellus in Miami is well studied with two independent 132 

introductions from its native range in Puerto Rico (Kolbe et al. 2007).  Third, the 133 

other four Anolis species that co-occur with A. cristatellus in Miami — A. carolinensis, 134 

A. distichus, A. equestris and A. sagrei — were all present prior to its introduction in 135 

the mid-1970s.  These species span a range of ecological similarity; specifically, A. 136 

sagrei and A. distichus typically perch lower to the ground on tree trunks, similar to 137 

A. cristatellus, whereas A. carolinensis and A. equestris perch higher in the canopy 138 

(Losos 2009).  We can therefore test the hypothesis that more ecologically similar 139 

congeners influence the presence of A. cristatellus in Miami.  Lastly, the thermal 140 

biology of anoles in general, and A. cristatellus in particular, is well studied (Losos 141 

2009).  Previous studies detail the thermal preferences, thermal tolerances, and 142 
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field body temperatures of A. cristatellus from numerous sites in Puerto Rico and 143 

Miami (e.g., Huey 1974; Huey and Webster 1976; Hertz 1992; Leal and Gunderson 144 

2012; Kolbe et al. 2012; Gunderson and Leal 2012), allowing us to evaluate if the 145 

effects of urban vegetation on thermal microclimates are relevant to A. cristatellus. 146 

 A primary goal of this study is to contrast how abiotic and biotic aspects of 147 

the urban environment influence the current distribution and abundance of a 148 

recently introduced species to better understand its potential for future spread.  We 149 

survey lizards and vegetation characteristics on a tree-by-tree basis using transects 150 

across putative distribution boundaries, and test for relationships at the landscape 151 

level between the presence of A. cristatellus and GIS-based data attributes of forest 152 

cover and impervious surfaces.  We predict that 1) urban vegetation structure and 153 

arrangement will influence the occurrence and abundance of A. cristatellus.  In 154 

particular, we predict that A. cristatellus will be associated with denser vegetation 155 

and forested areas, which produce relatively cooler microclimates.  Based on 156 

previous ecological studies (Losos 2009), we also predict 2) negative associations 157 

between A. cristatellus and its more ecologically similar congeners in Miami. 158 

Specifically, A. sagrei and A. distichus overlap most with A. cristatellus in their 159 

structural microhabitat (i.e., the height, diameter, and type of perch), which should 160 

lead to stronger interspecific competition. 161 

 162 

Methods 163 

Study area  164 
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 We conducted this study in the Miami metropolitan area, where the initial 165 

sites of introductions for A. cristatellus are documented.  Genetic analyses confirmed 166 

two independent introductions from geographically and genetically distinct native-167 

range sources in Puerto Rico (Kolbe et al. 2007).  The Key Biscayne population is 168 

from San Juan, Puerto Rico and was first detected in a residential area on the island 169 

in 1975 (Schwartz and Thomas 1975; Bartlett and Bartlett 1999).  The South Miami 170 

population is from northeast Puerto Rico and was found in a different residential 171 

area in 1976 (Wilson and Porras 1983).  The Key Biscayne population is ~5 km from 172 

the mainland population separated by a bridge to Virginia Key and the Rickenbacker 173 

Causeway to the mainland.  The two introduction sites are ∼12 km apart across 174 

Biscayne Bay.  The bulk of the study area is residential with detached single units, 175 

considerable tree cover, and low-traffic, two-lane roads.  Also present are 176 

commercial districts, high-traffic roads up to six lanes, open parklands, urban 177 

forests, and waterways such as canals, lakes, and coastal areas (Fig. 1, 178 

Supplementary Fig. 1).  179 

 180 

Study design and sampling  181 

In summer 2009, we collected preliminary data on A. cristatellus presence in 182 

the Miami area by conducting block-by-block walking surveys radiating from the 183 

initial points of introduction in South Miami and Key Biscayne.  Based on these data, 184 

we established five 610 m x 1100 m plots in South Miami, each crossing an observed 185 

transition from presence to absence of A. cristatellus.  In each plot, we established 186 

three to six roadside transects running perpendicular to the transition zone 187 



 9 

(Supplementary Fig. 2).  On our initial visit to each transect in June 2010, we 188 

measured tree characteristics (Table 1) and, using binoculars when needed, 189 

observed Anolis lizards on trees with a trunk diameter >10 cm growing in the 190 

roadside public right-of-way.  Although lizards use smaller trees, the availability of 191 

such trees was limited along roadsides and in yards. All species have multiple 192 

diagnostic features, which aided accurate species identification. Following this 193 

initial survey, we returned to each transect two more times to survey the same trees 194 

for the presence and total number of lizards of the five Anolis species.  One to three 195 

trained observers were present for each survey, with at least two observers in most 196 

cases.  Data from these transects were used to evaluate whether the presence of A. 197 

cristatellus was related to the presence of congeners and to the characteristics of the 198 

trees and surrounding vegetation (Table 1).   199 

 Given patterns of species coexistence from these transects, we conducted 200 

visual encounter surveys to determine if congener presence affects the relative 201 

abundance and habitat use of A. cristatellus (Crump and Scott 1994; Kolbe et al. 202 

2008).  Surveys consisted of walking at a constant pace for 15 minutes and 203 

recording the species, time, sex, and perch characteristics (i.e., height and diameter) 204 

for all undisturbed lizards observed.  We compared relative abundance at sites with 205 

predominantly A. cristatellus (n=10 surveys) to sites with A. distichus and A. sagrei in 206 

addition to A. cristatellus (n=6 surveys).  Because A. distichus and A. sagrei co-occur 207 

throughout most of Miami, we were unable to find nearby sites with only one of 208 

these species. We supplemented data on perch characteristics with opportunistic 209 

observations of all three species at the same sites. 210 
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 The presence-absence data from transects, visual encounter surveys, and 211 

opportunistic surveys allowed us to map the distribution of A. cristatellus in Miami 212 

(Figs. 1 and 2).  In addition to the intensive sampling within the core areas of South 213 

Miami and Key Biscayne, we also investigated potential localities throughout Miami-214 

Dade County including municipal parks and regional waste transfer stations.  215 

Preliminary surveys showed A. cristatellus was present in forest patches in some 216 

parks associated with waste transfer stations, suggesting transport of yard waste 217 

from houses to regional stations as a potential dispersal mechanism. 218 

 219 

GIS analysis of forest cover and impervious surfaces 220 

 To complement analyses based on transect data, we conducted a geographic 221 

information system (GIS) analysis of the study area using ArcGIS version 10.2 222 

(Environmental Systems Research Institute, Redlands, CA) and publicly available 223 

GIS layers of impervious surface (MRLC 2011) and forest fragmentation (NOAA 224 

2010).  The MRLC Percent Developed Imperviousness layer, a raster dataset with 225 

30-meter pixels, provides the average percentage of human-made impervious 226 

surface for each pixel.  The NOAA forest fragmentation layer, a raster dataset with 227 

30-meter pixels, distinguishes between four fragmentation types: 1) "core forest" 228 

refers to forested pixels that are not adjacent to any non-forested pixels, 2) "patch 229 

forest" refers to forested pixels in small patches that are not large enough to contain 230 

a 90m x 90m block of forest, 3) "perforated forest" refers to forested pixels adjacent 231 

to small non-forested patches that are not large enough to contain a 90m x 90m 232 

block of non-forested area,  and 4) "edge forest" refers to forested pixels adjacent to 233 

larger non-forested patches that contain at least one 90m x 90m block of non-234 
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forested area. We used GIS to generate 11 attributes describing forests and 235 

impervious surfaces (Table 2). 236 

 237 

Thermal microclimates and lizard body temperatures 238 

 To investigate the range of possible thermal microclimates available to A. 239 

cristatellus in Miami during peak summer temperatures, we measured the 240 

temperature under two trees—one with an open canopy (Thrinax radiata, DBH = 12 241 

cm) and another with a heavily shaded canopy (Chukrasia tabularis, DBH = 145 cm).  242 

We used painted, hollow, copper models the size of lizards with an iButton inside to 243 

estimate temperatures a lizard would experience in each location without 244 

behavioral or physiological thermoregulation (Hertz 1992; Gunderson and Leal 245 

2012; Ackley et al. 2015a). Temperatures were recorded every 15 minutes on the 246 

north, south, east, and west sides of each tree at a height of 1.5 m from 1700 h on 247 

July 17 to 1000 h on July 21, 2014.  To estimate the percentage of open canopy, we 248 

took hemispherical canopy photographs in each cardinal direction using a 180° 249 

fisheye lens and analyzed them using Gap Light Analyzer version 2.0 (Frazer et al. 250 

1999).  251 

 To estimate the range of field body temperatures (Tb) for A. cristatellus in 252 

Miami, we sampled lizards and random locations at three sites that varied in species 253 

composition and vegetative structure.  For comparative purposes, we also sampled 254 

A. sagrei, which has both higher field Tb and thermal tolerances than A. cristatellus 255 

(Corn 1971; Lee 1980; Gunderson and Leal 2012; Kolbe et al. 2012, 2014).  The sites 256 

included a bike path along a canal where both species were sampled, a residential 257 
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area where only A. sagrei was sampled, and a forested area where only A. cristatellus 258 

was sampled.  For each undisturbed lizard captured, we recorded Tb, air 259 

temperature 1 cm above the substrate where the lizard was perched, and copper 260 

lizard model temperature at the same location as the lizard using a thermocouple 261 

probe connected to a digital thermometer (Omega HH802U).  We then took a 262 

hemispherical canopy photo to estimate canopy openness as described above.  For 263 

comparison, we took copper lizard model temperature, air temperature, and a 264 

canopy photo at randomly selected locations within each study site.  Lizard Tb and 265 

random location data were collected between 0800 to 1400 h, which is a high-266 

activity time of day during the summer. 267 

 268 

Data analysis 269 

 Occupancy and estimates of detection probabilities were calculated using single 270 

season occupancy models (MacKenzie et al. 2002) in the program PRESENCE (Hines 271 

2006). Likelihood models calculated in PRESENCE all assume that 1) any site where a 272 

species is present remains occupied, 2) species may or may not be detected when present, 273 

but are not detected when absent, and 3) the detection of a species at one sampling site is 274 

independent of detection at all other sites (MacKenzie et al. 2002). A minimum of two 275 

sample occasions is required for model estimation. We conducted three repeat surveys at 276 

each sampling point. Occupancy models to calculate estimates of detection were 277 

produced with all surveyors (Rick Stanley [RS], PV, and JJK) independently as 278 

covariates as well as using full identity models including all surveyors.  279 
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 We used generalized linear models (GLM; McCullagh and Nelder 1989; R 280 

2013) with binomial (presence-absence) and continuous (abundance) response 281 

variables.  This allowed us to form linear and quadratic relationships between the 282 

response and explanatory variables (Broennimann et. al. 2012), which were 283 

standardized to normalize their distributions.  Explanatory variables included the 284 

tree characteristics of trunk diameter, canopy diameter, distance to nearest plant, 285 

distance to nearest tree, and overstory canopy cover (Table 1).  Model selection was 286 

performed using a stepwise procedure based on the Akaike information criterion 287 

(AIC; Akaike 1974).  We conducted three separate analyses using presence-absence 288 

as the response variable.  First, we compared transect sections with A. cristatellus 289 

present (but not necessarily occupying every tree) versus sections where A. 290 

cristatellus was absent; second, we compared the presence versus absence of A. 291 

cristatellus on all trees pooled; and third, we compared the presence versus absence 292 

of A. cristatellus on trees within only the sections of transects with A. cristatellus 293 

present.  We then repeated the latter two analyses using A. cristatellus abundance as 294 

the response variable.  295 

 When analyzing the GIS-based attributes, we conducted two separate 296 

analyses.  First, we divided street blocks from each transect into those with A. 297 

cristatellus present versus absent and compared attributes derived from GIS (Table 298 

2).  Second, we used presence and absence points for individual observations 299 

throughout the Miami metropolitan area to test for relationships with GIS-derived 300 

attributes, restricting the data set to no more than one observation per block. 301 
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 For categorical explanatory variables (Table 1), we used likelihood ratio tests 302 

to compare tree characteristics between sections of transects with A. cristatellus 303 

present versus absent.  When evaluating A. cristatellus abundance in relation to 304 

categorical tree characteristics, we used t-tests or analyses of variance (ANOVA) as 305 

appropriate.  We tested for a relationship between the presence-absence of A. 306 

cristatellus and the presence-absence of the four congeners using likelihood ratio 307 

tests.  We tested for effects using all trees sampled, as well as only those trees on the 308 

sections of transects with A. cristatellus present.  Analyses were conducted for trees 309 

on each plot separately and with trees from all plots pooled. 310 

 Relative abundances from the visual encounter surveys were not normally 311 

distributed, so we used a Wilcoxon test to evaluate whether differences existed 312 

between sites.  In particular, we predicted relative abundance of A. cristatellus 313 

would decrease when it is with other Anolis species compared to being alone.  Log-314 

transformation achieved normality for perch height and diameter, and we tested for 315 

a difference in these perch characteristics for A. cristatellus between sites with and 316 

without congeners using t-tests.   317 

 We compared lizard Tb and copper lizard model temperatures at the same 318 

locations using linear regression.  Using this calibration, we adjusted model 319 

temperatures to make them directly comparable to lizard Tb for both species.  We 320 

averaged model temperatures by hour and plotted them against time of day.  We 321 

compared these model temperature estimates (i.e., non-thermoregulating lizards) to 322 

field Tb collected at the same time of year, and literature estimates of preferred Tb 323 

and high temperature tolerance (i.e., critical thermal maximum, or CTmax) for A. 324 
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cristatellus (Huey and Webster 1976).  To investigate variation in field Tb of lizards, 325 

we conducted an analysis of covariance (ANCOVA) testing for differences among 326 

groups (i.e., A. cristatellus, A. sagrei, and random locations) with air temperature, 327 

time of day, and canopy openness as covariates.  We used the Johnson-Neyman 328 

procedure (White 2003) to determine the range of covariate values in which 329 

temperatures differed between groups when regression slopes were heterogeneous 330 

(i.e., a significant interaction between the main effect and covariate).   331 

 332 

 333 

Results 334 

 335 

Anolis cristatellus distribution in Miami 336 

 337 

 The combination of opportunistic surveys, visual encounter surveys, and 338 

transects resulted in fine-scale distribution data for A. cristatellus in key parts of the 339 

Miami metropolitan area (n=362 presence points and n=483 absence points; Fig. 1, 340 

Supplementary Fig. 1).  This species has expanded its core range from the original 341 

point of introduction no more than 2 km to the west, south, and east in South Miami, 342 

and  ~7 km to the northeast. A six-lane highway (i.e., the Dixie Highway/US 1) to the 343 

northwest of the core South Miami distribution appears to limit unaided dispersal.  344 

The introduction to Key Biscayne expanded across the majority of the island, but not 345 

across the bridge to Virginia Key or causeway to mainland Miami. 346 

 We detected seven disjunct populations ranging from < 1 to 20 km from the 347 

core distribution in South Miami.  These sites included several Miami-Dade County 348 

Parks (i.e., Chapman Fields, Kendall Indian Hammock, and Oak Grove) as well as the 349 

University of Miami campus and three residential areas.  We found A. cristatellus at 350 
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two of 13 waste transfer stations in Miami-Dade County (i.e., Chapman Fields and 351 

Sunset Kendall), but only when adjacent to forested parks.  Most waste transfer 352 

stations had only a few widely spaced trees and were surrounded by residential or 353 

commercial areas.  Other species were present at all waste transfer stations with A. 354 

distichus and A. sagrei being the most common.    355 

 356 

Tree characteristics 357 

 358 

 Transect surveys yielded observations on a total of 1035 trees.  At least one 359 

anole was present on 79% of the trees, and A. cristatellus occupied 25% of the trees 360 

(Table 3). The best models to estimate detection probabilities for each species were 361 

single season occupancy models including all three surveyors. Estimates of among-362 

surveyor detection probability for the focal species, A. cristatellus, ranged from 0.50-0.96 363 

among sites, and average detection probability for each surveyor for all sites was 364 

estimated at 0.63-0.90 (Supplementary Table 1). Total detection probability for the full 365 

model (all surveyors) was estimated at 0.88 (±0.12). These estimates for detection were 366 

high and therefore detection probabilities were not considered influential in subsequent 367 

analyses. The most likely models of tree characteristics found A. cristatellus 368 

associated with trees having larger trunks, larger canopies, greater percent of 369 

overstory canopy cover, and closer to other plants and trees (Tables 1 and 4).  These 370 

results suggest that A. cristatellus occupies relatively shady and densely vegetated 371 

areas.   372 

 Sections of transects with A. cristatellus present had a greater proportion of 373 

native trees (Χ2=12.3, df=1, P<0.001, n=937) and trees with smooth bark (Χ2=14.4, 374 

df=4, P<0.01, n=1035) as compared to transect sections with A. cristatellus absent.  375 
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In contrast, transect sections with and without A. cristatellus did not differ in the 376 

proportion of palm trees (Χ2=0.5, df=1, P=0.46, n=1028) or the number of trunks on 377 

trees (Χ2=4.3, df=2, P=0.12, n=1035).   378 

 Models for the abundance of A. cristatellus showed similar results with 379 

increased abundance associated with trees having larger trunks and canopies, 380 

greater percent of canopy cover, and closer to other plants (Table 4).  Anolis 381 

cristatellus abundance was twice as high on non-palm compared to palm trees 382 

(t=2.7, df=1026, P<0.01) and highest on trees with multiple trunks (F2,1032=14.9, 383 

P<0.0001), which were often large Ficus trees.  Abundance did not differ between 384 

native and non-native trees (t=-1.08, df=935, P=0.28) or among bark textures 385 

(F4,1030=1.57, P=0.18). 386 

 Analyses of A. cristatellus presence using GIS-based attributes were 387 

consistent with transect surveys.  Blocks with A. cristatellus present had more trees 388 

per km, greater canopy cover, denser vegetation, and less impervious surface area 389 

(Table 5A).  Similarly, when analyzing the presence-absence points across Miami, A. 390 

cristatellus was present at locations with less impervious surface and closer to 391 

larger blocks of forest but not smaller forest patches (Fig. 2; Supplementary Fig. 3; 392 

Table 5A).  The percentage of forested area was three times greater in the core area 393 

of A. cristatellus' distribution compared to the study area as a whole (Supplementary 394 

Table 2). Moreover, the percentage of the core area with high impervious surface (> 395 

40%) was about half as much as the study area as a whole (Supplementary Table 2).   396 

 397 

Congener presence 398 



 18 

 Pooling all trees sampled, A. distichus and A. sagrei were both significantly 399 

more likely to be absent when A. cristatellus was present than expected by chance, 400 

with effects involving A. sagrei being much stronger (Table 6A).  The presence of A. 401 

carolinensis or A. equestris had no effect.  When evaluating each plot separately, a 402 

negative effect was observed with A. sagrei for most plots, and with A. carolinensis 403 

and A. distichus in a few plots (Table 6A).  This suggests congeneric interactions may 404 

differ among plots.  All comparisons for individual transects were non-significant 405 

(results not shown).   406 

 Dividing each transect into sections based on A. cristatellus presence or 407 

absence, only A. sagrei was more likely to be absent where A. cristatellus was 408 

present (Table 6B).  There was no interaction with the less abundant species A. 409 

carolinensis and A. equestris.  In contrast to the analyses of all trees pooled, this 410 

analysis revealed no relationship between occurrence of A. distichus and A. 411 

cristatellus (Table 6B).  Potential interactions for A. cristatellus appear to be 412 

strongest with A. sagrei, followed by A. distichus, but little evidence existed for 413 

interactions with A. carolinensis or A. equestris. 414 

 415 

Relative abundance and habitat use 416 

 Relative abundance estimates from visual encounter surveys were consistent 417 

with the negative relationship between the presence of A. cristatellus and two of its 418 

congeners in Miami.  Anolis cristatellus was four times more abundant at sites with 419 

no congeners than in sites occupied by A. distichus and A. sagrei (mean±SE: 45.3±2.5 420 

versus 11.0±3.2 per survey; Wilcoxon: Z = 3.21, P<0.01).  Furthermore, at sites with 421 
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congeners, A. cristatellus perched nearly twice as high (mean±SE: 79.0±4.2 v. 422 

47.2±1.8; t=6.38, df=608, P<0.0001) and on trunk substrates twice as wide 423 

(mean±SE: 18.6±1.5 v. 9.5±0.67; t=6.1 df=604, P<0.0001), suggesting a possible shift 424 

in habitat use in the presence of congeners.   425 

 426 

Thermal microclimates and lizard body temperatures 427 

 We investigated the thermal consequences of canopy cover by comparing 428 

copper lizard model temperatures under trees with open versus shaded canopies.  429 

The percentage of overstory canopy cover ranged from 31-46% for the open canopy 430 

tree versus 89-91% for the shaded canopy tree (Supplementary Fig. 4).  Model 431 

temperatures for the two trees were similar through the night from ~1900 h to 432 

~0800 h (Fig. 3).  After 0800 h, model temperatures on the open canopy tree 433 

increased quickly, exceeding both shaded tree temperatures and preferred 434 

temperatures of A. cristatellus from 1000-1800 h.  While there was little variation in 435 

model temperatures among the sides of the shaded tree, temperatures on the sides 436 

of the open tree differed substantially from one another, with a maximum difference 437 

of 5.7°C at 1000 h. 438 

 Lizard Tb and model temperatures showed a strong positive correlation 439 

(r=0.91; P<0.0001, n=52), suggesting that models accurately reflected lizard body 440 

temperatures.  ANCOVA results showed all three covariates had significant positive 441 

effects on Tb/model temperatures (canopy openness: F1,83=46.42, P<0.0001; air 442 

temperature: F1,83=7.97, P=0.006; time of day: F1,83=23.51, P<0.0001; whole model 443 

R2=0.67).  Anolis sagrei field body temperatures (mean±SE: 31.2°C±0.4) were 444 



 20 

significantly higher than A. cristatellus temperatures (mean±SE: 28.8°C±0.4; 445 

F2,83=3.79, P=0.03; Tukey's HSD post hoc test P<0.05; Fig. 4).  However, because the 446 

species by canopy openness interaction was significant this main effect should not 447 

be interpreted directly but only in conjunction with the covariate.  The relationship 448 

between temperature and canopy openness had a much steeper slope for A. 449 

cristatellus compared to A. sagrei and random points (P<0.05 for comparison of 450 

slopes; Fig. 4).  The Johnson-Neyman procedure supported Tb differences between 451 

A. cristatellus and both A. sagrei and random points for relatively closed canopies 452 

(i.e., < 15% openness).  In summary, all covariates had significant effects on lizard 453 

Tb, but A. cristatellus had lower Tb compared to A. sagrei and the two species 454 

appeared to thermoregulate differently in closed canopy areas.  455 

 456 

 457 

Discussion 458 

 459 

 Since its introduction to South Miami over 40 years ago, A. cristatellus has 460 

spread only modestly by diffusion (~0.2-0.25 km/yr), much slower than some of the 461 

other introduced Anolis species in Miami and invasive species in general (Lockwood 462 

et al. 2007; Davis 2009).  A recent analysis shows an order of magnitude faster 463 

spread rates on average for exotic lizards and snakes (~3 km/yr) and invaders to 464 

the Nearctic (~5 km/yr; Liu et al. 2014).  Results from our study suggest that both 465 

abiotic and biotic factors contribute to the limited spread of A. cristatellus in urban 466 

Miami.  The fragmentation of suitable habitat is an abiotic constraint. The presence 467 

of A. cristatellus is strongly associated with forest habitats, which result in cooler 468 

and more humid microclimates (e.g., Wong and Yu 2005; Georgi and Zafiriadis 2006; 469 
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Millward et al. 2014; Ackley et al. 2015a; Fig. 3).  Because forests are patchily 470 

distributed in Miami (Fig. 2a), dispersal by diffusion will be limited by 471 

fragmentation caused by canals, non-forest habitats, and areas of impervious 472 

surface, such as buildings, roads, and parking lots (Fig. 2).  Therefore, human-473 

mediated dispersal may be an important mechanism for moving A. cristatellus to 474 

isolated patches of suitable habitat, which lizards are unable to reach via natural 475 

diffusion.  476 

 Interactions with ecologically similar congeners may be a biotic constraint.  477 

Anolis cristatellus is spreading into areas occupied by one or more additional Anolis 478 

species.  As expected, we found negative associations between A. cristatellus and 479 

ecologically similar A. sagrei and A. distichus, but weak or no relationship between 480 

the occurrence of A. cristatellus and A. carolinensis or A. equestris, which typically 481 

perch higher in the canopy (Losos 2009).  Ultimately, the relative abundance of each 482 

species and the extent to which they overlap on niche axes, such as structural 483 

habitat and thermal microclimate, will determine whether and how quickly A. 484 

cristatellus spreads to new areas.   485 

 486 

Effect of urban vegetation on the spread of A. cristatellus 487 

 The presence and abundance of introduced A. cristatellus in Miami are 488 

positively associated with larger trees, denser vegetation, greater canopy cover, 489 

proximity to forest, and less impervious surface.  These features are indicative of 490 

forest patches in the urban environment including parks and certain residential 491 

areas.  Previous studies show patterns of urban vegetation can be related to 492 
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numerous factors including socio-economics, remnant natural habitats, and 493 

neighborhood age and history (e.g., Nowak et al. 1996; Martin et al. 2004; Grove et 494 

al. 2006; Jenerette et al. 2007; Luck et al. 2009; Boone et al. 2010; Forman 2014).  495 

Anolis cristatellus was present in several tropical hardwood hammocks, including 496 

parks outside of its core distribution in South Miami. These disjunct populations 497 

suggest dispersal limitation, not lack of suitable habitat, slows the spread of A. 498 

cristatellus outside its core area in South Miami.  The patchwork of scarce suitable 499 

forested habitat in Miami will continue to limit the spread of A. cristatellus by 500 

diffusion, making human transport an important dispersal mechanism.  The 501 

presence of A. cristatellus at forested parks located adjacent to spatially isolated 502 

regional waste transfer stations suggests yard waste collection and transport may 503 

be one such method of dispersal.   504 

 Vegetation in some residential areas within the core distribution of A. 505 

cristatellus can change rapidly over short distances, likely affecting the ability of A. 506 

cristatellus to spread to new areas.  The transition from presence to absence of A. 507 

cristatellus coincides with an abrupt increase in impervious surface and a loss of 508 

forest habitat in some areas (see Fig. 2).  The current distribution of A. cristatellus 509 

includes mostly higher-income neighborhoods including parts of Coconut Grove, 510 

Coral Gables, Pinecrest, and Key Biscayne (American Community Survey 2013; see 511 

also Ackley et al. 2015b). Socio-economic factors influence surface temperatures 512 

primarily through their impact on vegetation cover (Grove et al. 2006; Jenerette et 513 

al. 2007; Boone et al. 2010); such that areas with dense, mature tree canopies will 514 

produce relatively cooler microclimates suitable for A. cristatellus.  These underlying 515 
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effects of urban vegetation on available microclimates provide a mechanistic 516 

understanding of the current distribution of A. cristatellus in Miami. Other studies of 517 

urban and fragmented landscapes show species presence connected with other key 518 

resources, such as prey availability (e.g., Sullivan et al. 2014), shelter availability 519 

(e.g., Fischer et al. 2005), and structural habitat (e.g., Sarre et al. 1995; Garden et al. 520 

2007; Santos et al. 2008) as well as urban development (e.g., Germaine and 521 

Wakeling 2001). Future studies should test whether socio-economic factors are 522 

correlated with vegetation and microclimates, and thus potentially useful for 523 

predicting the spread of A. cristatellus in Miami. 524 

 525 

Thermal microclimates 526 

 We found substantial temperature differences between copper lizard models 527 

on open versus shaded trees (Fig. 3). Non-thermoregulating lizards would 528 

experience a temperature difference of up to a 7.6°C in the morning (1000 h) and a 529 

5.7°C in the afternoon (1600 h). Open trees, but not shaded ones, experienced 530 

temperatures exceeding observed field Tb for A. cristatellus in the summer in Miami 531 

(Fig. 3). Denser overstory vegetation will produce relatively cooler microclimates 532 

favorable for A. cristatellus in the city. Shade from vegetation cooled buildings up to 533 

11.7°C during summer conditions in Toronto, Canada (Millward et al. 2014), and 534 

shade from individual trees in city parks decreased average air temperatures by 535 

10% and increased relative humidity by 18% in Thessaloniki, Greece (Georgi and 536 

Zafiriadis 2006).  Ackley et al. (2015a), using copper lizard models, found that 537 

microclimates in areas with mesic landscaping were 5-10°C cooler than those in 538 



 24 

native xeric landscapes, even though the mean surface temperature of Phoenix, 539 

Arizona, USA was 3°C warmer than the surrounding desert. Interestingly, surface 540 

temperatures in Phoenix were related to vegetation during the daytime and the 541 

proportion of paved area during the night (Buyantuyev and Wu 2010). Daytime 542 

temperatures may limit activity or approach maximum thermal limits, whereas 543 

nighttime temperatures likely influence metabolic costs during times of inactivity.  544 

Whether the distribution of A. cristatellus in Miami is limited by daytime 545 

temperatures driven by vegetation, nighttime temperatures related to impervious 546 

surfaces, or both is a key question for future study.   547 

 Copper lizard model temperatures do not account for the ability of lizards to 548 

thermoregulate.  If suitably cool microhabitats were nearby, lizards in open areas 549 

could behaviorally thermoregulate to preferred temperatures by shuttling between 550 

warm and cool spots, at the cost of increased movement rates.  The cost of 551 

thermoregulation is predicted to be lower in more open sites because of the shorter 552 

distance to sunny patches, which lowers the energetic cost of shuttling between sun 553 

and shade (Huey 1974; Huey and Slatkin 1976; Huey and Webster 1976; Angilletta 554 

2009).  Accordingly, previous studies of A. cristatellus in Puerto Rico found that 555 

lizards actively thermoregulate in open habitats, but thermoconform in less 556 

variable, closed canopy habitats (Huey and Webster 1976).  This versatility in 557 

thermoregulatory behavior suggests that A. cristatellus might occupy both open and 558 

closed canopy sites in Miami; however, A. cristatellus is generally restricted to 559 

relatively closed canopy locations (< 22% canopy openness; Fig. 4).   560 
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 Our results suggest at least two possible explanations for this pattern. The 561 

first is that A. cristatellus uses relatively cooler microclimates strictly due to its 562 

thermal requirements: open canopy areas in Miami may be too warm relative to the 563 

preferred temperature and upper thermal limit of A. cristatellus, and thus not 564 

suitable for this species (Fig. 3).  A second possibility is that A. cristatellus is 565 

excluded from warmer areas by the presence of A. distichus and A. sagrei, which 566 

both occupy warmer thermal niches than A. cristatellus (Huey and Webster 1976; 567 

Lee 1980; Gunderson and Leal 2012; Leal and Gunderson 2012; Kolbe et al. 2012, 568 

2014; this study).  The relative importance of these two factors on limiting the 569 

spread of A. cristatellus in the Miami area is an open question. These hypotheses 570 

need to be comprehensively evaluated by including sites where each species is 571 

present in the absence of the other as well as locations where they coexist.  The 572 

importance of microclimates to competitive interactions between the species, 573 

allowing coexistence or contributing to competitive exclusion, warrants further 574 

investigation. 575 

 During the summer in Miami, shade from urban vegetation is expected to 576 

produce microclimates closer to the preferred body temperature of A. cristatellus  as 577 

compared to more open areas (Fig. 3). Higher activity rates are predicted when 578 

lizards are closer to their preferred temperature (Gunderson and Leal 2015), 579 

allowing lizards to better forage, mate, defend their territories, and escape from 580 

predators. Mean body temperatures for A. cristatellus in Miami (28.8°C) and at low-581 

elevation, mesic sites in Puerto Rico (~ 29°C from numerous sites; Huey and 582 

Webster 1976; Hertz 1992a,b; Gunderson and Leal 2012) were similar to preferred 583 
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temperatures for lizards from three locations in Puerto Rico (range = 29.0-29.6°C; 584 

Huey and Webster 1976; Fig. 3).  This suggests that some aspects of the thermal 585 

niche of A. cristatellus are conserved between introduced populations in South 586 

Miami and their low-elevation source population in northeast Puerto Rico (Kolbe et 587 

al. 2007).  This similarity in field body temperatures occurs despite shifts in other 588 

aspects of their thermal niche, specifically the introduced population in South Miami 589 

rapidly acquired the ability to tolerate lower temperatures relative to its source 590 

population in Puerto Rico (see Kolbe et al. 2012; Leal and Gunderson 2012).   591 

  592 

Effect of species interactions on the spread of A. cristatellus 593 

 Interspecific interactions, primarily competition, are thought to be important 594 

factors structuring both native and introduced Anolis lizard communities (Losos et 595 

al. 1993; Losos 2009).  Previous experimental studies of anoles have found effects 596 

on abundance and structural habitat use consistent with interspecific competition 597 

when species coexist (e.g., Pacala and Roughgarden 1982; Rummel and 598 

Roughgarden 1985; Leal et al. 1998; Stuart et al. 2014).  In accordance with 599 

predictions based on ecological similarity (primarily perch height), A. cristatellus 600 

presence showed the strongest negative association with A. sagrei, followed by A. 601 

distichus, and in a few cases with A. carolinensis and A. equestris.  Thus, ecological 602 

similarity of interacting species may provide important information for predicting 603 

patterns of establishment and range expansion dynamics for introduced species.   604 

 The negative relationship between A. cristatellus and A. sagrei in Miami may 605 

be explained by resource competition and agonistic interference (Salzburg 1984, 606 
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Losin 2012). When A. cristatellus was experimentally removed from plots five years 607 

after its initial introduction in 1981, A. sagrei rapidly shifted back to the structural 608 

habitat previously occupied by A. cristatellus — off the ground, on to trunks, and to 609 

shadier sites (Salzburg 1984).  We found consistent patterns, with A. cristatellus 610 

occupying higher and broader perches as well as shadier microhabitats when 611 

sympatric with A. sagrei.  Additionally, A. cristatellus was far less abundant when 612 

coexisting with congeners compared to when alone. However, competitive 613 

interactions between A. cristatellus and A. sagrei may have changed over time with 614 

their coexistence.  Thirty years later, at the same site as Salzburg's experiment, 615 

another removal experiment did not influence habitat use or body condition of these 616 

two species (Losin 2012).  Furthermore, A. sagrei lizards found sympatric with A. 617 

cristatellus were less aggressive toward this species compared to A. sagrei from 618 

allopartric populations (Losin 2012).  Aggressive individuals facilitated the rapid 619 

range expansion of western bluebirds in the northwestern U.S., but following 620 

displacement of mountain bluebirds, their aggressive behavior decreased rapidly 621 

(Duckworth & Badyaev 2007).  Given that A. sagrei is ubiquitous in Miami and A. 622 

cristatellus is still spreading, the opportunity exists to study resource use and 623 

aggression of A. sagrei before and after the arrival of A. cristatellus.   624 

 625 

Summary 626 

The occurrence of introduced A. cristatellus in Miami is strongly associated 627 

with forest habitat — dense vegetation, high canopy cover and low impervious 628 

surface — and the lack of congeners, particularly A. sagrei.  Given the correlative 629 
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nature of our analyses, it is difficult to tease apart the causal effects of urban 630 

vegetation and species interactions for limiting the spread of A. cristatellus.  631 

However, because A. sagrei already occupies nearly all habitats in Miami and forest 632 

habitat is highly fragmented across the city, we predict that dispersal to forest 633 

habitat will be the primary factor limiting future spread of A. cristatellus.  Human-634 

mediated, sometimes long-distance, dispersal is likely to contribute to spread as 635 

well as movement by diffusion through corridors of suitable habitats.   636 
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Table 1.  Variables recorded at each tree along transects designed to cross the 647 

distributional boundary of A. cristatellus in the Miami metropolitan area. Tree 648 

characteristics relate to the focal tree sampled and its surrounding vegetation.  A 649 

total of 1035 trees were sampled on 19 transects in five plots.  Congener presence 650 

refers to the four other species of Anolis lizards with distributions that overlap with 651 

A. cristatellus in Miami.   652 

 653 

Variable Description 

Tree characteristics:  
Tree species Species of tree 
Native/non-native Native or non-native tree species 
Palm/non-palm Palm or non-palm tree species 
Trunk number Number of trunks ≥ 10 cm at 1.35 m height;  

Single, double, or multiple (> 2 trunks) 
Bark texture Overlapping (overlapping protrusions covering the 

trunk, such as palms covered with the bases of dead leaf 
pedicles); shallow furrows (bark with furrows, gaps, or 
cracks ≥ 0.5 cm and no overlapping or flaking); deep 
furrows (bark separating or flaking ≥ 0.75 cm over an 
area ≥ 2x4 cm) or smooth (lacking any of the above 
characteristics) 

Trunk diameter Diameter (cm) of trunk at 1.35 m height  
Canopy diameter Mean canopy diameter (m) estimated from several 

measurements of the radius of the canopy 
Distance to nearest plant Distance (m) to the nearest stem at 1.35 m height 
Distance to nearest tree Distance (m) to the nearest tree with a diameter ≥ 30 cm 

at 1.35 m height  
Overstory canopy cover Mean percent overstory canopy cover both facing 

towards and away from the road as measured using a 
spherical densiometer  

  
Congener presence:  
A. carolinensis Presence/absence of A. carolinensis 
A. distichus Presence/absence of A. distichus 
A. equestris Presence/absence of A. equestris 
A. sagrei Presence/absence of A. sagrei 
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Table 2. GIS attributes derived from maps of forest fragmentation (NOAA 2010), percentage of human-made impervious 
surface (MRLC 2011), and variables recorded along transects. 

GIS Attribute Description 

Block length  Length of each block in km 

Trees per km Number of trunks / Block length * 1000 

Block canopy density Number of trunks * Mean canopy diameter / Block length 

Canopy cover GIS Proportion of a 5-m buffer around the block transects including pixels classified as any type of forest 

Distance to nearest 
forest 

Distance (m) from each point to the center of the nearest pixel of any type of forest 

Distance to nearest 
patch forest 

Distance (m) from each point to the center of the nearest pixel of patch forest 

Distance to nearest 
block forest 

Distance (m) from each point to the center of the nearest pixel of non-patch forest (i.e., either 
perforated, edge or core forest) 

Forest class Indicates the type of forest for a point: 0 (no forest), 1 (patch), 2 (perforated/edge/core) 

Impervious surface 
(1 pixel) 

Value of the impervious raster pixel where each point is located (30m by 30m) 

Impervious surface 
(9 pixels) 

Average value of the 9 impervious raster pixels around each point (90m by 90m) 

Impervious surface 
(25 pixels) 

Average value of the 25 impervious raster pixels around each point (150m by 150m) 
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Table 3.  Counts for the number of lizards present on surveyed trees (n=1035) and the percent of trees occupied by the five 
Anolis species encountered on transects in Miami.  Results for each of three surveys are shown for A) all data, B) sections of 
transects where A. cristatellus is present, and C) sections of transects where A. cristatellus is absent.  The combined surveys 
column indicates whether a species was present on a tree in at least one of the three surveys; these data were used in analyses. 
 
  
A)              1st survey                         2nd survey               3rd survey          Combined surveys 
  Number of lizards    Number of lizards                 Number of lizards      Number of lizards 

Species 0 1 2 3 ≥4 % 0 1 2 3 ≥4 % 0 1 2 3 ≥4 % Absent Present % 

A. carolinensis 986 45 4 0 0 4.7 967 64 3 1 0 6.6 940 87 6 1 0 9.1 856 179 17.3 
A. cristatellus 895 107 23 7 3 13.5 873 119 29 12 2 15.7 895 115 17 5 3 13.5 781 254 24.5 
A. distichus 865 133 28 8 1 16.4 829 142 50 10 4 19.9 788 170 54 16 7 23.9 636 399 38.6 
A. equestris 1029 6 0 0 0 0.6 1029 6 0 0 0 0.6 1013 6 0 0 0 0.6 1018 17 1.6 
A. sagrei 838 135 43 10 9 19.0 812 157 47 8 11 21.5 831 142 36 11 14 19.6 660 375 36.2 

 
B)              1st survey                   2nd survey                    3rd survey                   Combined surveys 
  Number of lizards             Number of lizards           Number of lizards           Number of lizards 

Species 0 1 2 3 ≥4 % 0 1 2 3 ≥4 % 0 1 2 3 ≥4 % Absent Present % 

A. carolinensis 554 25 4 0 0 5.0 553 30 0 0 0 5.1 539 41 2 1 0 7.5 492 91 15.6 
A. cristatellus 443 107 23 7 3 24.0 421 119 29 12 2 27.8 443 115 17 5 3 24.0 329 254 43.6 
A. distichus 495 70 15 2 1 15.1 483 72 23 4 1 17.2 476 78 22 4 3 18.4 383 200 34.3 
A. equestris 578 5 0 0 0 0.9 579 4 0 0 0 0.7 579 4 0 0 0 0.7 571 12 2.1 
A. sagrei 492 66 17 3 5 15.6 496 61 16 4 6 14.9 512 51 11 4 5 12.2 428 155 26.6 

 
C)          1st survey              2nd survey           3rd survey               Combined surveys 
           Number of lizards        Number of lizards                 Number of lizards       Number of lizards 

Species 0 1 2 3 ≥4 % 0 1 2 3 ≥4 % 0 1 2 3 ≥4 % Absent Present % 

A. carolinensis 432 20 0 0 0 4.4 414 34 3 1 0 8.4 401 46 4 0 0 11.1 364 88 19.5 
A. cristatellus                     0.0 
A. distichus 370 63 13 6 0 18.1 346 70 27 6 3 23.5 311 92 32 12 4 31.0 253 199 44.0 
A. equestris 451 1 0 0 0 0.2 450 2 0 0 0 0.4 434 2 0 0 0 0.5 447 5 1.1 
A. sagrei 346 69 26 7 4 23.5 316 96 31 4 5 30.1 319 91 25 7 9 29.3 232 220 48.7 
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Table 4. Inferential statistics based on tree characteristics showing the most likely generalized linear models for presence-
absence of A. cristatellus when A) dividing sections of transects into areas with A. cristatellus present versus absent (two 
groups), B) comparing the presence versus absence of A. cristatellus on all trees pooled, and C) comparing the presence versus 
absence of A. cristatellus on trees within only the sections of transects with A. cristatellus present, and for abundance of A. 
cristatellus for D) all trees pooled and E) within only the sections of transects with A. cristatellus present.   
 

A)  

Effect Effect df Error df Z P 
Trunk diameter 1 1031 0.09 0.06 
Canopy diameter 1 1030 0.13 0.16 
Distance to nearest plant 1 1029 -0.53 < 0.0001 
Overstory canopy cover 1 1028 0.41 < 0.0001 
Note: second best model ΔAIC = 0.8; including the Distance to Nearest Tree effect; P=0.27. 
 

B) 

Effect Effect df Error df Z P 
Canopy diameter 1 1031 0.27 < 0.001 
Distance to nearest plant 1 1030 -0.86 < 0.0001 
Distance to nearest tree 1 1029 -0.20 0.05 
Overstory canopy cover 1 1028 0.90 < 0.0001 
Note: second best model ΔAIC = 1.6; including the Trunk Diameter effect; P=0.53. 
 

C) 

Effect Effect df Error df Z P 
Trunk diameter 1 580 0.51 < 0.0001 
Distance to nearest plant 1 579 -0.87 < 0.0001 
Overstory canopy cover 1 578 0.72 < 0.0001 
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Note: second best model ΔAIC = 1.37; including the Distance to Nearest Tree effect; P=0.43. 

 
D) 

Effect Effect df Error df Z P 
Trunk diameter 1 1031 4.46 < 0.0001 
Canopy diameter 1 1030 2.24 0.03 
Distance to nearest plant 1 1029 -5.71 < 0.0001 
Overstory canopy cover 1 1028 3.65 < 0.0001 
Note: second best model ΔAIC=1.23; including the Distance to Nearest Tree effect; P=0.38. 
 
E) 
 
Effect Effect df Error df Z P 

Trunk diameter 1 579 0.68 < 0.0001 
Distance to nearest plant 1 580 -0.34 < 0.0001 
Overstory canopy cover 1 578 0.32 < 0.0001 

Note: second best model ΔAIC=1.59; including the Canopy Diameter effect; P=0.52. 
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Table 5.  Inferential statistics for presence-absence of A. cristatellus showing the most likely generalized linear models when A) 
comparing street blocks with A. cristatellus present versus absent (n=93) and B) comparing the presence versus absence of A. 
cristatellus in 30 x 30 pixels (n=839).  Selection of most favored models was supported by a likelihood ratio test against 
reduced models containing only the intercept term (A: 2 = 51.19, P <0.0001; B: 2 = 203.24, P <0.0001).  

     
 
 

A)  

Effect Effect df Error df Z P 
Distance to nearest plant 1 92 -1.799 0.07 
Mean overstory canopy cover 1 92 2.007 0.05 
Trees per km 1 92 1.865 0.06 

% Impervious-raster 1 92 -2.386 0.02 

Note: second best model ΔAIC = 1.25; including the Distance to Nearest Tree effect; P = 0.39. 
 

B) 

Effect Effect df Error df Z P 
Distance to nearest patch forest 1 838 8.752 < 0.0001 
Distance to nearest block forest 1 838 -6.446 < 0.0001 
Impervious surface (1 pixel) 1 838 -2.947 < 0.01 

Impervious surface (25 pixels) 1 838 -4.318 < 0.0001 

Note: second best model ΔAIC = 1.06; including the Forest_Class effect; P = 0.39. 
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Table 6. Results of likelihood ratio tests to determine whether the presence-absence of A. cristatellus on trees in Miami was 
related to the presence-absence of each of its four congeners. We combined trees on transects from each of the five plots 
analyzing A) all trees pooled and B) only trees from sections of transects with A. cristatellus present.  
 
A) 

  A. carolinensis  A. distichus  A. sagrei  A. equestris  
Plot N Χ2 P Χ2 P Χ2 P Χ2 P 
Charles  163 5.71 0.02 17.92 < 0.0001 18.90 < 0.0001 0.26 0.61 
Le Jeune  125 0.25 0.61 0.27 0.60 4.21 0.04 7.32 < 0.01 
Ludlum  270 0.59 0.44 1.32 0.25 7.81 < 0.01 0.03 0.86 
Maynada  137 6.29 0.01 2.23 0.14 3.68 0.06 0.74 0.39 
SW 104  340 0.56 0.45 0.85 0.36 28.91 < 0.0001 0.76 0.38 
All Plots Combined  1035 2.38 0.12 7.21 < 0.01 59.19 < 0.0001 2.31 0.13 
 
B)  

  A. carolinensis  A. distichus  A. sagrei  A. equestris  

Plot N Χ2 P Χ2 P Χ2 P Χ2 P 
Charles  87 1.12 0.29 2.24 0.13 0.68 0.41 0.10 0.75 
Le Jeune  80 0.42 0.52 0.13 0.72 1.95 0.16 4.60 0.03 
Ludlum  215 0.00 0.99 0.39 0.53 7.52 < 0.01 0.04 0.85 
Maynada  48 5.55 0.02 5.35 0.02 1.70 0.19 1.32 0.25 
SW 104  153 0.20 0.65 0.53 0.47 3.34 0.07 2.77 0.10 
All Plots Combined 583 0.71 0.40 1.58 0.21 22.23 < 0.0001 1.08 0.30 
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Figures Captions 
Fig. 1.  Location of our study area in metropolitan Miami-Dade County of southeast 

Florida showing the core area in South Miami and sampling locations for A. 

cristatellus. Inset photo of a male A. cristatellus perched on a brick wall (J. Kolbe). 

 

Fig. 2.  Maps of a portion of the core area near Coconut Grove showing A. cristatellus 

presence and absence points and A) the four types of forest fragments and B) the 

percentage of impervious surface within 75 m. 

 

Fig. 3.  Mean temperatures for copper lizard models placed on the trunks of two 

trees, one with an open canopy and the other with a shaded canopy, in each cardinal 

direction.  Points are hourly means collected over a 3.5-day period in July 2014 

(error bars are omitted for clarity).  Patterned shading (gray) shows the range of 

field Tb for A. cristatellus in Miami during each hour from 0800-1400 from this study 

as well as the preferred Tb (light gray) and the critical thermal maximum (dotted 

line) of A. cristatellus measured for populations from Puerto Rico (Huey and 

Webster 1976). 

 

Fig. 4.   Relationships between lizard field body temperature or copper lizard model 

temperature and significant covariates from the ANCOVA: a) canopy openness, b) 

air temperature, and c) time of day for A. cristatellus (black circles), A. sagrei (white 

circles), and copper lizard models at random locations (gray circles) in South Miami.  

Separate slopes are shown for the significant temperature by canopy openness 

interaction. 
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Fig. 1.   

Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user

community, Sources: Esri, GEBCO, NOAA, National Geographic, DeLorme, HERE,
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Fig. 2.   

A) 
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B) 
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Fig. 3.   
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Fig. 4.    
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Supplementary	Table	1.		Estimates	of	detection	probability	calculated	from	single-
season	presence-absence	occupancy	models	using	sampling	covariates	of	each	
surveyor	and	all	surveyors	combined.	Models	were	built	using	three	repeat	surveys	
of	38	independent	sampling	points.	Mean	values	are	shown	with	1	SE	in	
parentheses.		No	variation	exists	for	PV	detection	probabilities	because	this	
surveyor	was	present	for	each	sampling	event.		Low	detection	probabilities	for	A.	
equestris	likely	reflect	the	low	numbers	observed	for	this	species	(Table	3).		
Estimates	of	detection	probabilities	for	the	three	most	common	species	were	
sufficiently	high	(>	0.87)	to	consider	detection	unlikely	to	influence	subsequent	
analyses	of	presence-absence	and	abundance.		
	
	
	
		 Model	

	 	 		Species	 psi(.),p(JJK)	 psi(.),p(PV)	 psi(.),p(RS)	 psi(.),p(All	Surveyors)	
A.	cristatellus	 0.9003	 0.6340	 0.7781	 0.8807	

	
(0.039)	 (0.000)	 (0.035)	 (0.020)	

A.	sagrei	 0.7368	 0.9298	 0.5921	 0.9298	

	
(0.033)	 (0.000)	 (0.024)	 (0.012)	

A.	distichus	 0.7018	 0.8772	 0.6097	 0.8772	

	
(0.028)	 (0.000)	 (0.028)	 (0.006)	

A.	carolinensis	 0.6524	 0.7240	 0.5766	 0.7302	

	
(0.021)	 (0.000)	 (0.020)	 (0.010)	

A.	equestris	 0.4021	 0.2323	 0.4479	 0.2056	
		 (0.014)	 (0.000)	 (0.013)	 (0.009)	
	



Supplementary	Table	2.		Proportion	of	forest	fragmentation	using	previously	
defined	forest	categories	and	impervious	surface	cover	using	two	spatial	scales	for	
the	study	area	and	core	area	in	the	Miami.	
	 	 	 	

Attribute	 Category	 Proportion	of	
Study	Area	
(1,511	km2)	

Proportion	of	
Core	Area	
(33.63	km2)	

Forest	fragmentation	 Core	Forest	 0.02	 0.06	
	 Patch	Forest	 0.03	 0.06	
	 Perforated	Forest	 0.00	 0.01	
	 Edge	Forest	 0.03	 0.13	
	 Non-forest	 0.92	 0.73	
Impervious	surface	cover	(within	15m)	 0-20%	 0.43	 0.59	
	 21-40%	 0.27	 0.28	
	 41-60%	 0.18	 0.08	
	 61-100%	 0.13	 0.06	
Impervious	surface	cover	(within	75m)	 0-20%	 0.47	 0.57	
	 21-40%	 0.20	 0.26	
	 41-60%	 0.16	 0.09	
	 61-100%	 0.17	 0.08	
	
	 	



Supplementary	Fig.	1.		The	distribution	of	A.	cristatellus	in	the	Miami	metropolitan	
area	showing	presence	(purple)	and	absence	(white)	points	for	a)	the	entire	area	
surveyed	including	regional	waste	transfer	stations	and	municipal	parks	and	b)	a	
view	of	the	core	distribution	in	South	Miami	and	Key	Biscayne	(see	attached	.kmz	
file).			
	
a)	

	
	



b)	

	
	
	 	



Supplementary	Fig.	2.		Map	showing	the	location	of	the	five	plots	and	19	transects	in	
South	Miami	used	to	survey	for	the	presence	of	A.	cristatellus.		We	established	plots	
crossing	observed	transitions	from	presence	(red	rectangles)	to	absence	(white	
rectangles)	of	A.	cristatellus	based	on	preliminary	surveys.	In	each	plot,	we	
established	three	to	six	roadside	transects	(blue	lines)	running	perpendicular	to	the	
transition	zone.	
	

		 	



Supplementary	Figure	3.		GIS-based	map	for	a	portion	of	the	distribution	of	A.	
cristatellus	in	Coconut	Grove	showing	presence	and	absence	points	and	a)	
percentage	of	impervious	surface	divided	into	four	categories	and	b)	the	four	forest	
fragmentation	types.		This	is	a	color	version	of	Fig.	2.			
	
a)		

	
	 	



b)		

	

	 	



Supplementary	Figure	4.		Overstory	canopy	photos	facing	in	the	four	cardinal	
directions	for	representative	a)	shaded	and	b)	open	canopy	trees.		Percentage	of	
overstory	cover	is	shown	next	to	each	photo.			
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