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a b s t r a c t

An important question in automated driving research is how quickly drivers take over con-
trol of the vehicle in response to a critical event or a take-over request. Although a large
number of studies have been performed, results vary strongly. In this study, we investi-
gated mean take-over times from 129 studies with SAE level 2 automation or higher. We
used three complementary approaches: (1) a within-study analysis, in which differences
in mean take-over time were assessed for pairs of experimental conditions, (2) a
between-study analysis, in which correlations between experimental conditions and mean
take-over times were assessed, and (3) a linear mixed-effects model combining between-
study and within-study effects. The three methods showed that a shorter mean take-over
time is associated with a higher urgency of the situation, not using a handheld device, not
performing a visual non-driving task, having experienced another take-over scenario
before in the experiment, and receiving an auditory or vibrotactile take-over request as
compared to a visual-only or no take-over request. A consistent effect of age was not
observed. We also found the mean and standard deviation of the take-over time were
highly correlated, indicating that the mean is predictive of variability. Our findings point
to directions for new research, in particular concerning the distinction between drivers’
ability and motivation to take over, and the roles of urgency and prior experience.

� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Until automated driving systems are capable of performing all driving tasks under all road conditions (i.e., full automation
as defined by SAE International, 2016), drivers will have to take over control when the automation fails or reaches its oper-
ational limits. Partial automation (SAE L2), which is already made available by several car manufacturers, requires drivers to
monitor the road and to be prepared for immediate intervention in case of critical events. At higher levels of automation (SAE
L3 ‘conditional automation’ and L4 ‘high automation’), drivers are allowed to engage in non-driving activities, while the
automation executes the monitoring task and issues a take-over request (TOR) when the driver has to intervene. How long
it takes drivers to reclaim manual control and what factors determine take-over time are important questions for both sci-
entific researchers and automobile manufacturers.
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1.1. Driver take-over process and response times

The driver take-over process comprises several information-processing stages: perception of visual, auditory, and/or
vibrotactile stimuli, cognitive processing of the information, response selection (decision making), resuming motor readiness
(by repositioning the hands and feet on the steering wheel and pedals), and the actual action (e.g., steering and braking input
to the vehicle) (Gold & Bengler, 2014; Gold, Damböck, Lorenz, & Bengler, 2013; Petermeijer, De Winter, & Bengler, 2016;
Zeeb, Buchner, & Schrauf, 2015; Zhang, Wilschut, Willemsen, & Martens, in press). Gold, Damböck et al. (2013) described
four response (RT) measures: (1) gaze response time, (2) eyes-on-road time, (3) hands-on-wheel response time, and (4)
take-over time (i.e., intervention time). In addition, researchers have used task-specific measures, such as hand-
movement response time (e.g., Kerschbaum, Lorenz, & Bengler, 2015; Kerschbaum, Omozik, Wagner, Levin, Hermsdörfer,
& Bengler, 2017; Zhang et al., in press), mirror check response time (e.g., Gold, Damböck et al., 2013; Vogelpohl, Kühn,
Hummel, Gehlert, & Vollrath, 2018) and lane change response time (e.g., Petermeijer, Cieler, & De Winter, 2017; Eriksson
et al., 2019). Although different response time measures can be distinguished, take-over time (TOT), defined as the time that
drivers take to resume control from automated driving after a critical event in the environment or after having received a
TOR, appears to be the most frequently used measure in the literature.

The temporal sequence of the take-over process is illustrated in Fig. 1. Typically, the driver has to take over within the
‘time budget’ available until the system limit of the automation is reached. Such system limits may comprise an upcoming
collision (e.g., with a stationary vehicle in the ego lane) or operational limits of the automated driving system (e.g., due to
missing lane markings). If drivers do not take over within the available time budget, serious safety issues may occur.

1.2. Previous review studies

The empirical literature reports a wide range of TOT values. For example, De Winter, Stanton, Price, and Mistry (2016)
reported a mean TOT of 0.87 s (SD = 0.24 s) when the participants were required to brake in response to a salient red stop
sign, whereas, in Politis et al. (2018), participants took over control on average 19.8 s (SD = 9.3 s) after the onset of a 60 s
countdown TOR.

Several researchers have provided narrative reviews of TOT studies. Radlmayr and Bengler (2015) summarised eleven
studies that investigated the effect of take-over time budget and concluded that longer time budgets are associated with
longer TOTs and better take-over quality. A time budget smaller than 7 s was regarded as insufficient for a fully distracted
driver to successfully take over control. Vogelpohl, Vollrath, Kühn, Hummel, and Gehlert (2016) provided an overview of 22
TOT studies involving a transition from highly automated driving (SAE L3) to manual driving and identified potentially influ-
ential factors related to the environment, the driver, the human-machine interface, and the vehicle. The authors suggested
that the complexity of the take-over situation, the modality of the TOR, and the non-driving task (NDT) performed at the
moment of the TOR are important factors. Furthermore, a traffic situation of high complexity and engagement in NDTs were
argued to lead to slow responses, whereas multi-modal TORs shortened the TOT and improved the take-over quality. In
another literature survey, Walch et al. (2017) discussed 17 take-over studies, focusing on the effect of the time budget, traffic
complexity, NDT, and driver age. The authors concluded that 10 s seems an adequate time budget, while pointing out that
the driver state and situational circumstances affect the driver’s ability to take over control. Vogelpohl et al. (2016) and
Walch et al. (2017) both noted that outcomes were sometimes inconsistent between the surveyed studies. For example,
it was observed that Gold, Berisha, and Bengler (2015) and Petermann-Stock, Hackenberg, Muhr, and Mergl (2013) reported
significantly longer TOTs when the participants were engaged in visual-motor NDTs compared to cognitive-auditory NDTs,
whereas this effect was not statistically significant in the experiment by Radlmayr, Gold, Lorenz, Farid, and Bengler (2014).
Another example of an inconsistency is that a negative effect of higher traffic complexity on TOT was found in Radlmayr et al.
(2014) and Gold, Lorenz, and Bengler (2014), but not in Shen and Neyens (2014). This heterogeneity suggests that a larger
number of studies need to be reviewed to draw reliable conclusions.

Fig. 1. Illustration of the take-over procedure. The present meta-analysis focuses on the take-over time (TOT), defined as the time between the take-over
stimulus (take-over request or critical event in the environment) and the intervention by the driver.
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Although a number of narrative reviews exist, little effort has been devoted to quantitatively synthesising the available
TOT studies. Eriksson and Stanton (2017) reviewed 25 take-over studies; they extracted 43 take-over time budgets (lead
times) which varied between 0 and 30 s (mean = 6.37, SD = 5.36 s), and 87 TOTs from 1.14 s to 15 s (mean = 2.96,
SD = 1.96 s). The authors noted that 3 s, 4 s, 6 s, and 7 s were the most frequently used time budgets and that the correspond-
ing mean TOTs were 1.14, 2.05, 2.69, and 3.04 s. Apart from the time budget, Eriksson and Stanton (2017) did not review the
effect of study variables that may affect the TOT. Gold, Happee, and Bengler (2018) provided a predictive model of TOTs
based on the datasets obtained from six driving simulator experiments. Out of the seven variables considered in the model,
the time budget, traffic density, and repetition (i.e., prior experience) turned out to be significant predictors, whereas driver
age, physical and cognitive load of NDT, and the lane in which the ego car was driving (i.e., left, right, or middle) showed only
minor effects. A limitation of Gold, Happee et al. (2018) is that only six experiments were analysed and that the experimental
settings were similar (i.e., in all the experiments, the take-over scenario was represented by two crashed vehicles blocking
the ego lane).

The above reviews suggest that the time budget potentially affects TOTs. However, the existing reviews have several lim-
itations. First, the available reviews analysed only a small number of study variables. Second, most reviews did not numer-
ically synthesise the effects of study variables. Third, the number of reviewed studies is small: The maximum number of
studies reviewed was 25 (Eriksson & Stanton, 2017), while this study included 129 TOT studies.

1.3. Research objectives

As pointed out above, there is a need for a new quantitative synthesis of the various TOT studies, having a higher statis-
tical power (i.e., a larger number of included studies) and broader scope (i.e., multiple variables examined simultaneously) as
compared to previous reviews. We conducted a comprehensive search of empirical studies and employed meta-analytic
methods to examine the predictors of TOT.

Cronbach (1975) discussed two disciplines of scientific psychology: experimental psychology, which is concerned with
studying the effects of experimental manipulations, and correlational psychology, which is concerned with understanding
differences between individuals and groups. In his work, Cronbach called for combining these two disciplines. A similar
approach was followed in the present paper.

First, a within-study meta-analysis was performed to summarise studies that compared pairs of experimental conditions.
The within-study analysis describes how mean TOTs are affected by a particular study variable when holding all other study
variables constant, thus allowing for statements about causal effects.

Second, because individual experiments typically manipulate only a small number of variables, while experimental con-
ditions differ across studies, we also examined the associations between experimental conditions and TOTs. The second
approach concerned a correlation analysis to examine the relationships between the mean TOTs and a comprehensive list
of study variables (related to the driver, the automation system, the human–machine interface, the take-over situation,
and the experimental set-up) across all studies. The between-study analysis allows for predicting under which experimental
conditions the mean TOTs will be low or high.

Third, the within-study experimental approach and the between-study correlational approach were united in a linear
mixed-effects model. The mixed model allows for a powerful analysis of the effects of study variables while controlling
for the confounding effect of the other study variables.

At the end of the paper, we discuss the similarity in the outcomes of the three methods. Consistent results across all three
methods suggest high robustness and generalizability.

2. Methods

This study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (Moher, Liberati, Tetzlaff, & Altman, 2009). The PRISMA checklist is available in the supplementary
materials. No protocol was generated or registered.

2.1. Information sources and search strategy

We conducted a literature search with the aim to retrieve as many take-over studies as possible, including grey literature
records to minimize publication bias (Rothstein, Sutton, & Borenstein, 2005). Multiple search strategies were used, such as
database searching (Google Scholar, ResearchGate), scanning the reference lists of papers, using the ‘cited by’ feature of Goo-
gle Scholar, snowballing strategies (Jalali & Wohlin, 2012), and asking fellow researchers for relevant studies. Most searches
were conducted using Google Scholar, as it is the most comprehensive search engine, especially for works of the 21st century
(De Winter, Zadpoor, & Dodou, 2014; Martín-Martín, Orduna-Malea, Thelwall, & López-Cózar, 2018). Typically used key-
words were ‘takeover’, ‘take over’, and ‘transition of control’ in combination with domain-specific keywords, to minimize
false positives (e.g., ‘automated driving’, ‘driverless’, or the names of often-cited authors such as ‘Bengler’ or ‘Merat’). The
searches were performed between October 2, 2016 and December 17, 2018.
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2.2. Eligibility criteria

To be included in this review, studies had to fulfil the following six criteria:

1. The study had to involve a transition from partially, conditionally, or highly automated driving (i.e., SAE L2 and above;
hands off the steering wheel and feet off the pedals) to manual driving.

2. The study had to involve an automation-to-manual take-over performed by a human (e.g., braking, steering, button
pressing).

3. The study had to involve a transition in response to a TOR or a critical event in the environment. That is, this meta-
analysis includes only ‘mandatory driver-in-control (DC) transitions’ as defined by Lu, Happee, Cabrall, Kyriakidis, and
De Winter (2016). Studies in which more than one take-over stimulus (i.e., both a TOR and a critical event in the envi-
ronment) was presented at different moments were not included, because in such cases it cannot be determined to which
stimulus the participants responded. For example, in Körber, Baseler, and Bengler (2018), the obstacle was visible three
seconds before the TOR, and the drivers were, therefore, able to take over control before the TOR.

4. The study had to report a mean or median take-over time (TOT), or the mean/median TOT should be calculable from the
information reported.

5. In the text of the paper, the TOT had to be defined as the time interval between the initiation of the take-over stimulus
(i.e., the onset of the TOR or the start of an environmental event that can initiate driver take-over) and the moment of
driver intervention (by means of braking, steering, or button pressing).

6. The study had to be written in English or German.

All types of studies were eligible, including journal publications, papers from conference proceedings, theses, reports, pos-
ters, and presentation slides. If a publication contained more than one experiment, we considered each experiment as a sep-
arate study. We applied no restriction on the year of publication.

2.3. Study selection and data extraction

After initial scanning and filtering, we retrieved 299 potentially relevant full-text records, which were further reviewed
for eligibility. After removing 30 duplicate records and 1 record written in a language other than English or German (Japa-
nese), 149 records were excluded for the following reasons: no TOT was measured (103 records), no mean/median TOT was
reported (8 records), TOT was not defined according to the fifth eligibility criterion or the TOT measurement was not clearly
described (18 records), participants were required to have at least one hand on the wheel during automated driving (4
records), or multiple take-over stimuli were presented at different moments (16 records). In the end, 129 studies from
119 records met the inclusion criteria. These studies comprised 520 mean or median TOT observations. In studies where
mean TOT values were only available in figures, the numerical values were extracted using the online tool WebPlotDigitizer
(Rohatgi, 2017). Besides the mean and median TOT, which are measures of central tendency and our primary meta-analysis
outcome of interest (see Section 1.1), we also extracted the standard deviation of the TOT as an index of variability.

The data extraction and variable coding (described in Section 2.4.2) were conducted by the first author. The second author
supervised the process using a file hosting service (Dropbox), conducted multiple manual inspections of the annotated val-
ues, and corrected errors.

Ten of the included studies reported no mean TOT, but only the median TOT. Since the distribution of human response
times is right-skewed, using unadjusted medians together with means would induce bias. To reduce this bias, we applied
a multiplication factor of 1.123 to the median TOTs to obtain an estimate of the corresponding mean TOTs. This correction
factor was established from the means and medians from 14 included studies in which both values were reported.

An examination of the included studies showed similar experimental methods. That is, almost all studies used a virtual
driving simulator and measured the TOT from the simulator sensor data (i.e., brake pedal depression or steering wheel
angle). Although the studies involved simulators of different fidelity levels (e.g., motion base vs. no motion base), different
experimental designs (e.g., between-subjects vs. within-subjects), and different experimental protocols (in terms of e.g., par-
ticipant training, instruction, duration, and breaks), these differences provided no meaningful basis for assessing the study
quality. Hence, we did not code the quality of individual studies and considered them of equal importance.

Furthermore, we did not apply weights that depend on sample size (e.g., Hedges & Vevea, 1998; Schmidt & Hunter, 2015).
A preliminary analysis showed a substantial skewness of the sample size distribution, with a few large-sample studies
including over 100 participants and many moderate-sample studies of about 20 participants. The use of unit weights has
been recommended when the sample sizes are unequal, to avoid that the meta-analysis outcome is dominated by a small
number of large-sample studies (Osburn & Callender, 1992). Our choice for unit weights is in line with simulation studies
showing that unit weights offer similar or sometimes even superior predictive validity as compared to procedures that
involve weighting (Bobko, Roth, & Buster, 2007; Einhorn & Hogarth, 1975). Unit weights are not estimated from the data
and therefore do not have standard errors, as a result of which they can contribute to reduced estimation error as compared
to a weighted average, especially when sample sizes and effect sizes are unequal (Bonett, 2008; Einhorn & Hogarth, 1975).
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2.4. Analysis methods

2.4.1. Within-study analysis
In the within-study analysis, pairs of experimental conditions were categorised (e.g., no NDT vs. NDT, young participants

vs. old participants, etc.). A meta-analysis was performed for a category when at least four studies were available in that cat-
egory, following the recommendation by Fu et al. (2011). The 21 identified categories are shown in Fig. 3.

Because all studies used the same unit to measure TOTs (seconds), the meta-analyses were performed on the raw
(unstandardized) difference between mean TOTs (D). The use of Ds allows for intuitive interpretations as compared to stan-
dardised effect size measures (Bond, Wiitala, & Richard, 2003; Higgins & Green, 2005). In other words, we described the
effect of an independent variable in seconds instead of a dimensionless index such as Cohen’s d. The use of seconds as a unit
allows for easy interpretation in regard to practical applications (e.g., time budgets, look-ahead time of sensors) and the sci-
entific literature in general (e.g., literature about brake response times, psychometric literature about reaction times).

The outcome of the meta-analysis was the unweighted average D per category. An absolute average D of 1 s was inter-
preted as a strong effect, and an absolute average D of 0.5 s was interpreted as a moderate effect.

In addition, we examined whether the D values differ from 0 (i.e., no effect), using a two-sided Wilcoxon signed-rank test
with an alpha value of 0.05. This statistical test is conservative because a significant effect (p < 0.05) can only be obtained
when six or more studies (D values) are available (i.e., 2 * 0.56 = 0.031 < 0.05).

2.4.2. Between-study analysis
In the between-study analysis, we examined the correlations between 18 study variables (Table 1) and the mean TOTs.

The 18 selected study variables were related to the driver, the automation system, the human-machine interface, the take-
over situation, and the experimental set-up. More specifically, the variables concerned the mean age of participants, simu-
lator fidelity, the level of automation, the modality of the TOR, the non-driving task (the modality of the task and if a device
needed to be held in the hands), and the take-over situation (urgency of the scenario, complexity of the required driver
response, and interaction with other road users). The selection of the study variables was based on the narrative reviews
introduced above, studies providing guidelines for human factors research in the automated driving domain (e.g., De
Winter, Happee, Martens, & Stanton, 2014; Gold, Naujoks, Radlmayr, Bellem, & Jarosch, 2018; Naujoks, Befelein,
Wiedemann, & Neukum, 2017), and previous studies concerning driver response times in manual driving (e.g., Green,
2000; Summala, 2000). These variables were also selected based on whether they were available from the papers. For exam-
ple, the physical intensity of the TOR, the level of drowsiness of the driver, and the duration of automated driving were not
included as study variables, because these variables were often not documented, even though they are likely to affect the
mean TOT.

We used Pearson product-moment correlations (equivalent to point-biserial correlations if the study variable is binary)
and Spearman rank-order correlations to describe the relationships between the mean TOT and the study variables. The
Spearman rank-order correlation is robust to tailed distributions and outliers.

A standard technique for assessing publication bias is to create a scatter plot showing the study outcome measures on the
x-axis and a measure of sample size or precision on the y-axis, also called a funnel plot. An asymmetric relationship, where
there exists a correlation between sample size and outcome measure, can be indicative of publication bias (Begg &
Mazumdar, 1994; Egger, Smith, Schneider, & Minder, 1997; Deeks, Macaskill, & Irwig, 2005). We expected no effects of pub-
lication bias regarding the mean TOT, as high and low TOTs could be regarded as equally interesting to authors, publishers,
and editors. Nonetheless, we assessed whether the mean TOT was correlated with the corresponding sample size.

Additionally, we computed correlations between sample size and all study variables (Table 1). These correlations allowed
us to determine whether larger studies were associated with specific types of study design.

2.4.3. Linear mixed-effects model
We estimated a linear mixed-effects model describing the impact of the study variables on the mean TOTs, using the same

dataset as the between-study analysis. A study-specific error term #was introduced to capture unobserved effects that affect
mean TOTs within a study (i.e., the intercept differs between studies).

The model was estimated using the ‘Mixed Model’ command in SPSS 24 (IBM Corporation, 2016) with the estimation
method restricted maximum-likelihood (REML) (Molenberghs, Kenward, & Verbeke, 2009; Zuur, Leno, Walker, Saveliev, &
Smith, 2009). Goodness-of-fit measures (log likelihood) and information criteria (AIC, BIC) were used to compare alternative
model specifications. The SPSS script is provided in the supplementary materials.

A log-normal probability density function was found to fit the mean TOT distribution better than the normal probability
density function. All variables listed in Table 1 were tested as potential explanatory factors. The variables included in the
final specification were selected based on their meaning (i.e., we selected non-redundant variables) and statistical signifi-
cance (p < 0.05). One parameter was associated with each level of the explanatory variables and differences between levels
were tested by comparing alternative model specifications. Levels that did not differ significantly were merged. Variables
that had a non-significant impact on the mean TOTs were excluded one by one. When a variable could not be extracted from
one or more studies, a dummy variable was created to indicate the missing values. This variable was included in the model
equation in addition to the original variable (dummy variable adjustment method). The advantage of this approach is that all
observations could be analysed.
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Table 1

Study variables and coding.

Study variable Coding Description

1. Age (AGE) Years Mean age of the participant group.

2. Level of
automated
driving (LAD)

0 = L2; 1 = L3 and above The level of automated driving (SAE International, 2016) as
reported by the authors of the paper. In L2 automated driving,
participants are in charge of the monitoring task. In L3
automated driving and above, the drivers are not supposed to
monitor the driving environment.

3. Simulator
(SIM)1

0 = low fidelity A desktop-based simulator or a simulator providing the
environment through computer monitors.

1 = medium fidelity An instrumented-cabin simulator or a simulator providing more
than 120 deg horizontal field of view.

2 = high fidelity A simulator with motion platform or a real car.

4. Visual TOR
(TOR_V)

0 = no; 1 = yes Whether the TOR contains a visual stimulus.

5. Auditory TOR
(TOR_A)

0 = no; 1 = yes Whether the TOR contains an auditory stimulus. We applied no
differentiation between vocal and acoustic TORs.

6. Vibrotactile TOR
(TOR_VT)

0 = no; 1 = yes Whether the TOR contains a vibrotactile stimulus (i.e., vibrations
are provided on one or more locations on the human body).

7. Presence of TOR
(TOR_P)

0 = no; 1 = yes Whether a TOR is implemented.

8. Visual NDT
(NDT_V)

0 = no; 1 yes Whether the NDT is visual (e.g., reading, watching a movie).

9. Auditory NDT
(NDT_A)

0 = no; 1 = yes Whether the NDT is auditory (e.g., listening to the radio,
watching movies with sound, communicating with the
instructors and answering questions verbally).

10. Motoric NDT
(NDT_M)

0 = no; 1 = yes Whether dynamic operation by hand is needed to perform the
NDT (e.g., texting and tapping).

11. Cognitive load
(NDT_C)

0 = normal cognitive load;
1 = high cognitive load

NDTs that require working memory (e.g., N-back task) were
assigned to the high cognitive load category. Otherwise, the task
was assumed to involve normal cognitive load.

12. Hand holding a
device (HAND)

0 = hands-free (No non-driving task, the non-driving task
does not require a device, or the non-driving task is
performed using a fixed device);
1 = handheld

Whether a device is handheld when undertaking the non-
driving task.

13. Presence of a
non-driving
task (NDT_P)

0 = no; 1 = yes Whether a non-driving task is performed.

14. Time budget to
collision
(TBTC)1

Ratio variable The available time budget for a response from the initiation of
the take-over stimulus until the collision with an obstacle.

15. Time budget to
other
boundaries
(TBTB)1

Ratio variable The time from the initiation of the take-over stimulus until
reaching the boundaries of the automated driving system other
than collisions (e.g., due to the end of the automated zone,
missing lane markers, or system failure).

16. Urgency
(URG)1

0 = low urgency No foreseeable collision risk or a high time budget to collision
(�15 s).

1 = medium urgency Potential collision risk or disturbance to other road users if no
response was made (e.g., the ego car drifting to the adjacent lane
containing traffic), or a medium time budget (between 8 s and
15 s).

2 = high urgency Immediate risk of collision (time budget � 8 s) if no response
was made, or the participants were instructed to react to a
stimulus as quickly as possible.

17. Driver
response
(DRE)1

1 = low complexity The participant had to take over control on a straight road by
stabilising the vehicle in its lane.

2 = medium complexity The take-over scenarios required a specific driver response
(braking or steering), such as when encountering a road
narrowing, road constructions, or decelerating vehicles ahead, or
when having to take over control on a curvy road.
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3. Results

3.1. Study characteristics

The 129 included studies yielded 520 mean TOT observations from 4556 participants. 45 studies were conducted in a high
fidelity driving simulator with motion platform (40 studies) or in a real car (5 studies). The 129 studies comprised 68 papers
from conference proceedings, 40 journals articles, 3 technical reports, 16 chapters from a PhD or master thesis, and 2 posters.
The year of publication ranged between 2000 and 2018, with the majority of the studies being published in and after 2015
(116 out of 129). A list of the included studies, the scores per study variable, and a MATLAB script that processes these data
are provided in the supplementary materials.

The mean TOT across studies and conditions ranged from 0.69 s to 19.79 s, and the average mean TOT was 2.72 s
(SD = 1.45, n = 520). Fig. 2 shows the distribution of the mean TOTs, which is right-skewed.

3.2. Within-study analysis

Twenty-one categories with four or more studies were identified in the experimental analysis. Fig. 3 shows the average
difference in mean TOTs (D) for each category (squares), as well as the Ds from each study (smaller circles). The presence of
non-driving tasks and the modality of the take-over request (TOR) were frequently used independent variables.

The following statistically significant findings stand out from Fig. 3:

Table 1 (continued)

Study variable Coding Description

3 = high complexity The take-over scenario requires complex driver decision making.
The participant had to decide whether to brake or steer in
response to the event.

18. Interaction
with other road
users (IRU)

0 = no There were no other road users around, or other road users could
not affect the driver’s decision-making.

1 = yes The participants had to take into account one or more other road
users when choosing their optimal take-over action. For
example, participants had to take over control while driving in
the middle lane while the left lane contained traffic.

1 Note. The fidelity of the simulator was identified according to DeWinter, Happee et al. (2014). The classification of URG and DRE was adapted from Gold,
Naujoks et al. (2018). URG combines the TBTC and TBTB variables. TOR = Take-over request, NDT = Non-driving task.

Fig. 2. Distribution of 520 mean take-over times (TOTs) reported in the included studies. The bin width is 0.25 s.
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� A strong effect of time budget was found, with a higher mean TOT (average D = 1.35 s) for a large time budget compared
to a small time budget.

� The mean TOT was substantially lower when taking over control for the second time (when asked to take over twice in
the same driving session or perform the same scenario in a second driving session) compared to the first time (average
D = �1.00 s).

� The use of a handheld device strongly increased the mean TOT (average D = 1.33 s).
� For hands-free non-driving tasks, performing a visual non-driving task slightly increased the mean TOT compared to not
performing a non-driving task (average D = 0.29 s).

� The presentation of a TOR moderately decreased response times compared to when no TOR was provided (average
D = �0.58 s).

In addition, the following findings are noteworthy, although based on five or fewer studies.

� Having eyes closed before taking over control strongly increased TOTs compared to not performing a non-driving task and
staying alert (average D = 1.19 s).

� Strongly reduced TOTs were found when an auditory or vibrotactile TOR was provided compared to a visual-only TOR
(average D = �1.41 and �1.41 s, respectively).

� Being able to anticipate the TOR (e.g., when the TOR was periodically scheduled or could be anticipated from environmen-
tal cues such as the traffic and weather) moderately shortened the mean TOT (average D = �0.54 s).

� The effect of traffic compared to no traffic was moderate (average D = 0.49 s).

Fig. 3. Within-study effects. The circles represent the difference in mean take-over time between two conditions (D) of a particular study. A positive D
indicates that a larger mean TOT was obtained from the latter condition compared to the former condition. The large square markers represent the average
D in the category. k represents the number of studies (D values) in the category. p is the p-value from a two-sided signed rank test for the hypothesis that
the D values come from a distribution having a median of 0. TOR = Take-over request, NDT = Non-driving task. A directional TOR is a TOR that is informative
about the location of the hazard. Peripheral visual stimuli are stimuli that indicate the status of the automation or the environment (e.g., using ambient
LEDs).
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3.3. Between-study analysis

The correlations between the 18 study variables and the mean TOT are shown in Table 2. As in the within-study analysis,
urgency of the take-over scenario and holding a handheld device showed strong correlations with the mean TOT: higher-
urgency levels and shorter time budgets were associated with lower mean TOT (URG: r = �0.44; q = �0.42; TBTC:
r = 0.53, q = 0.43; TBTB: r = 0.73, q = 0.31), and holding a handheld device (HAND) yielded higher mean TOT (r = 0.30,
q = 0.35). The correlations between mean TOT and other categorical variables were weak to moderate, with absolute values
below 0.3. That is, the mean TOT did not substantially correlate with the modality of the TOR or the type of non-driving task.

Additionally, we calculated the correlation between the mean and the standard deviation of the TOTs and found a strong
association (Fig. 4; r = 0.82; q = 0.73, n = 397). The correlations between the mean TOTs and the three continuous study vari-
ables: AGE, TBTC, and TBTB are depicted in Fig. 5.

A weak to moderate correlation was observed between sample size and mean TOT (r = 0.21, q = 0.14, n = 520), see Fig. 6.
The correlations between sample size and all study variables were weak with an absolute r and q smaller than 0.20, except
for the correlation with time budget to collision (TBTC, r = 0.26, q = 0.27, n = 240) and simulator fidelity where qwas smaller
than �0.20 (SIM; r = �0.13, q = �0.25, n = 520). In other words, studies in high-fidelity simulators involved smaller sample
sizes than studies in low-fidelity simulators.

Table 3 shows the correlations between the study variables, providing insight into the patterns of the experimental
design. For a higher level of automation, the studies tended to implement a TOR (q = 0.65), instruct the participants to per-
form a non-driving task (q = 0.34), and provide longer time budgets to collision (q = 0.35). These observations are in accor-
dance with the definition of SAE International (2016).

Concerning the modalities of the non-driving task and TOR, strong positive correlations were found between the presence
of a motoric and visual non-driving task (q = 0.68). Visual and auditory TORs tended to be combined (q = 0.35), which was
not the case for the auditory and vibrotactile modalities (q = �0.35).

Table 2

Correlations between the study variables and mean TOTs in the between-study analysis. Pearson product-moment correlations (r) and Spearman rank-order
correlations (q) are both reported.

Study variable Correlation with
mean TOT

r q Study variable conditions n Average mean TOT (s) SD mean TOT (s)

1. AGE 0.22 0.24 – 485 – –
2. SIM �0.04 0.02 0 (low fidelity) 81 2.67 2.39

1 (medium fidelity) 268 2.84 1.33
2 (high fidelity) 171 2.57 0.95

3. LAD 0.15 0.19 0 (L2) 62 2.14 1.17
1 (L3 and above) 458 2.80 1.47

4. TOR_V 0.04 0.08 0 (no visual TOR) 160 2.63 1.75
1 (with visual TOR) 360 2.77 1.29

5. TOR_A 0.12 0.12 0 (no auditory TOR) 84 2.33 1.00
1 (with auditory TOR) 436 2.80 1.51

6. TOR_VT �0.11 �0.10 0 (no vibrotactile TOR) 447 2.79 1.50
1 (with vibrotactile TOR) 73 2.35 0.99

7. TOR_P 0.06 0.06 0 (no TOR) 34 2.40 1.08
1 (TOR present) 486 2.75 1.47

8. NDT_V 0.13 0.13 0 (no visual NDT) 204 2.49 1.12
1 (the NDT is visual) 309 2.89 1.62

9. NDT_A �0.03 �0.07 0 (no auditory NDT) 384 2.75 1.29
1 (the NDT is auditory) 129 2.67 1.88

10. NDT_M �0.01 �0.04 0 (no motoric NDT) 289 2.74 1.27
1 (the NDT requires a motoric manoeuvre) 224 2.72 1.67

11. NDT_C �0.05 �0.11 0 (without highly cognitively demanding NDT) 385 2.78 1.28
1 (with highly cognitively demanding NDT) 128 2.60 1.90

12. HAND 0.30 0.35 0 (no handheld device) 371 2.54 1.42
1 (NDT device held in the hands) 108 3.61 1.46

13. NDT_P 0.11 0.11 0 (no NDT present at the moment of TOR) 143 2.46 1.17
1 (NDT present at the moment of TOR) 377 2.82 1.53

14. URG �0.44 �0.42 0 (low urgency) 83 3.95 2.35
1 (medium urgency) 114 3.03 1.32
2 (high urgency) 295 2.25 0.81

15. DRE �0.16 �0.07 0 (low response complexity) 108 3.43 2.21
1 (medium response complexity) 134 2.34 1.16
2 (high response complexity) 253 2.66 1.04

16. IRU 0.08 0.14 0 (no interaction with other road users) 344 2.67 1.55
1 (interaction with other road users) 141 2.93 1.24

17. TBTC 0.53 0.43 — 240 — —
18. TBTB 0.73 0.31 — 160 — —

Note. TOR = Take-over request, NDT = Non-driving task.
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A complex driver response was more likely to be required when the take-over situation was more urgent (q = 0.52), and
when other road users were involved in the take-over process (q = 0.46). Also, it is worth noting that studies that used higher
fidelity simulators tended to employ older participants (q = 0.38).

3.4. Linear mixed-effects model

The goodness of fit indicators of the linear mixed-effects model are shown in Table 4. Table 5 shows the estimation results
where effects for most study variables were strongly statistically significant (i.e., low p-values). The model predicting
lnðTOTÞ (i.e., the natural logarithm of the mean TOT) is specified according to Eq. (1):

Fig. 4. Scatter plot of the standard deviation of the take-over time (SD TOT) as a function of the mean take-over time (mean TOT), with a fitted least-squares
regression line (n = 397).

Fig. 5. Scatter plot of the mean take-over time (mean TOT) as a function of (a) mean age of the participant group (n = 485), (b) take-over time budget to
collision (TBTC, n = 240), (c) take-over time budget to other boundaries (TBTB, n = 160), with a fitted least-squares regression line. A TBTB of 0 s means that
the automation was deactivated at the moment of the take-over stimulus.
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lnðTOTÞ ¼ aþ bLAD � LADþ bTORA
� TORA þ bTORVT

� TORVT

þbNDTV �NDTV þ bMissNDTV �MissNDTV þ bHand �Handþ bMissHand �MissHand
þbURGHigh

� URGHigh þ bURGMed
� URGMed þ bMissURG �MissURG

þbIRU � IRUþ bMissIRU �MissIRUþ c � #þ r � e

ð1Þ

where a is the intercept, bLAD; bTORA
; bTORVT

; bNDTV ; bHand; bURGHigh
; bURGMed

; bIRU are the parameters associated with the study

variables listed in Table 5, bMissNDTV ; bMissHand; bMissURG; bMissIRU are parameters associated with the dummy variables indicat-
ing the missing values, c is the parameter associated with the study-specific error term # � N 0;1ð Þ, and r is the parameter
associated with the observation-specific error term e � N 0;1ð Þ. The study-specific error term captures between-study vari-
ance and the observation-specific error term captures residual variance between observations. We selected the study vari-
ables based on statistical significance. The other study variables listed in Table 1 did not significantly influence the mean
TOT.

Studies carried out with high levels of automation (�SAE level 3) showed longer mean TOTs than studies with partial
automation (SAE Level 2). The fidelity of the driving simulator did not significantly influence mean TOTs (i.e., was not a suf-
ficiently strong predictor to be included in the model as a predictor variable). Auditory and vibrotactile TOTs were associated
with shorter mean TOTs, whereas visual warnings did not have a statistically significant impact on mean TOTs. Participants
were slower in taking over control when they were engaged in visual non-driving tasks. Other types of non-driving tasks
(auditory, motoric, and cognitive) did not significantly influence mean TOTs. Participants showed longer mean TOTs when
holding a handheld device. Take-over situations with high and medium levels of urgency were related to shorter TOTs than
situations with a low level of urgency. Finally, interacting with one or more other road users was associated with a longer
mean TOT as compared to when no road users were driving in the vicinity.

The model coefficients in Table 5 are defined on a logarithmic scale, which enhances the model fit but complicates the
interpretation. To illustrate the impact of the study variables on the mean TOT in seconds, we used the linear mixed-
effects model to calculate the mean TOT in a baseline observation and the mean TOT where one variable was changed while
keeping all the other variables fixed. In the baseline observation, the level of automation was high (�SAE level 3), the TOR
was auditory, the NDT was visual, and the level of urgency was high. In addition, drivers did not use a handheld device and
did not have to take into account other road users. These baseline values were selected because they represent the majority
of the conditions available. The impact of the study variables on the mean TOTs is shown in Table 6. The level of urgency,
holding a device in the hands, and the use of an auditory TOR had the largest impact on the mean TOTs.

4. Discussion

4.1. Findings from this meta-analysis

This meta-analysis quantified the determinants of mean take-over time (TOT) as observed in 129 experiments using three
complementary approaches: a within-study analysis, a between-study analysis, and a linear mixed-effects model. The

Fig. 6. Scatter plot of the sample size of the participant group as a function of the corresponding mean take-over time (mean TOT), with a fitted least-
squares regression line (n = 520). The vertical line represents the grand mean TOT.
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Table 3

Spearman rank-order correlations (q) between the predictor variables shown in Table 2.

1. AGE 2. SIM 3. LAD 4. TOR_V 5. TOR_A 6. TOR_VT 7. TOR_P 8. NDT_V 9. NDT_A 10. NDT_M 11. NDT_C 12. HAND 13. NDT_P 14. URG 15. DRE 16. IRU 17. TBTC 18. TBTB

1.AGE –
2.SIM 0.38 –
3.LAD �0.07 0.03 –
4.TOR_V 0.07 0.26 0.24 –
5.TOR_A 0.18 0.18 0.34 0.35 –
6.TOR_VT �0.21 �0.30 0.13 �0.13 �0.35 –
7.TOR_P 0.05 0.08 0.65 0.40 0.60 0.11 –
8.NDT_V �0.12 �0.08 0.30 0.12 0.08 0.10 0.19 –
9.NDT_A 0.04 �0.17 0.08 �0.09 �0.04 0.07 0.04 0.03 –
10.NDT_M �0.18 �0.01 0.28 0.13 0.07 0.13 0.18 0.68 �0.21 –
11.NDT_C �0.09 �0.21 0.16 �0.06 0.01 0.09 0.10 0.13 0.27 0.29 –
12.HAND �0.05 0.03 0.21 0.09 0.10 0.04 0.11 0.31 �0.14 0.24 �0.12 –
13.NDT_P �0.08 �0.08 0.34 0.08 0.08 0.11 0.22 0.77 0.36 0.55 0.33 0.35 –
14.URG �0.27 0.01 �0.16 �0.04 �0.14 0.10 �0.13 �0.07 �0.02 0.12 0.13 �0.18 �0.06 –
15.DRE �0.10 0.05 0.06 0.00 �0.01 0.09 �0.01 0.05 �0.04 0.17 0.10 0.00 0.09 0.52 –
16.IRU 0.12 0.03 0.08 0.03 0.01 �0.06 0.00 0.01 �0.07 0.05 0.16 0.04 0.02 0.10 0.46 –
17.TBTC �0.17 �0.30 0.35 0.13 0.02 0.20 0.22 0.09 0.01 0.02 �0.03 0.21 0.17 �0.61 �0.12 �0.01 –
18.TBTB �0.24 0.08 0.22 �0.19 �0.12 0.13 0.01 0.12 �0.03 0.21 �0.06 0.28 0.16 �0.33 0.03 �0.01 N/A –
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within-study analysis provides a synthesis of causal experimental effects (Fig. 3). The between-study analysis is based on
correlations that involve hundreds of mean TOT values (Table 2), and may, therefore, feature higher generalizability than
the within-study analysis. However, the between-study analysis is a synthesis of correlations rather than causal effects,
and may therefore be susceptible to various confounding factors. The linear mixed-effects model is statistically powerful
because it uses the dataset of the between-study analysis while taking into account whether the mean TOT values were
obtained from the same study. Although all models are wrong if taken literally (Box, 1976), we would argue that our
three-fold complementary approach provides a good picture of the current take-over literature.

Table 4

Characteristics of the linear mixed-effects model.

Number of studies 129
Number of observations 520
�2 Restricted log likelihood 132.2
Akaike’s Information Criterion (AIC) 136.2
Schwarz’s Bayesian Criterion (BIC) 144.6

Table 5

Results of the linear mixed-effects model. The parameters represent the unconditional marginal effects of the study variables on the natural logarithm of the
mean TOT.

Variable Description Parameter Estimate df t p

Intercept a 1.0620 203.39 11.12 9.39 * 10�23

LAD Equal to 1 when the level of automated driving (SAE International,
2016) is L3 or above as reported by the authors of the paper.

bLAD 0.2850 140.51 3.11 2.24 * 10�3

TORA Equal to 1 when the TOR contains an auditory stimulus. bTORA
�0.2129 451.50 �5.29 1.89 * 10�7

TORVT Equal to 1 when the TOR contains a vibrotactile stimulus. bTORVT
�0.1801 450.54 �4.00 7.53 * 10�5

NDTV Equal to 1 when the NDT is visual. bNDTV 0.0975 450.68 3.32 9.56 * 10�4

MissNDTV Equal to 1 when it is not mentioned whether the NDT is visual. bMissNDTV �0.1545 151.99 �0.62 5.36 * 10�1

HAND Equal to 1 when a device is handheld when undertaking the NDT. bHAND 0.2310 461.09 6.32 6.22 * 10�10

MissHAND Equal to 1 when it is not mentioned whether a device is handheld
when undertaking the NDT.

bMissHAND �0.0559 507.00 �0.63 5.29 * 10�1

URGHigh Equal to 1 when there is an immediate risk of collision (time
budget � 8 s), or the participants were instructed to react to a
stimulus as quickly as possible.

bURGHigh
�0.4658 491.88 �8.14 3.17 * 10�15

URGMed Equal to 1 when there is potential collision risk or disturbance to
other road users if no response is made, or a medium time budget
(between 8 s and 15 s).

bURGMed
�0.2193 506.95 �3.62 3.21 * 10�4

MissURG Equal to 1 when it is not mentioned whether there is an
immediate risk.

bMissURG �0.1417 145.68 �0.77 4.44 * 10�1

IRU Equal to 1 when the participants had to take into account one or
more other road users when choosing their optimal take-over
action.

bIRU 0.1821 502.89 4.57 6.13 * 10�6

MissIRU Equal to 1 when it is not mentioned whether the driver had to
take into account one or more other road users when choosing
their optimal take-over action.

bMissIRU �0.0220 336.49 �0.18 8.59 * 10�1

Error term Description Parameter Estimate Wald-Z p

#s Study-specific error term (between-study variance) c 0.1357 6.89 5.40 * 10�12

eS Observation-specific error term (between-observation variance) r 0.0375 13.73 6.73 * 10�43

p < 0.05 is indicated in boldface.

Table 6

Effect of the study variables on the baseline TOTs (average baseline
TOT = 2.15 s).

Variable Estimated mean TOT (s)

LAD ¼ 0 1.62
TORA ¼ 0 2.66
TORVT ¼ 1 1.80
NDTV ¼ 0 1.95
Hand ¼ 1 2.71
URGLow ¼ 1 3.43
URGMed ¼ 1 2.75
IRU ¼ 1 2.58
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Several main findings stand out from the three meta-analysis methods. First, the urgency of the situation, defined in
terms of (1) the hand-coded urgency level (URG), (2) time budget to collision with an obstacle (TBTC), and (3) time budget
to boundaries (TBTB), has substantial associations with the mean TOT. In other words, if more time is available, drivers use
more time to take over. This observation is consistent with previous reviews (see Section 1.2) and can be interpreted using a
literature review by Summala (2000) on brake reaction times in manual driving. Summala argued that a distinction exists
between drivers’ ability to intervene quickly and their motivation to intervene, and explained that ‘‘it is not always necessary
to react as soon as possible”. If there is sufficient time, drivers do not take-over as quickly as they can, but first assess the
situation (e.g., by checking the mirrors) (Gold, Damböck et al., 2013) and resume an optimal driving posture (e.g., by adjust-
ing the seating position) (Zhang et al., in press) before taking over.

The second finding is that performing a non-driving task with a handheld device strongly increases the mean TOT, as con-
firmed by each of the three analyses. Among the studies without a handheld device, performing a visual NDT yielded a mod-
erate increase in mean TOT as compared to not performing such a task. The mixed-effects model confirmed that engagement
in a visual NDT increased mean TOTs. The other modalities of the NDT, that is, whether the task demand is auditory or cog-
nitive, did not show significant associations with the mean TOTs. Zhang et al. (in press) examined driver perception and
movement response times during take-over process, and found that physically switching arm posture from the current
NDT to the driving control task requires more time than perceiving and cognitively processing the take-over stimuli, espe-
cially when the arm movement amplitude is high (cf. Fitts, 1954).

Third, a high level of automation (SAE L3 and above) showed higher mean TOTs compared to partial automation (SAE L2),
possibly due to a combined effect of a longer time budget, lower urgency, and more involvement in (handheld) NDTs, con-
sistent with the definition provided by the SAE International (2016).

Fourth, as shown in the within-study analysis, prior experience with taking over has a strong effect: drivers responded
about 1 s faster if the take-over scenario occurred the second time compared to the first time. The majority of the included
studies (92 out of 129) used a within-subject design. In a review about brake response times in manual driving, Green (2000)
pointed out that in most studies, participants performed multiple trials to generate more data. The repeated trials would
contribute to shorter response times, which calls for caution when interpreting the results. Our meta-analysis also showed
that drivers responded about 0.5 s faster when the TOR could be anticipated from task-related or environmental cues. This
finding is in line with publications indicating that expectancy is an important factor influencing brake response times (Green,
2000; Warshawsky-Livne & Shinar, 2002; Young & Stanton, 2007).

Fifth, visual-only TORs showed longer mean TOTs than auditory or vibrotactile TORs. The mixed-effects model further
showed that auditory and vibrotactile TORs reduce the mean TOTs as compared to when such TORs are not present or
the TOR is visual only. Petermeijer, Doubek, and De Winter (2017) argued that a visual-only warning is not suitable as a
TOR, as drivers may overlook a visual signal (especially if they are performing a visually distracting NDT) or may not inter-
pret a visual signal as urgent. Auditory warnings, on the other hand, are well established due to their omnidirectional char-
acteristics (Bazilinskyy & De Winter, 2015). Vibrotactile TORs are effective as well, as they can attract the driver’s attention
when the driver is performing a visual or auditory NDT (Petermeijer et al., 2016).

Sixth, we found no clear effect of age in the within-study analysis or the multi-level model, which is interesting because
age is known to be associated with a slower speed of processing (e.g., Salthouse, 2009). One possible explanation is that TOTs
largely reflect motivational processes, not biological limitations, as pointed out above. For example, although older drivers
have a slower simple reaction time, they could have a more cautious driving style and are likely to take over quickly even
when not strictly necessary (Körber, Gold, Lechner, & Bengler, 2016). Compensatory behaviours, such as a less intensive
involvement in NDTs, may also alleviate ageing effects (Clark & Feng, 2017). Furthermore, the positive correlation between
age and mean TOT in the between-study analysis may point to a confounding effect, where older drivers have participated in
different types of experiments, as discussed below. We argue that the lack of observed age effects in the within-study anal-
ysis is not due to range restrictions, as the differences in mean age for the six included studies were substantial (23 vs.
67 years, 20 vs. 70 years, 34 vs. 60 years, 18 vs 70 years, 18 vs. 37 years, 26 vs. 71 years). It has been recommended that
future take-over studies include even older drivers, above 80 years of age (e.g., Körber et al., 2016; Li, Blythe, Guo, &
Namdeo, 2018). Additionally, we would recommend that future research on the effect of biological age on TOT should try
to obtain a more in-depth understanding by examining the effects of covariates, such as years of driving experience, psycho-
metric performance (e.g., simple, reaction time, perceptual speed), and sensation seeking scores.

Finally, we found a moderate effect of surrounding traffic (IRU) on the mean TOT. This can be explained by the fact that
drivers, in case of surrounding traffic, need time for visual scanning and situation assessment before taking over. However,
we found that a more complex driver response (i.e., higher DRE) was associated with a shorter mean TOT in the between-
study analysis. This counterintuitive finding could be due to the strong positive correlation between DRE and urgency. In
other words, although complex responses require cognitive processing time (see e.g., Gold, Naujoks, et al., 2018, and
Green, 2000 for discussion in manual driving context), such responses are more likely to be performed in urgent situations,
which are associated with lower mean TOTs.

4.2. Limitations

The current study was performed using mean TOTs. In the end, collision risk is not determined by the mean TOT, but by
outliers in the TOT distribution (Horrey & Wickens, 2007). We found that the mean and standard deviation of TOT are highly
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correlated (r = 0.82; q = 0.73), indicating that mean TOTs are informative about the tail of the TOT distribution. However, we
note that accidents may be due to extreme values (e.g., TOTs that exceed the 99.999th percentile, such as due to a driver
being asleep behind the wheel). Our meta-analysis is not suitable for making inferences about crash likelihood or for propos-
ing generic guidelines about what time budget constitutes safety.

A second limitation is that this meta-analysis investigated take-over time, not take-over quality. A number of studies
found fast but also hazardous responses (severe braking or steering) under higher mental workload and short time budgets
(e.g., Gold, Damböck et al., 2013; Clark & Feng, 2017; Ito, Takata, & Oosawa, 2016). Put differently, a short TOT does not nec-
essarily indicate a safe situation, but could actually be a sign of hazard, because short TOTs typically occur in urgent situa-
tions for which an evasive manoeuvre may be needed. We found that directional TORs (i.e., TORs that are informative about
the location of the hazard) have no beneficial effects on mean TOT, but this does not imply that directional TORs are inef-
fective, as they could be useful to enhance take-over quality (e.g., to enhance situation awareness). We recommend that
researchers publish not only the mean and standard deviation of the TOT, but also provide data files with TOT values per
event. This would allow meta-analysts to make inferences about the TOT distribution. Additional response variables, such
as minimum time to collision and maximum longitudinal/lateral acceleration would enable the assessment of take-over
quality.

Third, the starting moment of the take-over response is a source of ambiguity (Liu & Green, 2017). While some research-
ers used criteria such as ‘‘the moment the driver gave an input either on the pedals or the steering wheel” (Payre, Cestac,
Dang, Vienne, & Delhomme, 2017), other researchers provided exact criteria. For example, Gold, Damböck et al. (2013)
adopted a 2 degree steering angle or 10% brake pedal position, which was employed in a number of subsequent studies
(Feldhütter, Gold, Schneider, & Bengler, 2017; Gold et al., 2015; Gold, Körber, Lechner, & Bengler, 2016; Gold et al., 2014;
Gold, Lorenz, Damböck, & Bengler, 2013; Kerschbaum, Lorenz, & Bengler, 2015; Körber et al., 2016; Radlmayr et al.,
2014). Somewhat different criteria can be found in other studies, such as absolute steering acceleration larger than 5 deg/
s2 (Zeeb, Buchner, & Schrauf, 2015, 2016). Another issue is that the TBTC posed an upper limit to the TOTs that could be
observed; if a participant would not react at all (which sometimes happened, see Gold, Lorenz et al., 2013; Young &
Stanton, 2007), their results were not taken into account in the reported mean TOT, which would underestimate the mean
TOT.

Fourth, although a large number of study variables were investigated, there may still be unobserved study variables that
affect TOT. Examples of hidden moderators are driving speed, the intensity of the TOR, and the state of the operator (e.g.,
whether he or she is fatigued or impaired by alcohol, see Wiedemann et al., 2018). Hidden moderators may also explain
why the study-specific error term is strong in the mixed-effects model.

Fifth, nearly all included studies were conducted in a driving simulator. Despite advantages such as controllability and
safety, driving simulators have limited fidelity, which raises the issue about behavioural validity (De Winter, Van
Leeuwen, & Happee, 2012; Green, 2000; Kaptein, Theeuwes, & Van der Horst, 1996; Riener, 2010; Risto & Martens, 2014).
Also, the driver’s level of perceived risk perception may be low in simulators as compared to on-road conditions (Carsten
& Jamson, 2011), which could discourage a fast take-over response. While the TOTs measured in simulator studies may
not accurately reflect the numeric values of the TOTs in the real world, the results may still be valid concerning the direction
of the effects (Kaptein et al., 1996).

Sixth, although our meta-analysis is much more comprehensive compared to previous reviews on the same topic (see
Introduction), the within-study analysis would still benefit from a larger sample of studies. The Ds in Fig. 3 are based on
4 to 17 studies. Although each of these individual studies may present credible findings, more studies should be conducted
to examine whether the experimental effects are generalizable.

Finally, as in any meta-analysis, there may be sources of bias or confounding effects. In a previous review on automated
driving, De Winter, Happee et al. (2014) observed a confounder, namely that young participants are overrepresented in
lower-fidelity driving simulators. The authors explained that lower-fidelity simulators are available at universities where
participants are usually students, whereas companies with high-fidelity simulators tend to recruit middle-age drivers. A sim-
ilar association between simulator fidelity level and participant age was observed in the between-study meta-analysis
(q = 0.38). We also found studies in lower-fidelity simulators involved larger sample sizes (q = �0.25), which could be
explained because students participate in relatively large amounts, e.g., for course credit. Such confounds affect some of
the correlations in the between-study analysis (Table 2) but are controlled for in the mixed-effects model. In the
between-study analysis, a weak-to-moderate correlation was observed between sample size and mean TOT, which may
be related to the confounding effect of simulator fidelity discussed above.

We expect that publication bias regarding mean TOT in the between-study analysis is small as compared to other types of
research such as drug trials where researchers and sponsors may favour a positive drug efficacy. That is, we are not aware of
a mechanism by which the mean TOT would affect the likelihood of publication. The scatter plot of sample size vs. mean TOT
(Fig. 6) showed no characteristic funnel shape, likely because the observed spread in mean TOT reflects study heterogeneity
rather than imprecision of the mean TOT values.

Regarding the within-study analysis, where we assessed differences in mean TOT (D), publication bias is possible but not
evident from our findings. For example, innovative types of TORs where publication bias may be expected (e.g., directional
and peripheral TORs) showed near-zero effects (Fig. 3), thus indicating that small (null) effects were published. The number
of studies per category of the within-subject analysis was too small to create funnel plots or perform a formal test of pub-
lication bias.
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4.3. Conclusion and recommendations for future research

The meta-analysis included 129 studies that measured driver TOTs when resuming manual control after automated driv-
ing and investigated the effect of multiple factors related to the driver, the automation system, the human–machine inter-
face, the driving situation, and the experimental setup. Notable findings are that the available time, a lack of experience with
TORs, and using a handheld device were associated with substantially increased mean TOT. Although providing a take-over
request yields a lower mean TOT than no take-over request at all (or a visual-only take-over request), the modality of the
TORs had relatively minor effects on the mean TOT.

These findings have important implications for future research and design. In particular, instead of designing new types of
take-over requests that may have only incremental effects on mean TOT, efforts could be made towards ensuring that drivers
arepreparedand trained to takeover. Also, drivers shouldnotbepermitted to engage inhandheldnon-driving tasks if take-over
situations can be urgent. Conducting non-driving tasks on a mounted (head-up) display could be a safer option in such cases.

Finally, our meta-analysis suggests that achieving a low mean TOT should not necessarily be a design target. We showed
that drivers take more time (i.e., the mean TOT is higher) when they have more time (i.e., when the urgency is lower). Future
engineering efforts should be directed towards ensuring that drivers actually have sufficient time, which could be done by
building better sensors with larger look-ahead time or by using vehicle-to-vehicle communication.

5. Supplementary material

Supplementary materials are accessible via this link: https://doi.org/10.4121/uuid:75c28abe-6559-4273-85f4-
927e969c1c59.
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PRISMA Checklist

Section/topic # Checklist item Reported on page #

TITLE

Title 1 Identify the report as a systematic review, meta-
analysis, or both.

1

ABSTRACT

Structured summary 2 Provide a structured summary including, as
applicable: background; objectives; data sources;
study eligibility criteria, participants, and
interventions; study appraisal and synthesis
methods; results; limitations; conclusions and
implications of key findings; systematic review
registration number.

1

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context of
what is already known.

1–3

Objectives 4 Provide an explicit statement of questions being
addressed with reference to participants,
interventions, comparisons, outcomes, and study
design (PICOS).

3

METHODS

Protocol and registration 5 Indicate if a review protocol exists, if and where it
can be accessed (e.g., Web address), and, if available,
provide registration information including
registration number.

3

Eligibility criteria 6 Specify study characteristics (e.g., PICOS, length of
follow-up) and report characteristics (e.g., years
considered, language, publication status) used as
criteria for eligibility, giving rationale.

4
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Section/topic # Checklist item Reported on page #

Information sources 7 Describe all information sources (e.g., databases with
dates of coverage, contact with study authors to
identify additional studies) in the search and date
last searched.

3

Search 8 Present full electronic search strategy for at least one
database, including any limits used, such that it could
be repeated.

3

Study selection 9 State the process for selecting studies (i.e., screening,
eligibility, included in systematic review, and, if
applicable, included in the meta-analysis).

4

Data collection process 10 Describe method of data extraction from reports (e.g.,
piloted forms, independently, in duplicate) and any
processes for obtaining and confirming data from
investigators.

4

Data items 11 List and define all variables for which data were
sought (e.g., PICOS, funding sources) and any
assumptions and simplifications made.

4–6

Risk of bias in individual
studies

12 Describe methods used for assessing risk of bias of
individual studies (including specification of whether
this was done at the study or outcome level), and
how this information is to be used in any data
synthesis.

4

Summary measures 13 State the principal summary measures (e.g., risk
ratio, difference in means).

5

Synthesis of results 14 Describe the methods of handling data and
combining results of studies, if done, including
measures of consistency (e.g., I2) for each meta-
analysis.

5

Risk of bias across studies 15 Specify any assessment of risk of bias that may affect
the cumulative evidence (e.g., publication bias,
selective reporting within studies).

5

Additional analyses 16 Describe methods of additional analyses (e.g.,
sensitivity or subgroup analyses, meta-regression), if
done, indicating which were pre-specified.

5 Between-study analysis and
mixed-effects model are meta-
regressions

RESULTS

Study selection 17 Give numbers of studies screened, assessed for
eligibility, and included in the review, with reasons
for exclusions at each stage, ideally with a flow
diagram.

4

Study characteristics 18 For each study, present characteristics for which data
were extracted (e.g., study size, PICOS, follow-up
period) and provide the citations.

7

Risk of bias within
studies

19 Present data on risk of bias of each study and, if
available, any outcome level assessment (see item
12).

4

Results of individual
studies

20 For all outcomes considered (benefits or harms),
present, for each study: (a) simple summary data for
each intervention group (b) effect estimates and
confidence intervals, ideally with a forest plot.

Supplementary file

Synthesis of results 21 Present results of each meta-analysis done, including
confidence intervals and measures of consistency.

7–8

Risk of bias across studies 22 Present results of any assessment of risk of bias
across studies (see Item 15).

8

Additional analysis 23 Give results of additional analyses, if done (e.g.,
sensitivity or subgroup analyses, meta-regression
[see Item 16]).

8–13
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DISCUSSION

Summary of evidence 24 Summarize the main findings including the strength
of evidence for each main outcome; consider their
relevance to key groups (e.g., healthcare providers,
users, and policy makers).

11, 13–14

Limitations 25 Discuss limitations at study and outcome level (e.g.,
risk of bias), and at review-level (e.g., incomplete
retrieval of identified research, reporting bias).

14–15

Conclusions 26 Provide a general interpretation of the results in the
context of other evidence, and implications for future
research.

15, 16

FUNDING

Funding 27 Describe sources of funding for the systematic review
and other support (e.g., supply of data); role of
funders for the systematic review.

16
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