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Determinants of the distribution of nitrogen-cycling
microbial communities at the landscape scale
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Little information is available regarding the landscape-scale distribution of microbial communities
and its environmental determinants. However, a landscape perspective is needed to understand the
relative importance of local and regional factors and land management for the microbial
communities and the ecosystem services they provide. In the most comprehensive analysis of
spatial patterns of microbial communities to date, we investigated the distribution of functional
microbial communities involved in N-cycling and of the total bacterial and crenarchaeal
communities over 107 sites in Burgundy, a 31 500km2 region of France, using a 16� 16 km2

sampling grid. At each sampling site, the abundance of total bacteria, crenarchaea, nitrate reducers,
denitrifiers- and ammonia oxidizers were estimated by quantitative PCR and 42 soil physico-
chemical properties were measured. The relative contributions of land use, spatial distance, climatic
conditions, time, and soil physico-chemical properties to the spatial distribution of the different
communities were analyzed by canonical variation partitioning. Our results indicate that 43–85% of
the spatial variation in community abundances could be explained by the measured environmental
parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial
autocorrelation up to 739km and used geostatistical modelling to generate predictive maps of the
distribution of microbial communities at the landscape scale. The present study highlights the
potential of a spatially explicit approach for microbial ecology to identify the overarching factors
driving the spatial heterogeneity of microbial communities even at the landscape scale.
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Introduction

Spatial patterns have long been of concern in
ecology and have changed the manner in which
studies of plant and animal ecology are designed
and analyzed. Characterization of the patterns of
species diversity is central for understanding
the underlying evolutionary and ecological pro-
cesses that shape biodiversity across spatial
and temporal scales (Levin, 1992). Patterns also
have implications for applied ecology, as under-
standing and predicting spatial patterns are the keys

for developing ecosystem management strategies
(Levin, 1992).

In contrast to plants and animals, studying spatial
patterns is recent for microorganisms (Hughes-Mar-
tiny et al., 2006; Ramette and Tiedje, 2007a) and an
increasing body of literature supports the idea that
microbial communities exhibit spatial pattern at
different scales. Thus, in terrestrial ecosystems,
several studies reported spatial patterns from the
centimetre to the meter scale (Nunan et al., 2002;
Franklin and Mills, 2003; Ritz et al., 2004; Philippot
et al., 2009a). In contrast, only a few studies have
investigated spatial patterns of microbial commu-
nities over broad spatial scales even though spatial
dependence was also observed at the kilometre scale
(Cho and Tiedje, 2000; Dequiedt et al., 2009; Yergeau
et al., 2009). However, such investigations at broader
spatial scales are of importance as it is well known
that patterns can change with the scale of description
(Hutchinson, 1953). Indeed a landscape perspective is
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needed to understand the impact of human activities,
geomorphology or climate on microbial community
distribution. Thus, how microorganisms are spatially
distributed at the landscape scale and which the
factors, among land management, soil physico-
chemical properties and local climate, governing their
distribution are therefore central, yet unanswered,
questions despite the fact that microbial communities
are essential for biogeochemical cycling and ecosys-
tem functioning.

In this study, we investigated microbial distribu-
tion at the landscape scale by focusing on the
functional communities involved in nitrogen
cycling because traits rather than taxa were sug-
gested to be the fundamental units of biodiversity
and biogeography (Weiher and Keddy, 1995). The
potential of such a functional trait-based approach
to microbial biogeography has recently been further
emphasized by Green et al. (2008). Nitrogen-cycling
microbial communities such as the ammonia oxidi-
zers, nitrate reducers and denitrifiers have been
described as excellent models of functional com-
munities (Kowalchuk and Stephen, 2001; Philippot
and Hallin, 2005), of both agronomic and environ-
mental importance. Thus, microbial transformations
within the nitrogen cycle affect the bioavailability of
nitrogen, which is one of the nutrients that limit
plant growth most often limiting for plant growth.
Denitrification and ammonia oxidation are also
major contributors to the emission of N2O, a green-
house gas with ca 300 times the global warming
potential of CO2 (Forster et al., 2007) and the
dominant ozone-depleting substance (Ravishankara
et al., 2009).

Here, we characterize and explain the spatial
variability in the distribution of microbial commu-
nities that are involved in nitrogen cycling at the
landscape scale. The abundance of the nitrate-
reducing, denitrifying and ammonia-oxidizing com-
munities in soil samples, collected using a grid
covering 31 500 km2, was quantified by real-time
PCR. Canonical variation partitioning was used to
examine the relative contributions of land manage-
ment, spatial distance, climatic conditions, time and
more than 40 soil physico-chemical properties to
the distribution of each microbial community. We
also used geostatistical modelling to investigate
the spatial correlations of the microbial commu-
nities and produce maps of their distribution at the
landscape scale.

Materials and methods

Experimental site and sampling
Soil sampling was performed using a systematic grid
approach. For this purpose, the Burgundy region
was divided into 118 cells of about 16� 16 km2 and
the soil was collected at the center of 107 out of the
118 cells (Supplementary Figure S1). This scale was
selected according to the minimum sampling density

recommended to monitor soils across Europe
(Morvan et al., 2008) and is fully compatible with
the unique existing pan-European soil-monitoring
network (Lacarce et al., 2009). At each sampling site
located in the center of the cell, 25 individual soil
cores were collected in the topsoil (0–30 cm), using
an unaligned sampling design within a 20� 20m2

area. The 25 core samples were then composited for
each site. Samples of known volume were taken for
bulk density determination. Soil samples were
air-dried and sieved to 2mm before analysis. Soil
sampling was achieved thanks to the French Soil
Quality Monitoring Network, which collected
soil throughout France over a 10-year period using
the same 16� 16 km2 sampling grid. In Burgundy
the 107 soil samples were collected from October
2002 to October 2008 at all seasons (37 in winter, 39
in spring, 13 in summer and 19 in fall).

Soil, climate and land use data
The following soil characteristics were measured:
(i) total organic carbon content and nitrogen mea-
sured by dry combustion, (ii) particle-size distribu-
tion using five classes (clay (0–2 mm), fine silt
(2–20 mm), coarse silt (20–50mm), fine sand
(50–200 mm) and coarse sand (200–2000 mm) using
wet sieving and the pipette method (NF X 31–107),
(iii) cation exchange capacity and Ca, Mg, K, Na, Al,
Mn exchangeable cations (cobaltihexamin method),
(iv) total K, Ca, Mg, Na, Fe, Al, Cd, Co, Cr, Cu, Mn,
Ni, Pb, Tl, Zn, (v) pH in water (1:5 soil:water ratio),
(vi) extractable boron (boiling water method)
and (vii) EDTA-extractable Cd, Cr, Cu, Ni, Pb and
Zn. Analyses were performed by the Soil Analysis
Laboratory of INRA in Arras, France, which is
accredited for soil and sludge analysis. Climate data
came from the SAFRAN database (Quintana-Segui
et al., 2008) and included 1992–2004 averages
of monthly and yearly evapotranspiration (ETP),
temperature (1C) and rainfall (mm), interpolated on
the basis of a 8� 8 km2 grid. Land use was classified
according to the Corine Land Cover database
Classification (Heymann et al., 1994) and grouped
in the following broad classes: grasslands, forest,
agricultural soil, vineyard and orchards.

DNA extraction
For each of the 107 samples, DNA was extracted
from 250mg to 1 g of soil based on the method
developed by Martin-Laurent et al. (2001), which is
currently under final evaluation by national body
members of the ISO before being published as
the ISO standard 11063 ‘Soil quality—Method to
directly extract DNA from soil samples’. Even
though the comparison for the ISO standardization
of DNA extraction from air dried, fresh, and frozen
soils from different soils did not show any signifi-
cant effect on 16S rRNA gene copy number per ng of
DNA (unpublished results), we cannot exclude the
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possibility that our results might have been different
for some soils with a different procedure. Briefly,
samples were homogenized in 1ml of extraction
buffer for 30 s at 1600 r.p.m. in a minibead beater cell
disrupter (Mikro-DismembratorS; B. Braun Biotech
International, Melsungen, Germany). Soil and cell
debris were eliminated by centrifugation (14 000 g
for 5min at 4 1C). After precipitation with ice-cold
isopropanol, nucleic acids were purified using both
polyvinylpyrrolidone and Sepharose 4B spin col-
umns. Quality and size of soil DNAwere checked by
electrophoresis on 1% agarose. DNAwas quantified
using the Quant-iT dsDNA Assay Kit (Invitrogen,
Paisley, UK) and a plate reader (Berthold Mithras
LB940, Thoiry, France).

Real-time PCR quantification (qPCR)
The total bacterial and crenarcheal communities
were quantified using 16S rRNA primer-based qPCR
assays described previously (Ochsenrelter et al.,
2003). Quantification of the bacterial and crenarch-
aeal ammonia oxidizers was performed according to
Leininger et al. (2006) and Tourna et al. (2008)
whereas quantification of nitrate reducers and
denitrifiers was performed according to Bru et al.
(2007) and Henry et al. (2004, 2006), respectively.
For this purpose, the genes encoding catalytic
enzymes of ammonia oxidation (bacterial and
crenarchaeal amoA), nitrate reduction (narG and
napA) and denitrification (nirK, nirS and nosZ) were
used as molecular markers. Reactions were carried
out in an ABI prism 7900 Sequence Detection
System (Applied Biosystems, Carlsbad, CA, USA).
Quantification was based on the increasing fluores-
cence intensity of the SYBR Green dye during
amplification. The real-time PCR assay was carried
out in a 20 ml reaction volume containing the SYBR
green PCR Master Mix (Absolute QPCR SYBR Green
Rox, ABgene, Courtaboeuf, France), 1mM of each
primer, 100ng of T4 gene 32 (QBiogene, Illkrich,
France) and 0.5 � 2ng of DNA. Two independent
quantitative PCR assays were performed for each
gene. Standard curves were obtained using serial
dilutions of linearized plasmids containing the
studied genes. PCR efficiency for the different assays
ranged between 86 and 99%. Two to three no-
template controls were run for each quantitative
PCR assay and no template controls gave null or
negligible values. The presence of PCR inhibitors
in DNA extracted from soil was estimated by
(i) diluting the soil DNA extract and (ii) mixing a
known amount of standard DNA with soil DNA
extract prior to qPCR. No inhibition was detected in
either case.

As the number of 16S rRNA operons per cell is
variable (Klappenbach et al., 2001) the 16S rRNA
gene copy data were not converted into cell numbers
and the results were expressed as 16S rRNA gene
copy numbers per ng of extracted DNA. Calculation
of the gene copy number per ng of DNA rather than

per gram of soil minimizes the bias related to
possible differences in the DNA extraction yield
between samples. To obtain an estimate of the
relative abundance of the different functional com-
munities within the total bacterial or crenarchaeal
communities in the samples, we calculated ratios
between the ammonia-oxidation, nitrate reduction
and denitrification gene copy numbers and the total
bacterial 16S rRNA gene copy number ratios, and
between the crenarchaeal ammonia oxidation gene
copy numbers and the crenarchaeal 16S rRNA gene
copy number ratio.

Statistical analyses
All quantitative (response and explanatory) data
were transformed using Box�Cox transformation
prior to analyses (the corresponding lamba para-
meters were estimated by maximum likelihood
(Cook and Weisberg, 1999)). Qualitative explanatory
variables were transformed into dummy variables.
Spatial vectors were constructed by using the
Principal Coordinate of a Neighbor Matrix (PCNM)
approach (Borcard and Legendre, 2002). This
spatial decomposition method was applied to the
geographic coordinates of the samples (data were
spatially detrended if necessary), which yielded 62
spatial variables that represented all spatial scales
present in the sampling scheme. The order of the
PCNM variables corresponds to a progression from
larger to smaller spatial scales (Borcard et al., 2004).
For each response data model, the most significant
PCNM variables were chosen by permutational
forward model selection and by ensuring that the
adjusted R2 of the reduced models did not exceed
the adjusted R2 of the global models. Explanatory
variables were then selected by multiple regression
analysis using stepwise selection and by minimizing
the Akaike Information Criterion. Statistical signi-
ficances were assessed by 1000 permutation of
the reduced models. The respective effects of each
explanatory variable, or combinations thereof, were
determined by canonical variation partitioning
(Borcard et al., 1992; Ramette and Tiedje, 2007b).
P values were Bonferroni-corrected to maintain the
family-wise error level in multiple testing. All
statistical calculations were performed with the R
statistical platform using the vegan, PCNM and
MASS packages.

Geostatistical interpolation
Kriging or geostatistical interpolation aims to
predict the unknown value of a variable Z at a
non-observed location xi using the value zi at
surrounding locations. For this purpose, a stochastic
function was used as a model of spatial variation
so that the actual but unknown value z(xi) and the
value at the surrounding location were spatially
dependent random variables. A Box–Cox trans-
formation was applied to our data (Box and Cox,
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1964) so that z was a realization of a Gaussian
random function with a covariance matrix V.

Z� ¼
logðzÞ if t ¼ 0
zt�1
t otherwise;

�

ð1Þ

where t is the parameter of the transformation.
The elements of V are expressed as a function

of the distance separating two observations (h).
The elements of V are obtained from a parametric
function C(h), where h is the lag vector separating
two observations. In general this parametric func-
tion may vary with both the length and direction
of h, but here we assumed that the function is
isotropic and varies only according to the length
of h, which we denote by h. It is common in the
geostatistical literature for the spatialcovariance of
a random variable to be expressed in terms of the
variogram

gðhÞ ¼ 0:5EðfðxÞ � Zðx þ hÞg2Þ ð2Þ

The full details for the calculation of V are given in
Webster and Oliver (2007). To model the spatial
covariance, we used the Matérn function, which has
a smoothness parameter n. When n is small the
spatial process is rough, whereas for large n it is
smooth. We calculated an effective range, which
depends both on a and n, by using the distance at
which the Matérn semi-variance equalled 95% of
the partial sill variance. The parameters of
the Matérn function were obtained by maximum
likelihood estimation (Lark, 2000). The validity
of the fitted geostatistical models was confirmed
by leave-one-out cross-validation. For each sam-
pling site location i¼ 1,y , n, the value of the
property at site xi is predicted by simple kriging
upon z*(�i), the vector of observations excluding
z*(xi). The statistic

yi ¼
fz�ðxiÞ � ~Z�

ð�iÞg
2

s2
ð�iÞ

; ð3Þ

where ~Z�
ð�iÞ and s2

(i) denote the kriging prediction
and kriging variance at xi when z*(xi) is omitted
from the transformed observation vector. If the fitted
model is a valid representation of the spatial
variation of the soil property, then y¼ (y1,y ,yn)
has a w

2 distribution with mean y¼ 1.0 and median
y¼ 0.455 (Lark, 2002). The mean and median values
of y were also calculated for 1000 simulated
realizations of the fitted model to determine the
90% confidence limits. Moreover, the evaluation
of the model was also verified by performing a
likelihood ratio test. This test was used to compare
the fits of the spatial and non-spatial models.
The spatial analysis GeoR package was used for
the spatial analyses (Ribiero and Diggle, 2001).

Results and Discussion

The largest variations in gene copy numbers
across the Burgundy region were observed for the
ammonia-oxidizing crenarchaeota (AOA) and total
crenarchaeota, with densities ranging between less
than 102 (detection limit) to 9.8� 104 and from
4.7� 101 to 5.9� 104 gene copies per ng of DNA,
respectively (Figure 1, Supplementary Figure S2). In
comparison, the abundance of ammonia-oxidizing
bacteria (AOB) varied over two orders of magnitude,
whereas the abundances of nitrate reducers and
denitrifiers mostly varied within one order of
magnitude. In accordance with the study of Leininger
et al. (2006), which showed a good correlation
between a membrane lipid biomarker of archaea
and the amoA gene copy numbers, we found that the
abundance of the AOA and the total crenarchaeota
were highly correlated (R2¼ 0.72, Po0.001; Supple-
mentary Figure S3). In most soils of the Burgundy
region, the AOA were largely predominant over
the AOB with a ratio of archaeal to bacterial amoA
copy numbers ranging from 10 to 400 in 77 out of 107
sites, as observed in other studies (Leininger et al.,
2006; Nicol et al., 2008; Jia and Conrad, 2009).
However, 9 sites without common characteristics had
a AOA:AOB ratio ranging between 0.2 and 1.

The relative abundance of coexisting communities
is of fundamental interest in ecology (Weiher and
Keddy, 1999). Therefore, we also calculated the
ratios of the different bacterial N-cycling genes to
bacterial 16S rRNA copy numbers and that of the
AOA to total crenarchaeal 16S rRNA copy numbers
to examine how the proportions of the different
N-cycling communities within the prokaryotic
community vary across landscapes (Supplementary
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Figure 1 Variation in the abundance of different microbial
communities across the Burgundy region. The upper and lower
boundaries of each box indicate the 75th and 25th percentile,
respectively, and the mid-line marks the median of the distribu-
tion of the corresponding qPCR values. Whiskers above and below
the box indicate the 90th and 10th percentiles, respectively, while
black dots indicate outliers.
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Figure S4). Interestingly, the AOA to crenarchaeota
ratio varied from 0.08 to 2.7, which suggests that
(i) not all crenarchaea have the amoA gene and are
therefore capable of ammonia oxidation and (ii) the
proportion of ammonia oxidizers within the crenar-
chaea is not constant in terrestrial environments and
is influenced by environmental changes. However,
this might also be partly explained by a variation in
the number of amoA and 16S rRNA gene copies per
cell and/or by the specificity of the primers used.
Thus, ratios higher than 1 are likely due to the
fact that the crenarchaea primers are not truly
universal and are underestimating the total number
of crenarchaea. We found that the nitrate reducers,
denitrifiers and AOB represented around 5–20%,
1–5% and 0.05–1% of the total bacterial community,
respectively, as previously reported (Okano et al.,
2004; Henry et al., 2006; Philippot et al., 2009b).
It is noteworthy that the percentage of bacteria
possessing the nosZ gene, which encodes the N2O
reductase, within the denitrifying community (that
is, those possessing the nirK or nirS genes encoding
a nitrite reductase) varied within one order of
magnitude and was never higher than 56%. This
is consistent with the work of Jones et al. (2008),
which showed that out of approximately 68 com-
plete prokaryotic genomes in the database with
either nirS or nirK, only 43 had the nosZ gene. Our
findings support the mounting evidence that a
significant fraction of the denitrifying community
might lack the genetic ability to perform the last step
of the reduction pathway, that is, reduction of the

potent greenhouse gas N2O into harmless N2 (Henry
et al., 2006; Richardson et al., 2009; Philippot et al.,
2009b).

Using a dataset describing 49 different soil and
environmental variables at each sampling site
(Supplementary Table S1), we found that between
43 and 85% of the biological variance in the
distribution of the studied communities could be
explained (Table 1 and Supplementary Table S2).
The amounts of explained variation belonged to
the upper range of what has been evidenced in other
studies in microbial ecology (Yergeau et al., online
first; Ramette and Tiedje, 2007b), or in classical
community ecology (Cottenie, 2005) using compa-
rable statistical approaches. To better understand
the mechanisms driving the spatial distributions
observed in this study, all variables were grouped
into five categories (spatial effects, land use, climate,
soil physics and soil chemistry), and partial regres-
sion models were calculated for each dataset
(Table 1 and Supplementary Table S2). In almost
all cases, soil chemistry was the strongest predictor
and explained between 20 and 68% of the total
variance (Table 1). When separating the effect of
each variable, pH emerged as either an important or
the strongest single soil chemistry predictor for most
communities (Table 2). Thus, differences in soil pH
alone could explain up to 17.8% of the variability
in abundance of the total bacterial community,
between 15.6 and 21.4% for the denitrifier commu-
nity, 8.5% for the AOA and 2.9–7.1% for the nitrate-
reducing community. The importance of soil pH has

Table 1 Partitioning of the biological variation of different microbial communities as a function of contextual parameters

Overall model a Respective contribution of contextual variables (% explained variance) b

N F-ratio Total explained
variance (%)

Space Land
use

Climate Time Soil
physics

Soil
chemistry

Total bacteria 16 14.81*** 73.1 7.70*** 19.7*** 6.5*** 20.8***
Total crenarchaea 16 27.01*** 85.1 1.3** 1.6* 0.3NS 1.4* 25.2***

Nitrate reducers
narG 25 17.33*** 55.0 14.6*** 1.4* 0.6NS 2.3** 39.1***
napA 16 10.89*** 66.7 6.0** 6.6** 3.9** 49.5***

Denitrifiers
nirK 12 18.64*** 71.1 2.8** 59.3***
nirS 21 16.99*** 83.0 2.2** 0.5NS 1.6** 2.1** 1.2* 35.5***
nosZ 10 17.08*** 64.7 3.8** 5.2** 2.3* 41.3***

Nitrifiers
AOB 8 22.59*** 70.8 18.6*** 1.3* 16.9***
AOA 15 25.65*** 83.5 1.1NS 0.9* 26.9***

aFor each quantitative response variable, redundancy analysis models were assessed for significance after selecting the most parsimonious
explanatory variables by minimizing the Akaike Information Criterion. N, number of retained explanatory variables (details about the individual
variables can be found in Table 2). Total explained variance consists of the sum of the respective contributions of each contextual category and of
their overall covariation.
bThe biological variation in each model was partitioned into the respective effects of different categories of explanatory variables by using partial
redundancy analyses and by adjusting R2 values (that is, the percentage of explained variation) to obtain unbiased estimates (Peres-Neto et al.,
2006).
Significance was determined by 1000 permutations with ***Po0.001; **Po0.01; *Po0.05; and NS (not significant), PX0.05.

Distribution of N-cycling microbial communities
D Bru et al

536

The ISME Journal



been widely documented for both the total bacterial
community and the microbial communities
involved in N-cycling (Fierer and Jackson, 2006;
Philippot et al., 2007; Hartman et al., 2008; Nicol
et al., 2008; Hallin et al., 2009). Despite the fact that
soil pH is now recognized as a driver of changes in
AOA and AOB communities (Prosser and Nicol,
2008; Erguder et al., 2009), the way in which pH
affects AOA communities is still debated and
controversial. Thus, decreasing of AOA abundance
has been reported both with decreasing soil pH
(He et al., 2007; Hallin et al., 2009; Jia and Conrad,
2009) and with increasing soil pH (Nicol et al.,
2008). In our study, which included 107 soils with
pH ranging from 4.2 to 8.3, we found that the AOA
were below the detection limit only in acidic soils
and that soil pH was positively correlated with AOA
abundance (R2¼ 0.424, Po0.001). Soil pH was also
the best predictor of the AOB/AOA ratio with 12%
of the variance explained (Po0.001). Although soil
pH has been shown to influence the abundance of
AOB (He et al., 2007; Hallin et al., 2009), it was not
a significant factor across the large range of soils
examined here. This suggests that pH may be
important only in regulating AOB on smaller scales
or across specific fertilization regimes (Fierer et al.,
2009). Altogether, our results indicate that niche
partitioning between AOB and AOA is largely
attributable to soil pH, with AOA being more
affected by acidic pH than AOB. Interestingly, we

also found that the 24% spatial variability of the
AOA/crenarchaea ratio could also be explained by
changes in pH, which suggests a stronger effect of
soil pH on the crenarchaeal ammonia oxidizers than
on the rest of the crenarchaeal community. Evidence
of AOA and AOB specific niches in terrestrial
environments is strengthened by the findings that
none of the 42 measured soil properties at the
sampling sites could explain the variation in both
the abundances of AOA and AOB (Table 2). Among
the soil chemical properties other than pH that
explained the variance in distribution of the differ-
ent N-cycling communities, exchangeable manga-
nese availability was a significant predictor of the
abundance of the nitrate reducers (4.2–7.4%) and of
the denitrifiers (5.0–8.5%) (Table 2). In contrast to
soil chemistry, the relative contribution of soil
physics was never higher than 6.5% of the varia-
bility, although significant for several functional
communities (Table 1). Altogether, these findings
demonstrate that a very significant proportion of the
variation in the distribution of microbial guilds can
be predicted across terrestrial ecosystems at the
landscape scale.

Three dominant types of ecosystems were distin-
guished across the 107 Burgundy sites, with forests
(with 21 out of 26 being deciduous forests), grass-
lands and agricultural soils dominating. We found
that changes in land use did not strongly influence
the abundance of any of the studied communities

Table 2 Contribution of the first five most important explanatory variables to the variation in microbial community abundances

% Variance explained by:

Total bacteria pH (17.8) TpM (13.1) Sp. Dist.y (7.1) Rain (6.0) Crext (6.0)
Total crenarchaea pH (9.6) Ktot (5.6) Mgtot (4.5) Res. water (3.8) Cdext (3.3)

Nitrate reducers
NarG Carbon (7.6) pH (7.1) Sp. Dist.V11 (5.6) Sp. Dist.V7 (4.5) Mnexch (4.2)
napA Mnexch (7.4) Time (6.6) Pb (6.2) Sp. Dist.x (6.0) Cuext (5.2)

Denitrifiers
nirK pH (21.4) Cutot (7.3) Cr (6.0) Fetot (5.4) B (5.1)
nirS pH (15.6) Mnexch (6.4) Mntot (4.8) Catot (4.5) Natot (2.8)
nosZ pH (15.9) Mnexch (8.5) Naexch (5.7) Ktot (5.5) TpM (5.2)

Nitrifiers
AOB Land use (18.6) Carbon (8.4) Ni (6.6) Naexch (5.3) Kexch (3.3)
AOA pH (8.5) Ktot (5.5) Mgtot (3.6) Pbtot (3.2) Pass (2.7)

Relative abundances
narG/16S Carbon (23.0) Sp. Dist.y (15.1) Natot (8.9) Mntot (6.1) Rainyr (5.5)
napA/16S Caexch (32.0) Res. water (5.4) ETPM (4.3) — —
nirK/16S Caexch (16.8) Res. water (10.2) TpM (9.8) — —
nirS/16S Natot (9.8) Pass (8.0) Rainyr (6.8) Mntot (5.4) Ktot (5.3)
nosZ/16S Sp. Dist.y (9.6) — — — —
AOB/16S Land (18.0) Niext (9.3) Catot (6.3) Nitrogen (5.7) Naexch (5.7)
AOA/16S pH (23.9) Res. water (12.6) Sand (8.3) Fetot (7.2) Mnexch (5.3)
AOA/AOB pH (12.0) Ktot (9.9) Nitrogen (7.8) Kexch (6.6) Mntot (4.1)

The respective contributions were calculated by taking into account all other significant variables in the model using partial redundancy analyses
and adjusting the R2 values (see Table 1). Only significant fractions based on 1000 data permutations and subsequent multiple-comparison
Bonferroni corrections are reported. Subscripts are: M (monthly), Sp. Dist. (spatial distance with the corresponding spatial variables indicated as
subscripts), Res. water (residual water), ass (assimilable), tot (total), ext (extractable), exch (exchangeable) and yr (year).
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other than the AOB, for which 18.6% of the vari-
ation could be explained by the pure effects of that
factor alone (Table 1). Changes in land use also
affected the proportion of AOB within the total
bacterial community, further suggesting an inherent
sensitivity of this community to land management
(Table 2). This coupling between land use manage-
ments and abundance of AOB indicates that AOB
abundance could be used as a pertinent biological
indicator for monitoring soils. Likewise, AOB
diversity is affected by land use (Carney et al.,
2004) and was recently selected as a top candidate
biological indicator of soil quality for national-scale
soil monitoring (Ritz et al., 2004).

To examine the relative contribution of climatic
variables to the landscape distributions of the
functional microbial communities, we used regional
patterns of precipitation, net evapotranspiration and
temperature data (Supplementary Table S1). Despite
important variations, local climate mostly had a
significant influence on the distribution pattern of
the total bacterial community, with temperature,
precipitation and evapotranspiration significantly
explaining 13.1, 6.0 and 5.6% of the total variance,
respectively (Table 2). We also found that local
climate explained around 10–13% of the variability
in the relative abundance of nirS and nirK deni-
trifiers within the total bacterial community (Sup-
plementary Table S2). When considered separately
from the other factors, the sampling period (time)
had a weak influence and affected significantly
only the napA and nirS communities (% variance
explained of 6.6 and 2.1, respectively), thus indicat-
ing that the large time period needed to sample
all 107 sites did not strongly affect our results
by masking the effects of other environmental
variables. Likewise, a recent study reported that
temporal variation also had little impact on the
distribution of the microbial community composi-
tion, despite being sampled in different seasons and
different years (Drenovsky et al., 2010). Altogether,
the results show that neither local climate nor the
sampling time was a major factor influencing the
distribution patterns of the studied N-cycling com-
munities over the 31 500 km2 Burgundy region.

Geographical distance, when separated from
the other environmental variables, was a weak
but significant predictor of the total bacterial
and crenarchaeal communities and of the nitrate-
reducing and -denitrifying communities (Table 1).
However, the explanatory power of the spatial
distance dramatically increased when spatial auto-
correlation was explicitly modelled without dissect-
ing the environmental variables and incorporating
covariation. Thus, by investigating the spatial
correlation of microbial abundance using a geosta-
tistical approach, we found strong spatial patterns
in the distribution of some communities, with
autocorrelation ranging between 22 and 739 km
(practical ranges in supplementary Table S3). Three
major types of spatial distributions were found.

The predicted map of the distribution of total
bacteria was quite smooth with a high density in
the north and a low density in the south, while the
crenarchaea exhibited a more patchy distribution
(Figure 2). Finally, the maps of nirK and nirS are
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Figure 2 Maps of the abundances of total bacteria and
crenarchaea in Burgundy. (a) Bacterial 16S rRNA, (b) crenarchaeal
16S rRNA. The color scale to the left of each map indicates the
extrapolated abundance values (gene copy number per ng of
DNA).
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somewhat ‘spotty’. These three types of maps are
directly related to the roughness of the spatial
distributions, which were modelled thanks to the
flexibility of Matérn variogram. Interestingly, the
significant latitude effect observed both for the
distribution of the total bacterial community and
also for the relative abundance of the narG and nosZ
genes (Table 2, Supplementary Figure S5) was
related to the distribution of soil parental material
with limestone plateau in northern Burgundy and
crystalline rocks in southern Burgundy. Few differ-
ences were observed between the distributions of
the nirS and nosZ denitrifiers, while the distribution
of the nirK denitrifiers was more related to that
of the total bacteria (Figure 3). In contrast, the

predicted map of AOB distribution differed con-
siderably from that of all the other studied commu-
nities (Figure 3). Those maps supported the results
of the canonical variation partitioning analyses,
indicating that the AOB was the only community
for which soil chemistry was not the main determi-
nant of the spatial distribution (Table 1). Although
we know of no other directly comparable studies, a
few articles have reported spatial dependence of the
distribution of microbial abundance at much lower
scales ranging from centimetres to tens of meters
(Franklin et al., 2002; Ritz et al., 2004; Philippot
et al., 2009b; Enwall et al., 2010). At larger scales,
studies using a spatially explicit approach have
focused on microbial diversity rather than on
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Figure 3 Maps of the abundances of N-cycling genes in Burgundy. (a) narG, (b) nirK, (c) nirS, (d) nosZ, (e) AOB. The color scale to the
left of each map indicates the extrapolated abundance values (gene copy number per ng of DNA).
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microbial abundance. Thus, spatial dependence of
microbial diversity at a kilometer scale was observed
by Dequiedt et al. (2009) and Cho and Tiedje (2000),
while Fierer and Jackson (2006) found that microbial
diversity was not related to geographic distance
across North and South America. Although spatial
variability in the distributions of soil microorgan-
isms is generally regarded as random noise, our
results revealed that this variability can be ex-
plained even at the landscape scale.

In conclusion, the present study provides an
overview of the factors driving the spatial distribu-
tion of microbial communities involved in N-cycling
and of the total bacterial and crenarchaeal commu-
nities across a 31 500 km2 terrestrial landscape. Our
spatially explicit approach showed that no single
biogeographical distribution was shared by all the
studied microbial communities. However, some
common features emerged and soil chemistry—with
pH as an overarching controlling factor—was the
most important predictor of the distribution of the
microbial communities in many cases. Thus,
although many environmental variables were
significant predictors, only a few accounted for a
large amount of the total variance in the distribution
of the studied microbial guilds and we could
explain between 43 and 85% of this spatial variation
in community abundances. Furthermore, our find-
ings illustrate the potential of geostatistic methods,
which were successfully used to produce the first
maps of the distribution of microbial guilds at a
scale of relevance to policy makers and stakeholders
for ecosystem management.
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