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1 Abstract 

2 Climate variability largely affects agriculture in the developing world where rainfed 

3 agriculture is highly prevalent, and farmers rely on favorable climatic conditions to grow 

4 their crops. In Colombia, interannual climate variability can increase human vulnerabilities. 

5 Evidence on the vulnerability of farming households to climate variability at the local scale 

6 is, however, scarce. Here, we assessed the climate vulnerability and its determinants for a 

7 representative sample of 567 bean growing households in Santander, Colombia. We first 

8 applied Multiple Correspondence Analysis to calculate a vulnerability index and its 

9 components (exposure, sensitivity and adaptive capacity). The vulnerability index is in turn 

10 used to classify households into three vulnerability groups, namely, high, medium, and low. 

11 We then estimated a Generalized Ordered Probit Model to assess the probability of falling 

12 into each vulnerability category according to the household and farm management 

13 characteristics. We find that vulnerability is highly variable in the study region, with up to 

14 65 % of households classified as highly vulnerable. Geography, access to agronomic 

15 training, crop diversification, the percentage of household members making productive 

16 decisions and the gender of the household head are the most important factors determining 

17 the probability of being more or less vulnerable.  

18

19 Keywords: 

20 Vulnerability index, smallholders farmers, Generalized Ordered Probit, climate variability, 

21 drought, bush bean 

22

23 1. Introduction

24 Climate variability affects agricultural systems across the globe, and especially in the 

25 developing world where rainfed agriculture is highly prevalent and farmers rely on 

26 favourable climatic conditions to grow their crops (Thornton et al. 2014; Vermeulen et al. 

27 2013; Antwi-Agyei et al. 2012). Estimates suggest that climate variability explains 30-60 % 

28 of the observed variations in crop productivity (Ray et al. 2015; Delerce et al. 2016). Year-

29 to-year climate-driven variations in the productivity of crops and livestock can, in turn, 

30 significantly affect farm household income, food security, and livelihoods. Furthermore, 
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31 they can exacerbate vulnerability, especially when adaptive capacity and off-farm income 

32 are low (Frelat et al. 2016; Antwi-Agyei et al. 2013; Hahn et al. 2009). Nonetheless, 

33 evidence on the vulnerability of farming households to climate variability at the local scale 

34 is scarce (Villegas-González et al. 2017; Ruiz Agudelo et al. 2015), in part due to lack of 

35 data, and in part due to the multi-dimensional and multi-disciplinary nature of vulnerability, 

36 and the difficulties associated with reliably measuring it (O’Brien et al. 2004a; Adger 2006; 

37 Wiréhn et al. 2015). In addition to theoretical considerations, challenges exist regarding the 

38 differentiation of vulnerability across temporal scales (i.e. climate variability vs. climate 

39 change) or as a contextual variable as compared to an outcome (Adger 2006; O’Brien et al. 

40 2007). Section 2 describes the framework we use in this study in light of some of these 

41 limitations.

42

43 Here, we aim at quantifying the vulnerability of common bean growing households to 

44 climate variability across a major common bean growing region of Colombia. Common 

45 bean (Phaseolus vulgaris L.) is the most important grain legume for direct human 

46 consumption, playing a critical role in the food security and nutrition of many rural and 

47 urban populations (Beebe 2012; Reichert et al. 2015). In Latin America, the largest bean 

48 producer worldwide and where millions of farmers depend on bean production and sale for 

49 both food and income (Broughton et al. 2003), some 6.4 million of tons of beans are 

50 produced per year in 6.5 million hectares (FAOSTAT 2014). Colombia is the seventh most 

51 important bean producer in Latin America (121,698 ha; 149,112 tons), and the fifth most 

52 important bean consumer (FAOSTAT 2014). In Colombia, bush bean growing area is 

53 concentrated in the department of Santander, followed by Antioquia and Tolima 

54 (FENALCE 2017). In these areas, mean bush bean yield remains well below its potential 

55 (FENALCE, 2017). Though global and regional studies have analyzed poverty implications 

56 of climate change (Hertel et al. 2010), and assess coping strategies to income shocks 

57 (Gaviria 2002), no studies quantify farm household vulnerability to climate variability in 

58 Colombia. Notably, we contribute understanding on the roles of crop diversification, and 

59 farm management, and gender, which are seldom included in vulnerability studies (see 

60 Sect. 2 for details).

61
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62 More specifically, the paper aims to answer the following questions: 

63 ● What are the existing degrees of vulnerability to climate variability across a sample 

64 of bean growing households from north-eastern Colombia? 

65 ● What characterizes different degrees of vulnerability for these households?

66 ● How do intra-household and farm management variables affect the probability of 

67 being in a given vulnerability level?

68

69 To address these questions, we first measured a number of context- and intra-household-

70 specific variables through a household-level survey of 567 bush bean growing households 

71 in the department of Santander (north-eastern Colombia) in 2016. Through literature review 

72 and data analysis, we then identified and combined the variables that represented the three 

73 components of vulnerability (i.e. exposure, sensitivity and adaptive capacity) into a single 

74 Vulnerability Index (VI) (see Sect. 2 and Supplementary Text S1). Importantly, in 

75 quantifying exposure, we focus on the specific phenological phase of beans. Finally, a 

76 multinomial model was applied to the VI to assess the influence of intra-household and 

77 farm characteristics on the degree of vulnerability. Our analysis, therefore, not only allows 

78 understanding and measuring vulnerability, but also determining the propensity of farm 

79 households to be classified as highly, moderately, or lowly vulnerable.

80

81 2. Specifying a vulnerability framework

82 The first and most fundamental aspect in quantifying the degree of vulnerability is the 

83 choice of a conceptual framework (Reed et al. 2013; Urruty et al. 2016). The most 

84 commonly used framework for assessing vulnerability is that of the IPCC, which we adopt 

85 here. The IPCC defines vulnerability as ‘the degree to which a system is susceptible to 

86 injury, damage or harm’, and encompasses three dimensions: exposure, sensitivity and 

87 adaptive capacity (Adger 2006; Fraser et al. 2013; IPCC 2014). Exposure to climate 

88 variability is the amount of climate variation to which the system is subjected; sensitivity is 

89 defined as the degree to which the system is affected (either beneficially or adversely) by 

90 climate variability or change; and adaptive capacity is the ability to adjust, to cope with, or 

91 benefit from climate variations (Adger et al. 2007; IPCC 2014). While exposure is often 

92 defined as a set of biophysical variables (e.g. total rainfall, length or number of drought or 
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93 heat spells) that characterize the extent of variability or long-term change to which a 

94 particular system is subjected (Antwi-Agyei et al. 2012; Cooper and Wheeler 2017), 

95 defining indicators to characterize the sensitivity and adaptive capacity of rural households 

96 is less straightforward (O’Brien et al. 2004b; Wiréhn et al. 2015).

97

98 Most existing applications of the IPCC framework use an index comprised of several 

99 indicators related to these dimensions (Cooper and Wheeler 2017; Notenbaert et al. 2013; 

100 Abson et al. 2012). Therefore, a major issue when quantifying vulnerability is the choice of 

101 context-specific variables to represent different components of vulnerability for the farm-

102 household system (Delaney et al. 2014). Appropriate variable selection facilitates 

103 quantification of vulnerability via the application of either a mathematical equation 

104 (Simelton et al. 2009; Antwi-Agyei et al. 2012; Parker et al. 2019) or a statistical approach 

105 that creates a ‘composite’ index from a large set of variables (Oijen et al. 2013; Abson et al. 

106 2012; Wiréhn et al. 2015). In either case, an adequate understanding of the factors and 

107 conditions that shape vulnerability is required (Ribot 2010; Taylor 2014).

108

109 To understand which factors are typically included in vulnerability assessments, we 

110 conducted a systematic literature review (Supplementary Text S1 and Table S1). Our 

111 review indicates that existing studies seldom consider key intra-household variables on 

112 household characteristics (e.g. education level) and crop management but tend to 

113 concentrate on contextual variables (e.g. climate, soils, the existence of extension programs 

114 or government policies) (Notenbaert et al. 2013). Household and farm characteristics are 

115 typically used as indicators of adaptive capacity and access to income, services, and 

116 resources as indicators of sensitivity. Household and farm characteristics seen as indicative 

117 of adaptive capacity include age, size, dependent members, head sex, education level; 

118 access to information, markets, credit, technology and inputs; and number of crops, planted 

119 area, and land ownership. Vulnerability studies also use variables related to income and 

120 livelihood diversification, and access to services and resources as indicators of sensitivity. 

121 These variables typically include migration, access to water, transportation, presence or 

122 access to medical services, and climate-related sensitivity indices. Finally, studies rarely (if 
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123 at all) include large-scale socio-political drivers that may influence vulnerability to climate 

124 variability and climate change (Taylor 2014).

125

126 3. Materials and methods

127 3.1 Study area

128 The study area comprises four bush bean producing municipalities in the department of 

129 Santander (Colombia) (Fig. 1). The climate of the study area is defined as tropical savannah 

130 (Aw) climate, with Villanueva and Barichara municipalities having frequent water deficit. 

131 On the contrary, Curiti and San Gil have the greater recorded precipitation regime, with 

132 annual total rainfall (average 1981–2014) of 1,278 mm year-1, distributed in an average 

133 100–150 days. Annual mean temperatures range between 24 and 31 ºC, with February and 

134 March being the warmest months (mean temperature 26.9 ºC), and September and October 

135 being the coldest months (mean temperature 24 ºC). Interannual climate variability is 

136 substantial, especially for precipitation, with years as dry as 786 mm year-1 (2015), and as 

137 wet as 1,672 mm year-1 (1988), with a trend towards drying in the period 1981-2014.

138

139 [Figure 1 near here]

140

141 Figure 1. Study area and household distribution. Points indicate the household surveys in 

142 four municipalities: Barichara, Villanueva, Curiti and San Gil. The municipalities are 

143 located in the department of Santander, in the north-east zone of Colombia. The elevation 

144 of zone varies between 333-2,240 m.a.s.l., while study households are located specifically 

145 in range 1,189-2,240 m.a.s.l.

146

147 In Santander, the bush bean is the most important crop in terms of number of producers, 

148 and the second after yellow maize regarding area (Blundo Canto et al. 2016). Across the 

149 study area, farmers tend to grow more than one crop, in two cropping seasons, one between 

150 April and July, and the other between September and December which correspond to the 

151 rainy seasons. About 7,000 ha are under cultivation each semester (FENALCE, 2017), with 

152 an average cultivated area in bush bean per farm mostly of ca. 1 ha (50 % of farmers), 

153 though some farms can be as large as 10 ha (Rios et al. 2017).
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154

155 3.2 Household data

156 A total of 567 households were interviewed, of which 114 (20.1 %) were from Barichara, 

157 145 (25.6 %) from Villanueva, 192 (33.9 %) from Curiti, and 116 (20.5 %) from San Gil. 

158 Households responded freely, and under prior informed consent, the duration of the 

159 interview was approximately 40 minutes. The municipalities were selected as they are the 

160 main bush bean producers in the study area (FENALCE, 2017). The sample is 

161 representative of 58% of the total bush bean producers in the four municipalities, according 

162 to the Colombian National Agricultural Census carried out in 2014. We used a stratified 

163 optimal random sampling strategy across two elevation ranges (1,189–1,538 and 1,539–

164 1,889 m.a.s.l) to account for farmer choice of bean varieties, which depends on elevation 

165 (95% confidence). In the stratified optimal random sampling the size of the sample depends 

166 on the variance in the variables being studies within the strata. Optimal stratification is 

167 beneficial when within-group variability varies widely across groups; in this situation, it is 

168 convenient to reduce the sample size of the most homogeneous groups and favor those that 

169 are more heterogeneous. Moreover, this allows us to address productivity variation due to 

170 elevation, which could affect vulnerability. 

171

172 Data were collected through Android Devices using ODK-Data Collect. Four local 

173 enumerators were required. We performed the data analysis in both Stata (StataCorp 2013) 

174 and R (R Core Team 2018) using the FactoMineR library (Lê et al. 2008). The survey was 

175 designed to capture information on general household characteristics including size, 

176 average age, dependency ratio (ratio of total number of dependent members to the total 

177 number of members), and average education level. Household head characteristics included 

178 household head age, education level, and sex. Farm characteristics measured through the 

179 survey were total area, percentage of area planted with bean, bean yield, and total number 

180 of crops grown, access to and use of agro-climatic information, and farmer’s perceptions 

181 about climate risk and variability, especially with respect to drought. Finally, gender 

182 variables included the number of female members working on farm, the number of female 

183 members making productive decisions, number of female members working in pre-sowing 
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184 activities, number of female members working in sowing and control activities, and the 

185 number of female members working in harvest and post-harvest activities.

186

187 3.3 Climate data

188 We used precipitation data from the Climate Hazards Infra-red Precipitation with Stations 

189 (CHIRPS) database (Funk et al. 2015) for quantifying exposure. CHIRPS is a quasi-global 

190 dataset constructed using combining satellite measurements with interpolated precipitation 

191 data from weather stations, at a spatial resolution of ~5 km. Daily precipitation data were 

192 extracted for each household in the period 2006–2016, and improved by correcting false 

193 zeros using the GeoClim software tool (FEWS NET 2017) and observed weather data from 

194 four weather stations (Sta. Isabel, Curiti, Zapatoca y el Cucharo) from the IDEAM 

195 (Institute of Hydrology, Meteorology, and Environmental Studies) weather station network.

196

197 We then used the improved precipitation records to compute the median, maximum, and 

198 variability of the maximum number of consecutive dry days (i.e. days with precipitation < 1 

199 mm day-1) for each year, for two key growth periods during the bean season (April -

200 August). The first period corresponds to the time between sowing to the appearance of the 

201 third trifoliate leaf (from 1 to 35 days after planting, P1 hereafter), whereas the second 

202 period is between pre-flowering to the end of pod-filling (from 36 to 60 days after planting, 

203 P2). Both these periods correspond to the times in which the bean crop is most sensitive to 

204 water stress. Here, we used the number of consecutive dry days instead of using 

205 precipitation values directly, since the number of dry days is often a better indicator of 

206 drought-induced crop yield variations (Stern and Cooper 2011; Simelton et al. 2013; 

207 Delerce et al. 2016). Using these, we calculated the long-term median, variability (standard 

208 deviation), and upper bound (absolute maxima) of the number of consecutive dry days 

209 experienced by farmers in the period 2006–2016, separately for each growth period (P1, 

210 P2). This yielded three values (median, variability, and a maximum of the number of 

211 consecutive dry days 2006–2016) for each household in our sample for P1 and another 

212 three values for P2.

213

214 3.4 Calculation of the vulnerability index
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215 To perform the vulnerability analysis, we first determined the variables related to the 

216 relevant dimensions: exposure, sensitivity and adaptive capacity using data from the 

217 household survey and climate data and then we combined the standardized values of the 

218 variables through Principal Component Analysis for calculating a single Index. We 

219 included all principal components with more than 50% of accumulated variance. 

220

221 Table 1 shows the complete list of variables used to derive the VI, with their expected sign 

222 (effect) in relation to the vulnerability level. Based on the data available from the survey 

223 and existing literature (see Sect. 2 and Supplementary Text S1 and Table S1), we selected 

224 variables related to household and farm characteristics to represent adaptive capacity and 

225 variables related to livelihood diversification (and/or income generation) and access to 

226 resources and services to represent sensitivity. Since nearly all households own land, we do 

227 not include land ownership in the vulnerability index. The three dimensions of vulnerability 

228 were thus characterized as follows, 

229 • Exposure: we used the variability (standard deviation) and maximum of the number of 

230 consecutive dry days 2006–2016 for both P1 and P2 as indicators of exposure. All these 

231 variables are expected to have a positive association with the vulnerability level.

232 • Sensitivity: five binary variables were chosen to characterize sensitivity. Three of them 

233 are expected to relate positively with vulnerability, namely, whether the household 

234 reported: 1) having suffered from drought, 2) drought affecting them more than other 

235 events and 3) climate change will high impact their economy. The other two variables, 

236 related with the existence of piped aqueduct in the house and whether the household 

237 reported precipitation is enough for the crop, are expected to be negatively related with 

238 vulnerability.

239 • Adaptive capacity: we used a total of fourteen variables. These describe household 

240 composition (size, age), household member characteristics (education levels), farm 

241 characteristics (planted area, number of crops, input expenditure), access to 

242 transportation and productive assets, and allocation of labour including off-farm1.

1 We assume that adaptive capacity is not over-represented because all variables are combined into a single index that is 
balanced by the variability of the dataset. Furthermore, literature shows that some of the adaptive capacity variables used 
can also be used as measures of sensitivity (Supplementary Text S1). Future studies could use more comprehensive surveys 
to ensure inclusion of a greater number of sensitivity factors.
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243

244 [Table 1 near here]

245

246 Building on previous studies that employed a similar vulnerability framework to the one 

247 used here (Abson et al. 2012; Opiyo et al. 2014; Lokonon 2017), we calculated the 

248 Vulnerability Index (VI) through Principal Component Analysis (PCA). Once the factors 

249 and their contribution rates to the explained variance have been estimated, we calculated a 

250 weighted average for the stages of each main factor based on the importance of the i-

251 attribute in the factors (Eq. 1).

252                                                        (1)             i i

i

i

W Z
q

W
= ∑
∑

253

254 where Wi is the percentage of explained variance, and Zi is the value of each component. 

255 Finally, an index is calculated for the j-observation using the standardized matrix of 

256 observations  and the weighing qi with a reverse logit function (Eq. 2). The [𝑋]𝑖𝑗
257 construction of the index is objective since the weights are not arbitrarily defined but are 

258 established by the explained variance of each factor2. 

259

260                                                            (2)

ˆ( *[ ] )

ˆ( *[ ] )
1

i ij

i ij

q X

j q X

e
I

e
=

+
261             

262 Variables that increase vulnerability have a positive correlation with the index, therefore, 

263 the higher the index, the more vulnerable the household. We calculated the index for each 

264 household in order to explicitly address within municipality heterogeneity. The 

265 vulnerability index by municipality is an average of the values of households in each 

266 municipality. Finally, we classified the VI in terciles across the entire sample of households, 

267 so as to represent different vulnerability levels: low (first tercile), medium (second tercile) 

268 and high (third tercile). As a result, the most vulnerable households belong to the third 

2 See Supplementary Material Table S3, Table S4, Table S5 and Table S6 for the weight of each dimension in the VI and 
the weight of each variable in each dimension.
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269 tercile, whereas the least vulnerable ones belong to the first. We chose to use terciles as 

270 opposed to directly analyzing the VI as a continuous variable to reduce potential noise 

271 introduced by errors in the survey data, and to facilitate the interpretation of model results 

272 (see Sect. 3.5). Our choice of a 3-group classification using terciles ensures a balanced 

273 sample across VI categories, reduces complexity in the explanatory model (Sect. 3.5) and 

274 facilitates interpretation of model results (i.e. as likelihood ratios of being in a given class). 

275 However, as a robustness check, we also performed all the analysis of Sect. 3.5 with no  

276 classification (i.e. with VI as a continuous variable), and using two other classifications: (i) 

277 five orderly classes of equal frequency (i.e. quintiles); and (ii) grouping into three classes 

278 according to their distance from the mean (one standard deviation above the mean, one 

279 standard deviation below the mean, and between one standard deviation above and below 

280 the mean).

281

282 3.5 Assessing the determinants of vulnerability

283 As stated above, the second step in the vulnerability analysis is to assess the relationship 

284 between the VI and household-level variables, to identify determinants of vulnerability in 

285 terms of geographic, household, farm and gender characteristics. We used a Generalized 

286 Ordered Probit Model given the ordinal nature of the index, as well as the easier 

287 interpretation of model coefficients compared to using an Ordinary Least Squares (OLS) 

288 regression given that the index is a composite of many variables (see Supplementary Test 

289 S2). Moreover, the probit model allowed analyzing all levels of the distribution, including 

290 its mean and extremes. Our implementation of probit models follows Greene and Hensher 

291 (2008) and Cameron and Trivedi (2005), using Eq. 3 (see Supplementary Text S3 for 

292 additional details).

293

294 (3)* 'i iy xα β ε= + +

295 Where,

296   (4)

*

*

*

0 0

1 0 '

2 '

i i

i i i

i i i

y if y

y if y x

y if y x

µ δ

µ δ

= ≤

= < ≤ +

= ≥ +
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297 If the first element is normalized to zero, µ0=0 , we obtain the probabilities in Eq. 5.

298

299 (5)

Pr(y = 0 | x)= F(-a - b'x)= 1- F(a +b 'x)
0 0

Pr(y = 1| x)= F(m+d'x - a - b'x) - F(-a - b'x)= F(a +b 'x)- F(a +b 'x)
i 0 0 1 1

Pr(y = 2 | x)= F(a+b'x - m - d'x)= F(a +b 'x)
1 1

300

301 Where α0 =  α, β0 = β, α0 = α – µ, β1 = (β – δ) 

302

303 Therefore, there are different parameter vectors for each result. The specification function 

304 is given by Eq. 6. 

305

306         (6)( )i i j j i j -1 j-1 iPr y = j  x  = F m – b ‘x  – F m – b ‘( ) ( x| )

307

308 Where F(.) is the normal density function, yi is an ordered and discrete dependent variable, 

309 which was defined in Eq. 4, and µj is a threshold defined for all individuals in the sample. 

310 We use importance weights in the Generalized Ordered Probit Model estimation to include 

311 regression weights as the frequency of observation in each municipality.

312

313 We then fitted the Generalized Ordered Probit Model using the vulnerability level (discrete 

314 variable with three categories) as the dependent variable, and 25 independent variables 

315 related with geographic, household, demographic, socioeconomic variables as well as farm 

316 management factors, agro-climatic information and training (Table 2). These variables were 

317 not used to construct the VI because their relationship with vulnerability to climate 

318 variability is not entirely clear in the literature. Hence, we included them in the probit 

319 model to test their relevance as potential vulnerability determinants; that is, to determine 

320 the effect of these variables over the probability of belonging to a particular vulnerability 

321 level (lower, medium, high) (Notenbaert et al. 2013; Opiyo et al. 2014). We included 

322 location (i.e. municipality) as an explanatory variable in order to ensure inclusion of any 

323 variables that were not explicitly measured (e.g. soils, governance structures, municipality-

324 specific policies or programs). To avoid duplicity of information in the explanatory 
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325 variables concerning the set of variables used to construct the VI (Table 1), we dropped any 

326 variables that were strongly correlated (r > 0.6) with the set of variables in Table 1. Finally, 

327 as stated above (see Sect. 3.4), to assess the robustness of our results toward the choice of 

328 methods, we conducted two additional analyses. First, we performed an OLS regression on 

329 the VI as a continuous variable (Supplementary Text S2). Secondly, we fitted the 

330 generalized probit models using a 5-group classification with quintiles, and a 3-group 

331 classification by distance from the mean (see Sect. 3.4 for details). 

332

333 [Table 2 near here]

334

335 4. Results

336 4.1 Overview of household characteristics

337 Table 3 presents general summary statistics for the surveyed sample of households by 

338 municipality. Average per-municipality household size ranged from 3 people (Villanueva) 

339 to 4 (San Gil) approximately. The population is relatively young, with an average age 

340 below 40 years old. Younger and relatively larger households are located in San Gil, as 

341 confirmed by a higher dependency ratio, defined as the number of dependents (aged 0-14 

342 and over 65) with respect to the number of members aged 15-64. Conversely, Villanueva 

343 has the highest average household age (40.9 years old). In general terms, most household 

344 adults across the four municipalities reached about five years of formal education or less. It 

345 is noteworthy that the household head is generally above the age average, but below the 

346 average education level.

347

348 Farms are small (2 ha on average), with the smallest farms located in Barichara (1.06 ha) 

349 and the largest ones in San Gil (3.4 ha). The larger farms of San Gil cultivate less bean (63 

350 % area is dedicated to bean) compared to the smaller farms elsewhere (65–98 % area is 

351 dedicated to bean). As a result, farms in San Gil grow a greater number of crops (more than 

352 two different crops on average), whereas Barichara and Villanueva farmers produce only 

353 beans. Besides bush bean, other main crops in the study area are tobacco, coffee, and 

354 maize. San Gil farmers also obtain higher bean yields (1.22 ton ha-1 in San Gil vs. 0.98–
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355 1.11 ton ha-1 elsewhere). Bean yield across the four municipalities is, however, low 

356 compared to the yield potential of beans.

357

358 [Table 3 near here]

359

360 According to respondents, one of every two women actively participate in productive 

361 decisions, and more than half the women in the household work on the farm. 

362 Approximately 20 % of self-identified household heads are women, with the highest 

363 frequency in San Gil (28.4 %), followed by Barichara (21.1 %), Curiti (16.1 %) and 

364 Villanueva (14.5 %). The interviewed population in the four municipalities is composed 

365 predominantly of farming households, with very low occupation diversification. In fact, 

366 about 98 % of male-headed and 67 % of female-headed households reported that their 

367 primary occupation is farming. Consistent with that, women more often identify household 

368 care as their main occupation (30.3%), against only 0.4% of men (Supplementary Table 

369 S2).

370

371 4.2  Vulnerability of bean growing households

372 Our evaluation of the vulnerability index results shows that vulnerability would seem to be 

373 concentrated in different portions of the study area. Here, we present the results by 

374 municipality. Figure 2 shows the distribution of the vulnerability index terciles3 in the four 

375 municipalities. Villanueva presents the highest frequency of highly vulnerable households 

376 (64.8 %). Conversely, the frequency of highly vulnerable households is extremely low in 

377 San Gil (1.7 %), where the vast majority of households belong to the low vulnerability 

378 tercile (85.3 %). In fact, Villanueva and Barichara, with small farm sizes and virtually 

379 entirely dedicated to bean cultivation, have the lowest proportions of farmers in the low 

380 vulnerability class. Notably, however, in Barichara, the majority of farmers are in the 

381 medium vulnerability class, and about a third are in the high vulnerability class.

382

3 The difference between the individuals that are in the margin is not statistically tested since it is not possible to apply a 
discontinuous regression technique given that the threshold is established somewhat subjectively. On the other hand, a test 
of difference of means, when considering the tails of the distribution, does not contribute information on the difference of 
the individuals in the thresholds of each one of the three categories of vulnerability.
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383 [Figure 2 near here]

384

385 Figure 2. Municipality composition by Vulnerability Index (VI) terciles. Values in 

386 parentheses indicate the mean VI value, varies between 0 and 100. The percentage of 

387 households placed in each vulnerability level is shown for municipality and total sample.

388

389 Variation in all indicators used to construct the VI was generally as expected, as well as 

390 statistically different across vulnerability groups (see Supplementary Table S7 and 

391 Supplementary Text S4). 

392

393 4.3  Determinants of vulnerability

394 In this section, we explore the effect of variables that were not used to construct the 

395 vulnerability index measure but that we hypothesize can influence the likelihood of being 

396 in a particular vulnerability level, with results being robust toward the choice of model 

397 (Supplementary Text S2), and the choice of classification method (Supplementary Table 

398 S9). For example, location is not a component of the vulnerability index, but it is possible 

399 that it encompasses other non-measured variables such as existence of certain municipality-

400 level policies, or institutions that influence vulnerability. To explore these effects, we 

401 Estimated a Generalized Ordered Probit Regression which indicated that 20 variables have 

402 a statistically significant effect on the probability of being in a particular household 

403 vulnerability level (Table 4, see Supplementary Table S8 for descriptive statistics of these 

404 variables). Geography, having received agronomic training, crop diversification, and the 

405 percentage of household members making productive decisions are the most important 

406 factors determining vulnerability. 

407

408 [Table 4 near here]

409

410 According to the probit model, vulnerability is highly structured across the geographic 

411 space. The effect is marked at the municipality level (ascribed by location in one or other 

412 municipality), but also within municipalities (ascribed by the distance to populated centers 

413 –a proxy of distance to markets). The former (i.e. location in municipality) may indicate the 
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414 influence of non-measured biophysical (e.g. soils) or socio-economic (e.g. municipality 

415 government policies) variables, or cultural differences. Households who live in Villanueva 

416 are about 33 % more likely than those in Barichara to be in a high vulnerability group and 

417 52 % less likely to be in the medium vulnerability level. On the other hand, growing beans 

418 in San Gil increases the probability to have a low vulnerability level by 54 % and reduces 

419 the probability of be highly vulnerable by 21 %, approximately. Within municipalities, we 

420 find that more isolated households (i.e. with greater distances to populated centres) are 

421 around 3.6 % more likely to be in the most vulnerable class. 

422

423 Amongst the non-geographic factors that affect vulnerability, we note that access to agro-

424 climatic information increases the likelihood of being highly vulnerable. This result seems 

425 counter-intuitive, as it is expected that agro-climatic information and training helps in 

426 addressing climate risk. There is a possibility that the information is not suitable due to 

427 issues with scale, precision, or transparency (Blundo Canto et al. 2016) or simply due to 

428 lack of predictive skill (Esquivel et al. 2018). However, it is possible that access to such 

429 information is only occurring recently, mainly by the highly vulnerable households. We 

430 note greater frequencies of access in Villanueva and Barichara, which also have more 

431 households with greater levels of vulnerability. Further investigation into the type of 

432 information that farmers receive, its use and impact is warranted. Access to agronomic 

433 training, on the other hand, as expected, reduces the likelihood of being highly vulnerable, 

434 and increases the likelihood of being in the low vulnerability class.

435

436 There are some other socioeconomic, farm management and gender factors that have a 

437 significant effect on the vulnerability level. On-farm diversification also has a substantial 

438 effect (16%) on the likelihood of being in the low vulnerability class. Additionally, model 

439 results indicate that male-headed households are around 16 % more likely than female-

440 headed households to be in the medium vulnerability class. This result matches the results 

441 found by Noterbaert et al. (2013) who indicate the need for interventions and policies that 

442 support female-headed households. The marital status of the household head is statistically 

443 significant and indicates married household heads are less likely to be in a high 

444 vulnerability level (10%). 
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445

446 According to the probit regression, households that are more educated tend to be less 

447 vulnerable to climate risk. On the other hand, large numbers of dependents (the elderly and 

448 children) increase the probability of being in the most vulnerable group but is not 

449 significant. Notenbaert et al. (2013), found that households with many dependent members 

450 tend to be more vulnerable and have less adaptive capacity than households where more 

451 members can contribute to farm labour or through off-farm income sources. In this regard, 

452 households where members have more than one occupation and at least one member has a 

453 non-agricultural occupation tend to be less vulnerable. This finding suggests that the more 

454 diversified income, the higher their adaptive capacity and lower the probability to be 

455 vulnerable to climate risk and is again consistent with Notenbaert et al. (2013). 

456 Additionally, our results show that indebted households are more likely to be more 

457 vulnerable, perhaps due to narrower debt to income ratios. While it is expected that access 

458 to credit decreases vulnerability, actually asking for credit may be an indicator of financial 

459 instability or lack of resources for farming.

460

461 Finally, regarding gender dynamics, we note that the hiring of female workers does not 

462 affect vulnerability significantly, likely indicating that gender of the hired worker has no 

463 direct implication in the production process. On the contrary, the ratio of female and male 

464 household members working on farm has a significant impact on the likelihood of being 

465 more vulnerable. Notably, our analysis suggests that the greater the percentage of 

466 household members making decisions, the more likely it is the household is vulnerable to 

467 climate variability. This is especially so for male members making decisions and maybe a 

468 result of the difficulty in reaching consensus amongst household decision makers.

469

470 5. Discussion

471 5.1 Vulnerability of bean growing households to climate variability

472 This paper examines vulnerability to climate variability and the factors affecting it in key 

473 common bean producing regions in Colombia. We constructed a vulnerability index using 

474 explanatory variables of exposure, sensitivity and adaptive capacity. We find vulnerability 

475 to be highly variable, and mostly concentrated in the drier municipalities of Barichara and 
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476 Villanueva, where farmers are exposed to considerable climate variability and longer 

477 drought spells, have less access to technical assistance, grow beans exclusively and have on 

478 average smaller farms. Additionally, there are different vulnerability levels by municipality, 

479 offering some insight into how geographic factors such a distance to markets, local climate 

480 conditions, and other spatially differentiated variables must be taken into account when 

481 attempting to understand the determinants of vulnerability, with implications for policy and 

482 practice (see Sect. 5.2). Indeed, our finding that location (i.e. municipality) is an important 

483 factor may highlight the importance of variables such as soils, municipality-level 

484 governance structures and/or policies, occurrence of pests and diseases, as well as 

485 interactions between household characteristics and national- or global-level socio-political 

486 and economic variables (Leichenko and O’Brien 2008; Silva et al. 2010; Nielsen and 

487 Reenberg 2010), which were not considered here. Future studies could analyze the 

488 importance of these variables in determining local-level vulnerability levels.

489

490 Studies assessing climate vulnerability in Colombia are scarce and mostly concentrate on 

491 climate change timescales. For instance, Ramirez-Villegas et al. (2012) quantified how 

492 Colombian agricultural production may be affected by climate change, suggesting that 

493 some 10 % of common bean growing areas expect reductions in precipitation and that most 

494 growing areas expect increases in annual mean temperature in the range 2–2.5 ºC above 

495 historical levels. Eitzinger et al. (2014), focusing on the areas around Bogota, reported that 

496 some 20-30 % of climatically suitable common bean area is expected to reduce as a result 

497 of climate change. Previous research has also assessed the social causes of vulnerability, 

498 including trade and armed conflict (Feola 2013; Feola et al. 2015; Contreras and Contreras 

499 2016). Most of these studies conclude that trade liberalization and armed conflict can 

500 further enhance vulnerability by reducing productivity or hindering market 

501 competitiveness. This highlights the importance of understanding vulnerability in a broader 

502 context, with multiple stressors at various spatial scales (Leichenko and O’Brien 2008; 

503 Nielsen and Reenberg 2010; Taylor 2014).

504

505 To the knowledge of the authors, however, studies on farmer vulnerability climate 

506 variability, and mainly focusing on bean producers, do not exist for Colombia.
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507

508 Studies in other developing countries support our main finding that vulnerability is highly 

509 variable and conditioned by specific climatic variables and household characteristics (e.g. 

510 education, income and farm diversification). For instance, Sietz et al. (2012) analyzed 

511 Peruvian smallholders’ vulnerability and food security through a clustering approach. They 

512 found that the cluster with the most vulnerable smallholders exhibits the highest crop 

513 failure risk, pronounced livestock constraints, suffer educational deprivation, and have 

514 limited or no alternative income sources. Similarly, Notenbaert et al. (2013) suggest that the 

515 vulnerability of agro-pastoralists in Mozambique to climate change and variability is 

516 influenced by the gender and age of the household head, the ability to save money and 

517 access emergency loans. Furthermore, the multi-country study of Wood et al. (2014) 

518 reported that African and South Asian farmers’ reported changes in farm practices are 

519 influenced by access to weather information and participation in social institutions, which 

520 ultimately conditions their vulnerability level. Furthermore, our study also highlights 

521 important areas of future research. For instance, our finding that access to agro-climatic 

522 information in the last 12 months, while somewhat counterintuitive, warrants further 

523 investigation as to the reliability and usability of the information being provided, and the 

524 capacity of farming households to understand and use it (Selvaraju et al. 2011; Mcnie 2012; 

525 Bernardi 2013).

526

527 5.2 Implications for science, policy, and practice

528 A number of implications stem from our work. One of the critical findings of this study 

529 relates to the heterogeneity of vulnerability. The vulnerability determinants of farming 

530 households are diverse (e.g. location, workforce, and climate). There is a “vulnerability 

531 complex” (i.e. many context-dependent variables), which illustrates the importance of 

532 policy mechanisms and development interventions that are adequately flexible so as to 

533 consider individual household context when attempting to reduce regional vulnerability to 

534 climate variability and change. Climate as one of the factors that influences vulnerability 

535 might be seen beyond a set of biophysical variables, but part of a constant process of 

536 change that involves social organization, technology change and political discourse (Taylor 
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537 2014). That is, while vulnerability is experienced at the local level, its causes and solutions 

538 can be determined at a variety of scales (from local through to international).

539

540 This means that, in addressing vulnerability to climate variability and climate change, a 

541 wide range of context socio-economic and political variables must be taken into account 

542 (Feola 2013; Ramirez-Villegas and Khoury 2013; Feola et al. 2015). Here, we have 

543 analyzed a variety of climate and household characteristics, and have explicitly assessed the 

544 roles of crop diversification, and farm management, and gender, in determining 

545 vulnerability. Further work remains to be done to understand the influence of socio-

546 political context variables on vulnerability, by using panel datasets (which we did not have 

547 here), larger datasets with multiple departments, or by using ethnographic approaches to 

548 qualitatively understand other vulnerability determinants (Beveridge et al. 2019). Despite 

549 this, our study helps disentangle part of the ‘vulnerability complex’ at the local scale, 

550 contributing to setting priorities for addressing vulnerability.

551

552 Based on our analysis, we conclude that climate variability adaptation should be a priority 

553 in the study area, with efforts first targeting the most vulnerable areas (Barichara, 

554 Villanueva). Such an approach would allow to pilot test most appropriate adaptation 

555 measures, which could be prioritize on the basis of a cost benefit analysis. Increased access 

556 to up to date technical assistance as well as increased organizational cohesion of farmers 

557 are needed (Gutiérrez and Espinosa 2010; Lampis 2013; Feola et al. 2015). While our 

558 analysis only targets four municipalities (covering 27% of farmers in Santander, according 

559 to the National Agricultural Census, 2014), future studies should assess vulnerability across 

560 the whole of Santander and other bean growing areas, in order to better target and expand 

561 climate adaptation work, also aiming to understand differences in context-variables at the 

562 municipality level. This is especially important Colombia where major changes in 

563 agricultural areas are expected as a result of the post-conflict agenda (Aguilar et al. 2015; 

564 Gonzalez-Salazar et al. 2017). Our study provides a rigorous approach for assessing 

565 vulnerability, and could be the basis of such future assessments. 

566

Page 26 of 89

URL: https://mc.manuscriptcentral.com/cdev  Email: TCLD-peerreview@journals.tandf.co.uk

Submission to Climate and Development

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

20

567 Ultimately, if vulnerability is to be reduced in these areas, appropriate risk mitigation 

568 strategies tailored toward reducing the impact of drought spells need to be devised. The 

569 potential benefit of adaptation strategies can be substantial, not only addressing local-scale 

570 vulnerability, but also increasing bush bean production and economic output in the 

571 Santander department, and in the country. One key mechanism for adaptation is the 

572 provision and use of agronomic and climate-related information (e.g. Wood et al., 2014). 

573 An important finding of our analysis lies in the difference in the effect between agronomic 

574 training and agro-climatic information. While the former has a large positive effect in the 

575 likelihood of being in the low vulnerability class, the latter increases the likelihood of being 

576 in the high vulnerability class. There are various implications of these results. Foremost, 

577 agronomic training can be a lever through which agro-climatic information can be 

578 communicated to farmers, so as to enable adaptation. Additionally, it is critical to 

579 understand what kinds of agro-climatic information farmers are receiving and whether and 

580 how they are using it. For instance, Blundo Canto et al. (2016) reported that issues with 

581 scale and reliability of climate predictions, as well as their lack of connection to agricultural 

582 activities prevent the use of seasonal and weather forecasts from the Colombian 

583 Meteorological Agency (IDEAM). Similarly, Esquivel et al. (2018) reported varying skill 

584 in seasonal predictions across major agricultural regions and cropping seasons. Efforts to 

585 train farmers to understand climatic predictions (especially drought- related) and connect 

586 them to their activities, as well as to provide more locally-relevant and reliable seasonal and 

587 weather forecasts will be necessary to adapt bush bean production to climate variability 

588 (CIAT-MADR 2015).

589

590 Other adaptation strategies could include a combination of diversification at the plot-level, 

591 for instance through crop and variety diversification, and at the farm-household level 

592 through complementary income generating activities. Baca et al. (2014) discuss the 

593 importance of diversification for production risk management in small farming systems, 

594 while Lin (2011) shows that diverse levels and types of diversification allow farmers to 

595 concomitantly increase resilience and obtain economic benefits. Van Etten et al. (2019) 

596 demonstrate how varietal diversification can help small-scale farmers adapt to climate 

597 change. In terms of crops, diversification also implies access to suitable germplasm that is 
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598 climate-adapted, but also fostering and linking formal and informal seed systems (Bellon et 

599 al. 2011). At the regional level, technical assistance could be targeted to accompany these 

600 diversification strategies and to implement preventive actions to face climate variability and 

601 drought (e.g. irrigation, water harvesting, and use of cover crops or residues), including 

602 monitoring and early warning systems to orient planting and crop management decisions 

603 (Ramirez-Villegas et al. 2012; CIAT-MADR 2015). 

604

605 The implementation of these strategies will require a concerted effort between public (e.g. 

606 Ministry of Agriculture) and private (e.g. FENALCE, the national cereal and legume crop 

607 federation, and other local entities) organizations to provide farmers with the technical 

608 assistance, economic incentives and inputs to cope with climate variability (Motha 2007; 

609 Ramirez-Villegas et al. 2012; Turbay et al. 2014), while also addressing other causes of 

610 vulnerability (e.g. armed conflict, political instability, and trade liberalization) (Feola et al. 

611 2015; Contreras and Contreras 2016; Villegas-González et al. 2017).

612

613 5.3 Limitations and future work

614 Here, we have quantified the degree of vulnerability and assessed its determinants. While 

615 we have used context-specific data and statistical approaches, limitations arise in our 

616 analysis. Foremost, the survey captured only limited information on sensitivity and 

617 exposure to climate variability, but sufficient information on adaptive capacity. While over-

618 representation in one of the vulnerability dimensions is unlikely to bias the relative 

619 comparisons of vulnerability done here, it is desirable to include similar numbers variables 

620 for all vulnerability dimensions. This would allow a more comprehensive assessment of 

621 vulnerability. Similarly, as stated earlier, further understanding is required as to socio-

622 political context determinants of vulnerability (see Sect. 5.1–5.2). Additional limitations 

623 arise due to possible noise in the household dataset, or in the satellite-derived climate data 

624 used to measure exposure. Our analysis generates important evidence on the degree and 

625 determinants of vulnerability in bean growing rural households. This evidence, even in a 

626 constrained geographic area such as Santander, shows the value of disaggregated analyses, 

627 both at the municipality and household levels.

628
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629 Finally, we believe continued research on vulnerability and its determinants is necessary to 

630 generate the evidence and information required to address it. Notably, assessments in other 

631 crops and regions of Colombia are necessary to better understand vulnerability to climate 

632 variability and its determinants. Such assessments are currently constrained by data 

633 availability. Finally, studies that relate vulnerability with food security, and that investigate 

634 how gender influences vulnerability are warranted.

635
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Table 1 Variables used to define the Vulnerability Index (VI)

Variables in index Expected sign*

Sensitivity +

Has suffered drought** +

Think drought affects more than other events** +

Think precipitation is enough for crop** -

Think climate change will high impact HH economy** +

House have piped aqueduct** -

Exposure +

Consecutive dry days (std. dev.), P1 +

Consecutive dry days (std. dev.), P2 +

Consecutive dry days (max), P1 +

Consecutive dry days (max), P2 +

Adaptive Capacity -

Household size -

Members in age to work -

Average household education   (years) -

Household head education (years) -

Household head age +

Planted area (% of total) +

Number of crops -

Number of assets  owned -

Transportation assets -

Agricultural Assets -

Information Assets -

Number of household members with off farm occupation -

Agricultural inputs expenditure (per ha) -

Bush bean income (per ha) -

*The + (–) sign indicates that a high value in the variable increases (decreases) the 
level of household vulnerability. These are all based on what is expected, and are not 
imposed directly onto the analysis. 

** Dichotomous variable
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Table 2 Summary of the explanatory variables used in the regression model

Variable definition Units of measurement

Geographic factors  
Municipality Villanueva 1=Yes and 0=No
Municipality Curiti 1=Yes and 0=No
Municipality San Gil 1=Yes and 0=No
Distance to closest populated centre (Km) km

HHH factors  
HHH sex 1=Man and 0= Female
HHH is married or in consensual union 1=Yes and 0=No

HH demographic factors  
Highest education level of any member Years

HH Socioeconomic factors  
HH dependency rate Ratio (dimensionless)
HH members with 2nd occupation Number of members
Asked for loan in last 12 months 1=Yes and 0=No
Need to collect water at least once a week 1=Yes and 0=No

Information and training  
Anyone in HH received agroclimatic information in last 12 months 1=Yes and 0=No
Anyone in HH received agronomic training in last 12 months 1=Yes and 0=No

Farm management factors  
Total Area ha
HH have another main crop: coffee, corn or tobacco 1=Yes and 0=No
Hired labour day ha-1

Intra-household and productivity gender role  
Hired at least one female worker 1=Yes and 0=No
Ratio of women to men family workers (over 14) Ratio (dimensionless)
HH decision-makers who are woman %
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Table 3 Summary characteristics of surveyed households per municipality

Municipality
Barichara

(n=114)

Villanueva

(n=145)

Curiti

(n=192)

San Gil

(n=116)

Total

(n=567)

20.1% 25.6% 33.9% 20.5% 100.0%

   Mean S.D.1 Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Household characteristics           

 Household size 3.83 1.5 3.48 1.45 3.5 1.4 4.16 1.53 3.7 1.48
 HH average age 37.26 15.19 40.87 16.68 38.42 15.49 34.37 14.79 37.98 15.72
 HH dependency rate 0.39 0.48 0.34 0.46 0.39 0.56 0.5 0.51 0.4 0.51
 HH average education among adult members 5.49 2.42 4.69 2.11 5.4 3.09 5.99 2.26 5.36 2.6
Household head characteristics           
 HHH age 47.95 12.31 51.95 13.63 49.08 13.41 46.59 14.53 49.08 13.59
 HHH education 4.54 2.86 3.73 2.14 4.85 3.6 4.8 3.03 4.48 3.03
Farm characteristics           
 Total area (ha) 1.06 0.9 1.39 1.27 2.22 1.51 3.41 2.8 2.02 1.9
 Bean planted area (fraction of total) 0.97 0.12 0.98 0.1 0.65 0.29 0.63 0.28 0.79 0.28
 Bean yield (ton ha-1) 0.98 0.36 1.07 0.38 1.11 0.4 1.22 0.34 1.1 0.38
 Number of crops 1.06 0.24 1.09 0.39 1.68 0.59 2.33 1.26 1.54 0.85
Gender           
 Female members working on farm (fraction of total) 0.74 0.4 0.54 0.47 0.55 0.45 0.53 0.45 0.58 0.45
 

1 S.D.: standard deviation across the household sample
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Table 4 Marginal effects of the Generalized Ordered Probit regression

Tercile  Tercile 1  Tercile 2  Tercile 3

Vulnerability Level  Low Medium High

Geographic factors       

Municipality. Villanueva=1  0.017  -0.159***  0.142***
Municipality. Curiti=1  -0.004  0.002  0.002
Municipality. San Gil=1  0.636***  -0.404***  -0.233***
Distance to closest populated centre  -0.076***  0.042***  0.034***
HHH factors       
HHH gender (Male=1)  0.055  0.047  -0.103***
HHH is married/ consensual union. Yes=1  0.215***  -0.076***  -0.139***
HH factors       
Highest education level of any member (years)  0.055***  -0.030***  -0.024***
HH dependency rate  -0.060*  0.033*  0.027*
Anyone in HH received agroclimatic information in last 12 months. Yes=1  0.06  -0.141***  0.080***
Anyone in HH received agronomic training in last 12 months. Yes=1  0.382***  -0.321***  -0.061***
Asked for loan in last 12 months. Yes=1  -0.087***  0.050**  0.037***
Need to collect water at least once at week. Yes=1  -0.067  0.151***  -0.083***
Farm management factors       
Total Area (Ha)  0.071***  -0.063***  -0.009
HH have another main crop (coffee, corn or tobacco). Yes==1  0.395***  -0.214***  -0.181***
Hired labour day (per hectare)  0.001  0.001  -0.002***
Gender factors       
Hired at least one female worker. Yes=1  -0.029  0.016  0.014
Ratio of women to men family workers (over 14)  -0.012  0.007  0.005
Percentage of HH female members making productive decisions  -0.229***  0.126***  0.103***
Percentage of HH male members making productive decisions  -0.614***  0.468***  0.146***
Number  567
Chi Squared  1477.288
Log-Likelihood  -819.042
LRI  0.474
AIC  1696.084

Significance levels: * p<0.10, ** p<0.05, *** p<0.01
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Figure 1 Study area and household distribution. Points indicate the household surveys in four municipalities: 

Barichara, Villanueva, Curiti and San Gil. The municipalities are located in the department of Santander, in 

the north-east zone of Colombia. The elevation of zone varies between 333-2.240 m.a.s.l., while study 

households are located specifically in range 1.189-2.240 m.a.s.l. 
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Figure 2. Municipality composition by Vulnerability Index (VI) terciles. Values in parentheses indicate the 

mean VI value, varies between 0 and 100. The percentage of households placed in each vulnerability level is 

shown for municipality and total sample. 
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Supplementary Material 

Supplementary Text S1 – Literature review to identify sensitivity and adaptive 

capacity indicators

In order to identify those variables that were most useful in characterizing sensitivity and 

adaptive capacity, a systematic literature review was conducted. Based on these results, we 

establish our final choice of variables for analysis (see Sect. 2 and 3.4, main text). 

The studies were identified through Google Scholar™, using the search terms “climate”, 

“vulnerability”, and “households”. A total of 9 published studies were identified that use 

IPCC’s climate vulnerability framework. The studies as well as the variables they use to 

characterize sensitivity and adaptive capacity are listed in Supplementary Table S1. In 

general, the variables commonly used to define household adaptive capacity and sensitivity 

to climate events are clearly distinct, with the exception of household composition and land 

ownership (also see Sect. 2 of the main text).

One challenge in variable selection and specification is that different researchers may 

categorize indicator variables in different ways. Household composition and land 

ownership, for example, can be used to characterize both sensitivity and adaptive capacity. 

Household composition was included as a measure of adaptive capacity by Opiyo et al. 

(2014) and Lokonon (2017) and, contrastingly, as a measure of sensitivity by Baca et al. 

(2014). Land ownership was included as a measure of adaptive capacity by Opiyo et al. 

(2014) but as a measure of sensitivity by Baca et al. (2014). Both variables can arguably be 

included in either dimension of vulnerability. For instance, households with many 

dependent members can be highly sensitive if those members could suffer more via lack of 

food, water or care (Notenbaert et al. 2013). On the other hand, households with many 

dependent members tend to show less adaptive capacity since the workload and 

responsibility for adapting is concentrated in one single or only a few household members 

(Notenbaert et al. 2013).
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Supplementary Text S2 – Ordinary Least Squares (OLS) regression

First, we adopted the Ordinary Least Square method (OLS) using the following equation: 

'i iy xα β ε= + +

where  is a set of household-level variables,  is the VI and  is the error term. Results of 𝑥𝑖 𝑦 𝜀
the OLS model are shown in Table A1. 

Table A1 – OLS regression results

Variables / Vulnerability Level
OLS Regression

Geographic factors  

Municipality. Villanueva=1 7.982**

Municipality. Curiti=1 -0.855

Municipality. San Gil=1 -21.471***

Distance to closest populated centre 1.496*
HHH factors  
HHH gender (Male=1) -0.544

HHH is married/ consensual union. Yes=1 -6.174**

HH factors  
Highest education level of any member (years) -1.831***
HH dependency rate 1.637

Anyone in HH received agroclimatic information in last 12 months. Yes=1 3.258*

Anyone in HH received agronomic training in last 12 months. Yes=1 -8.449**
Asked for loan in last 12 months. Yes=1  3.108*

Need to collect water at least once at week. Yes=1 -3.509

Farm management factors  
Total Area (Ha)  -0.945*
HH have another main crop (coffee, corn or tobacco). Yes==1 -13.115***
Hired labour day (per hectare) -0.114*

Gender factors  

Hired at least one female worker. Yes=1 0.063

Ratio of women to men family workers (over 14) -2.113

Percentage of HH female members making productive decisions 7.596***

Percentage of HH male members making productive decisions 16.342***

Number 567

R-squared 0.6674

Degrees of fredom 92.78

* p<0.10, ** p<0.05, *** p<0.01  

OLS regression results indicate that most variables have a statistically significant effect on 

the VI. In particular, we found a positive and statistically significant effect of being in the 

municipality of Villanueva, the distance to the closest populated center, the receiving 
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information about agroclimatic issues, and the percentage of female and male members in 

the households making decision about production. Being in the municipality of San Gil, 

having a married household head, having higher level of education, having received an 

agronomic training in the past 12 months, total areas in hectares, and hired labour per day 

has a negative and statistically significant effect on the VI.

However, through the OLS method we can learn something about the direction of the 

coefficient but not regarding the magnitude of the effect, as coefficients cannot be easily 

interpreted1. For this reason, we transformed the index into a categorical variable in three 

different ways: the first one is to divide the VI into three ranges of a standard deviation ±  

around the mean. The second one was to split the VI into quintiles. The third one 

correspond to the terciles of the VI. Then we estimated a Generalized Ordered Probit 

Regression with the three different categorical variables (see supplementary material Table 

S10). We found that the vulnerability values near the threshold between two categories did 

not introduce noise or bias in our results, in terms that the most of the variables coincide 

among the models in statistical significance and direction of the effect. Then we choose the 

model where the dependent variable is the VI divided into terciles for explaining our results 

since its results coincide with both the alternatives Generalized Ordered Probit estimations 

and with the OLS regression. The model

The OLS method allows us to look at the mean values, while we are interested in 

understanding what happens across of the distribution. Furthermore, the coefficient of the 

OLS is of difficult interpretation, since the dependent variable is an index composed of 

several variables.

1 Due to the normalization process over the overall index, the coefficients can be interpreted as the effect of an increase of 

1 standard deviation of the regressor on the VI index.
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Supplementary Text S3 – the parallel regressions assumption and the Brant test

The parallel regressions assumption departs from the specification of discrete ordered 

choice model (Long, 1997) (Eq. 1).

                                   
(1)Pr(y  | ) = F( ' ); 1,..., 1i j iJ x x j Jµ β≥ − = −

Differentiating (1), we have:

                                      (2)Pr[ | ] / *( )i i i i iy j x x f xµ β β∂ ≤ ∂ = − −

This is defined as a set of binary choice models by with the same slope vector . Fixing the β

probability at  for any outcome, by monotonicity of the normal density function, it *P P=

follows that   is fixed at  It means that for a particular choice the probability ( )i if xµ β− *.f

is:

,Pr[ | ] / * Pr[ | ] / , 0,...,i i i i iy j x x f y m x x m Jβ∂ ≤ ∂ = = ∂ ≤ ∂ =

Where  is the same for all J, that is, a multiple of the same . This intrinsic characteristic *f β

is called “Parallel regression assumption” (Greene and Hensher, 2010).

Brant (1990) approaches the parallel regressions issue through the proportional odd test in 

which implies the null hypothesis is equivalent to  implying that 1 2 1: ... JHo β β β −= =

where  y  is the normal density function. The 
0Pr(y | ) = ( ' )i j ij x xφ β β≥ − 0 0j jβ β µ= − φ

slope vector  must be the same in each equation. This specification implies that J-1 binary 
jβ

choice models can be estimated at the same time. Each with its own constant term and the 

same slope vector. So, the null hypothesis is equivalent to:

0 1: 0, 2,..., 1qH q Jβ β− = = −

Which can be summarized as:

, Where0 : * 0H Rβ =
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1

2

0 ... 0 0

0 ... 0 0
*

...... ... ... ... ... ...

0 0 ... 0k

I I

I I
R C

I I

β
β

β

β

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

The Wald statistic follows a chi-squared distribution and is defined as:

[ ]
1

2 ˆ ˆ ˆ( 1) ( *) ' . * ' ( *)J K R R AsyVar R Rχ β β β
−

⎡ ⎤⎡ ⎤− = × ⎣ ⎦⎣ ⎦

Where  is obtained from the individual estimator of binary probit of (without a constant ˆ *β β

term). Using the results of the Brant test or the results of parallel odds ratio, the asymptotic 

variance and covariance matrix is defined as:

1 1

1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ. . , (1 ) ' (1 ) ' (1 ) '
n n n

i j ij ij i i im ij i i im im i i

i i i

Est Cov Asy x x x x x xβ β
− −

= = =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ = Φ −Φ Φ −Φ Φ −Φ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∑ ∑ ∑

And . 0
ˆ ˆˆ ( ' )ij j ixβ βΦ = Φ −

If the null hypothesis of the Parallel Regressions Assumption test is accepted the Ordered 

Probit Model should not be estimated, as it could be a result of (i) wrong specification of the 

latent variable; (ii) negative probabilities, heteroscedasticity of errors; and (iii) a wrong 

specification of the latent variable distribution (i.e. the variable does not follow a logistic or 

normal distribution). On the other hand, if the null hypothesis is rejected, a generalized 

ordered probit should be estimated (Greene and Hensher, 2010).

In our particular case, the null hypothesis of the Parallel Regressions Assumption was 

rejected, which means we can indeed estimate the generalized ordered probit model.
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Table S1 Variables identified in the literature as determinants of adaptive capacity (A) and sensitivity (S). Bold text is used 

indicate variables that overlap between dimensions across studies. HH: household.

Variable/Dimension
Agrawal 

(2010) 

Anderson 

et al. 

(2010)

Harvey 

et al. 

(2014)

Baca et 

al. 

(2014)

Huai 

(2016)

Lokonon 

(2017)

Opiyo et 

al. 

(2014)

Byrne 

(2014)

Nelson 

et al. 

(2002)

Our 

index

Water storage/irrigation A A A

HH age/ HH head age A A A

HH size A A

HH composition / dependent members S A A A

HH head sex A

HH education level A A A

HH head [highest] education level A A A A

Training A A A A

Assets/ Productive technology A A A A A A

Access to information A A A A A

Access/ Distance to market A A A A A

Agriculture income A A A A A

Occupational diversification A A A A A A

Alternative crops A A

Planted area A A

Production costs (inputs) A A A

Access to inputs A A

Access and management of natural resources A

Land ownership S A

Agricultural insurance A A A A

Affiliation to organizations A A A A A

Access to credit A A A A

Migration S S

Water access S S

Transportation S

Medical services S

Soil moisture deciles-based drought index S S

Whether or not the HH suffered climate events S S S
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Table S2 Summary characteristics of household heads in the surveyed sample of households

Municipality Barichara Villanueva Curiti San Gil Total

HHH gender Male Female Male Female Male Female Male Female Male Female

  % of sample 78.9% 21.1% 85.5% 14.5% 83.9% 16.1% 71.6% 28.4% 80.8% 19.2%

   Perc. Perc. Perc. Perc. Perc. Perc. Perc. Perc. Perc. Perc.

 HHH occupation           

  Farmer 98.9% 58.3% 95.2% 57.1% 98.8% 71.0% 98.8% 75.8% 97.8% 67.0%

  Housewife 1.1% 41.7% 0.8% 38.1% 0.0% 25.8% 0.0% 21.2% 0.4% 30.3%

  Other 0.0% 0.0% 4.0% 4.8% 1.2% 3.2% 1.2% 3.0% 1.7% 2.8%
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Table S3 Weights of factor in multivariate analysis on adaptive capacity

Adaptive Capacity Sign in index Weight in index

Number of assets  owned - 0.196

Agricultural Assets - 0.167

Household size - 0.140

Members in age to work - 0.135

Transportation assets - 0.120

Information Assets - 0.103

Number of crops - 0.101

Number of household members with off farm occupation - 0.100

Agricultural inputs expenditure (per ha) -  0.033

Average household education   (years) - 0.017

Bush bean income (per ha) - 0.012

Household head age + 0.002

Household head education (years) - -0.048

Planted area (% of total) + -0.078

Table S4 Weights of factor in multivariate analysis on sensitivity

Sensitivity

Sign in 

index

Catego

ry

Weight in 

index

No -0.216Think climate change will high impact HH 
economy*

+
Yes 0.140

No 0.011
House have piped aqueduct* -

Yes -0.006

No 0.130
Think precipitation is enough for crop* -

Yes -0.201

No -0.594
Has suffered drought* +

Yes 0.057

No -0.404Think drought affects more than other 
events*

+
Yes 0.082

Table S5 Weights of factor in multivariate analysis on exposure

Exposure Sign in index Weight in index

Consecutive dry days (std. dev.), P1 + 0.256

Consecutive dry days (std. dev.), P2 + 0.246

Consecutive dry days (max), P1 + 0.265

Consecutive dry days (max), P2 + 0.233
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Table S6 Weights of factor in multivariate analysis on vulnerability

Vulnerability Sign in index Weight in index

Exposure index + 0.582

Sensitivity  index + 0.540

Adaptive capacity index - -0.122
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Table S7 Summary statistics of vulnerability index components by tercile

Tercile 1 Tercile 2 Tercile 3

Vulnerability level Low vulnerability Medium vulnerability High vulnerability

Mean Std. Dev. Median Mean Std. Dev. Median Mean Std. Dev. Median

K-Wallis 

Test1

Exposure           

Consecutive dry days (median), P1 10.77 0.61 11 10.88 1.02 11 11.97 1.53 13 75.18***

Consecutive dry days (median), P2 6.11 0.36 6 6.34 0.6 6 6.38 0.94 6 23.25***

Consecutive dry days (std. dev.), P1 3.78 0.4 3.63 4.26 0.71 3.95 5.1 0.41 5.25 264.54***

Consecutive dry days (std. dev.), P2 2.28 0.18 2.18 2.45 0.26 2.42 2.83 0.25 0.94 268.89***

Consecutive dry days (max), P1  17.33 1.74 17 19.6 2.7 19 22.61 1.47 23 294.23***

Consecutive dry days (max), P2 10.12 0.48 10 10.61 0.56 11 11.08 0.39 11 251.84***

Adaptive Capacity           

HH size 4.39 1.33 4 3.58 1.43 4 3.12 1.38 3 74.88***

Members in age to work 3.3 1.28 3 2.63 1.24 2 2.24 1.23 2 61.06***

Average HH education (years) 6.61 2.26 6.5 5.4 2.82 5 4.05 1.99 3.57 109.24***

HHH education (years) 5.05 3.21 5 4.66 3.22 4 3.39 2.58 3 43.98***

HHH age 46.15 12.87 45 48.24 13.14 48 52.85 13.93 54 27.13***

Planted area (% of total) 0.63 0.28 0.52 0.8 0.27 1 0.96 0.17 1 133.45***

Number of assets in HH 8.04 1.76 8 6.99 1.22 7 6.46 1.04 7 98.99***

Transportation assets 0.58 0.66 0 0.36 0.52 0 0.1269 0.35 0 62.7***

Agricultural Assets 1.43 0.92 1 0.86 0.53 1 0.89 0.33 1 70.2***

HH members with 2nd non-agricultural occupation 0.35 0.6 0 0.053 0.22 0 0.02 0.14 0 77.87***

Number of different occupations in HH 1.47 0.66 1 1.11 0.34 1 1.05 0.22 1 86.47***

Inputs expenditure ($USD) 197.41 78.59 190.16 189.45 78.33 183.6 142.51 86.96 118.0 65.23***

Bean derived income (total) ($USD) 2095.9 1881.9 1573.8 1340.8 1346.5 944.3 1242.8 1404.9 872.1 45.17***

Bean derived income (per hectare) ($USD) 1184.3 415.6 1178.1 1112.5 423.1 1082.0 1036.1 365.3 997.4 12.27***

Sensitivity (qualitative variables) Freq.   Freq.   Freq.   Chi22

Have Suffered Drought. Yes==1 81.5%   94.2%   97.9%   34.78***

Think drought affect more than other events. Yes==1 68.3%   85.7%   95.2%   50.33***

1 A Kruskal-Wallis (Chi-squared) test is used for continuous (discrete) variables to test for differences between vulnerability classes. *** indicates 

statistically significant differences at 1 %, ** indicates significant at 5 %, and * at 10 %.
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Supplementary Text S4 – Description of Table S7: Vulnerable households are characterized by 

being exposed to a higher number of consecutive dry days especially during the first growth period 

analysed (P1, from sowing to third tri-foliate leaf). Notably, vulnerable households also experience 

greater interannual variations in the number of consecutive dry days in P1, but considerably less 

variation than other households in P2 (from pre-flowering to end of pod-filling). This would be 

expected since it is during sowing and crop establishment (i.e. throughout P1) that drought can 

cause crop failure and lead to vulnerability. Consistent with the biophysical exposure to drought, 

some 95 % households in the high vulnerability class perceive drought as the most important factor 

affecting their production (vs. 81 % in the low vulnerability class), and almost all of them reported 

having experienced drought in the two seasons before the survey. 

Households in the high vulnerability class also appear to have lower family labour availability, 

they are less educated, and the household head is older compared to the other two classes. 

Importantly, they tend to practice monoculture, have greater proportions of farm area under crops, 

and do not belong to agricultural organizations. The latter is especially important as it likely means 

they have less access to improved seed and technical assistance. Conversely, the least vulnerable 

households appear to be wealthier in terms of household and productive assets and more educated. 

These households are also characterized by having more members with an off-farm occupation. 

Therefore they are slightly more diversified in their income sources. This diversification is 

paralleled regarding crops, as the majority of households in the low vulnerability class grow more 

than one crop. They also more often belong to a farmer organization, and invest more in their 

crops, both of which may contribute to higher yields, yield stability, and therefore lower 

vulnerability. 

Bean-derived total income is lowest for the households in the high vulnerability class, which is 

likely a result of lower overall income. Bean income per hectare is also the lowest for this group 

of farmers, likely due to lower yield as a result of less use of inputs, less access to technology and 

technical assistance, and less favourable climatic conditions.
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Table S8 Descriptive statistics of vulnerability determinants

Municipality Barichara Villanueva Curití San Gil Total

N (n=114) (n=145) (n=192) (n=116) (n=567)

Continuous variables Mean

Std. 

Dev. Mean

Std. 

Dev. Mean

Std. 

Dev. Mean

Std. 

Dev. Mean

Std. 

Dev.

Geographic factors           
 Distance to closest populated centre 5.11 1.51 4.75 1.01 5.13 1.33 5.63 0.86 5.13 1.25
HH factors           
 Highest education level of any member (years) 8.11 3.6 6.79 3.2 7.67 4.13 8.56 3.07 7.72 3.64
 HH dependency rate 0.39 0.48 0.34 0.46 0.39 0.56 0.5 0.51 0.4 0.51
Farm  factors           
 Total area (ha) 1.06 0.9 1.39 1.27 2.22 1.51 3.41 2.8 2.02 1.9
 Hired labour day (per hectare) 23.79 9.8 21.29 14.77 16.66 15.32 20.36 13.6 20.03 14.09
Gender Factors           
 Ratio of women to men family workers (over 14) 0.73 0.47 0.64 0.69 0.6 0.54 0.6 0.6 0.64 0.58
 Percentage of HH female members making productive decisions 0.46 0.4 0.51 0.43 0.6 0.36 0.41 0.39 0.51 0.4
 Percentage of HH male members making productive decisions 0.69 0.3 0.73 0.3 0.73 0.31 0.55 0.34 0.68 0.32

Categorical variables Percentage

  Barichara Villanueva Curití San Gil Total

HHH factors           
 HHH gender (Male=1) 78.95% 85.52% 83.85% 71.55% 80.78%
 HHH is married/ consensual union. Yes=1 78.95% 88.28% 86.98% 85.34% 85.36%
HH factors           

 
Anyone in HH received agroclimatic information in last 12 
months. Yes=1 71.05% 56.55% 36.98% 43.97% 50.26%

 
Anyone in HH received agronomic training in last 12 months. 
Yes=1 7.02% 3.45% 4.69% 18.10% 7.58%

 Asked for loan in last 12 months. Yes=1 91.23% 62.76% 63.02% 59.48% 67.90%
 Need to collect water at least once a week. Yes=1 78.95% 1.38% 5.73% 29.31% 24.16%
Farm management factors           
 HH have another main crop (coffee, corn or tobacco). Yes==1 6.14% 4.83% 61.46% 64.66% 36.51%
 Hired at least one female worker. Yes=1 27.19% 20.69% 13.54% 52.59% 26.10%
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Table S9 Check of robustness for the probit model by using alternative classification methods for the VI

Quintiles Ranges around the mean1

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 Class 1 Class 2 Class 3

Variables / Vulnerability Level Low Medium low Medium Medium high High Low Medium High

Geographic factors         
Municipality. Villanueva=1 0.061 -0.214*** -0.039 0.146*** 0.046** -0.106*** 0.057*** 0.049*
Municipality. Curiti=1 0.117** -0.106* -0.061 0.057 -0.007 -0.122** 0.158*** -0.036**
Municipality. San Gil=1 0.501*** 0.066*** -0.267*** -0.262*** -0.039*** 0.314*** -0.208*** -0.105***
Distance to closest populated 
centre 0.009 -0.119*** 0.057*** 0.045*** 0.009*** -0.022* 0.001 0.021***
HHH factors         
HHH gender (Male=1) -0.027 0.073* 0.010 -0.027 -0.028** -0.052 0.104*** -0.052***
HHH is married/ consensual union. 
Yes=1 0.095*** 0.088*** -0.055*** -0.108*** -0.019** 0.116*** -0.054*** -0.063***
HH factors         
Highest education level of any 
member (years) 0.023*** 0.026*** -0.011** -0.032*** -0.006*** 0.037*** -0.025*** -0.012***
HH dependency rate -0.017 -0.010 0.011 0.014 0.002 0.010 -0.007 -0.003
Anyone in HH received 
agroclimatic information in last 12 
months. Yes=1 0.086*** -0.100** -0.118*** 0.115*** 0.017*** 0.085*** -0.140*** 0.056***
Anyone in HH received agronomic 
training in last 12 months. Yes=1 0.303*** 0.021 -0.181*** -0.130*** -0.012*** 0.376*** -0.352*** -0.024*
Asked for loan in last 12 months. 
Yes=1 -0.029 -0.017* 0.019 0.024* 0.003 -0.048** 0.033** 0.014**
Need to collect water at least once 
at week. Yes=1 -0.059** 0.045 0.003 0.022 -0.010** -0.129*** 0.177*** -0.048***
Farm management factors         
Total Area (Ha) 0.020*** 0.044*** -0.049*** -0.009 -0.006*** 0.033*** -0.022*** -0.011***
HH have another main crop 
(coffee, corn or tobacco). Yes==1 0.164*** 0.179*** -0.085** -0.240*** -0.018*** 0.244*** -0.166*** -0.079***
Hired labour day (per hectare) 0.001 0.000 0.001 -0.003*** 0.000 0.002** -0.001** -0.001**
Gender factors         
Hired at least one female worker. 
Yes=1 -0.021 0.069 -0.109** 0.059* 0.001 0.021 -0.014 -0.006
Ratio of women to men family 
workers (over 14) -0.041* -0.016 0.048 0.000 0.008** -0.039** 0.026** 0.012*
Percentage of HH female members 
making productive decisions -0.157*** -0.098*** 0.104*** 0.133*** 0.018*** -0.167*** 0.113*** 0.054***

Page 86 of 89

URL: https://mc.manuscriptcentral.com/cdev  Email: TCLD-peerreview@journals.tandf.co.uk

Submission to Climate and Development

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



For Review Only

Quintiles Ranges around the mean1

 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 Class 1 Class 2 Class 3

Variables / Vulnerability Level Low Medium low Medium Medium high High Low Medium High

Percentage of HH male members 
making productive decisions -0.258*** -0.161*** 0.170*** 0.219*** 0.030*** -0.248*** 0.169*** 0.080***

Number 567     567   
Chi Squared 1145.896     727.113   
Log-Likelihood -1409.75     -807.283   
LRI 0.385     0.459   
AIC 2937.509        

* p<0.10, ** p<0.05, *** p<0.01; 1 Classes are defined as follows: class 1 contains all households with VI less than the mean VI minus one standard deviation of 

the entire sample; class 2 contains all households with VI between one standard deviation below and one standard deviation above the mean VI of the entire 

sample; and class 3 contains all households with VI greater than the mean VI plus one standard deviation of the entire sample.
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