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Abstract

Determination of 14C, 55Fe, 63Ni and gamma emitters in two different types of activated reactor pressure vessel (RPV) steel 

samples were carried out. The gamma emitters were analysed using HPGe detectors with ISOCS and standard geometry 

calibrations. Two radioanalytical procedures for the 14C, 55Fe, 63Ni analysis were developed using inactive samples and acti-

vated samples were analysed using modified procedures. A Monte Carlo code was used for the modelling of the activation 

results. The obtained measured and calculated results were comparable.
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Introduction

During operation of a nuclear reactor, excess neutrons are 

absorbed into the reactor structures causing activation of 

structure materials. Therefore, during decommissioning, the 

activated materials need to be characterised, namely their 

radiological, physical and chemical properties need to be 

determined, in order to ensure safe dismantling, processing, 

storage and final disposal procedures.

The characterisation of the activated materials in decom-

missioning projects is a challenging task due to broad spec-

trum of materials, sometimes high dose rates, varying ana-

lytical techniques and representativeness of the characterised 

sample, to name a few. Due to the challenges, implementa-

tion of the characterisation needs to be planned case-by-case 

considering the objective of the characterisation. In some 

cases, very precise characterisation may be needed and be 

possible to perform whereas in other cases a good estimate 

may need to be good enough.

In general, a scaling factor is experimentally determined 

for each material in order to carry out efficient waste cat-

egorisation [1]. The scaling factors link difficult to measure 

radionuclides (DTM) with easy to measure radionuclides, 

namely gamma emitters such as 60Co, 152Eu and 137Cs or 

other types of radionuclides. The scaling factors are mate-

rial and reactor specific and thus they need to be determined 

separately for each reactor. After determination of the scal-

ing factors, the total nuclide vectors and activities of waste 

packages can be carried out by measuring only the gamma 

emitters and calculating the DTM.

Modelling provides a non-destructive approach to waste 

characterisation. This is an important technique especially in 

the early phases of a decommissioning project when the fuel 

may still be inside the shut-down reactor core and compo-

nents close to the core cannot be sampled. The neutron acti-

vation processes can be calculated by modelling the neutron 

fluxes in the reactor structures with a neutron transport code 

such as MCNP [2] and combining this data with the reactor 

operating history and activation reaction cross sections with 

a point-depletion code such as ORIGEN-S [3].

Modelling provides reasonable estimates of material 

specific activities and nuclide vector, but it always requires 

detailed input data on material chemical compositions. 

Moreover, calculation models also contain approxima-

tions e.g. on activating element distribution in the material 
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and calculated activity results need to be validated with 

measurements.

Analytical techniques used in the determination of the 

scaling factors are divided to non-destructive (NDA) and 

destructive analysis (DA). Gamma spectrometry is a well 

established NDA technique for analysis of gamma emitting 

radionuclides and it is routinely used in analysis of different 

samples varying in physical form (e.g. gas, liquid or solid), 

size (e.g. sub-grams to hundreds of kilograms) and origin 

(e.g. industry, environment, medicine etc.). In the case of 

activated materials, the physical form of the sample is most 

often solid and thus gamma spectrometric analysis is a 

straightforward process when appropriate calibration tech-

niques are used. Traditionally, standard geometry calibra-

tion is used for the counting efficiency calibration. Standard 

geometry calibrations are carried out for the gamma detector 

in regular intervals using known amounts of radionuclides in 

specific geometries. The use of the standard geometry cali-

bration is convenient in cases when the samples can be ana-

lysed in constant geometries. Another versatile calibration 

technique based on mathematical efficiency calibrations is 

used in ISOCS (In-Situ Object Counting System) measure-

ment set-up. In this case, the gamma detector has been char-

acterised for different counting efficiencies and geometries 

using point sources and a MCNP code. With this technique, 

the counting efficiencies are derived from size of the object, 

thicknesses and densities of the container and material, pos-

sible collimators, and distance from the detector. Therefore, 

different sizes and shapes of samples can be analysed as long 

as above mentioned parameters are known.

DA techniques are needed for the analysis of DTM, which 

is a common acronym used for the characterisation of alpha 

and beta emitters in decommissioning waste. Due to the 

detection methods via alpha spectrometry and liquid scin-

tillation counting (LSC), the DTM radionuclides need to be 

separated from the solid matrix, separated from each other, 

and purified from other radionuclides using radiochemical 

methods. Variety of DTM radionuclides (e.g. 3H, 14C, 36Cl, 
41Ca, 55Fe, 59Ni, 63Ni etc.) in various activated materials (e.g. 

steel, concrete, graphite, aluminium, lead etc.) require devel-

opment of radiochemical methods which can take several 

days to complete. In some cases, such as characterisation of 

DTM in reactor graphite, the difficulty in the radiochemical 

method is in the solubility of the sample whereas in some 

cases, such as in the case of steel samples, the difficulty 

is in the purity of the radiochemically separated DTM, for 

example interference of 60Co in 63Ni fraction.

In general, the characterisation of the activated reactor 

materials is a multistep procedure, in which the NDA and 

DA techniques can be used in combination reinforcing each 

other as the characterisation project progresses. Currently, 

these techniques are used in practise in the characterisation 

of FiR1 TRIGA Mark II research reactor in Finland [4].

This paper presents a comparison of calculation and 

experimental analysis in determination of 14C, 55Fe, 63Ni and 

gamma emitters in two different types of activated Reactor 

Pressure Vessel (RPV) steel samples. The activation calcula-

tions were made possible by known irradiation history and 

chemical compositions of the steel samples. Radiochemical 

method development was carried out using corresponding 

inactive steel samples prior to analysis of activated steel 

samples. The experimental analysis were carried out using 

two combinations (1) gamma emitters via ISOCS calibra-

tion and radiochemical analysis of 14C, 55Fe and 63Ni and 

(2) gamma emitters via standard geometry calibration and 

radiochemical analysis of 55Fe and 63Ni. The radiochemi-

cal analysis were based on similar techniques but the final 

procedures were different due to the different approaches 

chosen. The approaches will be discussed in Experimental 

chapter.

Inactive and activated RPV steel samples

The studied RPV steel samples were of Boiling Water Reac-

tor (BWR) type and VVER-440 Pressurised Water Reactor 

type. Due to confidentiality reason, exact steel specifications 

are not presented. However, the activating elements studied 

in this article are listed in Table 1. Apart from nitrogen, 

the quantities in the table are based on a Quantovac optical 

emission spectrometry measurements. The exact amount of 

nitrogen in the VVER steel was also not reported and there-

fore, the same concentration was used for VVER steel as 

reported for BWR steel. The uncertainties for the elemen-

tal analysis of Fe, Ni, Co and C were assumed to be 10%. 

A higher uncertainty of 25% was estimated for nitrogen, 

taking into account possible heterogeneity in the material 

microstructure.

Sample preparation

The steel samples were cut from 10 × 10 mm steel bars using 

an Electric Discharge Machine (EDM). The sliced samples 

were first dipped into oxide removal solution (HCl:H2O:hex

Table 1  Weight percentages and estimated uncertainties of activating 

element in studied VVER and BWR RPV steel samples

Amount of N in VVER RPV steel is an estimate

Element VVER (wt%) BWR (wt%)

Fe 96.8 ± 9.7 92.0 ± 9.2

Ni 1.7 ± 0.2 0.57 ± 0.06

Co 0.010 ± 0.001 0.015 ± 0.002

C 0.15 ± 0.02 0.19 ± 0.02

N 0.007 ± 0.002 0.007 ± 0.002
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amethylenetetramine) and then washed with water and etha-

nol in order to stop the oxidation (e.g. rusting). The samples 

were let to air dry and placed into plastic bags. The masses 

of the activated samples were between 0.183 and 0.189 g. In 

total 32 RPV steel samples were cut and labelled. Inactive 

samples were labelled as BWR_1 to BWR_8 and VVER_1 

to VVER_8 and activated samples as BWR_a to BWR_h 

and VVER_a to VVER_h. Samples 1 to 4 and a to d were 

studied at Helsinki University whereas samples 5 to 8 and e 

to h were studied at VTT.

Activation calculations

As material is irradiated with neutrons, activation of stable 

isotopes to unstable isotopes occur depending on the neu-

tron flux. Assuming that the irradiation occurs at constant 

flux, the time dependence of specific activity during neutron 

irradiation is governed by Eq. (1)

where �
n
 is the decay constant of the activation product n, t 

is time, k is the number of energy groups and the sum term is 

the total reaction rate of the activation reaction as calculated 

from the group-wise constants. Taking into account also the 

decay of the activation product after irradiation, the contri-

bution of irradiation cycle c to the total activity on reference 

date can be estimated with Eq. (2)

where t
dec,c

 is the time between the end of cycle c and the 

reference date.

The nuclides studied in this article are formed via the 

reactions listed in Table 2. These reactions occur in nuclear 

reactors mainly with thermal neutrons. Column 4 lists also 

the respective activation reaction cross sections in barns at 

neutron velocity of υ0 (2200 m s−1) [5]. The fast neutron 

reaction 63Cu(n,p)63Ni was considered minor, due to its 

small absorption cross section and reported small copper 

impurity

(1)A(t) =
(

1 − e−�nt
)
∑k

g=1
Φg�g

(2)Ac =
(

1 − e−�nt
)
∑k

g=1
Φg�ge−�ntdec,c

For comparison with measurement results, VTT calcu-

lated the activities using a point kinetic code ORIGEN-S 

[3]. The neutron spectrum was highly thermal with reported 

cadmium ratios of 1.64 and 1.27, for VVER and BWR sam-

ples respectively. The irradiation history data was supplied 

by the owners of the VVER and BWR steel samples. Reac-

tion cross sections in ORIGEN-S were END/B-VI formatted. 

The samples within the steel types were assumed to have the 

same material composition and irradiation history. VVER 

steel samples had been irradiated with thermal neutron dose 

of 5.63 × 1019 n cm−2 and decay time was 30 years. BWR 

samples had been irradiated with a thermal neutron dose 

of 1.26 × 1018 n cm−2 and decay time was 10 years. Both 

calculated and measured activities were decay corrected to 

fixed reference dates.

Experimental

Two radiochemical method developments for the analysis 

of 14C, 55Fe and 63Ni (method 1) and for the analysis of 55Fe 

and 63Ni (method 2) were carried out using inactive steel 

samples. Since 60Co was foreseen as a major interference 

for the 55Fe and 63Ni analysis, stable Co was also analysed 

in the Fe and Ni fractions. After the method developments 

and analysis of inactive and some activated samples, two 

crucial constraints were observed. Firstly, large amount of 

Fe was problematic in separation of Fe and Ni, and secondly, 

effective purification of Ni from Co was essential. There-

fore, the radiochemical methods 1 and 2 were modified using 

separate approaches (1) pure 14C, 55Fe and 63Ni fractions in 

the expense of yield, namely method 1.1 and (2) pure 55Fe 

and 63Ni fractions with high yields, namely method 2.1. The 

method 1 and 2 are presented in following sub-chapters and 

the radiochemical method development processes and the 

modified methods 1.1 and 2.1 are discussed in the results 

chapter.

The activated steel samples were analysed for gamma 

emitters prior to radiochemical analysis. Two different 

gamma spectrometric analyses were utilised, namely High 

Purity Germanium detector using ISOCS calibration for 

samples a-h at VTT and GX 8021 HPGe gamma spec-

trometer (Canberra) with Genie 2000 Gamma Acquisition 

Table 2  Activation reactions 

of the studied radionuclides in 

VVER and BWR steel samples

Radionuclide Activation reaction Half life (year) Reaction cross sec-

tion �
(

�
0

)

 (barns)

55Fe 56Fe(n,γ)55Fe 3 2.7 ± 0.06
63Ni 62Ni(n,γ)63Ni 100 15 ± 0.09
60Co 59Co(n,γ) 60Co 5 20.2 ± 0.03
14C 14N(n,p)14C 13C(n,γ)14C 5730 1.75 ± 0.05 

(0.9 ± 0.05) × 10−3
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& Analysis program (Canberra) using standard geometry 

calibration for samples a-d in Helsinki University. The 

measurement approaches are further discussed in following 

sub-chapters. All activity results were decay corrected to 

reference dates.

Chemicals and equipment used in methods 1 
and 1.1

All chemicals and reagents  (Na2CO3, NaOH,  NH4OH, 

 NH4Ctr i.e. ammonium citrate,  NiCl2 6H2O) were of ana-

lytical grade. Solutions were prepared into Milli-Q water. 

Bases and acids were of analytical grade with concen-

tration of 85 wt%  H3PO4, 25 wt%  NH4OH, 95–97 wt% 

 H2SO4, 65 wt%  HNO3, 36–38 wt% HCl, 72 wt%  HClO4. 

Ion exchange columns were prepared using AG 1 × 450–100 

mesh anion exchange resin (BioRad) and extraction chroma-

tography columns using Ni-Resin B 100–150 µm (Triskem 

International).

Orion 2 Star pH Benchtop pH meter combined with 

Ross combination pH electrode (Thermo Scientific) with 

pH 4 (AVS TITRINORM, VWR Chemicals), 7 (AVS 

TITRINORM, VWR Chemicals) and 13 (J.T Baker buffer 

solution) buffer solutions was used for the pH measure-

ments. 14C, 55Fe and 63Ni were analysed using HIDEX 300 

SL liquid scintillation counter with TDCR technology for 

the counting efficiency determinations. Samples were mixed 

with HiSafe 3 (Perkin Elmer) liquid scintillation cocktail 

and let to stabilise at least over night before measurement. 

5 ml of 14C sample solutions and 1 ml of 55Fe and 63Ni 

sample solutions were mixed with 10 ml of liquid scintilla-

tion cocktail. Longer stabilisation times were used for 14C 

samples in which luminescence remained longer. Elemen-

tal and radiochemical yield analyses were carried out using 

Agilent SVDV 5100 ICP-OES (Inductively Coupled Plasma 

Optical Emission Spectrometry). Fe was analysed using 

radial view and 238.204 nm and 259.940 nm wavelengths. 

Ni was analysed using radial view and 216.555 nm and 

231.604 nm wavelengths. Co was analysed using radial view 

and 228.615 nm and 238.892 nm wavelengths. Two wave-

lengths for each element were analysed in order to indicate 

if any interferences from other elements was present. Since 

the wavelengths gave consistent results, interferences did not 

occur. Samples were diluted into 1% suprapur  HNO3 solu-

tion. Fe, Ni, Co standards were prepared using IV-Stock-21 

inorganic ventures 10 ppm 5% (v/v)  HNO3 multielement 

standard.

Chemicals and equipment used in methods 2 
and 2.1

Similar to methods 1 and 1.1, all reagents were of analytical 

grade and Milli-Q water was used for preparing the reagent 

solutions. Acid stock solutions were 85 wt%  H3PO4, 65 wt% 

 HNO3, and 36–38 wt% HCl. The chromatographic resins 

used were Dowex 1 × 4, 50–100 mesh (Sigma-Aldrich) and 

Ni resin (Triskem).

The activity of beta emitters 55Fe and 63Ni in the sepa-

rated fractions was determined with Quantulus 1220 LSC 

counter (former Wallac, current Perkin-Elmer). LSC cocktail 

Ultima Gold uLLT (Perkin-Elmer) was added to each sample 

prior to LSC measurement (1 ml of sample solution/19 ml 

of LSC cocktail) and the samples were let stay in cool and 

darkness one day before the measurement. Chemical yield 

of Fe and Ni as well as the amount of Co in the purified Fe 

and Ni fractions was determined with Agilent 4100 MP-

AES (micro-plasma atomic emission). The wavelengths 

used were 259.940 nm, 371.993 nm and 373.486 nm for 

Fe, 341.476 nm, 352.454 nm and 361.939 nm for Ni and 

340.512 nm, 345.351 nm and 350.228 nm for Co. MP-AES 

calibration standards were prepared with 1000 ppm iron and 

nickel reference solutions (Romil). The samples were diluted 

for the measurement with 2% suprapur  HNO3 solution (v/v).

Equipment used in the determination of gamma 
emitters using ISOCS calibration

The ISOCS gamma measurements were carried out with 

an HPGe Be2020 spectrometer (Canberra Ltd) connected 

with Inspector 2000 multichannel analyser and Genie 2000 

software. The efficiency calibrations were carried out with 

Geometry Composer v.4.4. The parameters for the efficiency 

calibrations were the manufacturer given densities and 

known dimensions of the pieces. Since the densities were 

constant, the thickness of the sample (0.023–0.024 mm) var-

ied according to weighted mass of the sample.

Each 10 × 10 mm steel sample in the plastic bag was posi-

tioned on a sample holder, which was placed at 30 mm dis-

tance from the detector in order to avoid coincidence counts 

from 60Co peaks. Measuring of the sample was continued 

until at least 10,000 counts were collected into the 60Co 

1332.5 keV peak. Due to higher activities of VVER steel 

samples, they were measured for 5–6 min whereas BWR 

samples required over 20 min to reach the 10,000 counts 

limit.

Equipment used in the determination of gamma 
emitters using standard geometry calibration

Gamma measurements of the steel samples with Canberra 

GX 8021 HPGe spectrometer were performed by position-

ing a steel sample in the center of an empty 20 ml LSC vial. 

The LSC bottle was positioned above the center point of the 

detector, with a source-detector shield distance of 5 mm. 

Each sample was measured to receive at least 10,000 counts 

in the Co-60 peaks (> 4000 s). Dual polynomial fitting 
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option was used for efficiency and energy calibration of the 

sample spectra.

Testing of method 1 in determination of 14C, 55Fe 
and 63Ni

The radiochemical method 1 for the determination of 14C, 
55Fe and 63Ni was a combination of published articles [6–9] 

and previous experience. The procedure was based on a total 

destruction of the solid sample via an acid digestion, oxi-

disation of 14C to  CO2 and trapping it into NaOH solution, 

separation of 55Fe and 63Ni from each other via an AG ion 

exchange resin column and further purification of 63Ni from 
60Co via DMG (dimethylglyoxime) chromatography, i.e. Ni-

resin. The overall procedure is presented in Fig. 1. Using of 

two steps in acid digestion was developed during the stud-

ies using inactive steel samples in order to first dissolve the 

steel sample [10] and then finalise oxidisation of carbon to 

 CO2 using a strong oxidising acid, namely perchloric acid. 

 Na2CO3 was added as a carbon carrier. Effectiveness of the 

oxidisation was tested by spiking the inactive steel sam-

ples with 14C standard solution and the yield was measured 

by analysing the 14C concentrations in absorption bottles 

two and three (Fig. 2). Details for the separation of Fe and 

Fig. 1  Radioanalytical method 1 for determination of 14C, 55Fe and 63Ni

Fig. 2  Schematic picture of acid digestion used in the radiochemical analysis of 14C, 55Fe and 63Ni with method 1. (a) Heating mantle, (b) round-

bottom flask, (c)  N2 bubbler, (d, e) coolers, (f) condense receiver, (g–i) absorption bottles
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Ni fractions and Ni-fraction purification are presented by 

Hou et al. [8]. However, during the method development 

and analysis of activated steel samples, it became clear that 

method 1 needed modification (ineffective separation of Fe 

and Ni and presence of Co in Ni fraction). The steps taken 

for the modification are presented in the Results chapter. The 

chemical yields were determined using ICP-OES and 14C, 
55Fe and 63Ni were measured using LSC.

Testing of method 2 in determination of 55Fe 
and 63Ni

The preliminary plan was to dissolve the steel samples in 

concentrated acids and, after hydroxide precipitation of 

investigated metals, separate Fe and Ni from each other and 

disturbing matrix with anion exchange. Then Ni fractions 

from anion exchange would be further purified from Co 

either by co-precipitating Ni with DMG (traditional method) 

[8, 11] or by extraction chromatographic column separa-

tion with Ni resin (a newer method) [12–14]. Actually, the 

both methods are based on the complexation of Ni by DMG 

but the procedures are different in practice, direct mixing of 

sample and DMG solutions in a beaker vs. column separa-

tion. The idea of this division was to compare the efficiency 

of the two methods in separation of Ni from Co. The pre-

liminary separation scheme for 55Fe and 63Ni is presented in 

Fig. 3. During the analysis of the first sample batch, it was 

found out that the separation method needed to be modified 

to improve recoveries of 55Fe and 63Ni as well as decrease 

the concentration of 60Co in the separated Fe and Ni frac-

tions. The observations of the preliminary method 2 and 

improved method 2.1 are discussed in the Results section.

Results

Activation calculation results

Table 3 lists the specific activities of the activated steel sam-

ples calculated with ORIGEN-S. Uncertainties in calculated 

activities arise from the uncertainties in exact original mate-

rial composition, neutron dose, reaction cross sections and 

Acid diges�on

(Steel sample + 2:1 HNO3 & HCl + Ni and Co carriers)

Evapora�on to dryness, dissolu�on to 1 M HCl, 

pH -> 9, NaOH precipita�on

Wash with 4 M HCl, 

discarded (Co)

Frac�on to MP-AES measurement

Precipitate: 

dissolu�on to 9 M HCl

Dowex 1x4

(pre-condi�oned 

with 9 M HCl)

Wash with 0.5 M HCl (Fe), 

evapora�on, dissolu�on to 1 

M HCl. Measurements with 

MP-AES (stable Fe) and LSC

(55Fe).

Wash with 9 M HCl (Ni)

Co-precipita�on of 

Ni with 1% DMG,

dissolu�on to HNO3 

Evapora�on, dissolu�on to 1 M HCl, 

addi�on of 1 M NH4Citr. pH -> 9.

Ni resin 

(pre-condi�oned with 0.2 M NH4Citr. and pH 9)

Elu�on of Ni with 3 M HNO3 

Evapora�on, dissolu�on to 1 M 

HCl. Measurements with MP-AES

(stable Ni) and LSC (63Ni).

Wash 0.2 M NH4Citr. (discarded)

Evapora�on, dissolu�on to 1 M HCl. Measurements

with MP-AES (stable Ni) and LSC (63Ni).

Fig. 3  Radioanalytical method 2 for determination of 55Fe and 63Ni from the steel samples
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decay time. Uncertainties in material compositions were 

estimated based on the composition measurement method. 

This means 10% uncertainty for C, Fe, Co, Ni and 25% for 

N. Total neutron doses (measured using neutron dosimetry) 

were obtained directly from the power companies and their 

uncertainty was not available. Uncertainties for reaction 

cross sections were listed in Table 2. Reaction 13C(n,γ)14C 

has a much larger uncertainty. However, its cross section is 

also significantly smaller than in reaction 13N(n,p)14C. Both 

reactions have been taken into account and their uncertainty 

has been estimated as a weighted sum. Irradiation history 

does not take into account maintenance periods during irra-

diation and end of irradiation for the VVER samples was 

known only on monthly precision. It was estimated that the 

irradiation and decay time have an uncertainty of one month. 

Depending on nuclide half-lives, at maximum this can have 

an effect of around 2 percent (for 55Fe), whereas for long-

lived nuclides 14C and 63Ni the effect is below 0.1 percent.

Table  3 contains also the calculated nuclide-wise 

propagated uncertainties from the three multiplied input 

quantities.

Determination of gamma emitters using standard 
geometry and ISOCS calibrations and comparison 
of the results with calculated results

The gamma measurements showed that the only gamma 

emitter present in the samples was 60Co. Other activation 

products in steel, such as 54Mn, had already decayed. The 

measured 60Co concentrations in the VVER steel sam-

ples using standard geometry calibrations varied between 

68,300 ± 500 and 71,600 ± 500  Bq  g−1 whereas corre-

sponding results using ISOCS calibrations varied between 

68,500 ± 2000 and 72,800 ± 2100 Bq g−1. The 60Co results 

for the BWR steel samples varied between 13,700 ± 100 

and 16,300 ± 100 Bq g−1 and between 15,800 ± 500 and 

16,300 ± 500  Bq  g−1, respectively. The results are pre-

sented together with the activation calculation results in 

Figs. 4 and 5. The figures show that the 60Co results using 

standard geometry and ISOCS calibrations are well com-

parable, especially for the VVER samples whereas for the 

BWR samples 2 out of 4 results using the standard geometry 

calibration vary from the ISOCS results. The 60Co results 

in VVER samples are well comparable with the calculated 

results whereas the calculated results of the BWR samples 

are approximately 16% above the average measured 60Co 

concentration.

Determination of 14C, 55Fe and 63Ni using method 
1.1

The results for 14C, Fe and Ni yields in inactive steel sam-

ples using method 1 are presented in Table 4. During 14C 

spiked tests, increasing the amount of added carbon carrier 

increased the yield, but the amount was limited by strong 

formation of  CO2 in addition of  HNO3 and HCl mixture and 

leaking of the  CO2 via acid addition vial. Therefore, amount 

of carbon carrier was fixed to 0.1 g of  Na2CO3 for both steel 

types when a relatively constant yield was achieved. 14C 

yield results show that the average yield with standard devia-

tion for VVER RPV steel samples was 61 ± 3% and for BWR 

Table 3  14C, 55Fe, 60Co and 63Ni activation calculation results for 

VVER and BWR RPV steel samples

Radionuclide VVER RPV steel calcu-

lated (Bq g−1)

BWR RPV steel 

calculated (Bq g−1)

14C 750 ± 190 20 ± 5
55Fe 99,300 ± 11,800 142,500 ± 16,900
60Co 74,100 ± 7800 18,700 ± 1900
63Ni 56,800 ± 7600 5600 ± 750

Fig. 4  60Co activity results in VVER steel samples determined using 

standard geometry calibration (1–4), ISOCS calibration (1–8) and 

activation calculation (9)

Fig. 5  60Co activity results in BWR steel samples determined using 

standard geometry calibration (1–4), ISOCS calibration (1–8) and 

activation calculation (9). The results using standard geometry and 

ISOCS calibrations in sample 1 and 4 are overlapping
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RPV steel samples 24 ± 4%. Significant difference between 

the BWR and VVER yields is unknown but should be stud-

ied further in order to form a possible relation between the 

yield and the chemical composition of the sample, for exam-

ple. The chemical yield results for the Fe and Ni analysis 

are also presented in Table 4. The volume reduction after 

acid digestion was carried out via hydroxide precipitation 

for samples VVER_6 to 8 and via evaporation for samples 

BWR_6 to 8. Two 10 g AG resin column separations for 

Fe and Ni were tested with different amounts of washing 

solutions. Also one 20 g AG resin column was tested for 

BWR_6 sample. However, all the configurations provided 

good yield results for Ni (> 90%) whereas Fe yields varied 

from 27 ± 3% down to 0.10 ± 0.01%. The Fe yields varied 

significantly due to the method adjustments during the anal-

ysis of the inactive samples. The Co amounts were less than 

1% of the Fe and Ni amounts in the corresponding fractions. 

However, even small amounts of 60Co in the 55Fe and 63Ni 

can affect the LSC results.

After the analysis of inactive steel samples the method 

1 (Fig. 1) was modified to method 1.1 (Fig. 6) in order to 

effectively separate Fe from Ni and effectively purify them 

from Co. The acid digestion and analysis of 14C remained 

the same in both methods. In order to solve the problem of 

effective separation of Ni from the high amount of Fe (see 

Table 1) without increasing the amount of AG resin needed 

for the separation of Fe from Ni, a decision was made to 

sacrifice good Fe yield. Since the activated steel samples 

contained high amounts of stable Fe and 55Fe (according 

to modelling, see Table 3), a decision was made to purify 

as small as possible amount of 55Fe with as high as pos-

sible purity and high enough signal for the ICP-OES and 

LSC measurements. Therefore, a calculation was made 

that approximately 4 mg of Fe would be present in 300 µl 

of 13 ml acid digested mixture. 4 mg is the amount of Fe 

carrier added in analysis of 55Fe for example in Ref. [8] 

since this is also amount of Fe that 10 g of AG resin can 

effectively absorb. 300 µl Fe-fraction was then evaporated 

to dryness, dissolved into 9 M HCl and purified from Ni and 

Co using 10 g of AG resin. If needed, the solution passing 

through the column and 4 M HCl wash containing some Ni 

could be added into Ni-fraction. However, the Ni amount in 

the 300 µl fraction was estimated to be very low and thus not 

needed. After elution of Fe from the AG resin using 0.5 M 

HCl, the solution was evaporated to dryness, dissolved into 

1 M  H3PO4 and 1 ml of Fe-fraction was mixed with 10 ml 

Table 4  Spiked 14C, Fe, and Ni yield measurements in analysis of 

inactive samples using method 1

Sample 14C yield (%) Fe yield (%) Ni yield (%)

VVER_6 63 27 ± 3 90 ± 9

VVER_7 58 26 ± 3 90 ± 9

VVER_8 61 21 ± 2 92 ± 10

BWR_6 21 8 ± 1 92 ± 10

BWR_7 24 1.2 ± 0.1 93 ± 10

BWR_8 28 0.10 ± 0.01 N/A

Fig. 6  Radioanalytical method 1.2 for determination of 14C, 55Fe and 63Ni
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LSC cocktail. Rest of the Fe-fraction was reserved for the 

yield measurements using ICP-OES. Ni was separated from 

the large amount of Fe in the main 13 ml of acid digested 

mixture (minus 300 µl Fe-fraction) using an ammoniumhy-

droxide precipitation in pH 4-5, in which the Fe was effec-

tively precipitated as a hydroxide whereas Ni remained in 

the solution (74 ± 4%) according to Choi et al. [15]. pH was 

adjusted with careful addition of 25%  NH4OH. The Fe-pre-

cipitate was separated from the Ni containing supernatant 

using a centrifuge (5 min, 2500 rpm). The supernatant was 

then evaporated to near dryness and dissolved into 9 M HCl. 

Some residue remained undissolved. The residue did not 

originate from the acid digestion, which was complete, but 

may originate from the  NH4OH addition. Further studies 

are needed for the composition of the precipitate which may 

lower the Ni yield. The solution was passed through a 10 g 

AG resin column in order to remove any residual Fe, which 

could disturb Ni-resin separations. AG resin also removed 

some 60Co from the Ni-fraction. The passed through solu-

tion and 4 M HCl wash were combined, evaporated to near 

dryness and dissolved into 1 M HCl and 1 M NH4Ctr. The 

pH of the solution was adjusted to pH 8-9 using  NH4OH 

prior to loading of the Ni-fraction into the 0.5 g Ni-resin 

column. After washing of the Ni containing DMG precipi-

tate, Ni-fraction was eluted using 3 M  HNO3. In order to 

verify the effectiveness of the Ni purification from 60Co, the 

eluate was measured using gamma spectrometry. The results 

showed significant presence of 60Co and thus, the Ni-resin 

purification was repeated according to Eriksson et al. [13]. 

The Ni-fraction was measured again and the gamma spectro-

metric results showed efficient removal of 60Co. Therefore, 

two consecutive Ni-resin purifications were added into the 

method 1.1. Purified Ni-fraction was evaporated to 1-2 ml, 

the volume was determined, 1 ml of Ni-fraction was mixed 

with 10 ml of HiSafe 3 liquid scintillation cocktail prior to 

LSC measurements. Rest of the Ni-fraction was reserved for 

yield measurements using ICP-OES.

The Fe and Ni yield results when using method 1.1 are 

shown in Table 5. The Fe yields in VVER samples varied 

from 0.9 to 1.0% and for BWR samples from 0.4 to 0.7%. 

The yields are low but the 55Fe signals in LSC measurements 

(500–1400 cpm) were well above background (approxi-

mately 30 cpm). Ni yields for VVER samples varied from 

14 to 32% and BWR samples from 24 to 29%. The yields are 

relatively low but still the 63Ni signals in LSC measurements 

(2013–160,000 cpm) were well above background (approxi-

mately 40 cpm). No significant amounts of Co was measured 

in the Fe and Ni fractions.

Determination of 55Fe and 63Ni using method 2.1

The differences in chemical composition between the two 

steel types were first seen in the dissolution of the samples. 

BWR steel samples dissolved easily to  HNO3, but VVER 

steel samples did not dissolve without adding HCl to the 

sample and  HNO3 mixture.

During the analysis of inactive steel samples BWR-_1-2 

and VVER_1-2, the method 2 was slightly adjusted by 

increasing the amount of used ion exchange resin for ensur-

ing the adequate capacity of the resin in respect to high iron 

concentration in the steel samples. During the first sepa-

rations with a smaller resin amount, a yellow colour due 

to presence of iron occurred in nickel and cobalt fractions. 

Also it was decided to use 3 M  H3PO4 instead of 1 M HCl 

in the preparation of the LSC samples from the purified 55Fe 

and 63Ni fractions. This change was necessary for obtaining 

colourless LSC samples and not having a quenching effect 

in LSC measurements due to colour in the samples [12].

However, bigger changes were needed in the method 2 for 

increasing the low radiochemical yield of Ni (Table 6) and 

improving the separation of 55Fe and 63Ni from 60Co. LSC 

and gamma measurements of the first separated 55Fe and 
63Ni fractions from the activated steel samples VVER_a-b 

and BWR_a-b revealed the presence of 60Co as extensive 

amounts in the LSC samples (Fig. 7). Obviously, the acti-

vated steel samples contained so high amount of 60Co that 

the separation capacity of the resin amounts used for sepa-

rating 60Co from 55Fe and 63Ni was not enough for these 

Table 5  Fe and Ni yield results in the analysis of activated RPV steel 

samples using method 1.1

Sample Fe yield (%) Ni yield (%)

VVER_e 1.0 ± 0.1 32 ± 3

VVER_f 1.0 ± 0.1 14 ± 1

VVER_g 0.9 ± 0.1 22 ± 2

VVER_h 0.9 ± 0.1 16 ± 2

BWR_e 0.4 ± 0.0 29 ± 3

BWR_f 0.7 ± 0.1 N/A

BWR_g 0.5 ± 0.0 25 ± 2

BWR_h 0.5 ± 0.0 24 ± 2

Table 6  Fe and Ni yield measurements of inactive steel samples 

using method 2

Sample Fe yield (%) Ni yield (%)

VVER_1 21 ± 3 18 ± 3

VVER_2 7 ± 1 44 ± 6

VVER_3 N/A N/A

VVER_4 N/A N/A

BWR_1 11 ± 2 31 ± 4

BWR_2 16 ± 2 35 ± 5

BWR_3 N/A N/A

BWR_4 N/A N/A
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steel samples. The resin amounts used per steel sample were 

30–60 ml for Dowex 1 × 4 and 0.7 grams for Ni resin.

Another reason for low yields of 63Ni and presence of 
60Co in the separated nickel fractions might be the addi-

tion of stable Co carrier in the beginning of the analysis. 

According to Lee et al. [16], and Warwick and Croudace 

[12], the stable Co carrier should be added only after the 

separation of 63Ni. Similar to radioisotope 60Co, also the 

stable isotope 59Co interferes with the separation of 63Ni by 

complexing with DMG as well. The yields of 63Ni were var-

ying according to the steel type and the method used, from 

31 to 97% among the activated steel samples VVER_a-d 

and BWR_a-d (Table 6). These were analysed either by first 

using the method 2 and later an extra anion exchange step 

in acetone media (this will be described in the next para-

graph), or directly by method 2.1. The radiochemical yields 

for 63Ni were at the satisfactory level regarding to analysis 

of high-activity steel samples where the loss of analytes is 

not so critical considering detection limits etc., but the yield 

could still be improved. It would be useful to test whether 

the yield of 63Ni increases if the Co carrier is added after 

the radiochemical separation of 63Ni by DMG complexation 

(either as such or as in Ni resin), or if it is not added at all.

The observed presence of 60Co in the LSC spectra of the 

separated 55Fe and 63Ni fractions lead to testing another 

option for separating Fe, Ni, and Co, instead of the anion 

exchange procedure in method 2 and the following purifi-

cation of 63Ni either by Ni resin or DMG precipitation. A 

previous study by Hazan and Korkisch [17] had proved that 

Fe, Ni, and Co can be efficiently separated from each other 

by anion exchange when it is performed in acetone and HCl 

media. When the sample is loaded to an anion exchange col-

umn in 9:1 mixture of acetone and 6 M HCl and the elution 

rate is kept constantly low, 0.3–0.4 ml min−1, then Fe is 

first eluted from the column with the loading solution. After 

switching to wash solution of 7:3 mixture of acetone and 

2 M HCl, then Ni is eluted from the column. With appro-

priately selected elution volumes and the low flow rate, Co 

remains in the resin column. This treatment was first tested 

to the activated steel samples BWR_a-b and VVER_a-b after 

their separation according to method 2. According to gamma 

spectrometric and LSC measurements of the 55Fe and 63Ni 

fractions after acetone media ion exchange treatment, there 

was no 60Co present in the separated samples anymore 

(Fig. 7). Therefore, for the yet unanalysed steel samples, 

previous anion exchange, DMG co-precipitation and Ni 

resin separation were replaced with a single anion exchange 

separation in acetone media. This improved method 2.1 is 

depicted in Fig. 8.

The difference between performances of the two meth-

ods (method 2 and later anion exchange in acetone media 

step, and method 2.1 directly) is seen in the recovery values 

in Table 7. 55Fe yield was 21–66% while using method 2 

with later anion exchange step in acetone media (samples 

VVER_a-b and BWR_a-b) and with method 2.1 the 55Fe 

yield increased to 89–96%. 63Ni yield was not changing 

as straightforward as 55Fe yield: VVER steel samples had 

even lower 63Ni yield level after the method change (31% 

and 45%), compared to the 63Ni yield before the change 

(55% and 76%). On the other hand, BWR steel samples had 

significantly higher 63Ni yield with method 2.1 (92% and 

97%) compared to method 2 (31% and 52%) with later anion 

exchange in acetone media. The yield of 60Co is significantly 

lower in samples analysed by method 2.1 (1.5–2.2%, in Fe 

and Ni fractions, respectively) compared to samples ana-

lysed by method 2 and extra acetone media anion exchange 

Fig. 7  LSC spectra of an iron fraction VVER_a separated according 

to method 2. Left curve: before extra anion exchange step in acetone 

media, note the shoulder on the right side of 55Fe peak caused by 

60Co in the iron fraction. Right curve: the same iron fraction after 

anion exchange step in acetone media, after which there are no traces 

from 60Co left
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(11–32%, in Fe and Ni fractions, respectively). It can be 

concluded that the implementation of method 2.1 mainly 

increased the yields of 55Fe and 63Ni, and reduced the 

amount of 60Co in the 55Fe and 63Ni fractions to acceptable 

level. It was also observed again that the steel types BWR 

and VVER have remarkable differences in composition and 

chemical behavior.

Comparison of measured 14C, 55Fe and 63Ni 
and calculated values

As discussed earlier, the chemical yield of 14C was esti-

mated using inactive samples spiked with 14C standard (see 

Table 4 e.g. 61% for VVER and 24% for BWR). There-

fore, the 14C activity concentration results were corrected 

using the corresponding experimentally estimated yields. 

The results are shown in Figs. 9 and 10 together with the 

activation calculation results in the VVER and BWR steel 

samples. Additionally, the figures also show results for the 

measured 14C concentrations assuming 100% yields. The fig-

ures show comparable results between the measured 14C val-

ues of both steel types and additionally comparable results 

with the activation calculation results when 100% yield is 

assumed. However, the results, which were corrected using 

analytically estimated yields, are within the same order of 

magnitude compared with the activation calculation results.

The measured 55Fe and 63Ni results in VVER steel sam-

ples are shown together with the activation calculation 

results in Figs. 11 and 12. The 55Fe concentrations in the 

VVER steel samples using method 2.1 varied between 

118,200 ± 16,700 and 135,400 ± 19,100 Bq g−1 whereas 

Fig. 8  The modified separa-

tion scheme method 2.1 for the 

separation of 55Fe and 63Ni from 

the activated steel samples, 

based on the experiences from 

testing method 2. 60Co remains 

in the Dowex 1 × 4 resin column 

while eluting 55Fe and 63Ni 

sequentially

Acid diges�on

(Steel sample + 2:1 HNO3 & HCl + Ni and Co carriers)

Evapora�on to dryness, dissolu�on to 1 M HCl, pH -> 

9, NaOH precipita�on
Frac�on to MP-AES 

measurement

Precipitate: 

dissolu�on to 9:1 acetone/6 M HCl 

mixture

Dowex 1x4

(pre-

condi�oned

with 9:1 

acetone/6 M 

HCl mixture)

Wash with 9:1 

acetone/6 M HCl 

mixture (Fe)

Wash with 7:3 acetone/2 M 

HCl mixture (Ni)

Evapora�on, dissolu�on to 3 M 

H3PO4. Measurements with MP-

AES (stable Ni) and LSC (63Ni).

Evapora�on, dissolu�on to 3 M 

H3PO4. Measurements with MP-

AES (stable Fe) and LSC (55Fe).

Table 7  Fe and Ni yield results in the analysis of activated RPV steel 

samples using first method 2 following a separate anion exchange 

step in acetone media for the samples VVER_a-b and BWR_a-b, and 

directly method 2.1 for the samples VVER_c-d and BWR_c-d

Sample Fe yield (%) Ni yield (%) Co yield in 

Fe fraction 

(%)

Co yield in Ni 

fraction (%)

VVER_a 55 ± 8 55 ± 8 11 ± 2 18 ± 3

VVER_b 66 ± 9 76 ± 11 12 ± 2 32 ± 5

VVER_c 89 ± 13 31 ± 4 1.9 ± 0.3 2.1 ± 0.3

VVER_d 92 ± 13 48 ± 7 1.7 ± 0.2 2.2 ± 0.3

BWR_a 21 ± 3 31 ± 4 11 ± 2 16 ± 2

BWR_b 24 ± 3 52 ± 7 12 ± 2 14 ± 2

BWR_c 93 ± 13 97 ± 14 1.7 ± 0.2 2.0 ± 0.3

BWR_d 96 ± 14 92 ± 13 1.5 ± 0.2 2.0 ± 0.3

Fig. 9  14C results in VVER steel samples determined using 61% and 

100% yields (5–8) together with activation calculation result (9)
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corresponding results using method 1.1 were between 

137,600 ± 12,600 and 147,300 ± 13,500  Bq  g−1. Even 

though method 2.1 gave in general higher results for 55Fe 

concentrations, all the results are comparable within the 

uncertainties. Comparison of the measured results to the 

calculated result show, that all the measurements gave on 

average 35% higher 55Fe concentrations compared to the 

calculated results. However, method 2.1 results are com-

parable with the calculated results within the uncertainties, 

but method 1.1 results are also within the same order of 

magnitude.

The 63Ni concentrations in the VVER steel sam-

ples using method 2.1 were between 52,600 ± 7500 and 

76,100 ± 10,800  Bq  g−1 whereas corresponding results 

using method 1.1 were between 64,700 ± 7000 and 

109,200 ± 11,800 Bq g−1. The 63Ni results show larger vari-

ation compared to 55Fe results having over twice the amount 

of 63Ni concentration in the highest result compared to the 

lowest result. Comparison of the measurement results with 

the calculated results show that the results are comparable 

within the uncertainties except for samples 5 and 6, which, 

nevertheless, are within the same order of magnitude.

The measured 55Fe and 63Ni results in BWR steel samples 

are shown together with the activation calculation results in 

Figs. 13 and 14. The 55Fe concentrations in the BWR steel 

samples using method 2.1 were between 123,400 ± 17,500 

and 278,200 ± 39,400  Bq  g−1 whereas corresponding 

results using method 1.1 were between 99,200 ± 15,800 

and 243,200 ± 22,200 Bq g−1. The result show large varia-

tion having almost three times the 55Fe amount between the 

lowest and the highest result. Comparison of the measured 

results with the calculated results show that the averaged 

measured 55Fe concentration is approximately 35% higher 

than the calculated results. However, all the results are 

within the same order of magnitude.

The 63Ni concentrations in the BWR steel samples using 

method 2.1 were between 5900 ± 800 and 6400 ± 800 Bq g−1 

whereas corresponding results using method 1.1 were 

between 3600 ± 400 and 5900 ± 600 Bq g−1. The result show 

one clear outlier (sample 5) whereas all the other results are 

comparable within the uncertainties. The measured results 

also correlate well with the calculated result.

Fig. 10  14C results in BWR steel samples determined using 24% and 

100% yields (5–8) together with activation calculation result (9)

Fig. 11  55Fe results in VVER steel samples determined using method 

2.1 (1–4) and method 1.1 (5–8) together with activation calculation 

result (9)

Fig. 12  63Ni results in VVER steel samples determined using method 

2.1 (1–4) and method 1.1 (5–8) together with activation calculation 

result (9)

Fig. 13  55Fe results in BWR steel samples determined using method 

2.1 (1–4) and method 1.1 (5–8) together with activation calculation 

result (9)
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Discussion

The analysis of 60Co in the VVER and BWR steel samples 

using standard geometry and ISOCS calibrations showed 

comparable results. The measurement results for VVER 

steel samples were also comparable with the calculated 

results whereas the BWR steel results are little bit lower (on 

average 16%) than the calculated results. However, the meas-

ured results were approximately within the lower uncertainty 

limit of the calculated result and the short half-life of 60Co 

(5 y) may have an effect on the results. It can be concluded, 

that for strong gamma emissions, such as the 1173 keV 

and 1333 keV gamma emissions of 60Co, both calibration 

methods can be utilised for producing comparable results. 

However, gamma emissions with lower energies might be 

effected by self-absorption especially in thick samples. 

Therefore, similar exercise comparing the two calibration 

methods would be interesting with thicker samples and low 

energy gammas.

The analysis of 14C was challenged by the unknown 

reason for the difference of the experimentally determined 

yields in the VVER and BWR steel samples. Additionally, 

the results showed that assumption of 100% yield for both 

steel types gave comparable results with the calculated 14C 

concentrations. Therefore, 14C analysis should be validated 

using another technique, such as with an oxidizer or a pyro-

lyser, or with an intercomparison exercise.

The 55Fe and 63Ni analysis in the steel samples using 

methods 1.1 and 2.1 showed consistent results for 55Fe anal-

ysis in VVER steel samples and 63Ni analysis in BWR steel 

samples whereas results varied for 55Fe analysis in BWR 

steel samples and 63Ni analysis in VVER steel samples. 

Therefore, it can be concluded that the analysis of 55Fe and 
63Ni are affected by the chemical composition of the stud-

ied material and analysis of several replicates are needed. 

However, the results were within the same order of mag-

nitudes, which may well be a good enough result for the 

decommissioning purposes. The comparison of the meas-

ured 55Fe results to the calculated results showed on average 

35% higher concentrations for both VVER and BWR steel 

samples whereas the measured 63Ni concentrations were 

comparable within the uncertainties of the calculated results 

for both VVER and BWR steel samples.

Improvement needs for the radioanalytical methods

As the results have shown, the analysis of DTM is difficult 

but comparison of two analytical methods and also their 

comparison to calculated results have given validity to the 

developed methods 1.1 and 2.1. However, the methods could 

be further improved. Anion exchange in the acetone and HCl 

media adopted to method 2.1 from Korkisch and Hazan [17] 

proved to be efficient in separating 60Co, 55Fe, and 63Ni from 

each other in the steel samples having naturally high iron 

content. However, the method is very slow, anion exchange 

requiring one long working day, and high volumes of resin, 

acetone and HCl are consumed. A faster method is needed 

that would consume less reagents than in method 2.1, but 

which would still produce purified fractions of 55Fe and 63Ni 

free from 60Co, preferably with reasonable radiochemical 

yields.

Method 1.1 sought to be a fast and resource-efficient way 

to analyse DTM. However, successful use of this method 

requires large amounts of both 55Fe and 63Ni to be present in 

the samples, since the yields are low. In cases, when the con-

centration of the analytes of interest are low, higher yields 

are compulsory. Additionally, higher yields may be needed 

for the analysis of 59Ni.

On the other hand, a requirement of short analysis time 

and complete purification of 55Fe and 63Ni from 60Co with 

high radiochemical yield, may be unnecessary in many 

situations where the exact activity concentration of DTM 

radionuclides is not needed. Instead, a more rapid separa-

tion method with tolerable amount (to be determined practi-

cally) of 60Co present in the separated fractions of 55Fe and 
63Ni and the radiochemical yield being just high enough for 

enabling the detection, might be enough for providing the 

acceptable order of magnitude of the DTM concentration in 

the sample matrix. This should be considered in case of high 

number of samples coming from decommissioning facilitie 

to be analysed rapidly, containing adequately high concen-

tration of DTM radionuclides.

Uncertainties of the measured and calculated 
activity concentration results

The uncertainty of experimentally determined activity con-

centration includes several uncertainty sources, the most 

important ones including balance uncertainty from weigh-

ing in different phases of analytical procedure, concentration 

Fig. 14  63Ni results in BWR steel samples determined using method 

2.1 (1–4) and method 1.1 (5–8) together with activation calculation 

result (9)
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uncertainty from ICP-AES/OES measurements of the sta-

ble isotopes, and radioactivity uncertainty from gamma 

and LSC measurements. The resulting uncertainties of the 

activity concentration results were up to 18% for 14C, 2–3% 

for 60Co, and 10 to 15% for 55Fe and 63Ni. Gamma meas-

urements produced lower total uncertainties for the activity 

concentrations compared to LSC due to the non-destructive 

analysis and high gamma emissions of the samples.

The uncertainties of the calculated results include also 

experimental uncertainties, since one of the inputs for the 

calculations is the chemical composition of the original 

material. Additionally, uncertainties arise from the irradia-

tion time, neutron dose, reaction cross sections and decay 

time. Overall, the calculated activity concentrations had 

uncertainties of 10–13% for 55Fe, 60Co and 63Ni and 25% 

for 14C. The assumed uncertainty of 10 percent is rela-

tively high for a measured value, but the aim was to also 

take into account possible heterogeneity in the material 

microstructure.

Conclusions

The analysis of gamma emitters is a non-destructive deter-

mination technique and the measured 60Co results underlined 

their concept of being easy to measure. However, further 

studies are needed for low energy gamma or x-ray emitters 

(e.g. 59Ni).

Empirical determination of 14C yield showed higher yield 

results for VVER steel compared to BWR steel. The reason 

is yet unknown and should be studied further. However, the 

measured results were well comparable with the calculated 

results.

In general, the obtained experimental values using the 

methods 1.1 and 2.1 were well comparable. Variations 

occurred both in the 55Fe and 63Ni results without correlation 

to the steel type or activity level, e.g. small variation of 55Fe 

results in VVER steel and 63Ni results in BWR steel versus 

larger variation of 63Ni results in VVER steel and 55Fe in 

BWR steel. The calculated 63Ni results corresponded well 

with the experimental values, whereas the 55Fe and 60Co 

results had more difference between experimental and cal-

culated results.

Even though the article focused on method development 

and comparison of experimental results with calculated 

results, extrapolation of the results to high dose rate com-

ponents is an interesting topic. The radioanalytical methods 

presented here can be applied to high dose rate samples, but 

ALARA principle should be the driving force in selection of 

the sample size, building of radiation shielding and justifica-

tion of the amount of analysis due to the hands on nature of 

the radioanalytical methods.

The DTM radioanalytical method development work in 

other decommissioning materials and the combination of 

experimental and computational analyses is continued in 

other projects, providing further information about the per-

formance of different radioanalytical methods as well as the 

properties of different decommissioning matrices.
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