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ABSTRACT 

 

DETERMINATION OF A COMPREHENSIVE ALTERNATIVE SPLICING 

REGULATORY NETWORK AND THE COMBINATORIAL REGULATION BY KEY 

FACTORS DURING THE EPITHELIAL TO MESENCHYMAL TRANSITION 

Yueqin Yang 

Russ P. Carstens 

The epithelial to mesenchymal transition (EMT) is a process by which epithelial cells 

transdifferentiate into mesenchymal cells. It is essential for embryonic development and 

implicated in cancer metastasis. While the transcriptional regulation of EMT has been well-

studied, the role of post-transcriptional regulation, particularly alternative splicing (AS) regulation 

in EMT, remains relatively uncharacterized. We previously showed that the epithelial cell-type-

specific proteins ESRP1 and ESRP2 are important for regulation of many AS events that altered 

during EMT. However, the contributions of the ESRPs and other splicing regulators to the splicing 

regulatory network in EMT require further investigation. 

In the first part of my thesis, we used a robust in vitro EMT model to comprehensively 

characterize splicing switches during EMT in a temporal manner. These investigations revealed 

that the ESRPs are responsible for a large number of AS events during EMT. We determined that 

RBM47 transcript is down-regulated during EMT and RBM47 depletion regulates many EMT-

associated AS events. We also determined that Quaking (QKI) broadly promotes mesenchymal 

splicing patterns for numerous EMT-associated AS events. Our study highlights the broad role of 

post-transcriptional regulation and the important role of combinatorial regulation by different 

splicing factors to fine tune gene expression programs during the EMT.  

In the second part of my thesis, we determined that Esrp1 generates both nuclear and 

cytoplasmic isoforms, due to the use of two competing alternative 5’ splice sites in exon 12. We 

carried out a detailed characterization of the Esrp1 nuclear localization signal (NLS) that 
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represents a novel class of NLS. Furthermore, we identified splice variants encoding nuclear and 

cytoplasmic isoforms of Fusilli, the Esrp1 orthologue in D. Melanogaster. Our observations 

demonstrate that the production of both nuclear and cytoplasmic Esrp1 isoforms through 

alternative splicing is highly conserved among species, strongly suggesting it’s biologically 

significant. Thus, while the first part of thesis has characterized extensive regulation by nuclear 

Esrp1 to promote epithelial splicing patterns, it will be of great interest to study the contribution of 

cytoplasmic Esrp1 in the maintenance of epithelial cell functions. 
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1) Chapter 1: Introduction 

 

1.1 Splicing and the underlying reactions 

 

In 1977, several groups reported that certain viral encoded mRNAs are not collinear with 

the corresponding genomic DNA (Berget et al. 1977; Chow et al. 1977). To account for these split 

genes, three major hypotheses were proposed, including 1) certain genomic DNA segments are 

recombined before transcription, 2) certain genomic DNA is selectively transcribed and those 

transcribed RNA segments are joined together post-transcription, or 3) the complete genomic 

DNA is transcribed into precursor RNA (pre-RNA) and the non-coding segments are removed 

post-transcription (Greer and Abelson 1984). The last model was named “RNA splicing” and now 

accepted as the main mechanism for the split genes. RNA splicing is a process where the non-

coding segments (introns) are removed from pre-RNA while the coding segments (exons) are 

joined to form the mature RNA. It is required for the processing of different types of precursor 

RNA transcribed from nuclear and organellar genomes, including messenger RNA (mRNA), 

transfer RNA (tRNA), ribosomal RNA (rRNA).   

In eukaryotes, at least four distinct mechanisms of splicing reaction are identified, 

including 1) the spliceosomal splicing for nuclear pre-mRNA; 2) self-splicing for Group I intron; 3) 

self-splicing for Group II intron; 4) splicing for nuclear tRNA (Phizicky and Greer 1993). The 

splicing mechanism for nuclear pre-mRNA, Group I and Group II introns shares some similarities. 

First, each splicing event occurs in two sequential trans-esterification reactions. The first reaction 

features a nucleophilic attack from a ribose hydroxyl group at the 5’ splice site (5’ ss, the 

boundary between the upstream exon and intron), which cleaves the upstream exon with 3’ 

hydroxyl group and produces an intermediate with both intron and downstream exon. The second 
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step involves the newly formed 3’ hydroxyl group, which attacks and cleaves the 3’ splice site (3’ 

ss, the boundary between the intron and downstream exon), therefore joining two exons and 

releasing the intron. Additionally, for all three classes of splicing, the catalytic core is composed of 

RNA rather than protein. Notably, ribozyme or RNA based enzyme, was first discovered from the 

self-splicing reaction of Group I introns (Cech 1990). Some major differences also present in the 

splicing mechanisms for nuclear pre-mRNA, Group I and Group II introns. For nuclear pre-mRNA 

and Group II intron, the first trans-esterification reaction is initiated by the 2’ hydroxyl group of a 

branch point nucleotide (usually adenosine) in the intron, which produces a lariat intermediate. 

Whereas, for Group I introns, it is the 3’ hydroxyl group of a guanosine cofactor, therefore a linear 

intermediate is produced upon cleavage. Although splicing is catalyzed by RNA in all three 

classes, the nuclear pre-mRNA splicing is carried out by a large and dynamic RNA-protein 

complex called spliceosome. 

 In eukaryotes, there are two types of spliceosomes: the U2-dependent spliceosome 

(also refer to as major spliceosome), which catalyzes the removal of U2-type introns, and the 

U12-dependent spliceosome (or minor spliceosome) which splices U12-type introns (Turunen et 

al. 2013; Lee and Rio 2015). U2-type introns comprise more than 99% of all identified introns 

while U12-type introns only occur at very low frequency in most of eukaryotes. For U2-type 

introns, the 5’ ss, branch point sequence (BPS) and 3’ ss are well-established and conform to 

consensus sequences with various degree of degeneracy (Fig 1-1A). In addition, there is a 

polypyrimidine tract (Py tract), a 15-20 nucleotide long, pyrimidine-enriched sequence located 5-

40 nucleotides upstream of 3’ ss. The dinucleotides at each end of the intron are most conserved, 

which are “GT” at the 5' end of the intron and “AG” at the 3' end of the intron. Based on the 

similarity between the splice sites to the consensus sequences, they can be classified as “strong” 

or “weak” splice sites. In contrast, the U12-type introns were initially identified as a different class 

of introns utilizing “AT” and “AC” as their terminal dinucleotides. It was soon realized that these 

ATAC introns are not exclusively U12-dependent. Subsequent study revealed that most U12-type 

introns actually utilize “GT” and “AG” dinucleotides pair. The defining feature of U12-type introns 
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are the 5’ ss and the branch point sequence, which are more conserved than the U2-type introns 

(Fig 1-1B). Each spliceosome consists of five small nuclear ribonucleoproteins (snRNPs) as core 

splicing factors and many accessory proteins. Each snRNP contains one small nuclear RNA 

(snRNA) and a number of protein components, including the core Sm proteins in all five snRNPs 

and many other proteins specific to each snRNP. While U5 snRNP is shared between both 

spliceosomes, the U2-dependent spliceosome also contains U1, U2, U4/6 snRNP. In the other 

end, the U12-dependent spliceosome contains four distinct snRNPs, U11, U12, U4atac and 

U6atac, which are equivalent to their courter-parts in the major spliceosome.  

 

Figure 1-1 Comparison of the consensus sequences for 5’ splice site, branch point 

sequence and 3’ splice site between U2-dependent and U12-dependent introns. 

The size of each letter represents the frequency of each base at each position over all introns with the most 

frequent base on top. 

(A) Splice-site consensus sequences for U2-dependent introns 

(B) Splice-site consensus sequences for U12-dependent introns. (Adapted from Padgett, Richard A. "New 

connections between splicing and human disease." Trends in Genetics 28.4 (2012): 147-154.) 
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During splicing, the spliceosome assembles and dissembles in a specific manner through 

the recognition of cis-elements in the pre-mRNA and interaction among different snRNPs (Lee 

and Rio 2015). In vitro studies of spliceosome assembly, using extracts made from whole yeast 

cells or mammalian cell nuclei, have defined a stepwise, ordered interaction of the snRNPs with 

the pre-mRNA. Since both spliceosomes are assembled in a similar way and share the overall 

structure, I will use major spliceosome assembly as an example. In the first step of major 

spliceosome assembly, the 5’ ss is recognized by U1 snRNP, while U2 Auxiliary Factor-65 kD 

subunit (U2AF65) binds to the Py tract and U2AF35 binds to the 3’ss. This assembly is ATP 

independent and results in the formation of the E complex or the commitment complex. U2 

snRNP then binds to the BPS to form the A complex and the branch point adenosine is bulged to 

facilitate the nucleophilic attack in the first trans-esterification reaction. Notably, this is the first 

ATP-dependent step during splicing. Next, the U4/U6, U5 tri-snRNP particle is recruited to form 

the B complex. Multiple structural rearrangements then take place in a ATP-dependent manner to 

form C complex, which is endowed with the catalytic activity of splicing. Several key 

rearrangements include 1) substitution of U1 snRNP with U6 snRNP, which binds downstream of 

5’ ss, 2) destabilization of U4 and U6 snRNA base pairing, 3) release of U1 and U4 snRNPs, 4) 

formation of extensive base pairing between U2 and U6 snRNA, which is a pre-requisite for the 

first step of splicing, 5) binding of U5 snRNA to both exon sequences, which may assist in 

bringing them close to facilitate the second step of splicing. After exon joining, U2, U5 and U6 

snRNPs are released from the intron lariat, which is degraded later. In addition to this traditional 

model of stepwise assembly, purification of penta-snRNP particle under physiological salt 

condition also suggests a different model with preassembly of all spliceosomal snRNPs before 

binding to the pre-mRNA (Stevens et al. 2002). However, these models emerge mainly from in 

vitro studies and subsequent in vivo studies support a stepwise assembly of spliceosome in yeast 

(Görnemann et al. 2005).  
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Figure 1-2 The spliceosome assembly and splicing reaction for U2-dependent introns. 

(Adapted from Matera, A. Gregory, and Zefeng Wang. "A day in the life of the 

spliceosome." Nature reviews Molecular cell biology 15.2 (2014): 108-121.) 

 

On the other hand, the splicing mechanism is very different for nuclear tRNA splicing, 

which is best characterized in yeast (Culbertson and Winey 1989). Nuclear tRNA splicing occurs 

in three steps and each step is catalyzed by a protein enzyme. The first step requires a tRNA 

endonuclease to recognize and cleave the pre-tRNA at both 5’ splice site and 3’ splice site, which 

produces two tRNA half-molecules with 2',3' cyclic phosphate and 5' hydroxyl ends and an 

excised intron with 5' hydroxyl and 3' phosphate ends. The second step involves a tRNA ligase, a 

heterotetramer protein comprised of four distinct enzymatic activities to catalyze a series of 

reactions that lead to joining of the two half-molecules with a 2′ phosphate at the splice junction. 

Therefore, a 2’-phosphotransferase is required for the removal of the 2’ phosphate at the third 

step. 
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1.2 Alternative splicing: definition and classification 

 

In eukaryotes, it is very common for one pre-mRNA to produce several different mature 

mRNA via a process called alternative splicing (AS). For example, it has been estimated that 

more than 95% of human genes are alternatively spliced (Moroy and Heyd 2007; Pan et al. 2008; 

Wang et al. 2008). AS not only increases the coding capacity, it also regulates mRNA stability, 

translational efficiency and subcellular localization. For example, AS can introduce a premature 

termination codon (PTC) into the mature mRNA which is subjected to nonsense-mediated decay 

(NMD), therefore decreasing the expression of target gene (Hamid and Makeyev 2014; Jangi et 

al. 2014). Five major types of alternative splicing have been described so far (Fig 1-1A) (Keren et 

al. 2010). The first one is skipped exon (SE), also known as cassette exon, in which the exon can 

be included or excluded in the mature mRNA. Cassette exons account for about 40% of all 

identified AS events in higher eukaryotes (Sugnet et al. 2004; Alekseyenko et al. 2007). The 

second and third types are alternative 5’ or 3’ splice sites (A5SS or A3SS), in which more than 

one 5’ ss or 3’ ss can be chosen for splicing of a single exon. The fourth type are mutually 

exclusive exons, where only one exon can be included in the mature mRNA at a time among a 

group of adjacent cassette exons. The last one is intron retention, where introns can be included 

in the mature mRNA. In addition, alternative splicing can be coupled with alternative 

polyadenylation or alternative promoters, which expands regulatory potential (Fig 1-1B). 

Proper splicing is biologically and physiologically important for normal development. 

Aberrant splicing caused by mutations or mis-regulated splicing is implicated in human diseases, 

including neurodegenerative diseases and cancers. Mutations in the splice sites and other core 

cis-elements in pre-mRNAs are among the most common mutations identified in studies of 

genetic diseases (Cooper et al. 2009; Cieply and Carstens 2015). These mutations can 

potentially change the coding capacity in different ways, via exon skipping, intron retention, usage 

of cryptic splice sites or generation of a PTC, which in turn lead to human diseases. Mutations in 

the core spliceosomal components or other splicing regulatory proteins are also associated with 
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human diseases. A well-known example is the single nucleotide substitution in exon 7 of the 

survival of motor neuron 2 (SMN2) gene and its critical role in spinal muscular atrophy (SMA) 

(Cooper et al. 2009). SMN proteins are essential for snRNP biogenesis. In human, there are two 

SMN genes, SMN1 and SMN2, both encoding the same protein. The mutation in SMN2 leads to 

frequent skipping of exon 7 without changing the encoded amino acid, producing an inactive and 

unstable protein isoform. In SMA patients, who usually suffer from loss of SMN1, the deficiency in 

SMN2 to produce fully functional protein cause the disease. In addition, mis-regulation of splicing 

also plays an important role in human diseases. A well-documented example is the myotonic 

dystrophy types 1 and 2 (DM1 and DM2) caused in part by the mis-regulation of two AS factors, 

MBNL1 and CELF1 (also known as CUGBP1). Microsatellite expansions in certain transcripts 

leads to the formation of nuclear aggregates, which bind to splicing factors and sequester them 

from being available for normal splicing regulation (Cieply and Carstens 2015). Since splicing is 

crucial for normal development, it is tightly regulated. 
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Figure 1-3 Different types of alternative splicing. 

Blue boxes indicate constitutive exons. Red and green boxes indicate alternatively spliced sequences. Black 

lines indicate introns.  

(A) Schematic of different types of alternative splicing. A skipped exon (or cassette exon) can either be 

included or excluded in mature mRNA. Alternative 5' and 3' splice sites occur when adjacent 5’ or 3’ splice 

sites are chosen for splicing. Mutually exclusive exons refer to only one exon is included in the mature 

mRNA at a time while other adjacent cassette exons are excluded. Intron retention occurs when introns 

remains in the mature mRNA.  

(B) Schematic of alternative poly(A) sites or alternative promoters coupled alternative splicing. (adapted from 

Dr. Russ Carstens splicing lecture) 
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1.3 Regulation of constitutive and alternative splicing by RNA binding proteins 

 

Splicing is under complex regulation by various cis-elements in pre-mRNAs, and their 

cognate binding partners, mainly RNA-binding proteins (RBPs). Splicing regulatory RBPs 

recruited to their respective binding sites can have positive or negative effects on splicing of 

different exons or splice sites. Based on the position in the pre-mRNA and effect on splicing 

outcome, the cis-elements (usually short, degenerate sequences) are classified into four distinct 

groups: exonic splicing enhancer (ESE), exonic splicing silencer (ESS), intronic splicing enhancer 

(ISE) and intronic splicing silencer (ISS). In most cases, the decision of splicing is made during 

the early spliceosome assembly (formation of the E complex and the A complex) where the 

recognition of splice sites by U1, U2AF, and U2 snRNPs is the main regulatory step. In general, 

constitutive exons tend to have strong 5’ and 3’ ss, which are less dependent on regulatory 

proteins to recruit U1 and U2 snRNPs (Stamm et al. 1994). In contrast, the 5’ and 3’ ss of 

alternative exons are relatively weaker, therefore other splicing factors have substantial effects on 

splice sites recognition (Stamm et al. 1994). The paring between 5’ ss and 3’ ss determines the 

splicing outcome, which can occur in an exon-oriented or intron-oriented manner (Berget 1995; 

De Conti et al. 2013). In the human genome, a typical exon is around 50-250 nt in size while the 

introns are usually much longer (frequently 103 to 104 nt) (Chen and Manley 2009; Lee and Rio 

2015). Due to the length of the introns, early spliceosome assembly is believed to occur across 

the exons though a process referred to as “exon definition” (Robberson et al. 1990; Berget 1995). 

In contrast, in lower eukaryotes such as yeast and fly where the introns are much smaller, early 

spliceosome assembly is centered around the introns, which is referred to as “intron definition” 

(Ruby and Abelson 1991; Talerico and Berget 1994). In general, the size of exon or intron is key 

to the decision as to which model is preferred and manipulation of the length of an exon or intron 

may lead to aberrant splicing. Indeed, increasing the length of an internal exon in human genes 

can lead either to exon skipping or splicing to a cryptic splice site within the expanded exon 

(Robberson et al. 1990) . Not only there is usually a limitation on the maximum size for internal 
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exons enforced by the “exon definition” model, the exons can’t be too small where steric 

hindrance will prevent binding of U1 and U2 snRNPs concomitantly. Similar results were obtained 

for fly or yeast genes, where expansion of a short intron will prevent it from splicing or result in 

splicing to a cryptic splice site (Guo et al. 1993; Talerico and Berget 1994). While early 

spliceosome assembly mainly occurs in an exon-oriented manner in human genes, the two-step 

splicing reaction requires paring of splice sites in an intron-oriented manner. Subsequent studies 

propose that a transition from “exon definition” to “intron definition” is essential in the later stage 

of splicing, where the cross-intron interactions between U1 and U2 snRNPs may play a major role 

(Lim and Hertel 2004; Kotlajich et al. 2009). 

Many RBPs with largely ubiquitous expression in different tissues and cells have been 

shown to have broad impact on splicing and important cell functions, such as SR and hnRNP 

(Heterogeneous nuclear ribonucleoproteins) protein families (Nilsen and Graveley 2010). SR 

proteins are among the most characterized splicing factors. A prototypical SR protein contains 

one or two N-terminal RNA recognition motifs (RRMs) and a C-terminal RS domain, a region that 

is enriched with arginine–serine dipeptides repeats (Graveley 2000). The RRM domains are 

believed to mediate the binding to the ESEs on pre-mRNAs and the RS domains appear to 

mediate protein-protein interactions among SR proteins and other proteins with RS (or RS-like) 

domains (Graveley 2000). While it is generally accepted that SR proteins promote exon inclusion 

through their binding to ESEs, recent studies also suggested they can inhibit splicing as well 

(Blencowe 2000; Graveley 2000; Pandit et al. 2013). Previous studies have established that SR 

proteins are essential for early spliceosomal assembly (E complex formation) on certain pre-

mRNAs and play an important role in both constitutive and alternative splicing regulation. Various 

mechanisms were discovered by which SR proteins promote exon inclusion. First, the RS domain 

of SRSF1 was shown to directly interact with U1 70K, a key component in the U1 snRNP, and 

U2AF35 through their RS domains, therefore bridges the 5’ ss and 3’ss (Wu and Maniatis 1993; 

Zuo and Maniatis 1996; Hastings and Krainer 2001). This interaction between U1 and U2 

snRNPs mediated by SR protein can occur across exons or introns, which reflects the “exon 
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definition” or “intron definition” model for early spliceosome assembly respectively (Ast 2004). 

Further studies showed that phosphorylation status of various serine residues in the RS domains 

are crucial for protein-protein and protein-RNA interactions (Tacke et al. 1997; Xiao and Manley 

1997; Xiao and Manley 1998). The requirement of SR proteins is especially important for those 

pre-mRNAs that have relatively weak Py tract, where ESE bound SR proteins along with 3’ss 

bound U2AF35 help to stabilize the binding of U2AF65 to facilitate early spliceosome assembly 

(Merendino et al. 1999; Wu et al. 1999; Zorio and Blumenthal 1999). While it was believed that 

the RS domain of SR proteins are key to their role in regulating splicing, other studies shed light 

on a RS domain-independent role of SR proteins in splicing regulation (Zhu and Krainer 2000). 

SRSF1 without the RS domain can promote splicing in vitro (Zhu and Krainer 2000). Two major 

mechanisms were proposed. First, other domains can mediate protein-protein interaction to help 

recruitment of spliceosomal component. Indeed, studies showed that the RRM domain of SRSF1 

can bind to U1 70K, which stabilizes the binding of U1 snRNP to the 5’ss (Cho et al. 2011). A 

second possibility is ESE bound SR proteins compete with splicing inhibitors that bind to the 

adjacent ESS in the pre-mRNAs, therefore promoting exon inclusion by antagonizing the 

inhibitive effect (Mayeda and Krainer 1992; Zhu and Krainer 2000). HnRNPs represent a large 

family of RBPs that contribute to multiple aspects during mRNA processing post-transcription 

(Chaudhury et al. 2010; Geuens et al. 2016). They were initially identified as binding partners of 

pre-mRNAs and mature mRNAs. A typical hnRNP usually contain one or more RNA binding 

domains, such as RRM, K-homology (KH) domain or RGG (Arg-Gly-Gly) box, and some type of 

auxiliary domains (Chaudhury et al. 2010; Geuens et al. 2016). Like SR proteins, hnRNPs play an 

important role in both constitutive and alternative splicing. In contrast to SR proteins, hnRNPs 

generally repress splicing through binding to ESSs or ISSs. For example, HnRNP A1 can inhibit 

splicing by blocking the binding of U1 snRNP to the 5’ss (Eperon et al. 2000; David et al. 2010). 

This “bind and block” mechanism is similarly utilized by another hnRNP protein, PTBP1 

(polypyrimidine tract binding protein 1, also known as hnRNP I) which binds to the Py tract and 

competes with U2AF65 during the early spliceosome formation (Lin and Patton 1995; Singh et al. 
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1995). Subsequent studies suggest models where multiple PTBP1 binding sites in an alternative 

splicing event can induce propagative binding along the RNA or looping of RNA, therefore 

blocking splicing factors from binding (Wagner and Garcia-Blanco 2001; Oberstrass et al. 2005). 

Meanwhile, several other mechanisms by which PTBP1 interferes with the cross-intron or cross-

exon interactions are also proposed (Izquierdo et al. 2005; Spellman and Smith 2006; Sharma et 

al. 2008). One of such suggests PTBP1 antagonizes exon-definition by interfering with the 

interaction between U1 snRNP and U2AF65, rather than competing with U2AF65 for binding to 

Py tract (Izquierdo et al. 2005). 

In addition to SR proteins and hnRNPs that are mostly ubiquitously expressed across 

many tissues, recent studies described important roles for tissue-specific RBPs, such as NOVA, 

PTBP2 (nPTB), MBNL and RBFOX protein families, as essential regulators of tissue- or cell-type-

specific splicing (Ule et al. 2003; Gehman et al. 2012; Licatalosi et al. 2012; Lee et al. 2013; Li et 

al. 2014). For example, NOVA proteins are neuronal tissue-specific RBPs that regulate 

alternative splicing in brain (Jensen et al. 2000; Ule et al. 2005). Newly developed techniques 

such as cross-linking immunoprecipitation followed by sequencing (CLIP-seq) and its derivatives 

have been widely used to determine the mRNA targets and binding motifs for RBPs. Analysis of 

the distribution of NOVA binding sites on their target transcripts and the splicing outcome 

revealed an “RNA-map”, in which the position of NOVA binding sites in target transcripts can 

predict the outcome of splicing to a large extend (Ule et al. 2006; Licatalosi et al. 2008). 

Specifically, binding in the downstream intron promotes exon inclusion while binding in the 

upstream intron promotes exon skipping. The RNA map also provides some insight into the 

mechanistic aspect of NOVA-regulated splicing. It was shown that binding of NOVA to an ESS 

represses exon inclusion by blocking the binding of U1 snRNP, therefore inhibiting the formation 

of the E complex (Ule et al. 2006). In contrast, NOVA binding to an ISE downstream of the 

alternative exon enhances exon inclusion by promoting the formation of the A complex and 

following complexes (Ule et al. 2006). Subsequent studies showed that other splicing factors, 

such as RBFOX protein family members, MBNL protein family members, ESRP1/2 and Quaking, 
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also generally adhere to this position-dependent RNA-map (Zhang et al. 2008; Warzecha et al. 

2010; Dittmar et al. 2012; Wang et al. 2012; Hall et al. 2013). The mechanism underlying the 

position-dependent regulation is largely unknown. The general hypothesis for the silencing effects 

results from the competition with core splicing factors or other positive regulatory proteins on their 

binding sites in the upstream intron or exon (Witten and Ule 2011). For example, RBFOX proteins 

were reported to inhibit splicing at two distinct steps depending on its binding position (Zhou and 

Lou 2008). When binding to an ISS, they will block the binding of splicing factor 1 (SF1, a core 

splicing factor) to the branch point sequence at the very beginning of spliceosome assembly 

(Zhou and Lou 2008). When binding to an ESS, they will prevent two splicing enhancers, namely 

TRA2 and SRp55, from binding to a nearby ESE, therefore inhibiting the formation of the E 

complex by blocking U2AF65 from binding (Zhou and Lou 2008). On the other hand, the  

hypotheses for the enhancing effects, when RBP binds to the downstream intron, are more 

diverse (Witten and Ule 2011). It can directly bind and recruit core splicing factors to facilitate 

early spliceosome assembly, or interact with other positive regulatory proteins to stabilize binding 

of core splicing factors. It can also facilitate the “exon definition” or “intron definition”, or the 

transition from “exon definition” to “intron definition” through bridging cross exon or intron 

interactions or modulating the conformation of pre-mRNAs. 

While splicing regulation by RBPs were commonly described at the early stages of 

spliceosome assembly, subsequent studies also showed regulatory roles of RBPs in the later 

stages of splicing. For example, hnRNP L was shown to prevent the transition from the A 

complex to B complex during splicing, potentially through interfering with cross-intron paring of U1 

and U2 snRNPs  (House and Lynch 2006). In the presence of hnRNP L, splicing is stalled at a 

stage where an A-like complex is formed, which has a similar composition and gel mobility as the 

A complex, however, progression into the B complex is inhibited. A potential explanation is that 

the A-like complex represents a cross-exon paring of U1 and U2 snRNPs, where the splicing is 

stalled since hnRNP L prevents the cross-intron pairing of U1 and U2 snRNPs and subsequent 

recruitment of tri-snRNP particle. Another example, RBM5 was also shown to inhibit the 
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recruitment of tri-snRNP particle, therefore blocking the formation of the B complex while the 

formation of the A complex is intact (Bonnal et al. 2008). Furthermore, RBM17 (or SPF45) was 

shown to inhibit splicing at the second catalytic step during the splicing reaction, which is at the 

very late stage of splicing (Lallena et al. 2002). Importantly, splicing of pre-mRNAs is usually 

under the control of more than one regulatory proteins, where the positive and negative splicing 

factors work in a cooperative or competitive manner. This combinatorial regulation is emerging as 

a general rule for splicing. For example, alternative splicing of exon 6 in Fas can generate two 

distinct mRNAs, which encode a transmembrane receptor that promotes apoptosis when exon 6 

is included, or a soluble isoform of the receptor that prevents programmed cell death when 

skipped (Izquierdo et al. 2005). This splicing event is under regulation of TIA-1, a RNA-binding 

protein with three RRMs, and PTBP1, TIA-1 binds to an ISE in intron 6 and promotes the 

inclusion of exon 6 through enhancement of U1 snRNP recruitment to the adjacent 5’ss, which in 

turn stabilizes the recruitment of U2AF to the upstream 3’ ss (Izquierdo et al. 2005). However, 

PTBP1 binds to an ESS in exon 6 to inhibit the binding of U2AF65, interfering with the “exon 

definition”. Therefore, a balancing between PTBP1 and TIA-1 is required for the proper splicing of 

exon 6 (Izquierdo et al. 2005). An antagonistic function between SR proteins and hnRNPs have 

also been described for a few transcripts (Expert-Bezançon et al. 2004; Crawford and Patton 

2006). At a genome-wide level, analysis of splicing events regulated by NOVA and RBFOX 

proteins showed there is a notable overlap in their target transcripts, where motif analysis of 

NOVA target transcripts presents a significant enrichment of RBFOX binding motifs (Zhang et al. 

2010). This study also suggested that both proteins prefer to have an additive or synergistic effect 

on shared target rather than antagonistic functions. With more studies using genomic approaches 

including RNA-Seq and CLIP-Seq, we will have a further understanding of how RBPs function 

both cooperatively and antagonistically to determine the splicing outcome. 
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1.4 Regulation of constitutive and alternative splicing by other mechanisms 

 

In addition to splicing regulation by RBPs, RNA-RNA interactions or RNA secondary 

structure can also regulate alternative splicing. An example is the Down syndrome cell adhesion 

molecule (Dscam) gene in Drosophila melanogaster (Graveley 2005; May et al. 2011). Dscam 

contains 95 alternatively spliced exons that potentially encode 38,016 distinct mRNA variants and 

protein isoforms. These 95 alternative exons are organized into four clusters, and each cluster is 

spliced in a mutually exclusive manner. The largest one, exon 6 cluster contains 48 variable 

exons and only one variable exon is included in each mature mRNA. By comparative genomics, 

two class of conserved sequence elements were identified in the exon 6 cluster (Graveley 2005). 

The first one is named “the docking site”, a 66 nt element in the intron downstream of constitutive 

exon 5. The central 24 nt of the docking site is nearly invariant among 16 insect species. The 

second class of conserved elements are referred to as “the selector sequences”, which are 

located upstream of each variable exon in the exon 6 cluster. These selector sequences are 

similar but not identical to each other, however, they are all complementary to a portion of the 

docking site. The only one selector sequence is predicted to base pairing with the docking site at 

a time, and the immediately downstream exon will be included in the mature mRNA. Another 

example is the regulation of a mutually exclusive splicing event in fibroblast growth factor receptor 

2 (FGFR2), a transmembrane protein mediating FGF signaling pathway. While exon IIIb is 

included in epithelial cells, exon IIIc is included in mesenchymal cells. The mutually exclusive 

exons encode the second half of the third immunoglobulin domain, therefore alternative splicing 

will change the ligand binding specificity of FGFR2. This splicing event is tightly regulated and 

two cis-elements ISE-2 and ISAR located in the intron between exons IIIb and IIIc are required for 

cell-type specific inclusion of exon IIIb. It was shown that these two cis-elements, while separated 

by about 700 nt, can form a stem structure, which is essential for its regulatory function (Muh et 

al. 2002). Introducing mutations which disrupt the stem structure will lead to mis-regulation of 

exon IIIb, while complementary mutations which restore the stem structure will recover their 
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function (Muh et al. 2002). Furthermore, substitution of these two cis-elements by randomly 

selected sequences that also form a stem structure can totally recapitulate their regulatory 

function (Muh et al. 2002). Subsequent studies identified an ISE downstream of this secondary 

structure that was bound by ESRP1 and thus a model was proposed where the stem could 

position ESRP1 closer to exon IIIb to promote its splicing (Warzecha et al. 2009a). A similar 

stem-loop structure was described for the splicing of cassette exon (E11a) in ENAH, where a 

“RNA bridge” is formed between a conserved region immediately downstream of E11a to a 

similarly conserved region near a distal RBFOX cluster, which is located at least 1.8 kb 

downstream of E11a. It was proposed that the long range RNA structure recruits the distal bound 

RBFOX close to E11a and promotes its inclusion (Lovci et al. 2013). 

Although splicing has been well characterized in vitro independent of transcription and 

polyadenylation, it is not a stand-alone process in vivo. In eukaryotes, there is an emerging 

recognition that pre-mRNA maturation, including RNA processing events such as 5’ capping, 

splicing and 3’ end formation, frequently occurs during the same time window as transcription in a 

higher order complex or “mRNA factory” (Luco et al. 2011; Saldi et al. 2016). Therefore, 

transcription and some other relevant processes including chromatin structure and histone 

modification can also regulate (alternative) splicing. Specifically, co-transcriptional splicing means 

the spliceosome starts to assemble on nascent pre-mRNA during transcription and/or introns are 

removed before transcription termination and transcript release. It was first suggested by the 

electron micrographs of early Drosophila melanogaster embryonic genes, which illustrated intron 

loop formation and intron removal on nascent pre-mRNA during transcription (Beyer and Osheim 

1988). Later studies using Chromatin Immunoprecipitation (ChIP) assays revealed the 

recruitment of several core splicing factors including U1, U2 and U5 snRNPs on the nascent pre-

mRNA, further supporting the co-transcriptional assembly of spliceosome (Görnemann et al. 

2005; Lacadie and Rosbash 2005; Listerman et al. 2006). In addition, studies in human and yeast 

also confirmed excision of introns are complete before transcript release, suggesting co-

transcriptional intron removal is widely present (Pandya-Jones and Black 2009). These studies 



17 

also revealed a general 5’ to 3’ order for co-transcriptional intron removal with some exceptions.  

A more recent study in yeast using two independent single-molecule nascent RNA-seq methods 

suggested that intron removal can occur immediately after RNAP II transcribes past the 3’ ss 

(Carrillo Oesterreich et al.). Importantly, co-transcriptional splicing raises the possibility that 

transcription and splicing interact with each other and they are functionally coupled. Studies using 

in vitro transcription-splicing systems suggested RNA polymerase II (RNAP II) directed transcripts 

are spliced much more efficiently than pre-synthesized or T7-derived transcripts, suggesting 

RNAP II mediates the functional coupling of transcription to splicing (Das et al. 2006). In fact, 

further studies confirmed that splicing factors, including SR protein family members, U1 snRNP 

proteins and U2AF65 specifically associate with RNAP II, which facilitates spliceosome assembly 

on the nascent pre-mRNA as it emerges from the polymerase and promotes co-transcriptional 

splicing (Das et al. 2007; David et al. 2011; Gu et al. 2013). Therefore, RNAP II and potentially 

other components in the transcription machinery, serve as a landing platform to recruit splicing 

factors (Hsin and Manley 2012; Saldi et al. 2016). In addition to this spatial coupling between 

splicing factors and transcription machinery, transcription elongation rate can regulate splicing 

through kinetic coupling. For example, slower elongation rate led to higher inclusion of E33, a 

cassette exon in human fibronectin (FN) (de la Mata et al. 2003). Actually, a fast or slow RNAP II 

mutant has been shown to affect the splicing outcome on a genome-wide scale in human cells 

(Fong et al. 2014). The potential explanation is changes in the elongation rate affects the “window 

of opportunity” where positive and/or negative splicing factors recognize and bind to target 

sequences in nascent transcripts, especially for alternative exons with relatively weaker splice 

sites.  
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1.5 A growing number of RNA binding proteins are demonstrated to be multi-

functional 

 

RNA binding proteins (RBPs) not only play crucial roles in alternative splicing regulation, 

they are important for other post-transcriptional RNA processing events, including 5’ capping, 

polyadenylation, mRNA transport, localization, mRNA stability, and translation efficiency. 

Emerging evidence suggests that many RBPs regulate multiple steps in RNA processing (Keene 

2007; Sawicka et al. 2008; Mukherjee et al. 2011; Vanharanta et al. 2014). For example PAB1, 

the only cytoplasmic poly(A)-binding protein in yeast, is known to play a role in polyadenylation, 

nuclear export, mRNA turnover as well as translation initiation and termination through binding to 

mRNA poly(A) tails and protein factors that mediate these regulatory steps (Mangus et al. 2003). 

In higher eukaryotes such as human, the embryonic lethal abnormal vision like 1 (ELAVL1, also 

known as HuR) can regulate alternative splicing and promote mRNA stability and/or translation 

efficiency (Mukherjee et al. 2011; Simone and Keene 2013). 

The subcellular localization of RBPs is one of many mechanisms that affect their 

regulatory functions. In some cases, a single protein has distinct functions depending on the 

cellular distribution under different environmental conditions. For example, HuR is predominantly 

nuclear under normal growth conditions but shuttles between nucleus and cytoplasm under 

certain stress conditions via a nuclear-cytoplasmic shuttling sequence (HuR Nucleocytoplasmic 

Shuttling sequence or “HNS”) (Fan and Steitz 1998). HuR was initially reported primarily for its 

roles to promote mRNA stability and/or translation efficiency in the cytoplasm via binding to the 

AU- and U-rich elements (AREs) in the 3’ untranslated regions (UTRs) of target transcripts, many 

of which are involved in various cellular processes, including cell proliferation, survival, 

differentiation and immune response (Brennan and Steitz 2001; Mukherjee et al. 2009; 

Abdelmohsen and Gorospe 2010; Srikantan and Gorospe 2012). However, subsequent reports 

showed that HuR is also involved in regulation of alternative splicing for several mRNA transcripts 

in the nucleus (Izquierdo 2008; Akaike et al. 2014; Chang et al. 2014; Zhao et al. 2014). 
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Consistent with roles for HuR in splicing regulation, transcriptome-wide mapping of HuR binding 

sites revealed numerous intronic binding sites for HuR (Lebedeva et al. 2011; Mukherjee et al. 

2011). Another well-studied RBP, PTBP1 is also predominantly nuclear and shuttles between 

nucleus and cytoplasm (Pérez et al. 1997; Li and Yen 2002). While PTBP1 regulates alternative 

splicing and 3’ end processing in the nucleus, it also plays a role in mRNA localization, mRNA 

stability and viral translation in the cytoplasm (Sawicka et al. 2008). Interestingly, the 

translocation from nucleus to cytoplasm of PTBP1 is regulated by phosphorylation within the NLS 

region (Xie et al. 2003). In some other cases, alternative splicing variants of a single gene encode 

multiple protein isoforms with different subcellular localization and function. A well-known 

example is Quaking (QKI), a RNA binding protein belonging to the signal transduction and 

activation of RNA (STAR) family, which generates three major isoforms (Hardy et al. 1996). QKI-5 

is mainly nuclear and known for its role in regulation of alternative splicing, including a recent 

study suggesting a role for QKI-5 in the formation of circRNAs (Hall et al. 2013; Conn et al. 

2015a).  In contrast, QKI-6 is primarily cytoplasmic and reported to regulate mRNA stability and 

act as a translational repressor (Saccomanno et al. 1999; Lakiza et al. 2005; Doukhanine et al. 

2010). QKI-7 is also predominantly cytoplasmic and was recently identified to promote poly-A tail 

extension in the cytoplasm (Yamagishi et al. 2016). Additionally, both QKI-5 and QKI-6 are 

involved in miRNA processing (Wang et al. 2010; Wang et al. 2013). Rbfox1 also generates both 

cytoplasmic and nuclear isoforms that are encoded by transcript variants with or without exon 19 

respectively. The nuclear isoform of Rbfox1 regulates alternative splicing via binding to the 

intronic regions of target transcripts, many of which are important for neuronal development and 

maturation (Fogel et al. 2012; Weyn-Vanhentenryck et al. 2014). Furthermore, mutations in 

Rbfox1 are implicated in a range of neurodevelopmental diseases, including autism spectrum 

disorder (Bhalla et al. 2004; Martin et al. 2007; Bill et al. 2013; Lal et al. 2013). A recent study 

also dissected the role of cytoplasmic Rbfox1 in promoting mRNA stability and translational 

efficiency via binding to the 3’ UTR region (Lee et al. 2016). Notably, target transcripts regulated 

by cytoplasmic Rbfox1, although different from those regulated by nuclear Rbfox1, are also 
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enriched for genes involved in synaptic function, calcium signaling and autism, suggesting both 

isoforms of Rbfox1 coordinately regulate neuronal development in a distinct but coherent manner 

(Lee et al. 2016). Importantly, enforced translocation of the nuclear Rbfox1 isoform to the 

cytoplasm by deletion of the NLS, enabled it to regulate stability and translation of target mRNAs 

indistinguishably from the cytoplasmic Rbfox1, indicating that the differential localizations of the 

proteins, rather than the differences in the sequence, lead to the different functions. Moreover, 

the splicing of exon 19 is regulated by nuclear Rbfox1 upon neuronal depolarization which leads 

to a switch from cytoplasmic to nuclear isoform, adding another layer of complexity and 

coordination for Rbfox1 regulated network (Lee et al. 2009). Hence, it is increasingly recognized 

that many other RBPs that have well characterized roles in one specific step of post-

transcriptional regulation may have other unrecognized functions in RNA processing. Emerging 

evidence suggests that integrated post-transcriptional regulation by a specific RBP can function 

to shape biologically coherent post-transcriptional regulons (Keene 2007).     
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1.6 Epithelial to mesenchymal transition (EMT) and its regulation 

 

The epithelial to mesenchymal transition (EMT) is a process by which epithelial cells 

transdifferentiate into mesenchymal cells which involves extensive changes at cellular and 

molecular levels. Epithelial cells, often with a cobble-stone like morphology, are non-motile with a 

well-defined apico-basal polarity and are tightly connected to each other laterally by adherens 

and tight junctions. In contrast, mesenchymal cells usually have an elongated and spindle-like 

morphology, are motile and invasive with a front-back polarity and a loss of adherens and tight 

junctions(Ye and Weinberg 2015). This highly conserved biological process, however, is 

reversible and together with the reverse process, mesenchymal to epithelial transition (MET), 

plays a fundamental role in the formation of the body plan and differentiation of multiple tissues 

and organs where several rounds of EMT and MET occur (Lim and Thiery 2012; Nieto and Cano 

2012; Nieto et al. 2016). The developmental EMT is a well-coordinated process where a series of 

events take place in a defined order (Shook and Keller 2003; Nistico et al. 2012). Among those, 

there are several key steps. First, the regions where the EMT will occur are pre-specified and 

cells that will undergo EMT are moved to those specified regions. Second, interactions between 

the epithelial cells and the basement membrane are disrupted. Third, the transitioning cells 

detach from the epithelial tissue. Fourth, the migratory cells develop mesenchymal phenotypes, 

which feature altered cytoskeletal organization and cellular metabolism (Nistico et al. 2012). 

Based on the sequential rounds, the developmental EMTs are classified as primary, secondary, 

and tertiary EMT. Primary EMT occurs early in embryonic development in processes like 

gastrulation and the neural crest delamination (Thiery et al. 2009). During gastrulation, a 

developmental stage where a single layer of epithelial cells called epiblast forms three primary 

germ layers, the epithelial cells in the primitive streak emerging from the posterior epiblast 

undergo EMT and delaminate to give rise to mesendermal cells which will form mesoderm and 

definitive endoderm (Thiery et al. 2009). Further studies revealed a critical role of signaling 

pathways in the induction of the EMT during gastrulation, including canonical Wnts as well as 
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fibroblast growth factors (FGFs) (Tam and Behringer 1997; Liu et al. 1999; Skromne and Stern 

2001). Subsequent studies identified TGF-β superfamily proteins to mediate the action of Wnts 

(Kalluri and Weinberg 2009). Transcription factors, such as Snail1, are crucial to orchestrate 

changes in the transcription program during this EMT (Nieto 2002; Kalluri and Weinberg 2009). 

After gastrulation, the epithelial cells in the neuroectoderm undergo EMT to give rise to migratory 

neural crest cells (Duband and Thiery 1982). Those cells then dissociate from the neural folds   

and migrate to different parts of the embryo before differentiating into various tissues (Thiery et al. 

2009). The EMT during neural crest delamination is triggered by signaling pathways similar to 

those during the EMT associated with gastrulation and transcription factors, such as Sox, Snail1 

and Snail2, are responsible for the underlying transcriptional regulatory network (Knecht and 

Bronner-Fraser 2002; Sauka-Spengler and Bronner-Fraser 2008). Although EMT can be driven 

by a variety of factors and the signaling transduction cascades are also context dependent, a 

hallmark of EMT is down-regulation of the epithelial protein CDH1 (E-cadherin), which promotes 

disassembly of AJs. In addition, mesenchymal proteins, such as CDH2 (N-cadherin) and VIM 

(vimentin), are also well described standard molecular markers that are up-regulated during EMT.  

EMT program can also be activated in the context of human diseases. These 

pathological EMTs have been the subject of a significant amount of studies as they were 

proposed to be a major mechanism for tissue fibrosis and cancer metastasis. However, more 

recent studies have challenged a direct contribution of EMT in some of these disease contexts. 

Progressive kidney fibrosis is an example where the role of EMT is under debate (Kriz et al. 

2011). Initial study using a cell tracking technique proposed that renal tubular epithelial cells can 

give rise to interstitial fibroblasts through EMT (Iwano et al. 2002). However, subsequent studies 

using lineage tracing identified either no evidence or evidence of only very few myofibroblasts of 

epithelial origin (Humphreys et al. 2010; Li et al. 2010; LeBleu et al. 2013). Hence, models 

proposing a direct role of EMT in kidney fibrosis have become controversial (Kriz et al. 2011). A 

recent study using a tamoxifen-induced mouse model suggested specific expression of Snail in 

renal epithelial cells induce fibrosis in adult mice. Since Snail is transcription factor that can 
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induce EMT in vitro in a cell-based model, the study suggested a positive association of EMT in 

vivo in promoting fibrosis (Boutet et al. 2006). However, whether there is a full, complete EMT 

program in the tubular epithelial cells caused by Snail was not fully addressed. A follow-up study 

that compared the WT kidney to the mutant where Snail is specifically knockout in the epithelial 

cell population in a model of UUO-induced fibrosis (UUO stands for unilateral ureteral obstruction, 

a standard model for progressive renal fibrosis) showed that the renal epithelial cells undergo a 

“partial EMT” meditated by Snail reactivation, confirmed by the corresponding changes of typical 

epithelial and mesenchymal markers, including E-cadherin, Vimentin, and an apparent loss of 

apicobasal polarity of those cells (Grande et al. 2015). Although these epithelial cells didn’t 

delaminate from the tubular basement membrane and migrate to the interstitium to directly 

contribute to interstitial fibrosis, the partial EMT is proposed to generate signals to cells in the 

interstitium, including TGF-β and NF-κB to promote fibrogenesis and inflammation (Grande et al. 

2015). Similarly, a direct contribution of EMT in cancer metastasis as well as the generation of 

cancer stem cells (CSCs) or tumor initiating cells (TIC) that are predictive of a poor response to 

cancer therapies, is also under debate and active research (Singh and Settleman 2010; Scheel 

and Weinberg 2012; Tiwari et al. 2012; Ye and Weinberg 2015). Studies from in vitro data and 

mouse models of human cancers suggested that the development of cancer metastasis includes 

an EMT-like process since tumor cells derived from epithelial origin need to infiltrate the 

basement membrane and intravasate into blood or lymph vessels to be able to travel to distal 

sites (Scheel and Weinberg 2012; Yu et al. 2013; Ye and Weinberg 2015). For solitary tumor cells 

to proceed through these steps requires the tumor cell to break up cell-cell junctions with 

neighboring cells and become mobile in a manner reminiscent of EMT. It was also suggested that 

an MET-like process can explain the colonization of tumor initiating cells to form the secondary 

tumor in the distal sties (Scheel and Weinberg 2012). However, due to the technical difficulties in 

monitoring a single tumor cell in vivo and capturing the transient and highly plastic cell status in 

epithelial or mesenchymal identities during the process of metastasis, there was no direct 

evidence to convincingly support EMT as a requirement for metastasis. However, two recent 
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papers using mouse models of mammary tumors as well as pancreatic cancer argued that EMT 

is dispensable for metastasis but contributes to chemoresistance of tumor cells (Fischer et al. 

2015; Zheng et al. 2015). One of the studies took advantage of cell linage tracing technique and 

showed only a small fraction of primary tumor cells that had undergone EMT (Fischer et al. 2015). 

While both epithelial and mesenchymal cancer cells can invade the circulating system to derive 

secondary tumors, it was proposed that the majority of metastatic tumors are initiated by epithelial 

cells from primary tumors without undergoing EMT (Fischer et al. 2015). They also showed that 

repression of mesenchymal transcription factors ZEB1 and ZEB2 didn’t impair metastasis of the 

mouse mammary tumor to the lung (Fischer et al. 2015). This observation is consistent with a 

study where tissue specific depletion of Snail or Twist transcription factor didn’t affect tumor 

metastasis in the liver, lung and spleen (Zheng et al. 2015). Importantly, both studies identified 

EMT as one of the mechanisms conferring chemresistance of tumor metastasis, which suggest a 

potential EMT-targeting strategy for cancer metastasis treatment (Fischer et al. 2015; Zheng et al. 

2015). While these studies provide us with valuable information in how EMT may contribute to 

cancer metastasis or chemoresistance, their strategy using inhibition of individual EMT 

transcription factor to block EMT in vivo has its own limitations. It remains challenging to study 

EMT and its underlying mechanism at a genomic level using those mouse models, but further 

studies on the role of EMT in vivo are clearly needed.  

To date, molecular analysis of EMT has been done mostly using a small number of in 

vitro models in a very limited number of cell lines in response to several EMT drivers (Taube et al. 

2010; Shapiro et al. 2011; Thomson et al. 2011). Among many tested epithelial cell lines, only a 

few can be induced to undergo EMT. A classical model has been established in a human 

mammary epithelial (HMLE) cell line, where different drivers such as TGF-β and certain 

mesenchymal transcription factors, including Snail and Twist, were used to induce EMT in vitro 

(Mani et al. 2008). In a model using human H358 cells, doxycycline inducible expression of Snail1 

or ZEB1 as well as TGF-β treatment can induce EMT within 7 days (Thomson et al. 2011). In 

some cases, a combination of different drivers is preferred to induce a robust and fast EMT in 
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vitro. From these in vitro studies, global changes in total gene expression have been 

characterized during EMT, including those of standard EMT markers (Taube et al. 2010; 

Thomson et al. 2011). While the relevance of these cell models to in vivo EMT is debatable, it 

provides us with a system to study EMT at molecular level to a greater extent. 
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2) Chapter 2: Determination of alternative splicing regulatory network during EMT 

and identification of key splicing regulators 

 

2.1 Background 

 

Most previous studies have mainly focused on signaling pathways and transcriptional 

regulation of the molecular mechanisms underlying EMT. Until recently, the role of post-

transcriptional gene regulation in EMT has been relatively unexplored. We previously identified 

the Epithelial Splicing Regulatory Proteins 1 and 2 (ESRP1 and ESRP2) as cell-type-specific 

regulators of an epithelial specific splicing program that is reverted during EMT (Warzecha et al. 

2009b; Warzecha et al. 2010). We showed that ESRP1 is transcriptionally inactivated during EMT 

and studies by other groups have also confirmed that ESRP1 is among the most down-regulated 

genes in multiple EMT model systems (Onder et al. 2008; Taube et al. 2010; Warzecha et al. 

2010; Shapiro et al. 2011; Thomson et al. 2011; Horiguchi et al. 2012; Braeutigam et al. 2014). 

We also determined that the ESRPs bind to UGG-rich motifs in vitro using systematic evolution of 

ligands by exponential enrichment coupled with high throughput sequencing (SELEX-Seq) 

(Dittmar et al. 2012). These UGG-rich motifs are enriched in the vicinity of ERSP-regulated 

exons, consistent with the “RNA map” in which the ESRPs regulate splicing in a position-

dependent manner: binding in the downstream intron promotes exon inclusion while binding 

within or upstream of an exon promotes exon skipping (Warzecha et al. 2010; Dittmar et al. 

2012). Conversely, RBFOX2 generally promotes mesenchymal splicing patterns for many gene 

transcripts that undergo AS during EMT, although in some cases it promotes epithelial splicing 

(Lapuk et al. 2010; Dittmar et al. 2012; Venables et al. 2013; Braeutigam et al. 2014). Moreover, it 

was shown that depletion of RBFOX2 impaired the invasiveness of cells that underwent EMT 

(Shapiro et al. 2011; Braeutigam et al. 2014). Interestingly, we showed that for some EMT-

associated AS events, there is a combinatorial regulation between the ESRPs and RBFOX2 
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(Dittmar et al. 2012). In addition to the ESRPs and RBFOX2, several other RBPs, such as PTBP1 

and MNBL have also been implicated in AS regulation during EMT, although their functions are 

less well-defined (Shapiro et al. 2011; Venables et al. 2013). Additionally, the role of post-

transcriptional regulation in EMT has also been shown to involve important epithelial-specific 

miR-200 family that targets ZEB1 and down-regulation of these micro-RNAs are similarly 

observed during EMT (Gregory et al. 2008; Park et al. 2008).  

To date, there has been only one published study that investigated genome-wide 

alterations in AS that accompany EMT using RNA-Seq (Shapiro et al. 2011).  While this important 

study identified large scale alterations in AS, many regulated events likely eluded detection due to 

the limited sequencing depth by current standards and absence of biological replicates. In 

addition, the combinatorial regulation of AS by different splicing regulators at distinct time points 

during EMT is still poorly resolved, and contributions by novel EMT regulatory proteins remain to 

be uncovered. To more comprehensively determine the AS network during EMT, we used a 

robust inducible in vitro EMT model with high sequencing depth and multiple replicates to conduct 

an in-depth investigation of AS, including a temporal analysis at multiple time points during EMT 

induction. Although we previously determined genome-wide AS targets of the ESRPs, the degree 

to which loss of ESRP expression contributes to splicing switches during EMT has not been 

characterized. We therefore carried out a parallel RNA-Seq analysis of ESRP targets in the same 

cell line and determined that the ESRPs are major regulators for AS during EMT, but also that 

other splicing factors contribute to EMT-associated AS switches. For example, we defined novel 

roles for RBM47 and QKI in combinatorial regulation of AS during EMT. Together, these 

investigations help lay the groundwork for further studies to define the functional consequences of 

AS regulation during EMT and how they impact this essential developmental process and 

relevant disease pathophysiology. 
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2.2 Results 

 

2.2.1 Comprehensive determination of changes in AS during EMT  

In order to study the AS regulatory network during EMT more comprehensively, we adapted a 

previously described EMT model using the human H358 epithelial non-small cell lung cancer 

(NSCLC) cell line (Thomson et al. 2011). We generated a H358 clone stably expressing a 

doxycycline (Dox)-inducible cDNA encoding a ZEB1-mCherry fusion protein. Over a 7-day time 

course following Dox treatment (1ug/ml), we validated the gradual decrease for the epithelial cell 

marker CDH1 (E-cadherin) and increase of the mesenchymal cell marker VIM (vimentin) at the 

protein level, confirming that the cells underwent progressive EMT during the time course (Fig. 

2.1A, B). Consistently, expression levels of the ESRPs were also progressively down-regulated at 

both protein and mRNA level during the time course (Fig. 2.1B, C). To study dynamic changes in 

splicing during EMT, we isolated total RNA at each day of the EMT time course following Dox 

treatment and a no Dox-treated control in biological triplicates (Fig. 2.1A). We performed strand-

specific 100 bp paired-end RNA-Seq and obtained between 40 million to 70 million read pairs per 

replicate with a total 1.3 billion read pairs (Table 2-1). The use of biological replicates and high  

sequencing depth, together with the time course analysis enabled the identification of a 

comprehensive program of AS switches associated with EMT. To fully characterize the AS 

program during the process of EMT, our collaborators Dr. Yi Xing and his lab used the rMATS 

computational pipeline to identify splicing changes comparing each time point to No Dox controls 

and identified numerous cassette exons (also referred to as “skipped exons” or SE) that show 

significant splicing changes in at least one rMATS comparison (Table A2-1). We applied a 

network analysis to identify clusters of SE events that have distinct temporal patterns of splicing 

changes across the EMT time course (Fig. 2.2A). The two largest clusters consisted of SE that 

showed either a graded increase (Cluster 1) or decrease (Cluster 2) in splicing across the EMT 

time course. However, we also identified other clusters representing less straightforward temporal 

patterns of splicing changes at early or late time points illustrating the complexity of temporally 
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dynamic regulation of AS during EMT. We identified a total of 1077 significant AS events 

(|ΔPSI|>5%; FDR <5%) at Day 7 compared to controls, the majority of which were cassette exons 

(670/1077) (Fig. 2.2B and Table A2-2) (Shen et al. 2014). Gene ontology enrichment analysis 

using the DAVID functional annotation tool (https://david.ncifcrf.gov/home.jsp) showed that EMT-

associated AS genes are involved in biological processes such as RNA splicing, regulation of 

small GTPase mediated signal transduction, and cytoskeleton organization, which are relevant to 

EMT (Fig. 2.2C). Using gene expression profiling, we detected more than 2000 genes with an 

expression change at mRNA level by at least 2-fold after 7 days of Dox treatment compared to 

controls (Table A2-3). The RNA-Seq results also confirmed the down-regulation of epithelial 

markers CDH1 and CLDN4 and up-regulation of mesenchymal markers VIM and FN1 (fibronectin 

1). Notably, only 74 target transcripts with splicing changes during EMT showed an expression 

change of at least 2-fold in the whole transcript level, which is consistent with the notion that 

genes under post-transcriptional regulation during cellular transitions are generally not regulated 

at transcription level. These findings reinforce the concept that transcription and AS are separate 

layers of gene expression regulation that are integrated during important developmental and 

physiological transitions.  
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Table 2-1 Sequencing statistics for the EMT experiment. 
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(A) Schematic of Doxycycline-induced EMT in H358 ZEB1-mCherry stable clone over a seven-day time 

course. 1ug/ml Doxycycline was added to the cells on Day 0, 2, 4, and 6 to induce and maintain the 

expression of ZEB1.  

(B) Validation of ZEB1 induction upon Dox treatment and decreased expression of epithelial marker (E-

cadherin, or CDH1), increased expression of mesenchymal marker (vimentin, or VIM) as well as decreased 

expression of ESRP1/2 during the time course by Western blot. β-actin is used as a loading control. Multiple 

bands in the anti-ESRP1/2 blot represent different splicing isoforms for ESRP1. The asterisk indicates a 

non-specific cross-reacting band. 

(C) Quantitative RT-PCR (qRT-PCR) analysis of ESRP1 and ESRP2 showed decreased transcript level 

during the time course (in biological triplicate). For all qRT-PCR analyses, graphs are shown as mean with 

error bars representing standard deviation. 

  

Figure 2-1 Establishment of an in vitro EMT model in human epithelial H358 cells. 
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Figure 2-2 Comprehensive determination of changes in AS during EMT. 

(A) Cluster analysis for all identified SE that significantly changed in at least one rMATS comparison 

between each time point to controls revealed two major clusters of SE events. Clusters with at least five SE 

events are shown (complete clusters and more details in Table A2-1). 

(B) Summary of different types of significant AS events identified from Day 7/No Dox comparison. SE: 

skipped exon; MXE: mutually exclusive exon; A5SS: alternative 5’ splice site; A3SS: alternative 3’ splice 

site; RI: retained intron. 

(C) Gene ontology analysis for EMT-associated SE events showed an enrichment of EMT-relevant 

processes and pathways. 
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2.2.2 Determination of changes in AS regulated by the ESRPs 

Our previous studies showed that the ESRPs are important for regulation of many 

splicing events that switched in a different EMT model (Warzecha et al. 2010). However, the 

extent to which the ESRPs contribute to the AS regulatory network in EMT required further 

investigation. We therefore used lentiviral short hairpin RNAs (shRNAs) to deplete both ESRP1 

and ESRP2 in H358 cells (Fig. 2.3A-C). We generated cDNA libraries with total RNA isolated 

from ESRP1/2 knockdown and control knockdown in biological triplicate, conducted strand-

specific 100 bp paired-end RNA-Seq, and obtained about 50 million read pairs per replicate and 

320 million read pairs in total (Table 2-2). Using the same rMATS pipeline, we identified 235 

significant AS events (|ΔPSI|>5%; FDR <5%) regulated by the ESRPs including 179 cassette 

exons, some of which were previously reported ESRP targets in other cell lines (Fig. 2-4A, B and 

Table A2-4) (Warzecha et al. 2009a; Warzecha et al. 2010; Dittmar et al. 2012). Gene ontology 

enrichment analysis revealed that ESRP-regulated AS transcripts are enriched for genes involved 

in cell junction organization and cytoskeleton organization, consistent with our previous study 

(Fig. 2-4C) (Warzecha et al. 2010; Dittmar et al. 2012). Fewer than 50 genes showed an 

expression change of at least 2-fold upon ESRP1/2 knockdown (29 down-regulated and 18 up-

regulated) (Table A2-5). Consistent with our previous study, there was an enrichment of ESRP1 

binding motifs downstream of ESRP-enhanced exons and upstream of ESRP-silenced exons in 

H358 cells (Fig. 2-4D) (Warzecha et al. 2010). We also observed an enrichment of RBFOX2 

binding motif upstream of ESRP-enhanced exons and downstream of ESRP-silenced exons, 

further supporting that the combinatorial regulation of splicing between the ESRPs and RBFOX2 

is more often antagonistic than cooperative. 
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Figure 2-3 Knockdown of ESRP1 and ESRP2 in H358 cells using shRNAs. 

(A) Schematic of ESRP1/2 knockdown experiment in H358 cells using lentiviral shRNAs. After infection, 

cells were selected with 5ug/ml puromycin and 20mg/ml blasticidin. At the end of selection, mock 

transfection control cells were all dead. 

(B) Western blot validation of ESRP1/2 protein knockdown. 

(C) Validation of ESRP1/2 mRNA knockdown by qRT-PCR (in biological triplicate). A one-tailed unpaired t-

test was used to calculate the p-value. The same statistical test was used in all subsequent qRT-PCR 

analyses in subsequent figures.  
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Figure 2-4 Identification of global changes in AS after ESRP1/2 depletion. 

(A) Heat map for ESRP-regulated cassette exons showed high consistency across replicates. 

(B) Summary of different types of significant AS events identified upon ESRP1/2 depletion in H358 cells. 

(C) Gene ontology analysis for ESRP-regulated SE events showed an enrichment of EMT-relevant 

processes and pathways. 

(D) ESRP1 binding motifs are enriched upstream of ESRP-silenced exons and downstream of ESRP-

enhanced exons. 
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Table 2-2 Sequencing statistics for the ESRP1/2 knockdown experiment.  

 

 

2.2.3 ESRP1 and ESRP2 are major regulators of epithelial splicing patterns during EMT 

To define the degree to which ESRP down-regulation contributes to the global changes in 

AS during EMT, we analyzed the overlap between ESRP-regulated AS events and EMT-

associated AS events (Fig. 2-5 and Table A2-6). Of the 670 cassette exons that showed splicing 

switches during EMT, a highly significant number of events (122/670, p=8.55E-117) are regulated 

by the ESRPs based on the rMATS analysis. As predicted, for all the 122 events, the ESRPs 

promote the epithelial splicing patterns that are abrogated during EMT. A recent study proposed 

that HNRNPM is also a key splicing factor involved in AS regulation during EMT (Xu et al. 2014). 

However, when we compared the 324 HNRNPM-regulated cassette exons identified by rMATS 

using published RNA-Seq data to the 670 EMT-associated events identified here, we found fewer 

(38/670, p=1.50E-10) shared events. As I will discuss in later sections, although RBM47 and QKI 

both are splicing regulators during EMT, the number of AS events regulated by either factor 

during EMT is less significant than that of the ESRPs. In the previous study of EMT-associated 

splicing changes Gertler and colleagues implicated RBFOX2 and PTBP1 as regulators of EMT 

splicing switches along with the ESRPs. However, they noted a statistically greater overlap with 

ESRP-regulated targets identified using splicing sensitive microarrays (p=9.27E-16) than with 
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RBFOX2 or PTBP1-regulated events defined in CLIP-Seq studies (p=8.58E-5 and p=0.0013, 

respectively) (Shapiro et al. 2011). Taken together, these observations suggest that ESRP1 and 

ESRP2 are major regulators of AS during EMT, exclusively promoting the epithelial splicing 

patterns. However, the fact that we see some EMT-associated AS events are not significantly 

regulated by the ESRPs prompted us to pursue roles for additional splicing factors that contribute 

to AS programs during EMT. 

 

 

Figure 2-5 Venn diagram of the overlap between EMT-associated AS events and those 

regulated upon ESRP1/2 knockdown based on rMATS analysis. 

 

2.2.4 Validation of cassette exons regulated by the ESRPs or EMT 

To validate these RNA-Seq results, we used semi-quantitative RT-PCR for some 

representative cassette exons whose inclusion or exclusion was promoted by EMT or ESRP1/2 

knockdown.  

From 122 cassette exons that are ESRP-regulated, EMT-associated as predicted by 

rMATS analysis, seven were tested and five were validated both in EMT and upon ESRP 

depletion (Fig. 2-6). In the case of CARD19, the splicing change was validated in EMT and a 

similar change was also observed upon ESRP depletion, but did not reach statistical significance. 

For RPS24 the splicing change was not validated in either setting. Importantly, knockdown of 
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ESRP often induced splicing changes that were less than those observed during EMT (e.g. 

PLOD2, INF2 and NFYA), despite similar levels of reduction for ESRP total transcripts in both 

settings, indicating that ESRP depletion alone often can’t fully account for the degree of splicing 

changes we observed during EMT.  

 

 

Figure 2-6 RT-PCR validation of exons predicted to switch during EMT and with ESRP1/2 

knockdown. 

For each target a representative gel is shown on top and the graph with the averaged PSI (Avg. PSI) and 

standard deviation (S.D.) from biological triplicate is shown on bottom. A one-tailed unpaired t-test was used 

to calculate the p-value for each comparison. The same statistical test was used in all subsequent RT-PCR 

analyses in subsequent figures.  
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Figure 2-7 RT-PCR validation of exons predicted to switch during EMT, but not ESRP1/2 

knockdown. 
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In addition to cassette exons with altered splicing during EMT as well as with ESRP 

depletion according to the rMATS analysis, there were a significant number of EMT-associated 

splicing events that were not identified as ESRP targets using the same statistical thresholds 

(88%, 548/670). However, we noted that many of those AS events in this analysis included exons 

previously shown to be ESRP targets in other systems or that were picked up in the rMATS 

analysis, but below the statistical cutoffs used to confidently identify ESRP-regulated targets (e.g. 

MBNL1, ARHGEF11, EXOC7). Given the known limitations of RNA-Seq for detecting AS 

changes in less highly expressed genes and those with smaller delta PSI, we suspect that the 

number of ESRP-regulated events was underestimated using the stringent criteria we applied. To 

further test this hypothesis, we selected 12 targets from a total of 51 AS events that showed at 

least 30% change of PSI during EMT while not identified upon ESRP depletion. For these events 

we analyzed the splicing changes during EMT as well as upon ESRP1/2 knockdown (Fig. 2-7). 

While four targets (SPATS2L, IMPA1, WARS and KIAA1468) showed no significant splicing 

changes during EMT or upon ESRP1/2 knockdown, eight were validated as EMT-associated AS 

targets. However, six out of these eight validated EMT-associated cassette exons (75%) are also 

regulated by the ESRPs, suggesting there is indeed an underestimation of the number of AS 

events regulated by the ESRPs during EMT.  Notably, for those seven events, the change in 

splicing was usually smaller upon ESRP depletion compared to that during EMT. 

 We also selected a subset of targets from the 57 significant splicing events that were 

identified upon ESRP1/2 knockdown, but not during EMT based on the rMATS analysis. From six 

tested cassette exons, five were indeed regulated by the ESRPs, but of these CEACAM1 and 

RNF231 also showed an apparent splicing change during EMT (Fig. 2-8). In the case of GRHL1 

and EPN3 we noted dramatic decrease in the total transcript level during the EMT, which made 

identification of isoform ratios difficult after EMT. We therefore suspect that some other targets 

eluded detection due to reduced total transcript level during EMT. Furthermore, among the 50 

genes in which these 57 AS events occur, 17 had at least a 1.5-fold decrease in the total 

transcript level during the EMT. Specifically, for GRHL1 we also note that the skipped isoform 
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results in a premature stop codon that renders the transcript sensitive to nonsense-mediated 

decay (NMD) that likely leads to under-detection of the degree of induced exon skipping. 

 

 

Figure 2-8 RT-PCR validation of exons predicted as ESRP-regulated events that were not 

identified during EMT. 
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2.2.5 A subset of RNA binding proteins showed expression changes during EMT 

The observation that some events that switch only during EMT or upon ESRP depletion, 

but not both conditions and other events with smaller changes in AS upon ESRP depletion than 

that observed during EMT indicates that contributions by other splicing factors are involved in 

EMT. To identify additional splicing factors that play a role in regulation of AS during EMT, we 

evaluated changes in expression for 446 RNA binding proteins after 7 days of Dox treatment 

compared to No Dox controls, including all proteins that contain the most common canonical RNA 

binding domains, as well as additional proteins with known or putative roles in AS such as those 

with arginine-serine (RS) rich domains (Fig. 2-9A). We identified 68 RBPs with an expression 

change of at least 1.5 fold comparing Day 7 to controls, among which 48 were expressed at 

FPKM>1 in at least one condition (Table A2-7). As expected, ESRP1 and ESRP2 showed most 

dramatic change in total expression with a 10-fold decrease for ESRP1. Notably, we did not 

observe a substantial change in RBFOX2 expression level (less than 10% increase) in this EMT 

model. To further extend this analysis, we also carried out a cluster analysis for a subset of RBPs 

(average FPKM>5 in at least one condition) to identify temporal expression patterns that might 

correspond to those observed in certain splicing clusters (Fig. 2-9B and Table A2-1). Five major 

clusters with at least five RBPs were obtained. In cluster I, 57 RBPs showed an overall decrease 

at the total transcript level with some fluctuations during the time course. In cluster II, 34 RBPs 

had a dramatic decrease at total transcript level at Day 5 and 6, which however was converted to 

a level similar to controls at Day 7. MBNL1, MBNL2, MBNL3 and RBFOX2 are among this 

cluster. In cluster III, 28 RBPs showed a graded increase in total transcript level, which was 

peaked at Day 6 and had a slight drop at Day 7. In cluster IV, 22 RBPs showed a graded 

increase in total transcript level. Both ESRP1 and ESRP2 were in this cluster. The graded change 

in total transcript level was similar to the temporal patterns of splicing changes observed for the 

top two splicing clusters (Cluster 1 and 2). These observations suggested that events in these 

two clusters are more likely to be regulated by the ESRPs. Consistent with this prediction, we 

noted that ESRP-regulated exons from rMATS analysis were statistically enriched in Clusters 1 or 



43 

2 compared to a background set of EMT-associated SE that were not in either cluster (p=4.95e-

28). In cluster V, 16 RBPs showed an overall increase at the total transcript level with a drop at 

Day 5 and 6. Among all five clusters, at least three (cluster I, II and V) showed an apparent switch 

at Day 5 that converted back at Day 7, which we found difficult to explain. Based on the 

expression of typical epithelial and mesenchymal markers, cells have completed EMT around 

Day 5, therefore the cellular status should be similar during the later time points. We then suspect 

that some of the unusual expression change are likely due to cell passaging and splitting on Day 

2 and Day 4.  

 

Figure 2-9 A subset of RNA binding proteins showed expression changes during EMT. 

(A) Among 446 splicing factors, 48 (FPKM>1, highlighted in blue) showed at least 1.5-fold change in 

expression level comparing Day 7 to controls, including ESRP1, ESRP2 and RBM47 (highlighted in red). 

(B) Heat map of cluster analysis revealed five major temporal patterns of expression changes for 166 RBPs 

(see Table A2-1 for more details). 
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2.2.6 The splicing factor RBM47 regulates a subset of AS events during EMT 

In the same cluster of the ESRPs, we identified RBM47 with a similar graded reduction in the 

expression level during the time course and a 50% decrease comparing Day 7 to No Dox 

controls. While the reduction at the mRNA level was confirmed by qRT-PCR, only a modest 

change at the protein level was apparent using standard Western blot (Fig. 2-10A, B). RBM47 

was recently shown to regulate pre-mRNA splicing, mRNA stability as well as RNA editing 

(Fossat et al. 2014; Vanharanta et al. 2014). Among a set of the published cassette exon events 

that changed upon overexpression of RBM47 in MDA-MB-231-BrM2 cells, we noted many of 

those are either known ESRP targets or among cassette exons that switch splicing during EMT 

(Vanharanta et al. 2014). The ESRPs and RBM47 were predicted to regulate splicing in the same 

direction for the majority of common target events, suggesting RBM47 is likely to promote 

epithelial splicing patterns. For example, both RBM47 and the ESRPs promote exclusion of the 

36nt exon 7 in MBNL1, while both promote inclusion of the 81nt exon 12 in MAP3K7. Notably, 

both cassette exons were also predicted as EMT-associated splicing events, suggesting potential 

combinatorial regulation during EMT. We therefore further investigated potential roles for RBM47 

in the regulation of AS during EMT. 

To further investigate the role of RBM47 in enforcing epithelial splicing patterns that are 

altered during EMT, we depleted RBM47 in H358 cells with an shRNA and generated cDNA 

libraries from RBM47 knockdown and control in biological triplicate (Fig. 2-10C, D). We then 

determined the AS program regulated by RBM47 using strand-specific 100 bp paired-end RNA-

Seq and rMATS pipeline (Fig. 2-10E and Table 2-3). We identified 117 significant AS events 

(|ΔPSI|>5%; FDR <5%) including 90 cassette exons (Fig. 2-10D and Table A2-8). We evaluated 

the overlap of RBM47-regulated cassette exons with those that switch during EMT and found 43 

out of 90 RBM47-regulated cassette exons that were also predicted to change during EMT 

(p=1.37E-29) (Fig. 2-10F and Table A2-9). Although RBM47 promotes epithelial splicing patterns 

for most of these targets (27/43), it was also predicted to promote mesenchymal splicing patterns 

in some cases. We tested a number of these RBM47-regulated targets by RT-PCR and  
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confirmed that indeed down-regulation of RBM47 likely promotes epithelial splicing patterns of 

some, but not all shared targets during EMT (Fig. 2-11). Similar results were obtained for all those 

RBM47-regulated AS events using an siRNA targeting a different region in the RBM47 transcript 

other than that of the shRNA used in the RNA-Seq experiment (Fig. A2-1). 

 

 

Figure 2-10 The splicing factor RBM47 regulates a subset of AS events during EMT. 

(A-B) qRT-PCR validated a 2-fold decrease at the mRNA level for RBM47 at Day 7 versus No Dox, while 

Western blot only showed a modest change at the protein level for RBM47 during EMT.  

(C-D) Validation of RBM47 depletion at the mRNA level and protein level in H358 cells using lentiviral 

shRNAs (in biological triplicate). 

(E) Summary of different types of significant AS events identified upon RBM47 depletion in H358 cells. 

(F) Venn diagram of the overlap between EMT-associated cassette exons and those regulated upon 

ESRP1/2 and RBM47 knockdown. 
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Table 2-3 Sequencing statistics for RBM47 knockdown experiment. 
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Figure 2-11 RT-PCR validation of exons predicted as RBM47-regulated events. 

(A) Validation of representative exons where RBM47 promotes epithelial splicing patterns.  

(B) Validation of representative exons where RBM47 promotes mesenchymal splicing patterns. For ACSF2, 

there is an alternative 5’ splice site at the end of the cassette exon, which yields the middle band in between 

the included/skipped PCR products. Only the top and bottom bands are quantified to calculate the PSI. 

(C) Validation of RBM47-regulated exons that were not predicted to switch during EMT.  
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2.2.7 The ESRPs and RBM47 regulate a subset of EMT-associated splicing events in a 

combinatorial manner 

Among the 43 RBM47-regulated, EMT-associated targets, 31 events (72.1%) are also 

regulated by the ESRPs based on the rMATS analysis, indicating a significant overlap of co-

regulated AS events, of which the majority (19/31) are regulated in the same direction by the 

ESRPs and RBM47 (Fig. 2-10F). This complex combinatorial regulation between the ESRPs and 

RBM47 on AS is similar to that previously described for the ESRPs and RBFOX2 where they 

usually, but not always, promote opposite changes in splicing (Dittmar et al. 2012). This is 

consistent with a function for RBFOX2 to usually, but not always, promote mesenchymal splicing 

patterns. To further investigate the combinatorial effect of the ESRPs and RBM47 on their 

common targets, we tested AS of several targets following knockdown of ESRP1/2 or RBM47 

alone and with combined knockdown of both regulators in H358 cells (Fig. 2-12A, B). For MBNL1, 

CLSTN1, MACF1 and MAP3K7, knockdown of ESRP1/2 or RBM47 alone induced a partial 

splicing switch towards the mesenchymal splicing pattern, whereas the combined knockdown 

revealed an additive switch in splicing, consistent with each contributing to the loss of epithelial-

specific splicing during EMT (Fig. 2-12C). In contrast for TCIRG1, ACSF2, MYO1B and ITGA6, 

ESRP1/2 knockdown induced a change in splicing consistent with that during EMT which is 

opposite to that observed in RBM47 knockdown, indicating that the effect of ESRP down-

regulation during EMT predominated over that for RBM47 (Fig. 2-12D). Based on these collective 

observations, we suspect that for exons where the ESRPs and RBM47 have opposing functions, 

the reduction in ESRP expression plays a more prominent role in the splicing switches that occur 

during EMT. Hence, whereas the down-regulation of both the ESRPs and RBM47 together can 

account for the degree of some splicing switches observed during EMT, the effect of RBM47 to 

maintain epithelial splicing is less consistent than that of the ESRPs. Although the mechanism 

underlying the complicated combinatorial regulation is largely unclear, these results further 

indicate the EMT-associated AS network is fine-tuned by multiple regulators.  
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Figure 2-12 Combinatorial regulation of AS during EMT by the ESRPs and RBM47. 

(A) qRT-PCR validation of ESRP1, ESRP2, and RBM47 depletion at mRNA level using siRNAs (in biological 

triplicate). Graph is shown as mean with error bars representing standard deviation. 
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(B) Western blot validation of ESRP1, ESRP2 and RBM47 protein knockdown. Note that, RBM47 mRNA 

showed a 50% reduction upon ESRP1/2 knockdown while the protein level didn’t appreciably change. 

(C) Validation of representative exons where ESRP1/2 and RBM47 knockdown have additive functions to 

promote splicing changes that occur during EMT.  

(D) Validation of representative exons where ESRP1/2 and RBM47 promote opposite changes in splicing. 

For MYO1B, there are two consecutive cassette exons (both are 87nt in length) that can be included 

individually (middle band), together in tandem (top band) or skipped together (bottom band). Only the top 

and bottom bands are quantified to calculate the PSI. 
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2.2.8 Motif enrichment analysis revealed additional potential splicing regulatory proteins during 

EMT 

While expression analysis of RBPs during EMT is helpful to identify potential splicing 

regulators with expression change, it is important for us to also consider contributions by splicing 

factors that did not demonstrate substantial changes in expression level during EMT. For 

example, RBFOX2 promotes predominantly mesenchymal splicing despite not showing a 

substantial change in total transcripts in our EMT model. To uncover other EMT splicing 

regulators, including those without clear expression changes, we performed a motif enrichment 

analysis for 115 known splicing factor binding motifs flanking cassette exons that switch during 

EMT (Fig. 2-13A and Table A2-10). Binding motifs of several SR proteins were enriched flanking 

EMT-associated cassette exons. Consistent with the “RNA map”, ESRP1 binding motifs were 

specifically enriched downstream of cassette exons with increased skipping during EMT, 

indicating the presence of the ESRPs in epithelial cells promotes inclusion of those exons while 

the loss of the ESRPs in mesenchymal cell promotes skipping (Fig. 2-13B). Binding motifs of 

several other RBPs, including MBNL1/2 and CELF protein family member, were also specifically 

enriched downstream of cassette exons with increased skipping during EMT. RBFOX2 binding 

sites are specifically enriched downstream of cassette exons whose splicing increases during 

EMT, indicating the presence of RBFOX2 in mesenchymal cells promotes the inclusion of those 

exons. Similar to RBFOX2, QKI binding sites are enriched downstream of cassette exons with 

increased inclusion following EMT. Previous reports showed QKI also adheres to an RNA-map in 

which binding in the downstream intron promotes exon inclusion while binding in the upstream 

intron promotes skipping (Hall et al. 2013). Therefore, our motif analysis suggested a potential 

role for QKI in promoting inclusion of mesenchymal specific exons. 
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Figure 2-13 Identification of motifs enriched flanking EMT-associated cassette exons. 

(A) Motifs and the corresponding RPBs that are enriched flanking exons that switch splicing during EMT. 

(B) ESRP1 binding motifs is enriched downstream of exons with increased skipping after EMT. 

 

2.2.9 QKI promotes mesenchymal splicing patterns for AS events during EMT 

In H358 cells, QKI-5 is the most abundant isoform and we did not observe major isoform 

switches or significant expression changes during EMT (Fig. 2-14A). A recent study characterized 

the splicing events that change upon QKI knockdown in a lung cancer cell line using RNA-Seq 

(Zong et al. 2014). We noted that several of the QKI-regulated cassette exons identified in that 

study showed the opposite change in splicing from what we observed with ESRP depletion 

suggesting opposing roles in splicing regulation during EMT. We therefore applied the rMATS 

pipeline that we used to define splicing switches during EMT as well as ESRP1/2 and RBM47 

knockdown to the same dataset and identified 70 QKI-regulated SE events (Table A2-11). 

Compared to EMT-associated cassette exons, there was a significant overlap (p=1.17E-24) with 

35 shared target events despite the fact that they were identified in different cell lines (Table A2-
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11). Strikingly, for 33 out of 35 QKI-regulated, EMT-associated AS events, QKI was predicted to 

promote the mesenchymal splicing patterns, including 12 splicing events that are co-regulated by 

the ESRPs. Notably, the two target events where QKI seemed to promote the epithelial patterns, 

the splicing change was relatively subtle. To further validate the RNA-Seq results, we knocked 

down QKI in a human mesenchymal breast cancer cell line MDA-MB-231 using two different 

siRNAs (siQKI #6 and #7) (Fig. 2-14B, C). We tested eight out the 33 AS events using semi-

quantitative RT-PCR. All eight AS events were validated and QKI indeed promoted the 

mesenchymal splicing patterns for all tested AS events, suggesting QKI is a novel regulator of 

EMT-associated splicing switches, promoting mesenchymal splicing (Fig. 2-14D and Fig. A2-2). 
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Figure 2-14 QKI promotes mesenchymal splicing patterns for AS events during EMT. 

(A) Western blot of QKI doesn’t show detectably change at protein level during EMT. 

(B) qRT-PCR validation of QKI depletion at mRNA level in mesenchymal MDA-MB-231 cells using two 

different siRNAs (biological triplicate for #6 and one replicate for #7).  

(C) Western blot validation of QKI knockdown at protein level. 

(D) Validation of representative exons where QKI promotes the mesenchymal splicing patterns upon 

knockdown with siQKI #6. 
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2.3 Discussion and future directions 

 

We comprehensively determined an AS program associated with EMT in a Zeb1 

inducible model. We showed that while the ESRPs are major splicing regulators for EMT, two 

other RBPs, namely RBM47 and QKI, are also important for AS regulation during EMT. We 

further investigated the combinatorial regulation between the ESRPs and RBM47, by showing 

that they generally work cooperatively to promote epithelial splicing patterns, whereas QKI 

exclusively promotes mesenchymal splicing patterns. Based upon these findings we present a 

simplified model for combinatorial AS regulation during EMT involving the ESRPs, RBFOX2, QKI, 

and RBM47 (Fig. 2-15).  

 

Figure 2-15 A model for AS regulation during EMT. 

In epithelial cells, the ESRPs bind to downstream intron and promote epithelial specific exon inclusion, and 

bind to upstream intron and promote exon skipping. While it is not clear whether RBM47 binds directly to 

some overlapping targets, it also helps to maintain epithelial splicing for a subset of exons. In mesenchymal 

cells, expression of the ESRPs and RBM47 are decreased. In the absence of ESRP binding, RBFOX2 and 

QKI bind to downstream intron and promote mesenchymal specific exon inclusion; while RBFOX2 also binds 

to upstream intron and promote mesenchymal specific exon skipping. QKI also can promote exon skipping 

possibly also through binding in the upstream intron. 
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We showed that the ESRPs are the most down-regulated RBPs in our H358 EMT model, 

which was also noted in a previous study using another EMT model (Shapiro et al. 2011). This 

observation suggested that the loss of ESRP1 and ESRP2 is most likely to contribute to more 

splicing switches during EMT than any other specific splicing factor or paralog family. Consistent 

with this proposal, based on previous results and the RNA-Seq analysis from our EMT model, the 

ESRPs were shown to have more significant overlap with EMT-associated splicing switches than 

other proposed EMT splicing factors, including RBFOX2, PTB, HNRNPM, RBM47 and QKI, 

although the use of different cell lines may affect the comparison. Notably, ESRP1/2 depletion in 

H358 cells didn’t affect the protein level for RBM47 or QKI (Fig. A2-3). While many EMT-

associated splicing switches were not identified as ESRP targets based on rMATS analysis, 

validation of a subset of such target transcripts suggested that the majority are in fact ESRP-

regulated, and that many such events are at least partially regulated by the ESRPs, despite not 

passing our stringent statistical thresholds. However, whereas ESRP depletion induced splicing 

changes in the same direction as those observed during EMT, the change in PSI was frequently 

less than that during EMT despite a similar reduction in ESRP expression levels. In addition, motif 

analysis confirmed that ESRP1 binding sites are enriched downstream of cassette exons with 

decreased inclusion after EMT, supporting a direct role of the ESRPs in promoting inclusion of 

epithelial specific exons. However, future studies using methods such as CLIP-Seq are needed to 

experimentally validate direct vs. indirect targets.   

We identified RBM47 as another splicing factor that is down-regulated during EMT and 

showed that combined down-regulation of the ESRPs and RBM47 can account for the complete 

EMT splicing change for at least some of these examples. This combinatorial regulation by the 

ESRPs and RBM47 usually promotes an additive effect on splicing, although there were some 

examples of opposing effects on splicing that indicate the complexity of combinatorial regulation 

of splicing during EMT. Motif analysis led to our discovery of QKI which also plays a role in 

regulation of AS during EMT. QKI has been shown to bind to a ACUAAY motif both in vitro and in 

vivo and to both promote or inhibit splicing in a position dependent manner (Ryder and 



57 

Williamson 2004; Galarneau and Richard 2005; Hafner et al. 2010; Hall et al. 2013). Consistent 

with a direct function of QKI in promoting mesenchymal splicing, we found QKI binding motif 

enriched downstream of cassette exons with increased inclusion after EMT. Interesting, QKI is 

among the most down-regulated genes in cells with ectopically expressed epithelial specific miR-

200, further suggesting QKI is associated with mesenchymal cell status (Park et al. 2008). In 

support of this, microarray data from the NCI60 panel of cell lines revealed that the expression of 

QKI is highly correlated with that of Vimentin, a mesenchymal marker (Park et al. 2008). These 

observations suggested an elevated expression of QKI in mesenchymal cells compared to 

epithelial cells. QKI showed a 40% increase in expression at the mRNA level in our model, but no 

appreciable change at protein level during EMT, yet it promoted mesenchymal splicing for about 

30 cassette exons. It is possible that the modest change of QKI transcripts observed in our EMT 

model may be greater if extended over a longer time. Although we did not observe splicing 

isoform changes in QKI during EMT, we can’t rule out the possibility that post-translation 

modifications of QKI may occur during EMT that alter its activity. Interestingly, a recent paper 

showed that QKI-5 promotes the formation of circRNAs that increase in abundance in EMT (Conn 

et al. 2015b). It will be of interest to determine the degree to which QKI regulated conventional AS 

events contribute to the EMT compared to circRNAs. Although we have shown that the ESRPs, 

RBM47 and QKI are responsible for a significant fraction of AS events during EMT, other splicing 

factors surely remain to be identified that also participate in combinatorial regulation of AS during 

this process.  

A major challenge remains to define the functional consequences of AS switches that 

occur during EMT and how the change in protein isoforms confers differential activities that 

impact the cellular changes that accompany this developmental transition. The complete 

functional dissection of any specific AS event requires detailed investigations at the molecular 

and cell biological level in order to characterize these differences. For example, an in depth 

investigation into the AS of EXOC7 (exocyst complex component 7) showed that the 

mesenchymal, but not epithelial, isoform promotes actin polymerization and cell invasion in 
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models of cancer metastasis (Lu et al. 2013). Another well-documented example is AS in CD44 

with a cluster of cassette exons in the pre-mRNA, while inclusion of one or more of these exons 

leads to CD44 variant isoforms (CD44v, epithelial isoforms), exclusion of all cassette exons 

generates the CD44 standard isoform that promotes EMT (CD44s, mesenchymal isoform). The 

transition from CD44v to CD44s was proposed to play a central role in EMT (Brown et al. 2011). 

In previous work, we also discussed several genes with known or predicted isoform specific 

functions such as NUMB, EPB41L5 and TCF7L2 that may contribute to processes that impact 

EMT (Warzecha et al. 2010; Dittmar et al. 2012). While there are limited examples of other EMT-

associated splicing switches that have been functionally well characterized, there are a number of 

transcripts identified here with functions that are relevant to EMT, such as epithelial cell adhesion 

and polarity. It therefore merits further investigation as to how the epithelial vs. mesenchymal 

isoforms differentially affect these functions. For example, ADD3 (adducin 3), a subunit of the 

adducin family, is a membrane skeletal protein involved in assembly of the spectrin-actin network 

at the membrane–cytoskeleton interface and is localized at cell-cell contacts of epithelial cells 

(Gardner and Bennett 1987; Kaiser et al. 1989). It was shown to co-localize with E-cadherin and 

CTNNB1 (or β-catenin) at AJs in epithelial cells and knockdown of adducin significantly 

attenuated calcium-dependent AJ and TJ assembly and accelerated junctional disassembly, 

indicating that it is essential for stability of epithelial junctions (Naydenov and Ivanov 2010). ADD3 

was also shown to be required for desmosomal cohesion in keratinocytes (Rotzer et al. 2014). It 

is notable that these roles are regulated by phosphorylation as is stability of the protein 

(Matsuoka et al. 1998). The cassette exon for which the inclusion decreased significantly after 

EMT, contains several known or predicted phosphorylation sites, suggesting the possibility that 

the different isoforms might have differential functions due to presence or absence of specific 

phosphorylation events (Huttlin et al. 2010; Lundby et al. 2012). Therefore, this AS event in ADD3 

during EMT may impact functions of the protein in maintenance of cell-cell junctions in epithelial 

cells relevant to EMT, but this requires further study. 
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Another potentially relevant example for which there have been some studies of isoform 

differences is CEACAM1 or carcinoembryonic antigen-related cell adhesion molecule 1 (biliary 

glycoprotein), a member of the immunoglobulin superfamily specifically belonging to the 

carcinoembryonic antigen (CEA) family (Barnett et al. 1989). The highly conserved 53nt cassette 

exon residing in the C terminus, when included, generates a 71 amino-acid cytoplasmic tail 

(CEACAM1 L isoform) while skipping of the exon generates a 9 amino-acid cytoplasmic tail 

(CEACAM1 S isoform) (Dráberová et al. 2000). While both isoforms can mediate adhesive 

interaction, they have different adhesive properties, localizations and post-translational 

modifications on their unique cytoplasmic tails, suggesting distinct functions in mediating cell-cell 

interactions and signaling transduction for each isoform (Huber et al. 1999; Sundberg and Obrink 

2002). During EMT, there is a transition from primarily CEACAM1 S isoform to about a 1:1 ratio of 

CEACAM1 S and CEACAM L isoforms. Similarly, it was shown that normal breast epithelial cells 

predominantly express the CEACAM1 S isoform, while the ratio of S/L isoforms is reduced in 

breast cancer cells (Gaur et al. 2008). Since EMT is implicated in promoting tumorigenesis by 

changing cell-cell interactions and making individual cell more invasive, the anti-tumorigenesis 

property of CEACAM1 may partly rely on proper AS of CEACAM1 (Yang and Weinberg 2008).  

Our findings lay the groundwork for studies of specific AS events that have isoform 

specific functions in EMT and related processes, such as metastasis, strengthening our 

understanding of development and tumorigenesis. Future studies are required to understand 

further how alternative splicing can affect cellular transitions and cell behavior. However, the 

study of even a single alternative event regulated during EMT or upon ESRP depletion is 

technically challenging and time-consuming. An alternative strategy to study the biological 

consequences of alternative splicing program during developmental transition is to look at 

differences in the protein-protein interaction (PPI) networks of different isoforms. Recent studies 

have shown that alternatively spliced isoforms have distinct protein-protein interaction profiles, 

similar to that of different genes, indicating alternative splicing induces extensive changes at 
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cellular level and information from the PPI can be used as a guide to study their potential 

functions (Yang et al. 2016).  

While the identification of the ESRPs and two novel EMT splicing factors, RBM47 and 

QKI, helps to extend our understanding of the AS regulatory network during EMT, there are 

surely more splicing factors that contribute to this regulatory network that are yet to be identified. 

Future experiments are required to determine the degree to which these splicing factors directly 

regulate these splicing events. The example of the combinatorial regulation between the ESRPs, 

RBM47, RBFOX, and QKI are just the tip of the iceberg, underscoring an extensive network 

among different splicing factors in splicing programs during cellular transitions and determination 

of cell- and tissue-specific splicing. Lastly, future studies are required to identify the mechanisms 

by which the ESRPs regulate splicing. 
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2.4 Material and methods 

 

2.4.1 Plasmids 

pGIPZ-shESRP1 #3, pGIBZ-shESRP2 #7 as well as the corresponding non-targeting 

control vectors, psPAX2 and pCMV-VSV-G were described previously (Warzecha et al. 2010). 

We PCR amplified the cDNA sequence for mCherry and used it to replace the coding sequence 

for EGFP in pGIBZ to derive pRIBZ-shESRP2 and corresponding control vector pRIBZ-shCtrl 

(sequences and cloning strategies are available at request). Note that these shRNA vectors 

facilitated visualization of transduction (green or red fluorescence) and drug selection (puromycin 

or blasticidin). The pGIPZ-shRBM47 expression vector was purchased from GE Dharmacon 

(V3LSH_393928). The pTet-On advanced vector was purchased from Clontech (631069). We 

cloned the rtTA-Advanced cassette into the pIBX vector described previously using EcoRI and 

BamHI sites to make the pIBX-Tet-On vector (Warzecha et al. 2009a). The pTRE-tight vector was 

purchased from Clontech (631059). To enable selection, we cloned the TRE-CMVmin element 

into the pcDNA3 vector to derive pcDNA3-TRE-CMVmin. A subsequent construct, pcDNA-TRE-

CMVmini-C-FF(B)-mCherry was derived by inserting a sequence encoding a 2X FLAG tag 

followed by the coding sequence for mCherry. The coding sequence for ZEB1 was subsequently 

inserted upstream of the sequences for the FLAG tag and mCherry to derive pcDNA3-TRE-

CMVmin-C-FF(B)-mCherry-ZEB1 that encoded ZEB1 with C-terminal FLAG and mCherry 

(sequences and cloning strategies are available at request).  

 

2.4.2 Cell culture and transfection 

Human non-small cell lung cancer cell line H358 (obtained from the American Type 

Culture Collection) and the H358 Zeb1 clone were maintained in RPMI1640 with 10% FBS 

(SH30071.03, GE). 293T, and MDA-MB-231 cells were maintained in DMEM with 10% FBS. To 

make a Tet-on inducible Zeb1 H358 clone: First, H358 cells were transfected with the pIBX-Tet-

On plasmid using Lipofectamine® 2000 (11668027, Life technologies) according the 
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manufacturers’ protocols, selected in 10 ug/ml blasticidin for two weeks, and used serial dilution 

in 96 well plates to obtain single cell derived clones. Second, pcDNA3-TRE-CMVmin-C-FF(B)-

mCherry-Zeb1 was transfected into the H358 Tet-On clone using Lipofectamine® 2000, selected 

in 500 ug/ml G418 (10131035, Life technologies) and single cell clones were derived by serial 

dilution. For the EMT time course experiment, the Tet-on inducible ZEB1 H358 cells were seeded 

in 6 cm dishes in biological triplicate. Then we treated cells with 1 ug/ml Doxycycline every other 

day for 7 days in total to induce and maintain ZEB1 expression. During the time course, we 

harvested RNA and protein from each day for downstream analyses. Note that cells reached 

confluence at Day 2 and Day 4, therefore we trypsinized and re-plated following the isolation of 

RNA at the Day 2 and 4 time points. 

 

2.4.3 Viral packaging and transduction 

Lentiviral production and transduction were performed as described previously 

(Warzecha et al. 2010). Briefly, 293T cells were transfected in 6 cm dishes with 3 ug of the 

shRNA expression vector, 2.7 ug of psPAX2, and 300 ng of pCMV-VSV-G using TransIT®-293 

(MIR2700, Mirus). After 16–20 hours, the media was replaced with fresh DMEM with 10% FBS, 

and virus was harvested after an additional 24 hours. Target cells were transduced with a 50/50 

mix of viral supernatant and growth media. Selection was carried out using 2 ug/ml puromycin 

and/or 10 ug/ml blasticidin for 48-96 hours. RNA and protein were harvested 7-8 days post 

infection. ESRP and RBM47 knockdown using shRNAs followed by RNA-Seq experiments were 

both done in biological triplicate.  

 

2.4.4 RNA interference using siRNA 

siRNA for RBM47 (SI04356884, target sequences are CACGGTGGCTCCAAACGTTCA) 

and QKI (#6 SI04218221, target sequences are CCCGAAGCTGGTTTAATCTAT; #7 

SI04367342, target sequences are CAGAGTACGGAAAGACATGTA) were purchased from 

Qiagen. siRNAs for ESRP1 and ESRP2 were previously described (Warzecha et al. 2009a). The 
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non-specific Allstar siRNA (SI03650318) was purchased from Qiagen as a negative control. 

Briefly, cells were seeded in 6 well plates and transfected with siRNAs twice over a period of 48 

hours using Lipofectamine® RNAiMAX (11778075, Life technologies). A total of 30 pmole siRNA 

was used for each transfection. RNA was extracted 24-48 hours after the second siRNA 

transfection (72-96 hours following the first transfection). Knockdown experiment of ESRP and/or 

RBM47 using siRNAs to test the combinatorial effect was done in biological triplicate. Knockdown 

experiment of QKI in MDA-MB-231 cells was also done in biological triplicate. 

 

2.4.5 RT-PCR, and qRT-PCR 

Total RNA was extracted using TRIzol (15596018, Life technologies). Reverse 

transcription was performed as described previously. Primers used for AS targets validation, exon 

sizes and PCR products sizes are summarized in Table A2-12. qRT-PCR analysis was performed 

and analyzed as described previously. 18S was used as an endogenous control for 

normalization. Each qRT-PCR contained average data from technical triplicate. A one-tailed 

unpaired t-test was used to calculate the p-values for all RT-PCR and qRT-PCR from biological 

triplicate. Graphs are shown as mean with error bars representing standard deviation. Taqman 

assay probes for human ESRP1 (Hs00214472_m1), ESRP2 (Hs00227840_m1), RBM47 

(Hs01001785_m1), QKI (Hs00287641_m1) and 18S (Hs03003631_g1) were purchased from Life 

technologies. 

 

2.4.6 Antibodies and Western blotting 

Total cell extracts were harvested in RIPA buffer with protease inhibitor cocktail, PMSF 

and sodium orthovanadate (sc-24948, Santa Cruz). Immunoblotting was performed as described 

(Warzecha et al. 2009a). Antibodies used are as below: ESRP1/2 (23A7, mouse, 1:200) 

(Warzecha et al. 2010); RBM47 (SAB2104562, Sigma, rabbit, 1:1000); QKI (HPA019123, Sigma, 

rabbit, 1:200); vimentin (MS-129-P1, Thermo Scientific, mouse, 1:500); CDH1 (24E10) (#3195, 

Cell signaling, rabbit, 1:500); ZEB1 (sc-25388, Santa Cruz, rabbit, 1:1000); FLAG (F1804, Sigma, 
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mouse, 1:5000); β-actin (A2228, Sigma, mouse, 1:5000). Secondary antibodies were purchased 

from GE Healthcare Life Sciences (sheep anti-Mouse IgG NA931; donkey anti-Rabbit IgG 

NA934V from 1:1000; to 1:10,000). 

 

2.4.7 cDNA libraries and RNA-Seq 

1 ug total RNA was used to make each cDNA library using the TruSeq Stranded mRNA 

LT Sample Prep Kit (RS-122-2102, Illumina) for EMT time course and ESRP1/2 knockdown 

experiments and the NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina (E7420S, 

NEB) for RMB47 knockdown experiment. For cDNA library preparation using the NEB kit, poly-A 

selection from total RNA was done using the NEBNext® Poly(A) mRNA Magnetic Isolation 

Module (E7490S, NEB). 100bp paired-end RNA-Seq using the Illumina Hiseq 2000 or Hiseq 2500 

was done by Penn Genome Frontiers Institute (PGFI) or Next-Generation Sequencing Core 

(NGSC) facilities at Penn. 

 

2.4.8 RNA-Seq analysis  

We mapped RNA-Seq reads to the human genome (hg19) and transcriptome (Ensembl, 

release 72) using the software TopHat (v1.4.1) allowing up to 3 bp mismatches per read and up 

to 2 bp mismatches per 25 bp seed. We computed RNA-Seq based gene expression levels 

(FPKM metric: fragments per kilobase of exon per million fragments mapped) using Cuffdiff 

(v2.2.0), and identified differential gene expression between the two sample groups at FDR<5%, 

>2 fold difference in gene expression based on average FPKM, and minFPKM>0.1 (Trapnell et 

al. 2010). We identified differential AS events between the two sample groups using rMATS 

v3.0.8 (http://rnaseq-mats.sourceforge.net) that detects five major types of AS events from 

RNA-Seq data with replicates (Shen et al. 2014). In each rMATS run, the first group was 

compared to the second group to identify differentially spliced events with an associated change 

in Percent Spliced In (ΔPSI or Δψ) of these events. We ran rMATS using -c 0.0001 parameter to 
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compute p-values and FDRs of splicing events with |∆ψ|>0.01% cutoff then collected the splicing 

events with an FDR<5% and | Δψ|≥5%.  

 

2.4.9 Motif Enrichment Analysis  

We performed motif enrichment analysis as described previously to identify binding sites 

of splicing factors and other RNA binding proteins (RBPs) that were significantly enriched in 

differential exon skipping events (Bebee et al. 2015). We used 115 known binding sites (motifs) of 

RBPs from the literature (Ule et al. 2003; Anderson et al. 2012; Dittmar et al. 2012; Ray et al. 

2013a; Vanharanta et al. 2014) which includes well-known splicing factors. We examined the 

enrichment of the RBPs in exon body, 250 bp of upstream and downstream intron separately. 

 

2.4.10 RNA Map Analysis  

To identify the RNA binding map of the ESRPs for the differential SE events between two 

groups as compared to control alternative exons, we examined ESRP binding sites using the top 

twelve GU-rich binding motifs previously identified by the SELEX-Seq (Dittmar et al. 2012). If an 

alternative exon didn’t show splicing changes (rMATS FDR>50%, maxPSI>15%, minPSI<85%) 

and it was from highly expressed genes (average FPKM>5.0 in at least one group), we classified 

it as control alternative exon. As described previously, we examined the exon body, 250 bp of 

upstream and downstream intron, flanking exons, and 250 bp intronic regions of flanking exons to 

assign motif scores (Bebee et al. 2015). Motif scores were assigned as the overall percentage of 

nucleotides covered by any of twelve ESRP motifs within a 50-bp sliding window. We slid the 

window by 1 bp in each region. 

 

2.4.11 Data Availability  

The RNA-Seq data from this publication have been submitted to the NCBI Gene 

Expression Omnibus repository (http://www.ncbi.nlm.nih.gov/geo/) under the accession number 



66 

GSE75492, with the link below: 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=qlsfiwaybpihbmf&acc=GSE75492. 
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3) Chapter 3: Alternative splicing mediated subcellular localization of Esrp1 

 

3.1 Background 

 

Esrp1 is a highly conserved RBP, with orthologues in all vertebrates as well as D. 

Melanogaster (fusilli) and C. elegans (sym-2) that are also regulators of alternative splicing 

(Barberan-Soler and Zahler 2008; Warzecha et al. 2009). In addition to the three highly 

conserved RRMs, there are no other clearly defined protein domains. Several alternative splicing 

events are present in the C-terminus of Esrp1, downstream of all three RRM domains, including 

an alternative 5’ splice site (5’ss) at the end of exon 12 and two consecutive cassette exons (exon 

14 and 15) that can be included individually, together in tandem, or skipped. In this study, we 

demonstrated that the differential subcellular localization of Esrp1 results from the alternative 5’ 

splice site at the end of exon 12. We identified the minimal peptide sequence that is necessary 

and sufficient for nuclear localization of Esrp1 nuclear isoforms, which is different from previously 

characterized NLS consensus. We also determined the key residues in the Esrp1 NLS. We 

further showed that the production of both nuclear and cytoplasmic isoforms through alternative 

splicing is maintained by the fly orthologue fusilli. These findings strongly suggest that Esrp1 and 

its orthologues have conserved functions in yet-to-defined post-transcriptional regulatory roles in 

the cytoplasm beyond splicing regulation in the nucleus 
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3.2 Results 

 

3.2.1 Choice of different alternative 5’ splice sites downstream of exon 12 gives rise to Esrp1 

isoforms with differential subcellular localization.   

The alternative 5’ splice sites in Esrp1 exon 12 consists of two identical 5' splice site 

consensus sequences that are separated by 12 nucleotides (5-TGAAGTTACCAT-3), usage of 

which generates protein isoforms that differ by four amino acids "Cys-Lys-Leu-Pro" (CKLP) (Fig. 

3-1A). Cassette exons 14 and 15, which are 151 nt and 72 nt in length respectively, can be 

included or skipped individually or together. While translation terminates in exon 16 when both 

exons are skipped (NA), inclusion of both exons (2A) introduces a stop codon in exon 15 (Fig. 3-

2A, B). In our initial studies using cDNAs encoding several different splice isoforms of Esrp1, we 

noted these Esrp1 isoforms showed differential subcellular localization to the nucleus or 

cytoplasm, suggesting some Esrp1 splice isoforms contain a nuclear localization signal (NLS).   

To test whether the NLS is encoded by the differentially spliced region around the alternative 5’ 

splice site or the exons 14 and/or 15, we generated constructs expressing four Esrp1 isoforms 

(2A+CKLP, 2A-CKLP, NA+CKLP and NA-CKLP) fused with a fluorescence tag (mCherry) and 

transfected them into HeLa cells (Fig. 3-1B). As shown in Fig. 3-1C, isoforms containing the 

peptide CKLP (derived from the distal 5’ss) were predominantly nuclear while isoforms lacking 

the peptide (derived from the proximal 5’ss) were predominantly localized to the cytoplasm. 

However, the inclusion or skipping of exon 14 and 15 together or individually did not influence 

subcellular localization (Fig. 3-1C and data not shown). These observations suggested that CKLP 

is part of an NLS required for the nuclear localization of Esrp1. Using semi-quantitative RT-PCR 

with primers flanking both 5’ splice sites, we confirmed that alternative splicing of these 5’ splice 

sites across a panel of human and mouse cell lines yielded both splice variants, with some 

variation in ratios, but generally averaging close to 1:1 ratio of the nuclear and cytoplasmic 

isoforms (Fig. 3-1D). Interesting, we observed an increase in the nuclear isoforms of ESRP1 

upon ESRP depletion in the human epithelial cell line H358 using shRNAs, indicating this 
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alternative splicing event is regulated by the ESRPs (Fig. 3-1E). This autoregulation is also 

conserved in mouse as a similar increase in nuclear Esrp1 was observed in the epidermis tissue 

from Esrp1/Esrp2 double knockout mice compared to the wild type (Fig. 3-1E) (Bebee et al. 2015) 
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    D                                                                                                   E

 

Figure 3-1 Usage of two 5’ splice sites at the end of exon 12 gives rise to Esrp1 isoforms 

with differential subcellular localization. 
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(A) Schematic of genomic organization and alternative splicing of Esrp1. Gray boxes indicate constitutive 

exons. Exons 14 (yellow box) and 15 (blue box) are cassette exons, and exon 12 has an alternative 5’ splice 

site (highlighted in red) with the specific sequences shown below. 

(B) Schematic of vectors expressing different Esrp1 isoforms as mCherry fusion for transfection and 

microscopy in (C). 

(C) Representative images of HeLa cells (20x) transfected with expression vectors of different Esrp1 

isoforms depicted in (B), from which we concluded that CLKP is required for nuclear localization. mCherry 

represents the localization of Esrp1 expression, and DAPI represents the nucleus.  

(D) RT-PCR using primers flanking both 5’ splice sites across a panel of human and mouse cell lines 

confirmed the expression of both splice variants. N represents nuclear isoforms, C represents cytoplasmic 

isoforms. The percentage of nuclear isoforms over total transcripts (N/T) is calculated below the gel. 

(E) ESRP1 (or Esrp1) nuclear isoforms are increased upon depletion of ESRPs (or Esrps). Representative 

gels are shown with average N/T percentage and standard deviation calculated from biological triplicates 

below. 
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3.2.2 Determination of the Esrp1 nuclear localization signal.  

To further characterize the peptide sequence that is necessary and sufficient for nuclear 

localization, we aligned Esrp1 sequences from different species and focused on peptide 

sequences around the CKLP region to identify conserved amino acids (Fig. 3-2A). Importantly, 

this analysis also revealed that the expression of isoforms that do or do not contain CKLP is 

highly conserved across vertebrate evolution. Based on sequence conservation in the alignment, 

we selected three peptides around the CKLP region, which are 46, 27 or 15 amino acids (aa) in 

length respectively, and predicted these peptides might contain the Esrp1 NLS. To test this 

hypothesis, we used a well-defined cDNA reporter that has previously been used to identify and 

characterize NLSs (Kalderon et al. 1984; Siomi and Dreyfuss 1995). This vector encodes chicken 

pyruvate kinase (18-443 aa), a cytoplasmic protein and we further modified this reporter by 

adding a fluorescent tag (mCherry) to the C-terminus. We then inserted sequences encoding the 

three peptides from Esrp1 that included CKLP into the reporter and tested whether they could 

translocate chicken pyruvate kinase into the nucleus of HeLa cells (Fig. 3-2A, B). The SV40 NLS 

was used as a positive control. While all three peptides lacking “CKLP” showed a consistent 

cytoplasmic localization, all three peptides with “CKLP” were sufficient for nuclear localization 

including the shortest one, the fifteen-amino-acid stretch “GLSPPPCKLPCLSPP” (Fig. 3-2C). We 

therefore defined this sequence as the NLS for Esrp1.  

  



73 

 

Figure 3-2 Determination of the Esrp1 nuclear localization signal. 

(A) Alignment of sequences around the CKLP region of Esrp1 from different species indicates high 

conservation. 

(B) Schematic of the reporter vector and the peptide sequences used for transfection and microscopy. 

(C) Representative images of HeLa cells (20x) transfected with different reporter vectors depicted in (B), 

from which we concluded that the shortest peptide (P1) is sufficient for nuclear localization. 
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3.2.3 Determination of key residues in the Esrp1 NLS that are required for the nuclear 

localization. 

After identification of a 15-amino acid peptide sequence sufficient for nuclear localization, 

we sought to further define the key amino acids within the element that are required for nuclear 

import. We therefore introduced single amino acid mutations at each position in the Esrp1 NLS 

and examined their effects on subcellular localization using the chicken pyruvate kinase vector. 

Mutation of CKLP to AAAA completely abolished the nuclear localization (Fig. 3-3A).  Additionally, 

we identified seven amino acids for which single alanine substitution led to nearly complete 

cytoplasmic localization, five amino acids that displayed a mixed cytoplasmic and nuclear 

localization after alanine substitution, and three that remained nuclear after mutation (Fig. 3-3A). 

Since Leucine and Valine are both nonpolar amino acids and share a similar structure, we also 

mutated L to V at 2nd and 9th position. Interestingly, L2A and L2V both showed a mixed 

phenotype, in contrast, while L9A completely abolished nuclear localization, L9V remained 

nuclear, suggesting L9V preserves NLS function (Fig. 3-3B). It has been reported that 

phosphorylation within NLSs can both positively or negatively affect nuclear import (Kaffman and 

O'Shea 1999; Jans et al. 2000). The Serine residue at the third position in the Esrp1 NLS is a 

known phosphorylation site that is also conserved in human (Van Hoof et al. 2009; Rigbolt et al. 

2011; Klammer et al. 2012; Mertins et al. 2014). Therefore, we generated a mutation which 

mimics the phosphorylated status of serine residue. While S3A exhibited a mixed cytoplasmic 

and nuclear localization, S3D restored nearly complete nuclear import, suggesting that 

phosphorylation of Serine at this position may play a role in facilitating the nuclear import of Esrp1 

(Fig. 3-3B). It will be of interest in future studies to determine conditions under which 

phosphorylation at this position might regulate Esrp1 localization. Since “Glycine” at the first 

position is not required for the nuclear localization, the minimal Esrp1 NLS is 

“LSPPPCKLPCLSPP” (Fig. 3-3C). All mutants are summarized in Table 3-1.  
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Figure 3-3 Determination of key residues in the Esrp1 NLS that are required for nuclear 

localization. 

(A) Examples of amino acids where alanine substitution abolished nuclear localization (K8A and L12A) and 

didn’t affect nuclear localization (G1A and C7A). 

(B) Differential effect of various point mutation on nuclear localization. 

(C) Summary of key residues in Esrp1 NLS based on alanine substitution. Since the first Glycine is not 

required for nuclear localization, “LSPPPCKLPCLSPP” is the Esrp1 NLS.  
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Table 3-1 Summary of the effect of all tested mutants on nuclear localization. 

 

 

3.2.4 Fusilli, the D. Melanogaster orthologue of Esrp1 also expresses both nuclear and 

cytoplasmic isoforms that result from alternative splicing. 

The conservation of the alternative splicing event leading to both nuclear and cytoplasmic 

isoforms among Esrp1 orthologs in vertebrates suggested functional roles for both protein 

isoforms in post-transcriptional regulation. We sought to further investigate the degree of 

conservation for the expression of nuclear and cytoplasmic Esrp1 orthologs through alternative 

splicing by studying the subcellular localization of different isoforms of fusilli, the Esrp1 ortholog in 

D. Melanogaster. We previously showed that fusilli can regulate alternative splicing of some 

Esrp1 targets when ectopically expressed in mammalian cells (Warzecha et al. 2009a). We also 

identified numerous endogenous AS events switched upon ectopic expression of fusilli in a D. 

Melanogaster cell line (data not shown), suggesting a conserved role for fusilli in regulation of 

splicing. We noted that the fusilli gene has several alternative promoters and splicing events that 

generate multiple protein isoforms (Fig 3-4A). Three splicing mRNA variants (A, B and H) result 

from a distal promoter and lack the majority of the first highly conserved RRM and therefore were 

not studied further. All other transcript variants encoding longer isoforms that contain all three 

RRMs are derived from alternative splicing, including a 93 nt retained intron within exon 9 and an 

alternative 5’ splice site coupled to alternative polyadenylation (APA5) that leads to distinct C-
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termini. We were able to generate cDNAs encoding isoform D that contains the retained intron as 

well as isoform G that utilizes the alternative 5’ splice site (Fig. 3-4A). Transfection of cDNAs 

encoding both isoforms as mCherry fusion proteins in HeLa cells showed that isoform D was 

nuclear while isoform G was predominantly cytoplasmic (Fig. 3-4B). To determine whether a 

presumed NLS in isoform D was present within the region encoded by the retained intron or the 

C-terminus we made a truncated form of isoform D lacking the region encoded by the distinct C-

terminus and determined that it was cytoplasmic, similar to isoform G. We therefore concluded 

that an NLS resides in the C-terminus of isoform D, not the retained intron. (Fig. 3-4B). To further 

pinpoint the NLS, we generated multiple truncations from the C-terminus of isoform D and tested 

their subcellular localization (Fig. 3-5A). While truncation 1 preserved the nuclear localization, all 

subsequent truncations generated isoforms that were cytoplasmic. Therefore, we narrowed down 

the NLS to the region between the end of truncation 2 and truncation 1, which is a 37 amino acid 

fragment (peptide 1). To guide our determination of the minimal peptide sequence that is 

sufficient for the nuclear localization, we aligned this peptide sequences in 12 different fly species 

as well as other insects and noted the last 14 amino acids (peptide 3) are highly conserved 

compared to the first 23 amino acids (peptide 2) (Fig. 3-5B). Using the previously described 

chicken pyruvate kinase reporter transfected into HeLa cells, we determined that peptide 3 

“QSMKRSYENAFQQE” is sufficient for the nuclear localization, thereby accounting for nuclear 

localization of isoforms that contain this NLS in fusilli (Fig.3-5C). These observations thus indicate 

that while the sequences used to derive both nuclear and cytoplasmic isoforms of Fusilli differ 

from that in vertebrate Esrp1, there has been functional conservation of the mechanism to 

maintain both isoforms via alternative splicing, suggesting the biological significance over a long 

period of evolutionary history. 
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Figure 3-4 Fusilli expresses both nuclear and cytoplasmic isoforms as a result of 

alternative splicing. 

(A) A screenshot of the genome browser view with all fusilli isoforms and schematic of isoform D and G. 

Fusilli D ΔC represents the C-terminal truncation of isoform D. 

(B) Representative images of HeLa cells (20x) transfected with expression vectors of different fusilli isoforms 

as mCherry fusion depicted in (A), from which we concluded that the C-terminus is required for nuclear 

localization. 
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Figure 3-5 Mapping of fusilli NLS. 

(A) Representative images of HeLa cells (20x) transfected with expression vectors of multiple truncations 

from the C-terminus of isoform D, from which we concluded that fusilli NLS resides in the region between T1 

and T2. 

(B) Alignment of sequences between T1 and T2 of fusilli from different species reveal a highly conserved 

peptide sequence (peptide 3). 

(C) Representative images of HeLa cells (20x) transfected with different reporter vectors confirmed that 

peptide 3 is sufficient for nuclear localization.  
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3.3 Discussion and future directions 

 

Post-transcriptional regulation is a complex process where a group of functionally related 

mRNAs are coordinately regulated at many steps after transcription, including 5’ capping, 

splicing, editing, polyadenylation, mRNA transport, localization, mRNA stability and translation, by 

RBPs and/or microRNAs, two important classes of trans-acting factors in mRNA processing 

(Keene 2007). While microRNAs primarily regulate gene expression via mRNA degradation and 

translation inhibition, it has become increasingly appreciated that many RBPs are multifunctional, 

regulating more than one aspect of mRNA processing (Keene 2007). Recently, it has become 

increasingly appreciated that many RBPs are multifunctional, regulating more than one aspect in 

mRNA processing and some of them are able to do so by generating different isoforms in nucleus 

and cytoplasm through alternative splicing. 

Our study adds Esrp1 and its orthologs to the list of RBPs that are known to expand their 

potential post-transcriptional regulatory functions through AS to generate both nuclear and 

cytoplasmic isoforms. The conservation in the fruit fly ortholog fusilli strongly suggests that there 

is an important biological function for both isoforms. While the alternative 5’ splice site only leads 

to a difference by four amino acids (CKLP) among isoforms, the functional consequences can be 

substantial. A well-known example, the Wilm’s Tumor (WT1) gene produces two protein isoforms 

that differ by only three amino acids (lysine-threonine-serine, or KTS), WT1 +KTS and WT1 -KTS, 

which are encoded by transcript variants that are alternatively spliced through the usage of two 

adjacent 5’ splice sites in the pre-mRNA (Haber et al. 1991). While the WT1 -KTS is a 

transcription factor that binds to DNA and act as either transcriptional activator or repressor, the 

WT1 +KTS isoforms has been suggested to bind to RNA and regulate splicing or other post-

transcriptional processes (Larsson et al. 1995; Hammes et al. 2001; Markus et al. 2006; Huff 

2011). Since the 5’ splice sites in Esrp1 that lead to +CKLP and –CKLP isoforms share the same 

5’ splice site consensus sequence (CAT|GTAATG) and are separated by only 3 nucleotides, we 

initially surmised that the choice of either site during splicing was stochastic. However, we 
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observed an increase in the ratio of mRNAs encoding nuclear to cytoplasmic isoforms when 

ESRPs are depleted from the human H358 cell line and ablated in the mouse epidermis, which 

suggests the alternative splicing event is under regulation. We hypothesize that this represents 

autoregulation wherein high levels of Esrp1 in the nucleus promote an increase in expression of 

the cytoplasmic isoform. Regulation of such alternative splicing event can be fundamental for 

development. For example, there is a decrease in the inclusion of exon 5 in MBNL1 during 

cardiac morphogenesis (Terenzi and Ladd 2010). Exon 5 is functionally important in regulating 

the subcellular localization as well as function of MNBL1. Specifically, isoforms containing exon 5 

are predominantly nuclear while the loss of exon 5 leads to a cytoplasmic localization. Therefore, 

the nuclear localization of MBNL1 in the early stage of heart development is required for 

alternative splicing regulation and the loss of exon 5 is essential for the fetal-to-adult transitions of 

alternative splicing. Moreover, the alternative splicing of exon 19 in Rbfox1 is also regulated by 

nuclear Rbfox1 upon neuronal depolarization which leads to a switch from a cytoplasmic to 

nuclear isoform (Lee et al. 2009).  

While we have extensively characterized the role of Esrp1 in alternative splicing, the 

function of cytoplasmic Esrp1 remains unexplored. A recent study identified conserved Esrp 

binding motifs enriched in 3’UTRs and proposed a role for Esrp1 in the regulation of mRNA 

stability based on the correlation between the expression levels of Esrp1 and mRNAs with Esrp1 

binding motifs in their 3ʹ UTRs among different tissues, suggesting a role of Esrp1 in addition to 

splicing regulation (Ray et al. 2013b). Similar to RBFOX1 where the nuclear and cytoplasmic 

isoforms regulate a different set of genes through distinct mechanisms yet still coordinately 

contribute to neuronal development, we expect the cytoplasmic Esrp1 to also play a role in EMT 

regulation and maintenance of epithelial cell functions. However, direct experimental evidence to 

support this and other possible regulatory roles for Esrp1 in cytoplasm is required. To identify the 

direct mRNA targets and binding sites in the cytoplasm for Esrp1 in vivo, experiments such as 

RIP-Seq and/or CLIP-Seq in the cytoplasmic fraction will provide valuable information. To study 

the potential function of cytoplasmic Esrp1 in regulating mRNA stability, experiments such as 
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traditional inhibition of transcription by actinomycin D followed by RNA-Seq or metabolic labeling 

of nascent mRNA by pulsed nucleotide analogs (such as 4-thiouridine) followed by RNA-Seq are 

required.  For studies to determine whether Esrp1 binding can regulate translation  experiments 

such as ribosome profiling or polysome profiling could be conducted (Rabani et al. 2011; Ingolia 

et al. 2012). 

A nuclear localization signal (NLS) is a short stretch of amino acids that mediates the 

transport of proteins into the nucleus (Lange et al. 2007). The best characterized “classical NLS” 

(cNLS) consists of either one (monopartite) or two (bipartite) stretches of basic amino acids, for 

examples the well-known SV40 large antigen NLS and the nucleoplasmin NLS (Kalderon et al. 

1984; Robbins et al. 1991). Proteins containing a cNLS are translocated by the importin-α/β 

heterodimer. Importin-α (Impα; also known as Karyopherin-α) is a protein adaptor that directly 

binds to the cNLS and importin-β (Impβ; also known as Karyopherin-β1), which is associated with 

nuclear pore complex (NPC) to facilitate the nuclear import (Lange et al. 2007). The other well-

characterized NLS is the “PY-NLS”. While the sequences for PY-NLSs show limited similarity, 

they usually consist of a loose N-terminal hydrophobic or basic motif and a C-terminal RX2–5PY 

motif (Lee et al. 2006; Süel et al. 2008; Xu et al. 2010). Proteins containing a PY-NLS, for 

example HnRNP A1, are imported by Karyopherin-β2 (Kapβ2) (Pollard et al. 1996; Bonifaci et al. 

1997). However, many NLSs have been identified with highly diverse sequences that do not 

belong to either class (Soniat and Chook 2015). In addition, only a limited number of transport 

cargos are known for other importins (Xu et al. 2010). The NLS sequences identified in this study 

for both Esrp1 and fusilli don’t conform to any of the well-characterized NLS consensus 

sequences and potentially represent a novel class of NLS. It will also be of interest to determine 

whether the Esrp1 NLS represents a larger class of NLS motifs and to define the import pathway 

that it uses to translocate to the nucleus to regulate splicing. 
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3.4 Material and methods 

 

3.4.1 Plasmids and cloning 

The pIBX-C-FF(B) was described previously (Warzecha et al. 2009a). We PCR amplified 

the cDNA sequence for mCherry and cloned into the vector using NheI and NsiI to make the 

pIBX-C-FF(B)-mCherry vector. We then PCR amplified the cDNA sequences for different 

isoforms of Esrp1 and cloned into the using EcoRV and NotI sites to make the expression 

vectors. pCMV-myc-PK vector was described previously (Siomi and Dreyfuss 1995). PCR 

amplified coding sequence for EGFP was inserted into NheI and NsiI digested pCMV-myc-PK to 

drive pCMV-myc-PK-EGFP. We then PCR amplified the coding sequence for 2x FLAG tag 

followed by SV40NLS and cloned it downstream of pyruvate kinase coding sequence and 

upstream of EGFP coding sequence to drive pCMV-myc-PK-FF-NLS-EGFP using Not I and NheI 

sites. We replaced the coding sequence for EGFP with that for mCherry to generate pCMV-myc-

PK-FF-NLS-mCherry. We digested the vector with NotI and NheI in order to clone in other 

sequences. To determine the minimum peptide sequences sufficient for Esrp1 nuclear 

localization, we PCR amplified coding sequence for peptide 1 and 2 from Esrp1 +CKLP and 

Esrp1 -CKLP isoforms and used them to swap the coding sequence for 2XFLAG tag and 

SV40NLS. Since peptide 3 is relatively short, for the WT peptide 3 and all tested mutants, the 

corresponding sense and antisense oligoes were annealed and ligated into the cut reporter 

vector. pIBX-C-FF(B)-fusilli D has been described before (Warzecha et al. 2009a). We cloned in 

mCherry coding sequence into NheI and NsiI digested pIBX-C-FF(B)-fusilli D to drive pIBX-C-

FF(B)-fusilli D-mCherry. A series of reverse primer in the C-terminus of fusilli D and the universal 

forward T7 primer were used to make all the C-terminal truncation proteins. Fusilli G was made 

by gene synthesis. To determine the minimum peptide sequences sufficient for fusilli nuclear 

localization, for peptide 1, 2 and 3, the corresponding sense and antisense oligoes were 

annealed and ligated into the cut reporter vector. Primers used for cloning are summarized in 

Table A3-1.  
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3.4.2 RNA extraction and RT-PCR 

Total RNA was extracted using TRIzol (15596018, Life technologies). Reverse 

transcription and semi-quantitative PCR was performed as described previously (Warzecha et al. 

2009a). Primers used to detect the nuclear and cytoplasmic isoforms are in Table A3-1. Mouse 

epidermis tissue is from our previous work (Bebee et al. 2015). 

 

3.4.3 Cell culture and transfection 

HeLa cells were maintained in DMEM medium with 10% FBS (SH30071.03, GE). For 

transfection, HeLa cells were seeded on coverslips in 6-well plates at 200,000 cells per well and 

incubated overnight. Cells were transfected using Lipofectamine® 2000 (11668027, Life 

technologies) according the manufacturers’ protocols. 2ug of plasmids were used for each 

transfection.  

 

3.4.4 Microscopy 

24 hours post transfection, the coverslip containing transfected cells was washed once 

with cold 1xPBS, the cells were then fixed with acetone for three minutes and washed with cold 

1XPBS for four times. The coverslips were mounted to a clear glass slide using mounting media 

with DAPI staining (P36931, Thermo Scientific). For each transfection, at least three randomly 

chosen fields were imaged. 
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APPENDIX 

 

Table A2-1 Network cluster analysis for SE events and RBPs for EMT time course. 

Table A2-2 rMATS analysis for RNA-Seq data of Day 7 versus No Dox control. 

Table A2-3 Gene expression profiling (FPKM) for EMT time course. 

Table A2-4 rMATS analysis for RNA-Seq data of ESRP KD versus control in H358. 

Table A2-5 Gene expression profiling (FPKM) for ESRP KD in H358. 

Table A2-6 Overlap between ESRP-regulated and EMT-associated AS events. 

Table A2-7 Gene expression change for 446 RBPs during EMT. 

Table A2-8 rMATS analysis for RNA-Seq data of RBM47 KD in H358. 

Table A2-9 Overlap between RBM47-regulated and EMT-associated AS events. 

Table A2-10 Motif analysis for Day 7 versus No Dox control. 

Table A2-11 Overlap between QKI-regulated and EMT-associated AS events. 

Table A2-12 Summary of RT-PCR oligos used for splicing validation. 

Table A3-1 Summary of oligos used for cloning. 
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Figure A2-1 Validation of exons that are RBM47-regulated using a siRNA that targets 

different sequences from those of the shRNA used for RNA-Seq experiment.   

 

 

Figure A2-2 Validation of representative exons where QKI promotes the mesenchymal 

splicing patterns upon knockdown with siQKI #7. 

 

 

Figure A2-3 The protein levels of RBM47 (Left) and QKI (Right) upon ESRP1/2 depletion. 
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