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Abstract: Models of artificial root canals are used in several fields of endodontic investigations and
pre-clinical endodontic training. They allow the physical testing of dental treatments, the operating
of instruments used and the interaction between these instruments and the tissues. Currently, a large
number of different artificial root canal models exist whose geometry is created either on the basis of
selected natural root canal systems or to represent individual geometrical properties. Currently, only
a few geometric properties such as the root canal curvature or the endodontic working width are
taken into consideration when generating these models. To improve the representational capability
of the artificial root canal models, the aim of the current study is therefore to generate an artificial
root canal based on the statistical evaluation of selected natural root canals. Here, the approach
introduced by Kucher for determining the geometry of a root canal model is used, which is based
on the measurement and statistical evaluation of the root canal center line’s curvatures and their
cross-sectional dimensions. Using the example of unbranched distal root canals of mandibular
molars (n = 29), an artificial root canal model representing the mean length, curvature, torsion and
cross-sectional dimensions of these teeth could be derived.

Keywords: root canal morphology; endodontics; curvature; working width; length; tubular geometry;
parametric model

1. Introduction

In endodontics, there are several applications for artificial root canal models. In
general, they are used for two main purposes: (1) pre-clinical endodontic training and
(2) endodontic investigations. The endodontic training is designed for dental students
to learn practical skills [1–12]. The aim is to develop the student’s own skills in realistic
treatment situations as a preliminary step to treatment of selected patients in the student
course. This preparation of the students for the practical work on the patients, such as the
teaching of root canal instrumentation and obturation using transparent polymers [3], has
been established for several decades.

In the field of endodontics, individual natural and artificial root canal models are used for
the measurement and visualization of activated irrigation [13–32], for fatigue analysis of rotary
endodontic files [33–37], for the quantification of dentin removal and canal transportation
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during a root canal preparation as well as irrigant activation including bacterial decontami-
nation [28,38–56], for the analysis of the microbial behavior [57,58], for the investigation of
obturation [59,60] or as input parameters for stress–strain analyses of teeth [61]. Hülsmann
summarized different experimental models for studies on root canal preparation [46]. Gu-
labivala et al. reviewed root canal models that could be used to analyze fluid mechanics
during root canal irrigation [18]. Different manufacturers and suppliers of dental equipment
provide artificial root canal models, mostly made of transparent, colored or transparent and
colored polymers for teaching and research purposes. Commercially available examples of
these are artificial teeth [2,6,11,46], polymeric training blocks [18,31,47] and polymeric sub
models of jaw areas [46]. Furthermore, there are examples of using simplified root canal
models to investigate the behavior of human dental pulp spheres on dentin in vitro such as
those carried out by Neunzehn et al. [62]. In endodontic research and for the realization of
complex root canal geometries, additive manufacturing techniques are often used [5–7,50,63].
As an example, Kolling et al. [63] used 3D printing technology to create a novel root canal
model with an actual fine anatomic root canal structure for student training. However, the
students still favored extracted human teeth over 3D-printed teeth in terms of their physical
properties when performing endodontic treatments in the simulation lab.

The particular geometry of these root canals is obtained from selected natural root
canal systems [2,6,11,46] or to represent individual geometrical properties, such as different
Schneider angles (compare, e.g., [48]). Currently, only a few geometric properties such
as the root canal curvature [34,64] or the endodontic working width [65] are considered
to generate these models. To describe the entire root canal geometry, Peters et al. [66]
determined a volume model of maxillary molars by means of a rod-like structure, Dong
et al. [67] used an elliptical cross-sectional shape to obtain 3D root canal models and
Dannemann et al. [65,68] introduced an approach for a mathematical description by means
of elementary parameters.

To improve the representational capability of the artificial root canal models, the aim
of the current study is therefore to demonstrate an approach for the determination of a
standardized artificial root canal and to generate an output file for 3D printing based on the
statistical evaluation of selected natural root canals as introduced by Kucher [23]. Using
3D imaging data from [64,65], a virtual artificial root canal model for 3D printing based
on average statistical values of distal root canals from a set of extracted human molars
was obtained for the first time. This approach was based on 3D imaging data from a
micro-computed tomography (µCT) scanning system. The obtained volume models of the
selected unbranched root canals are used to measure and statistically evaluate the root
canal’s length, curvature, torsion and cross-sectional dimensions. Using the mean values of
these evaluations, the root canal center line and their cross-sections are reconstructed. Using
the example of unbranched distal root canals of mandibular molars, an artificial root canal
model representing the mean length, curvature, torsion and cross-sectional dimensions of
these teeth is derived.

2. Materials and Methods
2.1. Artificial Root Canal Models and Purpose of Use in Endodontics

As mentioned above, there are several manufacturers, supplies and researcher groups
which provide or use artificial root canal models. The artificial tooth models and training
blocks for endodontic teaching purposes show different dimensions (see Figure 1) and
are made of different materials (compare Table 1). Additionally, Dong et al. [67] and
Dannemann et al. [68] have introduced approaches which are not included in Figure 1.

A very realistic approach for the preparation of natural teeth is demonstrated by
Malentacca et al. [26], who prepared teeth with alcohol solutions to ensure that the dentine
lost its opacity and the roots became transparent. As mentioned by Reymus et al. [6],
tooth replicas should be able to simulate human dentine from the perspectives evaluated,
i.e., properties such as radiopacity, micro-mechanical properties and hardness (compare,
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e.g., [69]). However, the focus of the current study is to demonstrate an approach for the
determination of the geometry of an artificial root canal model.
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Figure 1. Selection of artificial root canal model’s geometries from different studies (obtained by
reverse engineering approach): (a) Boutsioukis et al. [14], (b) Jiang et al. [20–22,70], (c) Macedo
et al. [25], (d) Swimberghe et al. [29], (e) Kim et al. [56], (f) Gündoğar and Özyürek [35], (g) Kirsch
et al. [34], (h) Pachpore et al. [71], (i) Roda-Casanova et al. [33], (j) Swimberghe et al. [30], (k) Silva
et al. [55], (l) Huang et al. [47].

2.2. Teeth Selection and Preparation

A number of twenty-nine extracted human mandibular first and second molars were
collected from an oral and maxillofacial surgery clinic as well as from private dental
practices. These teeth were included in the current study for determination of geometry
of the artificial root canal model. The investigated teeth were extracted for medically
justifiable reasons that were not connected to the current study. For these teeth, the patients’
sex, age, name, or general health condition were not taken into consideration. All teeth
were cleaned from calculus, soft tissue and hard tissue. Only unprepared teeth with a
completely intact distal root canal were used for these examinations.

2.3. Computed Tomographic Imaging Technique for the Determination of Root Canal Geometry

The tomographic imaging was performed by means of a µCT scanner (in situ CT
FCTS 160 IS; Finetec GmbH, Garbsen, Germany) and remained ex vivo at all times. All
measurements were performed using the following imaging parameters of the µCT system:
tube voltage 80 kV, tube current 0.08 mA, exposure time 900 s, source object distance
150 mm and resolution 0.021 mm/pixel. The volume models of the individual root canals
were determined by using a suitable grayscale threshold guarantying the determination
of the root canal morphology and ensuring a low image noise. Firstly, image registration
was carried out using the software for analyzing 3D measuring data (GOM Inspect 2018,
Metiris, Gebenstorf, Switzerland). For the registration of the molars, the x1x2 plane was
rotated parallel to the tooth occlusal surface and the x2x3 plane was aligned parallel to the
tooth’s lingual view. The tooth height was denoted as x3, the canal width as x2 and the
canal thickness as x1.

2.4. Approach for Determining the Root Canal Model

The determination of the artificial root canal model is based on the calculation of
the individual distal root canal’s radius of curvature, the measurement of the root canal
cross-section, the statistical evaluation of these properties and the reconstruction of the
geometrical-based artificial root canal model (Figure 2). The required sub-steps are de-
scribed in the following.
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Table 1. Artificial root canal models and purpose used in endodontics. The columns of the purpose of use indicate the nature of the work (x). The considered canal
shapes are divided in curved ‘c’ and straight ‘s’.

Author(s), Ref. Purpose of Use Material Canal Shape

Endodontic
Training

Dentin
Removal

Activation
Irrigants

Fatigue
Instruments

Dental Tissue
Regeneration

Al-Sudani and Basudan [12] x

Transparent or colored resin,
such as acrylic resin

c
Bitter et al. [11] x c

Bürklein et al. [52] x c
Cassim and van der Vyver [51] x c

Christofzik et al. [50] x c
Gu et al. [54] x c

Hasselgren et al. [10] x c
Hasselgren and Tronstad [9] x c

Huang et al. [47] x c
Khalilak et al. [45] x c

Kim et al. [56] x c
Luz et al. [8] x c

Reymus et al. [7] x c
Reymus et al. [6] x c
Reymus et al. [5] x c

Shi et al. [42] x c
Silva et al. [55] x c

Sonntag et al. [41] x c
Spenst and Kahn [3] x s, c

Tchorz et al. [2] x c
Yekta-Michael et al. [1] x c

Alghamdi et al. [53] x

Natural tooth

c
Al-Sudani and Basudan [12] x c

Bitter et al. [11] x c
Castagna et al. [15] x c
Eggmann et al. [17] x c

Gümüş and Delikan [19] x c
Hartmann et al. [49] x c

Hilaly Eid and Wanees Amin [48] x c
Loroño et al. [24] x c
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Table 1. Cont.

Author(s), Ref. Purpose of Use Material Canal Shape

Endodontic
Training

Dentin
Removal

Activation
Irrigants

Fatigue
Instruments

Dental Tissue
Regeneration

Malentacca et al. [26] x c
Ni et al. [61] x c

Pawar et al. [60] x c
Peters et al. [44] x c
Retsas et al. [43] x c

Rodrigues et al. [28] x x c
Yekta-Michael et al. [1] x c

Al-Obaida et al. [37] x

Stainless steel

c
Boutsioukis et al. [14] x s

Chi et al. [36] x c
Gündoğar and Özyürek [35] x c

Kirsch et al. [34] x c

Conde et al. [16] x

Manufactured dental hard
tissue

s
Jiang et al. [70] x s
Jiang et al. [20] x s
Jiang et al. [21] x s
Jiang et al. [22] x s

Betancourt et al. [13] x
Glass

s
Jiang et al. [22] x s

Swimberghe et al. [29] x Polymethylmethacrylate s
Swimberghe et al. [30] x c

Macedo et al. [25] x Polydimethylsiloxane s

Nagahashi et al. [27] x Porcine tooth s

Neunzehn et al. [62] x Bovine tooth s

Robberecht et al. [4] x Ceramic s
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2.5. Determination of Representative Center Line and Approximation of Cross-Sectional
Dimensions

Distal root canals with ramifications were excluded from the evaluation procedure
(Figure 2). The volume model was cut parallel to the root canal’s height axis defined as
direction x3 with a length between the individual segments of ∆x3 = 10 mm, which resulted
in a number of Nj slices. According to the description of Kucher et al. [64], the center of
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mass of each segment was calculated. The assembly of these points xm(s) gives the center
line of the root canal with the canal length s and the radius of curvature

R(s) =
1

κ(s)
=

|x′m(s)|3∣∣x′m(s)× x′′m(s)
∣∣ . (1)

This procedure was repeated for all distal root canals without ramifications and leads
to radii Ri(s).

Analogously, the root canal segments were used to measure the dimensions of the
width and thickness of the individual cross-sections. Therefore, a parametric model as
introduced by Kucher et al. [65,68] was used. This so-called Five Circle Model represents
the convex hull of 5 circles (see Figure 3).
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Figure 3. Parametric model for the approximation of the root canal’s cross-sectional dimensions
based on Ref. [65].

This model is described by means of 15 parameters qi, 5 angles ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, 5 radii
r0, r1, r2, r3, r4 and 5 distances l0, l1, l2, l3, l4, respectively. Using an optimization algorithm,
the parameters qi were determined, from which we obtain the best approximation of the
root canal cross-section (compare [65]). This approximation was carried out for all root canal
segments. The used root canal model was able to approximate short oval, long oval, ribbon-
shaped curved, irregularly bordered root canals (compare [23]). The local coordinate system
−
x i of the parametric model was located at the related point of the center line xm

(
sj
)

at the
location s = sj. Thus, it follows that the parameters qi(s) depend on the canal length s.

2.6. Statistical Evaluation of Curvature and Cross-Sectional Measures

Because the radius of curvature is a critical value for the consideration of dentin
removal [28,41,43–45,47–50,52,53,61] and endodontic instruments’ fatigue [34–37], the con-
fidence interval (CI) computed at the 95% level was calculated for the radii of curvature
Ri(s). This yields the lower CI of the curvature’s radius R(s). Using the arithmetic mean,
the model parameters qi(s) of the individual distal root canals were averaged for the calcu-
lated number of root canals n without ramifications which were selected for the statistical
evaluation. Due to the registration of each distal root canal (see Section 2.2), the model
parameters qi(s) were normally distributed around their mean values. This averaging leads
to the average model parameter q(s) which was used to reconstruct the geometry-based
center line xc and cross-sections of the investigated distal root canals n. It should be noted
that all root canals had different lengths li. Thus, the average length l was considered and
each radius of curvature up to a length s ≤ l was used for the calculation of the mean.

2.7. Determination of the Root Canal’s Angle of Torsion

The included angle of torsion θ between the cartesian standard basis e1 and the
connecting vector v34 of the two outer circle centers of the parametric model M3, M4 is used
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to describe the torsion of the root canal cross-sections in the x1x2 plane. Considering this
angle, the root canals’ torsion can be calculated. Analogously to the root canal curvature and
the model parameter, the average angle of torsion θ(s) was calculated using the individual
root canal’s angle of torsion θi(s).

2.8. Reconstruction of Geometry-Based Center Line and Cross-Sections

The reconstructed center line xc had the length equal to the average length l of all
considered distal root canals. According to Kucher et al. [64], the center line of distal
root canals is curved in both transverse coordinate directions x1 and x2. The proportions
of these curvatures of the 3D space curve depend on the choice of the global coordinate
system xi. By determining the radius of curvature R(s) using Equation (1), a measure of
curvature is obtained that is independent of the registration of the investigated root canal.
The geometry-based canal center line was determined by connecting circular arcs each with
an arc length of ∆s = 0.01 mm and the lower CI curvature’s radius of R(s) at location s = sj.
The center line was rotated with respect to the x1 direction so that the canal’s start and end
were at the position x2 = 0 (cf. Figure 4).
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Figure 4. (a) Comparison of measured averaged radius of curvature and radius of the reconstructed
center line, (b) reconstruction of average center line of the investigated distal root canals.

The cross-sections of the artificial root canal model were obtained by average parame-
ters q(s) at each location sj. The local coordinate system of each reconstructed cross-section
was determined, starting from the points of the reconstructed center line xc (cf. Figure 3).
All cross-sections were rotated to represent the root canal’s torsion by the average angle
of torsion θ(s). The center of the middle circle M0 represents the center of the rotation
(compare Figure 3). The combination of the geometry-based center line, the average torsion
and the reconstructed cross-sections result in the artificial root canal model.

2.9. Generation of STL File for 3D Printing

The 3D data were imported into the 3D measuring software (GOM Inspect 2018,
Metiris, Gebenstorf, Switzerland) as a point cloud. The point cloud was automatically
polygonized. The resulting mesh was post processed and improved by using the built-in
functions, such as smoothing and the automated corrugation of mesh errors. Then, the
file was exported to the “Standard Triangle Language” (STL) file format which is native
to the stereolithography computer-aided design (CAD) software created by conventional
3D systems. This data file can be used as a basis for the realization of replicates of the
determined artificial root canal model.

To create an endodontic training block, a volume model is first created from the STL
file of the root canal model using a conventional CAD program. The root canal’s volume
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model is subtracted from a cuboid with the desired dimensions of the training block. The
resulting solid represents a training block with a through-hole in the shape of the root canal
(compare Figure A1). This model can be exported as an STL file to be printed with any
conventional 3D printer.

3. Results
3.1. Resulting Reconstructed Center Line and Root Canal’s Angle of Torsion

The reconstructed center line of the examined distal root canals shows a c-shaped
configuration (Figure 4). For the center line, the average length of 10.2 mm was considered.
The center line has a minimum radius of curvature of R = 2.5 mm in the root canal’s apical
region (compare Table 2). Using the curvature measurement method as used by Kucher
et al. [64], a good agreement of the average radius of curvature and the reconstructed center
line’s radius of curvature can be seen. Thus, it can be demonstrated that the radii are equal.

Table 2. Evaluation of the center line’s radius of curvature (considered for lower confidence interval
and the whole canal length).

Property Unit Value

Mean value mm 6.1
Minimum mm 2.5
Maximum mm 13.4

Using the curve of the angle of torsion of the individual investigated distal root canals
θi(s), the upper CI of the torsion angle θ(s) was determined (Figure 5). This angle reaches a
maximum value of 28.2◦ for the average torsion and decreases in the coronal region starting
at a value of s > 10 mm.
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3.2. Resulting Geometry-Based Artificial Root Canal Model

Taking the reconstructed center line into consideration, the resulting artificial root
canal geometry represents a tubular structure with elliptical to irregularly ribbon-shaped,
straight cross-sections, which are twisted starting from the base surface (Figure 6). The
gradient of twisting is greatest in the apical region. The main dimensions in the transverse
directions result in a ratio of the cross-section’s long axis to its short axis of 1.84 at s = 0 and
a value of 1.94 at locations s = l. The mean taper of the canal’s short width has a value
of 4.3% in the apical third 0 ≤ s ≤ l/3 and 5.3% for the whole reconstructed root canal.
The apical cross-section has an almost elliptical shape (compare Figure 6). In the resulting
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artificial root canal model, the length of the long axis of 0.62 mm and the length of the short
axis of 0.36 mm were measured using an elliptical fit.
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Copyright 2023, Michael Kucher.

4. Discussion

The demonstrated approach for the determination of a geometry-based artificial root
canal model was applied to the particular kind of distal root canal. For the capturing of the
3D root canal morphology, µCT scans of mandibular molars were used. As mentioned by
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Kucher et al. [64,65], the imaging process could also be carried out by means of cone beam
computed tomography (CBCT). Considering these studies, it seems to be possible that the
demonstrated approach is applicable based on the evaluation of CBCT scans. In this way,
already existing imaging data from previous 3D investigations and in situ investigations
can be realized.

The particular geometry of root canal models is obtained from selected natural root
canal systems [2,6,11,46] or represents individual geometrical properties, with different
Schneider angles (compare, e.g., [47]), the radiologically determined two-dimension ra-
dius of curvature [34] or the endodontic working width [65] being considered to generate
these models. Most of the investigated root canal models show an apical diameter be-
tween 0.15 and 0.8 mm, a taper between 2 and 6% and a length in the range from 16 to
20 mm [14,20–22,25,29,30,33–35,47,55,56,70,71]. The geometry-based root canal model of
the current study has an elliptical cross-sectional apical shape and dimension within the
range of existing root canal models. Compared to the existing models, the canal length is
shorter and has a value of 10.2 mm. However, the working length refers only to the actual
canal section, so this length is also comparable with lengths of existing models.

The main advantage of the demonstrated approach for the determination of an artificial
root canal model based on the statistically evaluated root canal’s length, curvature, torsion and
cross-sectional dimensions as introduced by Kucher [23] is that the obtained model includes
the entirety of the root canals examined. This would improve the representational capability
of the artificial root canal models. Currently, this approach is only applied to a particular kind
of root canal without any ramification. However, the investigation seems to be adaptable
to other kinds of root canals. Furthermore, an analysis of root canals with ramifications is
possible. However, a mathematical description considering the individual sections between
the ramifications has to be developed. Therefore, the classification method described by
Ahmed et al. [73] could be a good basis. Nevertheless, the demonstrated approach provides
a valuable method for generating more realistic artificial root canal models that allow more
realistic endodontic investigation and results in better training teeth and blocks for endodontic
teaching. Therefore, new developments in the field of additive manufacturing enable the
fabrication of these advanced 3D root canal models. Furthermore, the obtained geometry
can be used to design CAD models for the fabrication endodontic training blocks made of
bovine dentine with more realistic mechanical properties (compare [6]). In this way, optimal
experimental conditions for endodontic research and equitable student education that is as
natural as possible are reached.

5. Conclusions

In endodontics, there several applications which require an artificial root canal model.
Using the statistical evaluation of the geometrical properties of length, curvature, torsion
and cross-sections of unbranched root canals, a geometry-based root canal model can be
determined. On the basis of this approach, the volume models of teeth were obtained
by computer tomographic scans in the microscopic scale. By reconstructing an average
center line, the average cross-sectional dimensions and the average root canal’s torsion,
a 3D model can be generated which represents the entirety of the root canals examined.
In this way, the presented approach will enable the creation of improved artificial root
canal models and a 3D printable geometry for endodontic investigations and pre-clinical
endodontic training use in the future.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/dj11050133/s1, CAD data: 3D-printable training block.

https://www.mdpi.com/article/10.3390/dj11050133/s1
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Appendix A

Using the 3D geometry of the resulting artificial root canal model according to Section 3.2,
an endodontic training block with the dimensions of 8.9 mm× 5 mm × 5 mm was realized
(Figure A1). The CAD model of this training block is provided as supplementary material.
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