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Abstract

Accurate measurement of miRNA expression is critical to understanding their role in gene

expression as well as their application as disease biomarkers. Correct identification of

changes in miRNA expression rests on reliable normalization to account for biological and

technological variance between samples. Ligo-miR is a multiplex assay designed to rap-

idly measure absolute miRNA copy numbers, thus reducing dependence on biological

controls. It uses a simple 2-step ligation process to generate length coded products that

can be quantified using a variety of DNA sizing methods. We demonstrate Ligo-miR’s abil-

ity to quantify miRNA expression down to 20 copies per cell sensitivity, accurately discrimi-

nate between closely related miRNA, and reliably measure differential changes as small

as 1.2-fold. Then, benchmarking studies were performed to show the high correlation

between Ligo-miR, microarray, and TaqMan qRT-PCR. Finally, Ligo-miR was used to

determine copy number profiles in a number of breast, esophageal, and pancreatic cell

lines and to demonstrate the utility of copy number analysis for providing layered insight

into expression profile changes.

Introduction

MicroRNA (miRNA) are short (18–24 nt) non-coding RNAmolecules that regulate gene

expression. They exert control over a wide variety of cellular processes, ranging from differen-

tiation to growth and senescence [1–5]. Although over 2000 human miRNA are predicted to

exist, individual studies often focus on smaller subsets of 5–50 miRNA that are the presumed

critical players in a specific disease or cellular process [3,6–8]. These miRNA are typically iden-

tified by differential expression analysis using highly multiplexed array methods [9–12] or
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RNA sequencing [13–15]. Validation of identified miRNA is then performed using a higher

sensitivity detection platform such as RT-qPCR [16–18]. However, screening large numbers

of samples across even moderate numbers of miRNA using qRT-PCR quickly becomes cost-

and time-prohibitive due to the large numbers of individual reactions that must be performed.

Microarray and sequencing can provide large amounts of data but are slow and expensive

when only targeted panels are needed.

One additional challenge in miRNA profiling is that quantification bias can lead to both

systematic and random variability in expression data. Such variability can manifest across data

from different analytical methods, research groups, users, experimental designs, and sample

preparation methods. The most common approach to reduce this variability is through nor-

malization. miRNA assays are typically performed using a constant amount of total RNA as

input. The resulting expression is then normalized to biological controls [19–23], such as small

nucleolar RNA (e.g., RNU44, RNU6B) or stably expressed miRNA (e.g., miR-16, let-7a), or to

spiking controls (e.g., cel-miR-39) to account for technical variability and variations in base-

line transcriptional state. While sources of technical variability are more easily predicted and

accounted for using spike-in controls, sources of biological variability are difficult to pinpoint

and choosing such internal controls can be quite challenging. Normalization controls can dra-

matically affect expression profiles and potentially account for much of the reported variability

in differential expression profiles, especially for miRNA expressed at low levels with subtle dif-

ferential changes (<2-fold).

Controls are often chosen empirically by identifying miRNAs that exhibit the lowest vari-

ability across a given sample set [22] or those which most closely track the global mean of

miRNA expression [23]. Both of these approaches have a central problem: empirically mea-

sured parameters—variability, global mean—cannot be measured without proper normaliza-

tion. Choosing to normalize to a miRNA that exhibits lowest variability is similar to leaving

the data un-normalized. Normalization that does not accurately track sources of biological and

experimental variability, as may occur based on empirical selection without an understanding

of underlying function, can amplify variability and generate artificial trends. RNU44 is com-

monly, if controversially [20], used as a biological control. Additionally, the global mean

expression value has been reported to be a good normalization control [19,21], but this param-

eter relies on sufficient miRNAs being measured to obtain a reasonable global mean. Exoge-

nous spike in controls have recently been shown to be a reliable normalizer for circulating

miRNAs [24,25], particularly when identifying miRNAs with small expression changes [24].

Normalization to reduce methodological errors may also be combined with other

approaches, such as adopting the standard practices of the miRQC guidelines [26]. Yet, the most

robust approach may be the direct determination of absolute copy number. Unfortunately with

existing RT-qPCR, microarray, and sequencing methods, accurate determination of absolute

expression (as opposed to relative expression) is tedious and challenging. Digital PCR has been

used to determine absolute miRNA expression in human serum [27–29]. While digital PCR is

sensitive enough to detect even single copies with high repeatability [27], the high cost and com-

plexity make it difficult to screen large numbers of samples across large panels of miRNA.

We have developed a flexible, rapid, and easy-to-use assay called Ligo-miR that can accu-

rately determine miRNA copy number [30]. Ligo-miR uses a multiplex ligation process to gen-

erate length-coded, fluorescently-labeled DNA products. The simple length coding enables

quantification using a wide variety of DNA sizing methods. Herein, we combine Ligo-miR

with polyacrylamide gel electrophoresis (PAGE) detection in a variant called Ligo-miR EZ to

perform 26-plex miRNA profiling using only a thermal cycler and PAGE apparatus. This

equipment is readily available in nearly all molecular biology labs and makes Ligo-miR EZ ide-

ally suited to repeated profiling of large numbers of samples once a targeted panel has been
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identified. Minor modifications to the core workflow can be made to custom tailor sensitivity,

multiplex capability, and sample throughput based on application and detection methodology.

For example, capillary electrophoresis (CE) and single molecule separation [31] may be used

instead of PAGE to further enhance multiplex capability and sensitivity.

Ligo-miR EZ’s optimized 2-step ligation mechanism enables high multiplex capability and

high specificity discrimination of closely-related miRNA species. Specificity studies demon-

strate high specificity discrimination of miRNA family members with single nucleotide differ-

ences and absolute discrimination of precursor and mature miRNA. A linear amplification, as

opposed to exponential amplification, is performed during the 2nd ligation step to enhance

sensitivity while minimizing amplification variability and bias for high reproducibility and

high differential sensitivity. Analysis of synthetic miRNA, cell lines, and tissue samples show

that Ligo-miR EZ is capable of 20 copies per cell sensitivity with linearity across 4.5 orders of

magnitude. Analysis of mock expression panels demonstrates that differential sensitivity as

low as<1.2 fold is reliably achieved. In direct comparisons to microarray and RT-qPCR,

Ligo-miR EZ shows high correlations with r2>0.9. Finally, we use Ligo-miR EZ to determine

miRNA copy number in 3 breast cell lines and 5 esophageal cell lines and to quantify the effects

of gemcitabine on metastatic pancreatic cancer cells. This system enables direct comparison of

copy number expression profiles against relative expression profiles, through which we see

that factors such as cell size and baseline transcription can contribute significant variability to

expression data.

In addition to reducing bias and variability in miRNA expression profiles, measurement of

absolute expression enables the determination of metrics such as accurate rank ordering of

expression and comparison of absolute changes in expression. These metrics, alongside the more

commonly measured differential changes or proportional quantification, open up an array of

new tools for comparing expression profiles across patients, samples, and disease model systems.

Materials andmethods

Cell line samples

Primary, normal, non-immortalized esophageal epithelial cells (HEEPIC), along with esoph-

ageal cancer cell lines (SKGT4 and OE33), were purchased from ScienCell Research Laborato-

ries (Carlsbad, California, USA) and Sigma Chemical (St Louis, Missouri, USA), respectively.

The Barrett’s esophageal cell lines (CHTRT and QHTRT) were generous gifts of Dr. Peter

Rabinovitch, Fred Hutchinson Cancer Center.

Breast cell lines (MCF-7, MCF-10A, and MDA-MB-231) and the metastatic pancreatic can-

cer cell line were purchased from ATCC (Manassas, VA).

Details of cell culturing protocols can be found in S1 File.

Total RNA/Small RNA fraction preparation

Total RNA was isolated from the esophageal cell lines using RNeasy kits (Qiagen, Valencia,

CA), combined with RNase-free DNase (Qiagen, #79254), with TRIzol reagent (Life Technolo-

gies, Carlsbad, CA) used instead of the QIAzol. For the RT-qPCR and microarray experiments,

this total RNA was used directly. For Ligo-miR EZ analysis, the small RNA fraction was iso-

lated from this total RNA using both miRNeasy (Qiagen, Valencia, CA) and mirPremier

(Sigma-Aldrich, St. Louis, MO) kits. The small RNA fraction was isolated directly from the

breast cell lines using miRNeasy and mirPremier kits. Total RNA was isolated from the meta-

static pancreatic cancer cells using miRNeasy kits. Pancreatic total RNA was purchased from

Ambion (FirstChoice Human Pancreas RNA, catalog # AM7954).
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miRNA and probe synthesis

All RNA and DNA oligonucleotides (S1 File, Tables S2-S4) were synthesized by Integrated

DNA Technologies (Coralville, IA) and re-suspended to give 100 μM stocks. All synthetic

miRNA were further diluted to 1 μM concentration in TE buffer (10 mM Tris-HCl, pH = 8.0,

0.1 mM EDTA) and stored at -80˚C. These aliquots were used to prepare lower concentration

stocks and discarded after single use to guard against degradation. Further details on miRNA

and probe handling protocols can be found in S1 File.

Ligo-miR EZ assay

In the capture ligation step, the RNA sample was added to a mastermix containing the adeny-

lated adapter, T4 RNA ligase, and buffer and incubated at 25˚C for 1 hour. Then in the coding

ligation, a 2nd mastermix containing the common probe, 26-plex discrimination probes, 9˚N

DNA ligase, and buffer was added to the 1st step products and thermal cycled for 50 cycles.

Finally, the 2nd step reaction mixture was analyzed using 15% denaturing urea PAGE gel and

scanned using a GE Typhoon 9410 multi-mode imager. The fluorescent gel images were ana-

lyzed using either HandyBand software (Circulomics Inc) or using a combination [32] of Ima-

geQuant (GE Healthcare) and OriginPro (OriginLab). Specific details can be found in S1 File.

RT-qPCR and microarray assays

Single tube Applied Biosystems TaqMan microRNA Assays, Applied Biosystems TaqMan

MicroRNA Reverse Transcription Kit, and Bio-Rad iQ Supermix were used for the RT-qPCR

assays. Assays were run on an Applied Biosystems 7900HT Real-Time PCR System. 5 ng of

total RNA was used as input for each RT reaction and performed according to the manufactur-

er’s protocol.

Microarray analysis was performed by the JHMI Deep Sequencing and Microarray Core

using Agilent Human miRNAMicroarray Kit Release 19.0, 8x60K (G4872A, Agilent Technol-

ogies, Santa Clara, CA) following manufacturer’s protocols.

Full details of RT-qPCR and Microarray protocols can be found in S1 File.

Results and discussion

Assay principle

Ligo-miR EZ uses a 2-step ligation mechanism schematically illustrated in Fig 1. In the cap-

ture ligation step, a universal adapter is ligated to the 3’ end of all sample miRNA to form

templates. Reaction conditions and adapter design have been optimized previously [32] to

ensure high efficiency (86%) and low capture bias (10% CV). Then in the coding ligation

step, up to 26 miRNA specific discrimination probes (DPs) and an Alexa647-labeled com-

mon probe (CP) are hybridized to the miRNA templates from the first step and ligated

together to form a single stranded DNA product. Each DP contains a recognition sequence

at the 5’ end that is complementary to the miRNA being detected and a length tag at the 3’

end to yield a specific length product for each miRNA species. The CP sequence is comple-

mentary to the adapter probe and not miRNA specific. Thermal cycling is used to perform a

50X linear amplification by repeatedly generating Ligo-miR EZ products from each miRNA

template. The Ligo-miR EZ products are then analyzed by polyacrylamide gel electrophoresis

(PAGE). Circulomics HandyBand software is used to analyze the resultant gel image and

determine miRNA expression based on band position and intensity.
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Sensitivity and bias

Serial dilutions of synthetic miRNA, pancreatic small RNA, and pancreatic total RNA were

used to determine the assay sensitivity, dynamic range, linearity, and bias. Fig 2a shows an

image of the gel resulting from a 26-plex Ligo-miR EZ analysis performed on a serial dilution

of synthetic miRNA. The assay shows a linear response between miRNA input and band

fluorescence over several orders of magnitude and a sensitivity as low as 0.5 attomoles when

scanned using a high sensitivity imager such as GE’s Typhoon 9410 (Fig 2b and S1 File,

Table S1). At standard input levels, this translates to approximately 20–500,000 copies per cell,

overlapping expected cellular expression levels. When rigorously performed, gel quantification

and image analysis can be highly sensitive and repeatable, capable of measurement CVs<10%

and sensitivity<5 attomoles of fluorophore [32].

The response from a serial dilution of small RNA isolated from pancreatic total RNA is

shown in Fig 2d. However, below 75 ng of total RNA equivalent input, lowly expressed

miRNA begin dropping below the sensitivity threshold, reducing the number of detectable

bands. When total RNA is used as sample input as opposed to small RNA, inhibition can be

seen at inputs>100 ng (Fig 2e). Rising levels of background RNA inhibit the coding ligation

efficiency, offsetting signal increase and leading to a plateau in response. At each given input

level, the degree of inhibition varies with miRNA species, but is repeatable and can be effec-

tively normalized using reference curves obtained with MS2 phage RNA (S1 File, Fig S1). It

is important to note that this inhibition does not reduce individual miRNA response curve

linearity or dynamic range but can reduce overall signal intensity impacting sensitivity.

Amplification bias has been minimized by optimizing reaction conditions to suppress liga-

tion bias [32,33] and by optimizing probe design via thermodynamic analysis. Amplification

bias can be determined by analyzing the spread in the fluorescent intensity across miRNA.

Fig 1. Schematic illustration of the Ligo-miR EZmultiplexmiRNA assay. In the capture ligation, a universal adapter is ligated to eachmiRNA to
form a template molecule. In the coding ligation, a miRNA specific discrimination probe and common probe are hybridized to each template and ligated
together to form a single stranded Ligo-miR product. Thermal cycling is used to generate up to 50 products from a single template. Finally, the Ligo-
miR products are analyzed by denaturing PAGE. Shown are 4 samples analyzed using a 24-plex Ligo-miR EZ probe set. Each band is a specific
miRNA product where band intensity is proportional to quantity.

https://doi.org/10.1371/journal.pone.0180988.g001
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Across the 56 miRNA tested in total, no systematic trends were observed with factors such as

probe Tm, miRNA GC content, or miRNA 3’ base (S1 File, Fig S2). However, predictable dif-

ferences were seen due to tag length (S1 File, Fig S3). After optimization, the raw band fluores-

cence for given miRNA input, as seen in Fig 2b and S1 File, Fig S9, varies less than 10X max-

min across a typical Ligo-miR EZ panel.

Reproducibility and robustness

Assay reproducibility was first examined by comparing the raw band intensities for replicate

experiments at varying cell inputs. Ligo-miR EZ was highly reproducible at both high (r2 =

0.98) and low (r2 = 0.93) input levels (Fig 2f). For a long—term test of repeatability, we created

a synthetic panel containing 1500 attomoles of each of 26 miRNAs. 28 repeats of this experi-

ment spanning a period of 3 months generated an inter-day mean CV of 22% for the raw band

fluorescence (S1 File, Fig S4) and 13% when normalized to miR-16-5p. Fig 2g shows the distri-

bution of all measurements when normalized against the mean for each miRNA. For a perfect

assay this distribution would be a delta function at 0 –i.e. no deviation from the mean. The dis-

tribution of the raw deviations is centered around 0, but there is a prominent side peak cen-

tered at -0.2 due to drift in scanner performance. When the band intensities were normalized,

the distribution became tight and symmetric. A separate analysis determined that the intraday

mean CVs of raw and normalized band intensities from 1500 attomoles were 7.9% and 5.8%,

respectively (S1 File, Fig S5).

Fig 2. Ligo-miR EZ sensitivity and reproducibility data. a) A PAGE image of Ligo-miR EZ products from a 26-plex serial dilution of synthetic
miRNAs from 10,000 attomoles to 0.5 attomoles. Data from 3miRs with higher sensitivity cutoffs are omitted. Raw band fluorescent intensities are
tabulated in S1 File, Table S1. b) Image analysis of the fluorescent band intensities. Some plateauing of the assay can be seen at the highest input
level. Below this, the assay shows a linear response over 4 orders of magnitude for 12 of the 22 miRNAs (not counting Crc-1,2,3 or 4) the lowest point
is missing or an outlier for 3 miRs, giving a measured dynamic range of 3.5 orders of magnitude. The lowest dynamic range is for RNU6B, we suspect
because of an outlier measurement, and is only 1.5 orders of magnitude. Themean dynamic range is 3.5, the median dynamic range is 4 and the mode
dynamic range is 4 orders of magnitude. c) Same data as shown in b) but plotted on linear-linear axes. d) Ligo-miR EZ was performed on a dilution
series of small RNA fractions isolated from pancreatic total RNA. A linear response was seen up 1000 ng of total RNA equivalent input. e)When total
RNA is input directly, a linear response is seen up until 100 ng at which point background RNA begins inhibiting ligation efficiency. f) Replicate
experiments were performed on 4 samples of small RNA isolated from 600–17000 cultured cells and plotted against one another. High correlation was
seen between replicate experiments across all input levels. g) Ligo-miR EZ was repeated 28 times on a 26-plex synthetic miRNA panel over a period of
3 months. The distribution of raw fluorescence values as a fraction of the mean is centered around zero with a side peak at -0.2. When the raw
fluorescence values are corrected for scanner variability, the data have a very sharp distribution centered around the mean.

https://doi.org/10.1371/journal.pone.0180988.g002
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When Ligo-miR EZ was used to compare MCF-7 total RNA and small RNA inputs (S1 File,

Fig S6), high correlation (r2 = 0.96) was seen. However, higher signal intensities were seen

with small RNA than total RNA. High correlation was also seen when comparing small RNA

isolated with either Qiagen miRNeasy or Sigma mirPremier kits (S1 File, Fig S7). Interestingly,

two of the outlier data points were due to RNU44, which at 61 nts is considerably longer than

miRNA. We hypothesize that this outlier may arise due to length dependent biases from differ-

ent small RNA isolation chemistries employed by the two kits. This discrepancy underscores

the inherent risk in using normalization controls that differ in length or structure from the

miRNA being measured [22,23]. In aggregate, these data demonstrate that Ligo-miR EZ is

very reproducible and robust across common sample types and sample preparation methods.

Specificity

High assay specificity is particularly important in miRNA profiling as hundreds of different

miRNA can be present in any single sample. This diversity often includes families of miRNA

with closely-related sequences, isomiRs with minor 5’ and 3’ modifications, and transcripts

with mature, precursor, and primary forms. Synthetic miRNA and probe sets were designed to

test assay specificity. Across unrelated miRNA, Ligo-miR EZ exhibited perfect discrimination

with no detectable cross-talk (Fig 3a). Cross-talk was only observed between the miRNAs in

Fig 3. Ligo-miR EZ specificity data. a) Single-plex synthetic miRNAs were analyzed using Ligo-miR EZ Panel B. No cross-talk is seen across
unrelated miRNA. Cross-talk is only seen in Lanes 11 and 18 which represent miR-17-5p and miR-106a-5p that differ by only a single nucleotide at the
5’ end. b) An 8-plex let-7 family probe set was used to test assay specificity. Lanes 1 (left) and 10 (right) contain all 8-plex miRNAwhile Lanes 2–9 (l—r)
have 1-plex miRNAs. Limited cross-talk is seen across probe-miRNA pairs with sequencemismatches distant to the ligation site. c) Let-7a precursor
and mature miRNAwere input into a single-plex let-7a assay. No response was seen even with a high background of precursor molecules. ++ = 1500
attomoles, + = 150 attomoles,— = no miRNA.

https://doi.org/10.1371/journal.pone.0180988.g003
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lanes 11 and 18, which correspond to miR-106a-5p and miR-17-5p. These miRNA both come

from the miR-17 precursor family and differ by only a single nucleotide at the 5’ end (S1 File,

Table S2).

To test closely-related miRNA, we designed a probe set to profile 8 members of the let-7

family, 7 of which differ by only 1 or 2 nts (S1 File, Table S3). Limited cross-talk was seen in 12

of 56 off miRNA combinations (Fig 3b). Cross-talk greater than 5% was only seen in 5 probe:

miRNA combinations: let-7f:let-7a, let-7c:let-7b, let-7a:let-7c, let-7a:let-7d, and let-7a:let-7e.

Ligo-miR EZ is expected to be more sensitive to probe:miRNAmismatches near the ligation

site due to the combination of thermodynamic mismatch discrimination and ligase mismatch

discrimination. Such behavior is common to ligation assays [34–36] as mismatches far from

the ligation site no longer sit within the ligase’s active site [35], leaving thermodynamic dis-

crimination as the remaining force. Thus, it was not unexpected that the greatest degree of

cross-talk was seen between probe:miRNA pairs where the mismatch occurred far from the

ligation site such as let-7a:let-7e (14 bases), let-7a:let-7d (7 bases), let-7c:let-7b (6 bases), and

let-7f:let-7a (11 bases). Similar overall levels of cross-talk are seen in other hybridization assays

[26], though some of these studies relied on earlier miRBase annotations that contained let-7

miRNA of differing lengths [16].

Across precursor and mature miRNA, Ligo-miR EZ exhibited absolute discrimination. Pre-

cursor let-7a (S1 File, Table S4) and mature let-7a miRNA were mixed in different ratios and

analyzed using a single-plex let-7a discrimination probe. Even in a high background of precur-

sor molecules, no cross-talk was seen (Fig 3c). As seen above, the 2-step ligation mechanism

renders the assay extremely sensitive to variations at the miRNA 3’ end. Modifications close to

this end will be discriminated with high specificity while insertions or deletions will be dis-

criminated with absolute specificity.

Differential sensitivity

Many applications of miRNA profiling involve measuring differential expression to identify

up- or down-regulated miRNAs. To quantify differential expression sensitivity, we made 4

samples (S1, S2, S3 and S4) containing 26 synthetic miRNA (4 internal controls, 20 miRNAs, 2

snRNAs) in a manner analogous to the miRQC study [26]. Base samples S1 and S2 were

titrated to generate samples S3 = 0.25�S1 + 0.75�S2 and S4 = 0.75�S1 + 0.25�S2. This enabled

differential sensitivity testing at low (10 attomoles), medium (100 attomoles), and high (1000

attomoles) expression levels with maximum fold-changes of 3, 3, and 2, respectively (S1 File,

Fig S8). The smallest ratio between two bands is the 1.14-fold difference between S3 and S2 at

the 1000 attomoles level.

Ligo-miR EZ was then performed on each of the 4 samples in duplicate. A gel image from

one replicate is shown in Fig 4a. We found that 19 of the 22 miRNA, or 90.5%, displayed the

correct titration response (S1< S4< S3< S2). For example, the band intensities for miR-15a-

5p increase as expected. This measure of differential sensitivity is particularly stringent because

it requires correctly resolving differences as small as 1.14-fold and no larger than 3-fold for

every miRNA tested. Fig 4b and 4c plots the measured differential ratio against the expected

ratio. The data are tightly packed around the correct differential response, y = x. The measured

differential ratio differs from the expected ratio by an average of 9.7%, 13.4%, and 44% for the

1000, 100, and 10 attomole inputs, respectively. The 10 attomole level is dominated by two out-

lier measurements. Removing the 6 differential pairs resulting from these two measurements

reduces this difference to 24%. Given Ligo-miR’s high reproducibility (5.8% intraday CV for

raw fluorescence from 1500 attomoles input miRNA), measured 1.14-fold changes have a p-

value of 0.069 (Independent two-sample t-test, one tailed probability). Thus, measured
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changes of this magnitude should be correctly resolved with 93% certainty using duplicate

measurements. Larger changes of 1.5-fold should be resolved with 99% certainty. In this exper-

iment, 40 pairs of measurements involve difficult to resolve differences of 1.5-fold or less; of

these, 98% are resolved correctly. Compared to existing methods, Ligo-miR is therefore func-

tionally capable of improving differential sensitivity when investigating subtle changes caused

by either small expression changes in large numbers of cells or large expression changes in

small numbers of driver cells.

Benchmarking against RT-qPCR and microarray

To benchmark Ligo-miR EZ performance, we profiled 5 esophageal cell lines (HEEPIC,

CHTRT, QHTRT, SKGT4, and OE33) and compared against Applied Biosystems TaqMan

RT-qPCR and Agilent microarray. RNA was pooled for each cell line to eliminate variation

from sample preparation and cell culture. Ligo-miR EZ was performed using a 26-plex probe

set (Panel A), resulting in 5 total reactions. TaqMan was performed across 21 miRNA using

triplicate RT and duplicate qPCR steps, resulting in 630 total qPCR reactions (S1 File,

Table S5). Of these, 77 outliers were identified due to anomalous amplification curves, and 18

reactions did not result in any amplification; these 95 traces were omitted when calculating the

mean Cts used in differential analysis (S1 File, Tables S6). The average standard deviation

across all miRNA (excluding null results but including outliers) is 0.71 Cts, corresponding to

an expression difference of 63%. We further measured miR-106b-5p for all cells on three

Fig 4. Differential sensitivity and benchmarking of Ligo-miR EZ. a) PAGE image of Ligo-miR EZ assay performed on S1-S4 synthetic miRNA
panels. Three bands are highlighted to show how band intensities change with input level. All bands are detected but low intensity bands are difficult to
visualize due to the limited contrast of the print image. b) The ratio of measured band intensities is plotted as a function of expected input ratios. The
ratios were determined from the mean of 2 measurements. The three input levels are plotted: high (blue), medium (orange) and low (green). If the
measured ratio is exactly equal to the input ratio then the resultant data will fall along the line y = x. For reference, the dotted lines illustrate where the
measured ratio varies by ± 20% and ± 40% from the expected ratio. c) Same data as shown in b) but plotted on linear-linear axes. d), e) and f)
Benchmarking was performed by using Ligo-miR EZ, TaqMan qRT-PCR, and microarray to perform differential expression analysis of 5 esophageal
cell lines, with expression was compared to OE33 in all cases. All platforms showed good correlation to one another.

https://doi.org/10.1371/journal.pone.0180988.g004
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separate days to quantify day-to-day technical variation (S1 File, Table S7). The average stan-

dard deviation of the raw Cts is 0.58, corresponding to a variation in miRNA expression of

48%, which is significantly higher than the equivalent measure from Ligo-miR EZ, 22%.

Microarray was performed according to the manufacturer’s protocol using a single Agilent

slide with 8 arrays, each containing probes for 2006 miRNA. Expression values are provided in

S1 File, Table S8.

Differential expression was calculated by dividing the miRNA expression level in each cell

line against OE33. The differential expression obtained using RT-qPCR is plotted against that

from Ligo-miR EZ in Fig 4d and shows that the two methods agree well with a strong linear fit

(gradient = 0.91 ± 0.05, r2 = 0.93). An equivalent comparison between microarray and Ligo-

miR EZ is shown in Fig 4e and demonstrates good correlation (gradient = 0.84 ± 0.05, r2 =

0.92), although the lower gradient may suggest a systematic difference in expression response

between the two methods. Finally, Fig 4f compares the differential expression profiles from

RT-qPCR against microarray (gradient = 1.00 ± 0.04, r2 = 0.95) and also shows good agree-

ment. Thus, all the measurement platforms obtain similar expression profiles, and Ligo-miR

performs equally as well as the two established technologies. Equivalent correlation values

between a variety of different sequencing and microarray platforms and RT-qPCR were previ-

ously measured to be between 0.68 and 0.92 [37]. The agreement between miRNA expression

measured by Ligo-miR EZ and RT-qPCR is therefore among the highest found between the

methods.

Absolute copy number determination

Amajor strength of Ligo-miR EZ is the ease with which absolute miRNA copy numbers per

cell (or copies per ng of total RNA) can be measured. Absolute copy number is determined by

spiking technical controls into the cell pellet and into the various reaction master mixes to

account for differences in technical efficiency (Fig 5a) and then comparing the signal against a

4 point standard curve (S1 File, Fig S9). These steps can be integrated into the analysis as a

matter of routine with negligible additional effort. To demonstrate the strength and feasibility

of this approach, we used Ligo-miR EZ Panels A, B, C, and D to determine miRNA copy num-

bers in 3 breast cell lines (MCF-10A, MDA-MB-231, and MCF-7) and 5 esophageal cell lines

(HEEPIC, CHTRT, QHTRT, SKGT4, and OE33). Two separate experimental designs were

employed. For the breast cell lines, a constant input of 33,333 cells was used per reaction. For

the esophageal cell lines a constant input of 500 ng of total RNA was used for each reaction,

akin to standard differential expression analysis, and 15 pg of total RNA per cell was assumed

for all calculations.

The absolute copy numbers per cell are shown in Fig 5b. The average measurement CV (S1

File, Fig S10) across all miRNA was 30%, and, as expected, lowly expressed miRNA (<1000

copies per cell) had higher variance than highly expressed miRNA (>1000 copies). These copy

number CVs are higher than the previous raw fluorescence CVs as they also include variance

from the spike-in and standard curve measurements. Given a mean intra-day CV of 12% for

the raw fluorescence (15–1500 attomoles), we expect 99% of absolute copy numbers to be

within 50% of their true value. Lower expressed miRNAs with higher intraday CVs will have

correspondingly less accurate absolute number determination. The measured copy numbers

ranged from 15–147,056 copies per cell and generally fell within the expected range based on

previous studies [38–40]. Oncogenic miRNA such as miR-21-5p [7,8,41–43] are highly

expressed in the cancer cell lines (MCF-7, MDA-MB-231, OE33, and SKGT4) and lowly

expressed in the normal cell lines (HEEPIC and MCF10A). Conversely, the tumor suppressor

miR-205-5p [41–46] is significantly overexpressed in the normal cell lines compared with the
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Fig 5. Absolute miRNA copy number using Ligo-miR EZ. a) Schematic illustration of Ligo-miR EZmethod for determining absolute copy number by
using spike-in controls and standard curve samples to normalize for reaction efficiencies and assay response. b) Absolute copy number profiles for 3
breast cell lines and 5 esophageal cell lines were determined using 4 overlapping Ligo-miR EZ panels.

https://doi.org/10.1371/journal.pone.0180988.g005
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cancer cell lines. However, we do not see reduced expression in the cancer cell lines for some

other commonly reported tumor suppressors such as let-7a-5p [41–43,47], miR-15a-5p, and

miR-16-5p. This apparent discrepancy may not be significant, however, since most of the

results for miR-15a-5p and miR-16-5p come from leukemia studies [48–50] with limited work

relating to solid tumors [51–56]. Total miRNA expression and the number of detected miRNA

also appear to increase when comparing non-cancer and cancer cells. We note that the com-

monly used biological controls RNU6B and RNU44 varied widely between the samples,

regardless of whether the input was constant cell number or constant total RNA, highlighting

concerns from previous studies [20] over the suitability of these controls. As this miRNA

expression data comes from cell lines, the trends will likely differ from that found in clinical

samples.

Differential expression analysis

Analyzing differential expression using absolute copy numbers is a powerful alternative to bio-

logical normalization that can provide layered insight into miRNA expression profiles. This

method reduces bias from the assay and reduces dependency on biological controls. To

explore this advantage, we determined absolute expression profiles (S1 File, Table S9) using

Ligo-miR EZ Panel E on a metastatic pancreatic cancer cell line treated with 0 (G0), 1 (G1), or

10 (G10) μM of the chemotherapy drug gemcitabine. Measurements of RNA isolation yield

showed that gemcitabine treatment significantly reduces the total RNA per cell and corrobo-

rates the observation that cell size shrinks with increased dosage. Ligo-miR EZ analysis was

performed on each of the three samples in quadruplicate using two experimental designs, a

constant total RNA input of 75 ng or a constant cell input of 10,000 cells. Overall, we can see

that total miRNA and RNU44 expression levels appear to be correlated (S1 File, Fig S11) and

decrease with increasing gemcitabine dosage.

Looking in greater detail, we see that the fluorescent intensities from the constant RNA

input and constant cell input cases are linearly related with a slope that is equal to the differ-

ence in input amount (Fig 6a). Biological controls such as RNU44 are often used to adjust

for variances in baseline transcription and input amounts [20]. Fig 6b shows that for this

data set RNU44 is effective at normalizing RNA input; after RNU44 normalization, the con-

stant cell and constant RNA input data sets collapse onto one another, eliminating differ-

ences due to experimental design. Alternatively, analysis of absolute copy number can also

eliminate such differences resulting from experimental design (Fig 6c). This type of normali-

zation is particularly important since treatments such as gemcitabine can dramatically alter

the transcriptional state of the cell and generate opposing expression trends depending on

experimental design.

Fig 6d shows the effect of various normalization strategies on the interpretation of miR-17-

5p expression. With constant RNA input, the expression of miR-17 appears to increase with

gemcitabine treatment. However, with constant cell input, miR-17 expression appears to

decrease with gemcitabine treatment. Normalization of the fluorescence to RNU44 brings the

constant RNA and constant cell data into alignment, with both showing a decrease in miR-17

expression with gemicitabine treatment. The RNU44 normalized data matches the copies per

cell data and fractional expression data (miR-17 / total miR expression), with both showing

that miR-17 expression decreases. These normalization and experimental design issues may

partially explain disagreement, even in seminal work, about whether known oncogenic

miRNA such as miR-17 are up- or down- regulated in tumors [7,57]. Our data show that

miR-17 decreases with increasing gemcitabine dosage in terms of copies per cell, as a propor-

tion of total miRNA expression, and with respect to RNU44. As a nucleotide analog, it is not
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unexpected that gemictabine would lead to reduced expression of miR-17, a known regulator

of the cell cycle [58] and apoptosis [59].

Next, we calculated differential expression ratios for both the constant RNA and constant

cell data sets by dividing the G1 and G10 expression levels by the G0 expression level. Fig 6e

shows that differential ratios obtained using either the RNU44 normalized fluorescence or

copies per cell data give nearly identical results. The majority of miRNA are down-regulated

by gemcitabine treatment with small discrepancies seen at low differential ratios due to mea-

surement and normalization variability. This type of differential analysis typically identifies

miRNA of interest by finding those that display the highest differential ratios. In practice,

the miRNA with the highest differential ratios are often those that go from undetectable to

lowly expressed. As the overall expression values of these miRNA are still small, it is debatable

whether these miRNA have any biological significance or effect within the cell.

Copy number profiles provide an alternative metric. Fractional expression can be deter-

mined by comparing the levels of each miRNA against the total miRNA expression within the

cell. Differential comparison can be then made to examine both the ratiometric change and

the absolute change. Hence, a miRNA with fractional expression that changes from 0.1% to

1% will have a smaller absolute change than a miRNA that changes from 1% to 10% despite

Fig 6. Different normalization approaches give different differential expression profiles. Ligo-miR EZ was used to profile miRNA expression of
pancreatic cancer cells treated with 0, 1, or 10 μM gemcitabine. Treatment caused the cells to shrink in size and transcriptional activity. Thus, the assay
was performed using either a constant total RNA input of 75 ng or a constant cell input of 10,000 cells to test the effect of experimental design on the
resultant expression profiles. Each sample was measured 4 times. a) The fluorescent band intensities from constant RNA and constant cell inputs are
correlated with a slope equal to the difference in RNA input amount. b)Normalization of the fluorescent intensities to RNU44 collapses the curves onto
one another, demonstrating the RNU44 effectively normalizes for RNA input variation. c) Analysis of absolute copy number profiles also effectively
normalizes the effect of RNA input variation. d) Analysis of miR-17 shows that the relative size of up- or down-regulation can change based on
experimental design and normalization method. e)Differential expression ratios obtained using the RNU44 normalized fluorescence and copy number
profiles are well correlated, demonstrating that both methods obtain equivalent results. f) The difference of each miRNA in fractional expression is
plotted against the differential ratio of RNU44 normalized fluorescence to compare absolute differences in expression against ratiometric differences in
expression.

https://doi.org/10.1371/journal.pone.0180988.g006
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having the same differential ratio. Fig 6f plots the differential ratio calculated using RNU44

normalized fluorescence against the absolute difference calculated from fractional expression.

While the direction of change is largely preserved, the magnitude changes greatly. Some

miRNA with high differential ratios have low absolute differences (e.g., miR-205-5p). Yet oth-

ers with low differential ratios have high absolute differences (e.g., miR-21-5p). The greater the

number of miRNA analyzed, the more accurate the fractional expression will be as the impact

of individual miRNA on overall miRNA levels is reduced.

Examining miRNA in terms of absolute changes can provide layered insight into miRNA

function within cells and potentially aid in identification of new biomarkers. The differences

between normalizing miRNA expression to cell number, total miRNA expression, and

biological controls highlight a significant challenge for miRNA measurement with biological

consequences. What is more important for a miRNA’s function: its expression per cell, its

expression per total RNA, its expression per biological control, or its expression as a propor-

tion of all miRNA? As we have shown, differential expressions with these normalization meth-

ods can result in misidentification of increased/decreased miRNA expression in diseased

cells. Additionally, the biological relevance of ratiometric increases in expression or absolute

increases in miRNA copy number per cell must be given consideration. Ligo-miR EZ provides

scientists a routine method for multiplexed analysis of miRNA copy number that does not

involve significant extra work, cost, or proprietary instruments. However, the convenience of

fluorescent PAGE detection limits Ligo-miR EZ to 26-plex profiling and 20 copies per cell sen-

sitivity. In future iterations, the core ligation process can be easily expanded to higher multi-

plexed levels, modified to further enhance sensitivity, combined with other detection systems

for higher throughput, and used as a platform for broad applications in miRNA profiling.
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