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A new highly accurate and detailed intermolecular potential surface for Ar-HZ0 is derived 
by a direct nonlinear least squares fit to 37 far infrared, infrared, and microwave spectro- 
scopic measurements. The new potential (denoted AW2) gives a much better description of 
the strong radial dependence of the anisotropic forces and of the binding energy than its pre- 
decessor, the AWI surface [Cohen and Saykally, J. Phys. Chem. 94, 7991 (1990)]. The glo- 
bal minimum on the AW2 potential (O,= 142.98 cm-‘) occurs at the position R=3.636 A, 
0=74.3”, and d=oO. At these coordinates the argon is located in the monomer plane between 
the perpendicular to the CZ axis (0=90”) and the hydrogen bonded geometry (8= 55”). This 
orientation of the minimum is opposite of that found in recent ab initio calculations of Bulski 
et al. [J. Chem. Phys. 94, 8097 (1991)] and Chalisinski et al. [J. Chem. Phys. 94, 2807 
( 1991)]. Both sets of authors find a minimum at an antihydrogen bonded geometry corre- 
sponding to an orientation Ar-OH ( 8 = 125”). 

INTRODUCTION 

Anisotropic intermolecular forces govern the behavior 
of an enormous range of chemical systems. Despite years of 
study, it is only with the development of methods for di- 
rectly observing intermolecular vibrations with high preci- 
sion (i.e., measurement of vibration-rotation-tunneling 
[VRT] spectra) that significant progress has been made 
toward quantitative modeling of these forces. Our recent 
reviews,‘*2 and that of Hutson, provide an overview of 
state of the art experimental’ and theoreticaP3 develop- 
ments in the study of intermolecular forces. We emphasize 
the role of far infrared VRT spectroscopy-the most direct 
probe of the details of intermolecular forces-and new nu- 
merical approaches, such as the collocation method, to the 
study of multidimensional intermolecular dynamics. With 
the exception of our earlier work describing the intermo- 
lecular potential energy surface (IPS) of AI--H~O,~ the 
most extensive studies of intermolecular forces have been 
applied to systems with one or two intermolecular degrees 
of freedom, viz., rare gas (Rg) pairs,5 Rg-hydrogen,3*6 and 
the Rg-hydrogen halide3’7’8 systems. Extension to higher 
dimensions requires both a much more extensive data set 
and very efficient methods for refining a model potential so 
that it represents all of the available data. In this paper, we 
describe a new, improved representation of the three- 
dimensional intermolecular potential energy surface (IPS) 
for Ar-H20 denoted AW2. Here and in a forthcoming 
paper describing the IPS of Ar-NH3,9 we continue our 
effort to combine precise VRT measurements and new ef- 
ficient computational methodologies for the quantitative 
determination of intermolecular forces in multidimensional 
systems. 

It should be emphasized for the unfamiliar reader, that 
the molecular systems listed above represent the only cases 

‘)Present address: Department of Chemistry, Harvard University, Cam- 
bridge, Massachusetts 02138. 

for which detailed models of the intermolecular forces have 
been developed and tested. Extensive measurements of the 
VRT spectra of more complex (five and six dimensional) 
systems recently obtained by Elrod et al. for Ar,HCl,” by 
Dore er al. for CH4-HzO,” and by Loeser et al. for 
( NH3)2,‘2 present a challenge requiring still more efficient 
computational approaches. We hope that the present work 
provides a basis for this effort. In addition, the IPS of 
Ar-H20 is of interest as a model for systems which exhibit 
hydrophobic interactions, 13,14 and an accurate IPS will also 
be useful in the development of quantitative models of vi- 
brational and rotational energy transfer, such as those pre- 
sented by Ree and Shin.15 

The AW2 IPS (Figs. l-3) was derived by a direct 
nonlinear least squares fit to 37 different VRT measure- 
ments. This potential represents a substantial improvement 
over our initial experimental IPS, denoted AW 1.4 While 
the essential physics of the AW 1 potential has proven to be 
correct, our recently reported measurements’6 unambigu- 
ously establish that the coupling between the angular (6,#) 
and radial (R ) degrees of freedom described by that sur- 
face are far too weak. The coordinate system used to de- 
scribe the complex is an ordinary Jacobi coordinate system 
(R,&$), with its origin at the center of mass of the water 
monomer. R describes the vector from the center of mass 
of the water monomer to the argon atom, 8 describes the 
angle of the C2 axis of the monomer with respect to the R 
vector with 8=0 along the C2 axis in the direction of the 
hydrogen atoms, and 4 describes the angle of rotation 
about the C2 axis from a reference geometry (d=@) with 
all four atoms coplanar. Near the minimum on the surface, 
these new data require even sharper variations in the min- 
imum energy distance (R,) as a function the relative ori- 
entation (6,+) of the argon and water subunits than were 
present in the AW 1 surface. These results show that ap- 
proximate analyses based on the assumption that angular- 
radial coupling in weakly bonded complexes can be ne- 
glected must be regarded with suspicion. For instance, 
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Lascola and Nesbitt,17 assume that there is no angular- 
radial coupling in Ar-H20 and use a purely angular two- 
dimensional (e,#> model to argue that the argon has a 
substantial effect on the water intra-molecular bending po- 
tential. However, experimental measurements of Ar-H,O 
VRT transitions presented by us in Ref. 16 are in sharp 
disagreement with the predictions based on this model. 
Specifically, Lascola and Nesbitt predict the VRT state 
B ( 1 I I ) will be observed at lower energy than its companion 
II( lit). However, weobserved 2( iii) above II( iii), as we 
predicted using the AW 1 IPS. The exact three-dimensional 
quantum mechanical calculations described below accu- 
rately reproduce all of the available VRT data without 
invoking any coupling to the water bending coordinate. 
While this is not direct evidence that such coupling is 
small, it is sufficient to invalidate the notion that coupling 
to the monomer bend can be inferred from two- 
dimensional approximations to the intermolecular dynam- 
ics. For further emphasis, we note that angular-radial cou- 
pling has also been shown to be essential to an accurate 
description of the dynamics in AI-NH~,~*‘~ Ar2-HCl,” 
and Ar-HCN.19 The Ar-H20 complex in no way consti- 
tutes an exceptional case; rather, coupled multidimensional 
dynamics are likely to be an intrinsic feature of dynamics 
in van der Waals complexes. 
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FIG. 1. The AW2 intermolecular potential for Ar-H,O. R is the vector 
from the center of mass of the water monomer to the argon and 6J is the 
angle between this vector and the water monomer C, axis. For this plot 
4=0, constraining the complex to be planar. Contours are drawn at 10 
cm-’ intervals referenced to a zero of energy at the dissociation energy. 
Contours above this energy are omitted for clarity. 

The AW2 IPS has a global minimum 142.98 cm-’ 
deep at the coordinates R=3.636 A, 8=74.3", t$=O'. This 
is a planar geometry with a somewhat nonlinear hydrogen 
bond (for comparison, the linear hydrogen bonded stmc- 
ture would have 8=55”, 4=00). Geometries with the ar- 
gon in the molecular plane (4 =oO> are more favorable 
than out of plane structures. Barriers to in-plane rotation 
are 26.29 cm-’ at R=3.702 A, 0=0”, #=o” [Ar-H,O] and 
17.18 cm- ’ at R=3.518 A, 6=180”, #=o” [Ar-OHJ The 
hydrogen bonded orientation (8z55”) Ar-HOH is 3.4 
cm-’ less favorable and requires extension of the van der 
Waals bond length to R =3.70 A. The antihydrogen 
bonded geometry Ar-OH, (8z 125”) is 11.1 cm- ’ above 
the global minimum at the much shorter bond length of 
R = 3.460 A. These relative energies are probably known to 
better than f 5 cm-‘. The primary limit to their accuracy 
is the truncation of the series expansion of the IPS. As can 
be seen in Fig. 1, both the attractive forces and the repul- 
sive forces are maximized along the hydrogen bonded ori- 
entation. As a result, the exact position of the potential 
minimum depends on small variations in the radial depen- 
dence and anisotropy of the attractive and repulsive forces. 
At different orientations the minimum occurs at widely 
different intermolecular distances. For instance the mini- 
mum at e=37.10, f#=o” of -131.17 cm-’ occurs at 
R = 3.723 A while a nearly identical minimum energy oc- 
curs along the approach at 8= 128.6”, 4 =o”, but it occurs 
0.282 A closer, at R =3.441 A. Again, strong angular- 
radial coupling is a dominant feature of the IPS. 

tion of approximate separability of the angular (Q) and 
radial (R) coordinates, Hutson2’ extracted a series of ef- 
fective two-dimensional angular potential energy surfaces 
from these measurements. A Coriolis analysis, which we 
presented in Ref. 13, suggested that the most probable sur- 
face was the one with a minimum at the orientation f3=90“, 
4=O”, where the water symmetry axis is perpendicular to 
the van der Waals bond and all four atoms are coplanar. 
In-plane internal rotation on Hutson’s best two- 
dimensional surface is hindered by barriers of 15 cm-’ at 
both the Ar-H,O and the Ar-OH2 C2, configurations, and 
out-of-plane rotation is hindered by a barrier to internal 
rotation of 40 cm- ’ at 8=90“, +=90”--a geometry with 
the argon located directly above the plane of the water 
molecule and along the monomer C2 axis. 

BACKGROUND 

Initial efforts to understand the anisotropic IPS of Ar- 
H20 were inspired by our measurements of two internal 
rotor transitions of the complex.20 Relying on the assump- 

Recently, we developed a new, highly efficient adapta- 
tion of the collocation method to obtaining the eigenvalues 
and eigenvectors of the multidimensional, nonseparable 
Hamiltonian describing the molecular dynamics of any 
atom-molecule complex. The computer code for obtaining 
eigenvalues was then embedded within a nonlinear least 
squares routine and used to derive a detailed global three- 
dimensional IPS for Ar-H20, (Awl IPS).4 This surface, 
the first accurate and complete treatment of the intermo- 
lecular forces in Ar-H,O, was obtained by a direct fit of a 
model potential with nine adjustable parameters to the 
eleven experimental VRT energy differences. Predictions 
for VRT frequencies made using the AW 1 surface have 
since proven to be quite accurate. The five new VRT bands 
of Ar-H,O presented in Ref. 16 were observed at frequen- 
cies ranging from 2 to 50 GHz (0.06-1.7 cm-’ 0.5%3%) 
from the predictions. Lascola and Nesbitt17 have reported 
the energy difference between the H and lI( lo,) states as 
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339.763(g) GHz-within 1% ( -3.8 GHz) of our predic- 
tions. These measurements represent a comprehensive test 
of the AW 1 IPS. The success of these predictions confirms 
that the essential physics of the weak interaction between 
argon and water is accurately described by this surface. 
The AWl surface has a broad, flat minimum at the planar 
T-shaped geometry (D,=174.7 cm-’ at R=3.598 A., 
8=85.P, 4=00), and a barrier at 8=90”, 4=90”, which 
are qualitatively similar to those on Hutson’s two- 
dimensional surface. The barriers to motion of the argon in 
the plane of the HZ0 monomer are 17 cm- ’ at the Ar- 
OH, ( 0 = O”, 4 = 00) geometry and 22 cm- i at the Ar-HZ0 
geometry (6= IgO”, $=O”). The barrier to out-of-plane ro- 
tation on the AWl surface is 47 cm-’ (6=900, r$=90”). 
On the AW2 surface these barriers are similar but in the 
opposite sense; it is more difficult (26.3 cm-‘) to rotate 
past the Ar-HZ0 configuration than the (17.2 cm-‘) Ar- 
OH2 configuration. 

The full three-dimensional analysis yields insights not 
available from purely angular potentials. The origin of 
angular-radial coupling is clearly evident in both the AW 1 
and AW2 potentials. On the AWl surface, the long range 
forces favor the hydrogen bonded geometry and ap- 
proaches along the C’s axis. At short range, the repulsive 
forces on the AWI surface are weakest at the orientation 
with argon approaching along the C, axis in the plane of 
the monomer. The barrier to out-of-plane motion arises 
from the decrease in attractive forces as the argon is ro- 
tated out of the plane of the monomer. The repulsive forces 
favor out-of-plane configurations more than they do in- 
plane ones. On the AWl surface, the short range minimum 
occurs with argon located nearest to the oxygen. Over dis- 
tances from 3.5-3.8 A, the optimum orientation shifts from 
the antihydrogen bonded orientation Ar-OH, to the hy- 
drogen bonded one Ar-HOH. This structure in the IPS is 
the cause of the large angular-radial coupling manifested 
in the VRT spectra presented in Ref. 16. On the AW2 
surface these basic qualitative features persist, although 
they differ in detail. 

There has also been considerable interest in computing 
the IPS of Ar-HZ0 by ab inifio methods. Chalisinski 
et a1.,22 have computed the interaction energy for Ar-H,O 
on a grid of points, using a many-body perturbation theory 
technique and large basis sets. These authors set a lower 
limit to the absolute well depth of 108 cm- i and suggest 
that the true well depth is as much as 25% deeper. This 
value is considerably smaller than the well depth on the 
AWI surface (174.7 cm- ‘> but is within 10% of the AW2 
minimum (143.0 cm-‘). Both the attractive and repulsive 
anisotropies calculated by these authors are dominated by 
interactions localized near the hydrogen atoms. The au- 
thors show that these forces are nearly equal in magnitude 
and opposite in sign at the potential minimum. The net 
result obtained by Chalisinski et al. is qualitatively similar 
to that obtained in the two-dimensional analysis of Hut- 
son” and to the three-dimensional AWl IPS. However, 
the calculations do not appear to be accurate enough to use 
as a constraint on any aspect of the empirical surface de- 
rived below. The minimum on the ab initio surface is very 
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FIG. 2. The AW2 intermolecular potential surface [4=90”]. 

flat, varying by less than 2 cm-’ for geometries with the 
argon in the plane of the H20 and oriented in any fashion 
between the linear hydrogen bonded structure and the 
T-shaped configuration. There is also a substantial barrier 
to out-of-plane motion on the ab initio potential. As in the 
AWl surface, the ab initio potential evidences long range 
attractive forces favoring the linear hydrogen bonded ge- 
ometry. However, the short range repulsive forces in the ab 
initio calculations are weakest in the threefold hollow 
formed by the two hypothetical sp3 hybridized lone pairs 
and one hydrogen atom of the water molecule. This repul- 
sion is more structured than the parameters of the AWl 
IPS permitted, and is consistent with the experimental ev- 
idence presented in Ref. 16 for the existence of an angular- 
radial coupling stronger than that present in the AWl sur- 
face. Another interesting feature of the IPS noted by 
Chalisinski et al. is that no evidence for localized sp3 hy- 
bridized lone pairs appear in the ab initio calculations. 
Such structure was not present in the AW 1 surface. How- 
ever, there is some indication of localized lone pairs in the 
AW2 surface. In Fig. 2, we show a cut through the AW2 
IPS in the plane containing the lone pairs. The repulsive 
wall does extend further from the center of mass at 
8= 125”-the position of a lone pair orbital-than it does 
in between the two lone pairs. This is suggestive of the 
importance of localized lone pairs in the short range region 
of the IPS. However, as we discuss below, the AW2 poten- 
tial expansion is not sufficiently well converged to unam- 
biguously confirm or contradict the observation of Chali- 
sinski et al. 

Bulski et aL23 have performed ab initio calculations 
which independently give the induction,dispersion, and re- 
pulsion contribution$ to the global IPS of Ar-H20. This 
IPS has a global minimum 157 cm- ’ deep at the antihy- 
drogen bonded geometry R 2 3.39 A, 8= 129”, 4 =o”. 
These authors obtain a binding energy that lies within 15% 
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of both the AWl and the AW2 dissociation energies. The 
position of the minimum is in poor agreement with the 
AWl and AW2 potentials. Both of the experimental po- 
tentials have minima with hydrogens nearest the argon 
(8=75”-85”). Bulski et al. obtain a number of other results 
with important implications for the derivation of an em- 
pirical IPS, whether or not their quantitative description of 
the potential is accurate. First, they find that spherical 
harmonic ( Y,+,> expansions of the anisotropic forces are 
converging very slowly (terms to at least ;1= 7 are required 
for 0.1% accuracy in the interaction energy) with many 
small contributions from the different terms, and with no 
one dominant term in the series. This is in contrast to the 
ab initio results presented by these24 same authors for Ar- 
NH3, which suggest that the anisotropy in the Ar-NH3 
IPS is dominated by large repulsive terms proportional to 
the Yic and the [ Y33-Y3-3] linear combinations of spherical 
harmonics. Second, Bulski et al. find that most of the an- 
isotropic terms for Ar-H20 are small near the potential 
minimum, and that several have a radial dependence such 
that their sign changes in the vicinity of the potential min- 
imum. Given these facts, it is not surprising that there are 
substantial disagreements among the IPS of Bulski et cd., 
Chalisinski et aZ., and the experimental AW2 potential. 
Accurate ab initio description of the shape of the intermo- 
lecular potential will require calculation of attractive and 
repulsive anisotropies to within a few cm-‘. On the other 
hand, the experimental AW2 potential accurately repre- 
sents the leading terms in a series expansion of these forces 
near the minimum, where it is most rigorously constrained 
by the experimental data, but it is increasingly less reliable 
away from the potential minimum. The AW2 surface also 
does not represent the effect of high order anisotropies. 
Such anisotropies could possibly contribute significantly to 
the appearance of the potential minimum, without having 
any significant effect on the measured eigenvalues. 

in our previous studies. Eigenstates are labeled by J, the 
total angular momentum, n, the number of quanta of van 
der Waals stretch excitation (typically we omit reference 
to n when n =0), a, the projection of the total angular 
momentum on the pseudodiatomic axis of the complex and 
jk$=, a label describing the rotational state of the monomer 

to which the VRT state correlates in the free rotor limit. 

THE EXPERIMENTAL DATA SET 

The observables which are available as constraints on 
the shape of the IPS for Ar-H,O include: vibrational band 
origins, rotational term values, Coriolis splittings, dipole 
moments, and the Ar-H2170 nuclear quadrupole hyperfme 
coupling constants. In all, 12 different VRT levels of the 
nomal isotope,'3,16,17,20,25 

( Ar-D,O) 26,27 
and four levels of the d2-isotope 

have been measured by a combination of 
far-infrared, infrared, and microwave spectroscopies. 
There have also been more limited investigation of other 
isotopes of this comp1ex,25126 but these spectra do not pro- 
vide enough new information to warrant the additional 
computational effort required for their inclusion in the fits 
described below. In the calculations, we include informa- 
tion which is available from J=O and J= 1 term values, 
unique information from J=2 term values, the energy dif- 
ference J=8 2(2i2) < - J=OZ( lo,), the ground state di- 
pole moment and the nuclear quadrupole hypertine cou- 
pling constants for Ar-H2170 in the ground and the first 
excited internal rotor state. The experimental data set used 
in the least squares fits is summarized in Table I. The labels 
used to identify the VRT states of Ar-H20 are those used 

We have observed nine VRT bands of Ar-H,O using 
the Berkeley tunable far infrared laser/cw planar jet sys- 
tem 13,16,20 me - combination difference 
[I’I(l,,) +X( loi)] re$s?y Lascola and Nesbitt17 and 
the microwave measurements of Fraser et ~1.~~ complete 
the Ar-H20 data set. The Ar-Hz0 VRT levels sampled 
include the internal rotor level corresponding to j = 0, all 
three asymmetric rotor j= 1, states and one of the five 
j = 2 levels. In the stretching coordinate, n = 0, 1, and 2 
vibrational states have been sampled directly or are 
strongly coupled to the observed internal rotor transitions. 
This collection of states samples the full range of the an- 
gular degrees of freedom. Only the ground state has an 
energy which is below the classical barrier to out-of-plane 
rotation, and all of the states have energies above the bar- 
riers to in-plane rotation. Subtraction of the zero point 
energy localized in the radial coordinate changes these con- 
clusions only slightly. After this correction, the ground 
state of Ar-H,O is located at an energy roughly isoener- 
getic with the top of the two separate barriers to in-plane 
rotation, and the first excited internal rotor level 2( lo,) is 
roughly isoenergetic with the top of the barrier to out-of- 
plane rotation. All of the other states are still well above 
the barriers. The measured states also extend over a signif- 
icant fraction of the radial coordinate. The classically al- 
lowed region for the lI(2,,) state ranges from 3.2 to 5.3 A 
and the average radial distance in the observed VRT states 
of Ax-H20 has been shown16 to range from 3.66 to 3.89 A. 
Some care has been required in interpreting the 
J=82(2,,) energy, since this state is near-resonant 
(within 1.5 GHz) with J=8 n=l, II(l,,) on the AW2 
potential. At higher J, the two states cross and X(2i2) 
becomes lower in energy than n= 1, II( lt,). Even when 
they are this close in energy, these two states are not 
strongly mixed, as indicated by the wavefunctions obtained 
on the AW2 IPS. Since 2(2i2) carries most, if not all, of 
the oscillator strength for transitions from 2( lo,) to J=8 
n = 1, II( 1 io), and since the observed lines were very 
strong, we conclude that the assignment we presented for 
transitions to this state in Ref. 16 is correct. 

Ar-D20 VRT spectra sampling the j = 0 and all three 
of the j = 1 states have been obtained by Suzuki et al. ,26 
who observed the Xl,,) +mh) and the 
II ( 1 ii> tZ( 0,) bands, and by Zwart and Meerts27 who 
observed II( loi) -Z( loi) and the lI( l,,) t-8( loi) bands. 
Because D20 has rotational constants which are roughly 
one half those of H,O, internal rotation in Ar-D,O is more 
strongly hindered by the anisotropic component of IPS. 
After correction for zero point motion localized in the ra- 
dial coordinate, the ground state of Ar-D,O is roughly 
isoenergetic with the barriers to in-plane internal rotation, 
as is the ground state of the normal isotope. However, and 
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TABLE I. Ar-H,O and Ar-D,O data included in the least squares fits, residuals computed on the AW2 surface and estimated uncertainties used to 
weight the data as described in the text.* 

Ar-H,O Rotational term values (MHz) 
Experimental Residuals unc. 

J=l.-0 

wim) 
n= law 

al,,) 

a 101) 

n=LW10,) 

Ul,,) 

J=2+1 

Nl,,) 

ml,,) 

n=‘,rr(‘o,) 

n(l,o) 

ncM 

J=l+l 

fI(lo,) 
n=l,n(lo,) 

n(‘,o) 

n(21,) 

Ar-D20) Rotational term values (MHz) 

&+A, 
A,+4 
h-4 
4-4 
4-B, 
4-4 

-41-h 11 467.8 -4.0 10.0 

4-h 11804.8 1.4 10.0 

4-4 10 772.3 -7.6 10.0 

4-4 11 855.4 -11.5 10.0 

4-4 11 309.8 41.2 60.0 

4-h 
4+-B, 
4-4 
BI--4 

5 975.8b -2.0 5.0 
5 676.5b 0.8 5.0 
5 971.1 -3.0 5.0 
5 824.2b -3.7 5.0 
5 461.6b 13.8 5.0 

6 052.8b 7.2 5.0 

205.0b 0.5 1.0 
181.0 0.0 1.0 
146.8b -0.5 1.0 
672.3 26.0 20.0 

J=l+O 
I@Q) 

WI,,) 

alo,) 

J=2+ 1 

n(lo,) 

n(l,o) 

Ar-HI0 Vibrational transitions (GHz) 

AX-AI 5 591.3c 1.2 5.0 
4-4 6 817.3* 50.3 50.0 
4-B, 5 458.0’ 3.6 5.0 

B,+B, 11 257.3’ 1.7 10.0 
h-4 11 464.3e - 15.7 10.0 

n= 1, X(0@)) --L&J 

n(l,,)~wh) 
X(1,,)-N&c) 
n(lo,)-~(‘ol) 

n(‘,o)-w10,) 
2(1,o)-n(‘o,) 
n=l, Xl,,)-X(10,) 

n=l, n(l,o)~~(lo,) 

WI,) *a ‘01) 

n(2,2)4-a10,) 

Ar-D20 Vibrational transitions (GHz) 

A,.-A, J= 1 +O 

A,-A, J= 1-O 
A,+A, J=l+O 
B,t-B, J=lcl 

BI-B2 J=l-0 
B,-B, J=Otl 

B,tB2 J=l+O 

B,+B, J=l+O 
B,tB, J=84-0 

B,-B2 J=l+O 

913.00b 0.54 0.75 
1110.82 0.49 0.75 
1225.84 0.33 0.75 
339.76’ -0.51 0.75 
637.47b -0.37 0.75 
738.05b 0.15 0.75 

1024.70b 0.73 0.75 
1343.79 -1.60 0.75 
1866.56 - 1.27 1.50 

1840.75 0.55 0.75 

fUl,,)-X(f)& A,+A,J= 1-O 

Z(l,,)+WW A2-A, J=l-0 

nclo,)~z(lo,) B,tB, J=l+O 
n(‘,o)-w’o,) B,+B2 J=l+O 

Dipole moment and quadrupole coupling constants 

581.24* 0.68 0.75 
626.46* -0.52 0.75 
334.83’ 2.28 0.75 
425.28’ 1.70 0.75 

Ar-H20 
IPAW%J) (Debye) 0. 1099c 0.016 0.010 
Ar-H,“O 
4kGWod (MHz) - 1.251’ -0.023 0.020 
&%%A 10,) (MHz) -4.222’ -0.188 0.080 

‘Experimental data from Refs. 13, 16, and 20 except where noted. 

bIncluded in the fit to derive the AWl surface. 

‘Reference 25. 

*Reference 26. 

eReference 27. 

‘Reference 17. 
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in contrast to the results obtained for the normal isotope, 
the first few excited internal rotor states in Ar-D,O lie 
below the classical barrier to out-of-plane internal rotation. 
AI-D20 VRT spectra thus provide a more sensitive probe 
of the shape of the potential near the minimum than do the 
corresponding Ar-HZ0 spectra. In combination with the 
extensive Ar-Hz0 data set, the Ar-D,O VRT spectra al- 
low the determination of higher order anisotropies in the 
IPS since the indirect effects of these terms is larger in the 
deuterated complex. In contrast, the Ar-Hz0 spectra sam- 
ple to much higher energy, viz., more than two thirds of 
the energy necessary to dissociate the complex. The excited 
states of Ar-Hz0 are thus a more sensitive probe of the 
dissociation energy, and of the slope of the repulsive wall, 
than are low-lying Ar-D,O states identified by the same 
labels. 

dld,C$sP) are expanded in a series of symmetry adapted 
renormalized spherical harmonics T,+( f3,$> 

mw = 5 fApTL,(fw9 (5) 

where 

4rI 

( ) 

l/2 

T&%4 = 2;1+ 1 [ yApuw 

PARAMETERIZATION OF THE IPS 

The intermolecular potential for Ar-Hz0 is presumed 
to be adiabatically separable from the high frequency in- 
tramolecular vibrational motion of the monomer. Within 
this approximation, a different global IPS obtains for each 
monomer vibrational state (and for each isotope). This 
approximation is expected to be sufficiently accurate to 
describe the intermolecular forces in -A-H,0 to about 1 
part in 1000. This crude estimate is based on the ratio of 
the shift in the high frequency monomer band origins in 
similar complexes (a few cm-‘) to the spacing between the 
v=O and u= 1 monomer vibrational levels ( 1800-3000 
cm-‘). In the future, if we are able to obtain a potential 
function which is more accurate than O.l%, it must be 
considered to be an effective surface, which includes cou- 
pling to high frequency monomer vibrations. As in our 
previous work,4 we express the IPS of Ar-Hz0 as a sum of 
contributions from the three forces which are known to 
contribute to the binding of atom-molcule complexes, viz., 
repulsion, electrostatic induction, and dispersion 

The coefficients C$$ and C’A$ in the series expansions cor- 
respond directly (to within a normalization constant) to 
the coefficients derived in a spherical tensor representation 
of the intermolecular forces such as those described by 
Gray and Gubbins3’ and by van der Avoird et aL3’ Sym- 
metry constraints on the multipole expansion of the induc- 
tion and dispersion interactions for any atom-molecule 
complex allow nonzero coefficients C,+, only when both A 
and n are even or when both are odd. For the specific case 
of Ar-H20, symmetry also constrains p to be even. 

V(R,~Y~) = ~repuIsion(R,~,‘$) + Vinduction(Rte,#) 

+ Vdispersion(Rte,4)- (1) 

For the sake of clarity and formal adherence to the ex- 
pected theoretical behavior of the long range forces, we 
have rearranged some of the expressions for the three com- 
ponents of the IPS, but the expressions are essentially 
mathematically equivalent to those employed in Ref. 4 

V repu~ion(R,&$) =A(B,~)e-B(e,d)[R--Rref(e,9)l, 

&nduction (R,e,+) = - 2 C”fd(e,+wn, 
n=6 

(2) 

(3) 

Vdiipenion (R,e,4)= - i c$ye,+)D,(wv. (4) 
n=6 

Here D, (R ) is a damping function of the form proposed by 
Tang and Toennies,28 and following Hutson, we damp 
only the dispersion forces. All of the terms in the model 
IPS which are a function of the angles (A,&&, 

The IPS defined in Eqs. ( 1 )-( 5) is a flexible function 
constrained to reproduce the known form of intermolecu- 
lar forces at both long and short range. The unknowns in 
this function to be determined by fit to the VRT spectra are 
the coefficients in the series expansions of A (&$>, /3( f3,$>, 
R,fwh d,“dw), and ep( e,#). However, this in- 
volves far too many unknowns to vary in a least squares fit, 
and many of them are not independently determinable. 
Accordingly, we place several constraints on the empirical 
surface to obtain a form with a reasonable number of in- 
dependent unknowns. First, the IPS is constrained to have 
the proper quantitative behavior at long range by fixing the 
values for the Cap and CT+ induction and dispersion co- 
efficients, using experimental and ab initio values for these 
properties. Expressions for these terms are summarized in 
Table II. The necessary molecular constants used to eval- 
uate these expressions and for the other calculations de- 
scribed in this paper are collected in Table III. As before, 
the induction energy is completely fixed using the experi- 
mentally determined multipole moments for water (,~,0) 
and the experimental dipole polarizability of argon, (a,). 
The dispersion energy formally depends on the frequency 
dependent polarizabilities of both partners in a dimeric 
complex.31*41 The expressions for the low order dispersion 
interactions given in Table II are approximations to the 
exact expressions which instead employ the static polariz- 
abilities of H20 and the isotropic C, coefficient. The C, 
coefficient incorporates some of the effects of the differ- 
ences between the frequency dependent polarizabilities and 
the static polarizabilities. We employ an improved estimate 
of the isotropic C, coefficient for the complex, C,=53.91 
hartree (ao)6, compared to the previous value of 55.7 har- 
tree (ao)6, using the formula given by Buckingham, 
Fowler, and Hutson 

Gb= 
2qawebiib 

cgEb]2+cb[a]2’ 
(6) 
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TABLE II. Coefficients of the multipole expansion of the induction and 
dispersion forces. 

Induction 

Gf c$y cg c$ c;“,” c;:” 

Rmb aA& a,& 
R-7 12 

-y Q&920 

Dispersion 
Cg” 

R-' C, 
C$’ 

"10 
a20 

‘6s 
00 

I 
1 

e20= en-5 te,+e,j , e22=(err-eyyL 

I 
1 

a20 H20=aa-2 (a,+a,), 

1 
a22 H20= (a,-a,), ay=z (a,+a,,+a,) 

Here ijia is the isotropic polar&ability of molecule a and e 
is the isotropic dispersion coefficient for the homodimer. 
The C6 coefficients used in this work are estimates obtained 
from measurements of dipole oscillator strength distribu- 
tions. The C, coefficients are taken from the calculations of 
Bulski et a1.,23 which we presume to be more accurate than 
our previous estimate. Second, we reduce the number of 

unknowns further by truncating the series expansion of 
induction forces and dispersion forces at C,. Truncating 
the attractive forces places limits on the number of terms 
which can be included in the spherical harmonic expan- 
sion, since the multipole expansion of the induction and 
dispersion forces obey the constraint A< (n - 4) .30 In any 
case, the available experimental data do not demand these 
higher order anisotropies. One strategy for bootstrapping 
up to higher order dispersion terms has been employed by 
Hutson in recent studies of Rg-HX potentials.7’8 By fixing 
the ratio Cs/Cio at a value obtained from ab initio calcu- 
lations, some of the effects of higher order terms may be 
more accurately accounted for (if the ab initio ratio is 
correct). We have not employed this method here and do 
not expect that our results would have differed significantly 
if we had. Third, we subsume the induction forces which 
are not fixed into the dispersion contribution proportional 
to the same power of R. The induction and dispersion 
coefficients which vary as the same power of R are not 
separately determinable, since they differ in form only by 
the presence of the damping function (which is a weak 
function of R in the region sampled by the experimental 
data) in the dispersion energy. The second and third ap- 
proximations require that the Cs and C, “dispersion” co- 
efficients be interpreted with some care; again, they reflect 
the sum of both dispersion and induction forces. More 
importantly, the values of the C8 and C, coefficients deter- 
mined in the fits will accurately represent the long range C’s 

TABLE III. Physical constants for argon, H,O, and Ar-HrO. 

~=0.7298 eo, Reference 32 e,= 1.96 eai 
/3,,= - 1.86 eui 
f?,= -0.097 e& 

a,=10.311 d Reference 34 amgo” = 11.096 ai 
a,=9.549 4 
a== 9.907 ai 
qgm-lrgon = 64.3 hartree $ Reference 36 C+‘=73.4 hartree u’ 

$;~~;;;a.;~;~~~~~ 

A6omic masses (g/mot) 

E;;;-& C;‘= - 13.6 hartrGa7 0 

c’= 12.3 hartree ui 
Reference 37 

H= 1.007 825 D=2.014 102 
%=15.994915 “O= 16.999 131 40Ar= 39.962 384 

Reduced mass 
Ar-H2’60= 12.415 189 Ar-H2”0= 12.884 241 Ar-D2”0= 13.339 416 
Center of mass coordinates (x,y,z) %, origin at the oxygen atom 
H2160 (0, 0, 0.067) H,“O (0, 0, 0.063) D,O (0, 0, 0.120) 
Watson A-reduced rotational constants (cm- ‘)* 

H,% A = 27.880 6 C=9.277 8 B= 14.521 6 
Ai=0.013 846 Aik= -0.043 590 Ak=0.032 094 
6j=0.003 408 Sk= -0.005 562 

D?O A = 15.420 0 C=4.845 3 B=7.2729 
A,=0.004 001 Ajk= -0.012 56 Ak=0.C09 10 
6j=0.000 988 6p -0.001737 

H2”0 A=27 6953 C=9.256 8 
Quadrupole hyp&ne coupling constants (MHz) 

B= 14.5214 

eQh= 
e?%= 
eQqcr= 

Hz”0 Reference 39 D,O Reference 40 
-8.891 0.153 9 
- 1.224 0.022 1 
10.115 -0.175 04 

Reference 33 

Reference 35 

Reference 23 
Reference 23 
Reference 23 

Reference 38 

Reference 38 

Reference 39 

*The rotation and distortion constants for H,160 and D,O are obtained from a fit to the low j (j=O-4) 
rotational lines reported in Ref. 38 using the II’ coordinate system (a-x, b-2, and c-v) used in 
calculations throughout this work. 
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and Cs coefficients of the “true” untruncated representa- 
tion only if the multipole expansion is rapidly converging 
in the region sampled by the data. Otherwise these con- 
stants should not be interpreted physically, since they will 
reflect contributions from Cle, C, i, * * * terms in a noncon- 
verging series. If this is the case, they should be viewed 
simply as parameters of a flexible functional form for the 
IPS. 

These first three constraints still leave too many pa- 
rameters [36 if all terms through r,( 0,+) are included] to 
be independently determined from the VRT data. Since the 
VRT data sample the region of the potential near the min- 
imum, it is useful to express the potential as a series ex- 
pansion in the angular coordinates about the position of 
the radial minimum. Building on the treatment of the IPS 
of Rg-Hz systems developed by LeRoy and Hutson, and 
used by Hutson in the development of Rg-HX (X=F, 
Cl, Br) IPS,3*7p8*29 we constrain R,( &#) (the reference 
distance in the exponential repulsion) to be the position of 
the radial minimum [R,( &#)I along the orientation (6,+). 
We constrain the one-dimensional radial cut along the ori- 
entation (6,+), to have a well depth of -e(Q), located at 
ufw, 

w,,~,4) = -ew, (7) 

and require the first derivative of the IPS with respect to R 
to be zero at the minimum, 

V’(R,,8,l#) =o. (8) 

I 

The well depth at the position of the radial minimum 
e(f@) is then expanded in symmetry adapted renormal- 
ized spherical harmonics, as in Eq. (5). In the fits we vary 
the coefficients of this expansion (en,+ rather than the 
values of Agr and the coefficients of the dispersion Cs,$ and 
C 9,+. This procedure has been shown4* (and our own tests 
confirm) to produce a set of potential parameters which 
are more precisely determined and are less correlated than 
does a direct fit to the parameters Rf$ AAll, and C,+. In all 
systems (Rg-H2,42 Rg-HX,3p7v8 Ar-NH3,9 and in this 
work) for which the constraint R,=R, ha been 

employed and for which A, and Ctip have been related to 
each other through E,+, the model potential has retained 
sufficient flexibility to accurately reproduce the experimen- 
tal data despite the large reduction in the number of free 
parameters. We also emphasize that because of the rela- 
tionship imposed by this parameterization between C,,, 
and E,+, the shape of the potential minimum is very insen- 
sitive to the choice of values for the C, and C7 coefficients. 
Changes in these coefficients are easily compensated for by 
corresponding changes in Cs and C9 with virtually no effect 
on the potential in the region most extensively sampled by 
the VRT data. 

Rearranging Eqs. (7) and (8), defines a nonlinear 
transformation between the primitive potential parameters 
C&9,$), C@,#), A (8,#)and the quantities actually deter- 
mined in the fit, /3(@), e(Q), and R,(@): 

c8w) = 
cacfw hen vu) + vbwwbww I+ Y~~(R,(e,~),e,~)}RR(e,~) 

[D~(R,(e,~))--8(R,(e,~>)(8/R,(e,~)--P(e,~)}i ’ 

w-w = 
ww hd(e,4) + vZ#wv),e,+)i + v~(R,(e,~),e,~)}R~(e,~) 

vwww)) -wuw) we, -mwi 7 

A(e,~)=c8(e,~>~8(R,(e,~))R,8(e,~)+c9(e,~)~9(Rm(e,~))R,9(e,~)-~~[R,(e,~),e,~i 

- ~~tR,w),w -at+), 

(9) 

(10) 

(11) 

where 

In Eqs. (9)~(ll), Eeym(e,d) and e&&9,+) refer to 
sums over only the even or odd ,l contributions to E( e,+). 
Expressions for the derivatives of the damping functions 
are given in Ref. 29. In deriving Eqs. (9) and (lo), we 
have applied the additional constraint that Cs be propor- 
tional to both seven and Ve$$, and that C9 be proportional 
to e&d and I$;. This ensures that these two terms vary 

I 

approximately as ,‘4 = even and il = odd spherical harmon- 
its, respectively. Using Eqs. (9) and ( lo), it can be shown 
that if p( e,+) and R,( 6,d) were isotropic, the relationship 
would be exact. The accuracy of the approximation de- 
pends in detail on the size and shape of the anisotropy in 
these two terms. For the case of the AW2 IPS this approx- 
imation is good to better than 5%. It should be noted that 
this is a limit only to our ability to physically interpret the 
Cs and C9 values derived from the AW2 parameters. The 
actual energies defined by the AW2 IPS may be more ac- 
curate than this. 

The mathematical representation described above for 
the IPS has a number of differences from the form used to 
develop the AWl surface. These differences are primarily 
aesthetic and the quantitative differences between the two 
forms are small. The new formulations more closely adhere 
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to established theoretical treatments of intermolecular 
forces,30*31 and have been arranged as much as possible as 
expansions in renormalized spherical harmonics to facili- 
tate a clearer discussion of the contribution of the different 
attractive and repulsive terms in the IPS and, specifically, 
of their relationship to the coefficients EAT. 

SENSITIVITY ANALYSIS 

At this point we are left with a model IPS with the 
parameters, e,+, R$, and DA,, defined in Eqs. (9)~( ll), to 
be determined through least squares analysis. Before de- 
scribing the procedure we have employed to develop the 
full three-dimensional IPS from the experimental data, it is 
useful to make a qualitative assessment of which terms are 
determinable from the VRT data set. The existing data 
consist of VRT energy differences, rotational term values, 
Z-type splittings, and expectation values associated with the 
dipole moment and quadrupole hype&e structure of the 
complex. The relationship of these data to the potential 
parameters described above can be characterized by using 
formulas derived within the reversed adiabatic approxima- 
tion for the effect of the radially averaged anisotropies on 
the internal rotor basis states. As Hutson2i has shown, the 
energies of the first four ortho levels in symmetric Ar-H,O 
isotopes are given approximately by 

1 h)2 

-4E[TT(110)l-E[n(lOl)l ’ 
(12) 

1 k,o)2 

+4E[n(l,,)l--E[n(l,,)l ’ 

1 & 
E[W llO)l =qo-633+~ e20+5 E229 

where E,,i and Elto refer to the free rotor energies of the 
unperturbed monomer. These equations neglect the effects 
of angular-radial coupling, higher order anisotropies 
( e3&z,‘. . ), and coupling to higher (i.e., with j>2) inter- 
nal rotor levels. Within these approximations, the relative 
energies of these four j= 1 ortho states determine the co- 
efficients, 1 eIO I, e20, and e22 in the potential expansion. 

Similar analysis shows that the energies of the Z and 
Il ( 1 ii ) para states are most sensitive to 1 e10 I, and to eZe. 
The measurement of these transitions provides indepen- 
dent confirmation of the values of the parameters, which 
are otherwise specified by the ortho j = 1 levels, and allows 
the effects of higher order terms to be evaluated. In par- 
ticular, the Ar-H,O 2( 1 ii) state is strongly affected by 
angular-radial coupling. Since the well depth parameters 
are established by the Ar-HI0 ortho levels, the position of 

the para levels establishes the variation in the position of 
the radial minimum with orientation (primarily the pa- 
rameters R g, but also a,~,>. The measured ); and II(2t2) 
states provide the data which may allow determination of 
I e30 I and I ~32 ( , since these terms mix j = 2 internal rotor 
states with (among other states) the measured j = 1 inter- 
nal rotor levels. Without the j = 2 internal rotor levels the 
contribution of the small ( -20 cm-‘) I e30j and 1~32 1 
terms to the j = 1 internal rotor energies cannot easily be 
separated in the fits from the effects of lower order an- 
isotropies. The Ar-D,O j= 1 internal rotor energies are 
sensitive (to first order) to the same potential parameters 
as the Ar-H20 j= 1 energies. Differences in the effect of 
second order contributions and in the zero point motions 
along the radial coordinate allow higher order terms in the 
spherical harmonic expansion of the well depth and some 
of the parameters R$ and flak to be established. 

The parameter e10 and likewise all other coefficients of 
A=odd spherical harmonics enter into the energy expres- 
sions as a square (i.e., they do not contribute to any diag- 
onal matrix elements). The signs of these terms in the 
potential is thus not directly determinable from the posi- 
tion of the VRT band origins. In the final AW2 potential, 
we include two A=odd terms, viz., elO, and e3s. Four dif- 
ferent potentials, corresponding to all possible combina- 
tions of the signed values of these parameters might possi- 
bly yield equivalent fits to the experimental vibrational 
eigenvalue differences. The signed value of the dipole mo- 
ment does place restrictions on the signed values of these 
terms. Hutson21 has given a clear exposition of the rela- 
tionship of the ground state dipole moment to the signed 
value of en,. The dependence on the signed value of e30 can 
be derived in an analogous fashion. However, only the 
magnitude of the ground state dipole moment has been 
measured, not its sign.25 The ambiguity in the sign of these 
coefficients is thus not resolved by these measurements ei- 
ther. Despite this problem, knowledge of the absolute mag- 
nitude of the dipole moment does constrain the relative 
signed values of the terms. For instance, since the dipole 
moment of Ar-H,O in its ground state is small, a large 
positive value of e10 (which would contribute to a large 
positive dipole moment) requires that e30 have a large neg- 
ative value to compensate, and produce a small net dipole 
moment. Hence, the magnitude of the dipole moment does 
reduce the fourfold indeterminacy-even without knowl- 
edge of its sign. Rotational term values, isotope shifts, and 
nuclear quadrupole hyperfine coupling constants also can 
be weakly sensitive to the sign of the coefficients of odd 
spherical harmonics. The nuclear quadrupole coupling 
constants of Ar-H2170 measured in the microwave exper- 
iments of Fraser et a1.25 are useful in this respect. These 
data are mainly sensitive to the values of ezo and e22, al- 
though they will be weakly sensitive to other potential pa- 
rameters. 

The n = 1 +-n =0 stretching frequencies are sensitive to 
the curvature of the IPS near the minimum. This curvature 
depends primarily on the parameters describing the isotro- 
pic well depth (em) and the slope of the repulsive wall 
(&-J. Measurement of the fundamental stretching fre- 
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quency does not allow both of these parameters to be de- 
termined independently, even though a correlated combi- 
nation of the two is very precisely determined. In the 
absence of a direct measure of the dissociation energy, de- 
coupling these two parameters requires measurement of 
more than two points on the potential curve. Higher 
stretching levels, internal rotor levels which are mixed with 
higher stretching levels, or VRT data for different isotopes 
can provide the necessary constraints. Alternatively, non- 
spectroscopic data such as the temperature dependence of 
pressure second virial coefficients could be used as a con- 
straint. This has proven effective in our recent study of the 
IPS of Ar-NH3.9 

The rotational energy level differences provide a mea- 
sure of the expectation value of 1/R2, which in turn is most 
sensitively dependent on the potential parameters R$, al- 
though they are weakly dependent on the parameters /3,+ 
as well. A single J= 1 + 0 rotational term value specifies the 
isotropic term, and additional ones specify anisotropic con- 
tributions to the extent that they cannot be reproduced by 
the isotropic term. Three anisotropic terms were sufficient 
to reproduce the experimental data used to derive the AW 1 
potential. The additional data now available require the 
inclusion of two more terms. The other VRT data now 
available are l-type splittings in the II states which result 
from Coriolis mixing with Z internal rotor states. In the 
absence of angular-radial coupling, Z-type splittings pro- 
vide little information which is not also contained in vibra- 
tional band origins and rotational term values. Since I-type 
splittings are a precise probe of the VRT wave function, 
the extent that they are not exactly reproduced by the same 
terms which specify the band origins and rotational term 
values of the states involved can determine higher order 
anisotropic terms in the well depth expansion. However, in 
Ar-H20 the effects of higher order well depth anisotropies 
on the Z-type splittings are small. The Z-type splittings also 
specify the extent of angular-radial coupling, as we dem- 
onstrated in Ref. 16. As do the other data which are sen- 
sitive to angular-radial coupling, the Coriolis splittings de- 
termine the potential parameters Rz. In the case of Ar- 
H,O, these Coriolis splittings provide a more precise 
constraint on the angular-radial coupling in the IPS than 
do the positions of the VRT states alone. This can be seen 
in the magnitude of the relative errors of the predicted 
values for these properties on the AW 1 surface. Although 
the largest error in the predicted position of a VRT band is 
3%, errors of more than 50% in the Z-type splittings are 
evidenced. 

Two recently developed methods, the DVR44*45 and the 
collocation method4’47-‘0 are closely related. Both are 
members of a class of numerical methods known as mixed 
basis set/pointwise techniques and have the advantage that 
no integrals are required for evaluation of matrix elements. 
The collocation method is perhaps the simpler of the two 
to implement. In addition to its simplicity, the primary 
advantage of the collocation method is that it can incorpo- 
rate nondirect product basis functions. For example, Yang 
and Peet” used a local basis set of distributed Gaussian 
functions in R and in 8 in their computations of the eigen- 
value spectrum of Ar-C02. If a direct product basis set 
were used, every function in R would be paired with every 
function in 8. However, by placing functions only at points 
where the potential energy is below some fixed cutoff value, 
equivalent convergence can be achieved with a much 
smaller basis set. Because of the large repulsive anisotropy, 
points below the cutoff are not distributed spherically 
about the center of mass of the CO2 and a nondirect prod- 
uct basis set (viz., every function in the radial coordinate is 
not paired with every function in the 4 coordinate) results. 

COMPUTATIONAL METHODS 

In our own work we have employed another set of 
nondirect product functions, the Wigner D matrices, 
D(,y,&$). The spherical harmonics Yn,(8,4) and the 
Wigner D matrices are natural basis functions for many 
van der Waals clusters with three or more internal degrees 
of freedom because of the large amplitude motions that 
occur in the angular coordinates. In this basis, every func- 
tion in the azimuthal coordinates (r$,x) is not paired with 
every function the coordinate 8, in these functions. Specif- 
ically, only the functions Y,+(f3,+) with 1,~ I less than A 
exist. A direct product basis would thus require inclusion 
of such obviously irrelevant functions as Y2,io. The advan- 
tage of being able to employ such nondirect product basis 
sets that is inherent to the collocation method allows con- 
siderable reduction in the size of the basis set compared to 
what would be necessary in a DVR calculation. On the 
other hand, Light and co-workersM945 have developed ele- 
gant schemes for truncation, diagonalization, and recou- 
pling within the DVR framework that allow solution of 
large eigenvalue problems by the successive evaluation of 
small matrices. This is a powerful advantage, one which in 
some cases may outweigh the penalty of using a larger than 
optimal basis set. Equivalent techniques have not yet been 
developed in conjunction with the collocation method. The 
iterative procedure described by Yang and Peet” for use 
with diagonally dominant matrices is one step in this di- 
rection. 

Accurate calculation of the eigenvalues and eigenvec- 
tors corresponding to the multidimensional intermolecular 
dynamics that occur within van der Waals clusters remains 
the major impediment to extracting experimental IPS from 
VRT spectra. Only the close-coupling approach3*7*8*43 and 
the collocation method4 have been embedded in a nonlin- 
ear least squares loop for the purpose of directly fitting of 
VRT data to a model IPS. However, other methodsw6 
might actually be the most efficient for certain problems. 

The collocation equations 

The essential procedures for the calculation of atom- 
polyatom eigenvalues and eigenvectors through the appli- 
cation of the collocation method were described in Ref. 4. 
A brief review is presented here along with details of im- 
provements and additions to the methodology developed 
since our initial extension of the method to three dimen- 
sions. These include the use of contracted radial basis func- 
tions, an improved algorithm for distributing points in the 
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angular coordinates, and the use of the eigenvectors to 
calculate the expectation values of various operators. 

The Ar-H,O complex is embedded in a body-fixed Ja- 
cobi coordinate system with the origin at the center of mass 
of the Hz0 and the body-fixed z axis localized along the 
vector R, which connects the H20 center of mass to the 
atom. The angles 8 and 4 are the Euler angles describing 
the position of the argon with respect to a molecule-fixed 
Cartesian coordinate system with z’ along the C2 axis and 
the x’ axis in the plane of the monomer. 8 describes the 
angle between the Hz0 C2 axis and the vector R, and 4 
describes internal rotation of the H20 about its C2 axis. 
The reference frame is chosen such that +=oO when all 
four atoms are coplanar and 8=0” when the argon lies on 
the C, axis closest to the hydrogens. The angles a, @, and 
y are the Euler angles used to describe the orientation of 
the pseudodiatomic frame of the complex (the R vector) 
with respect to the laboratory frame space-fixed axis sys- 
tem. The Hamiltonian for Ar-H,O in these coordinates is 
expressed as 

#a* ti2 A 
H’2@2 a& R+m @+j2-2j* J> +Hmonomer 

+ uR,w), (13) 

where the HmOnOmer we employ a phenomenological Hamil- 
tonian capable of reproducing the rotational energies (j 
= 0 - 2) of HZ0 (or D20) in its ground vibrational state to 
better than 0.003 cm- ‘. Errors in the calculated monomer 
energies make a negligible contribution to the total uncer- 
tainty in the calculation of energies of the complex. The 
Hamiltonian employed here is a standard Watson 
A-reduced Hamiltonian including the effects of the quartic 
centrifugal distortion operators. Without inclusion of the 
effects of quartic centrifugal distortion, the rotational en- 
ergies of the j = O-2 levels of water are not reproduced to 
better than 0.1 cm- ’ 

Hmonmer= (y )p+ [B- r+)]j:+ r$) C?+ 

(14) 

For the calculations described in this work we have chosen 
the monomer z axis to be the symmetry axis. However, the 
rotational and distortion constants of Ref. 38 are defined 
with the monomer a axis as the z axis. In order to make use 
of the distortion Hamiltonian it was necessary to refit the 
experimental data for water in terms of the current basis 
set. These constants are given in Table III. 

The collocation method provides a relatively simple 
prescription for evaluating the eigenvalues and the eigen- 
vectors of the Hamiltonian for the Ar-H,O complex: 

( 1) Form a basis set as a series expansion of functions, 
constrained to transform as irreducible representations of 
the permutation-inversion (PI) group of the cluster. For 
atom-molecule clusters containing a light hydride, such as 

Ar-H,O, the basis set given in Eq. ( 15) provides a good 
zeroth order description of the intermolecular dynamics: 

. 1 1 J pnax pax NR 

=d z. C C -C C C C~djknXn(R) 
e=O fl=e j=fl k=O n=l 

X(l+Son) -l’2C~n(a,P,o)S~~(y,e,~) 

+ ( - 1 )‘~-a(a,8,0>sk(y,e,~)}. (15) 

Here E=O when J=O. The function 

is a standard Wang transformation of the symmetric top 

basis functions. The D&( y,e,$) functions are normalized 
Wigner D matrices in the phase convention of Condon and 
Shortley. The functions x*(R) are chosen to be any suit- 
able radial basis set which spans the space of the relevant 
intermolecular dynamics. The size of the basis set is deter- 
mined by the number of radial functions ( iVR>, the number 
of functions with different values of j (p) (note that j”“” 
is not equal to Ne- 1 for all matrices since jmin is not 
necessarily equal to zero), and the maximum value of k 
included (k”‘““). For Ar-H20, there are four irreducible 
representations in the molecular symmetry group C2,( m). 
To reduce the computational effort, the wave functions are 
partitioned according to these symmetries. The Hamil- 
tonian does not couple wave functions of different 
permutation-inversion symmetry at any level of approxi- 
mation. The symmetrized wave functions are classified by 
the irreducible representations of C,,( m), which transform 
as follows: 

Al+k=even, J+E+g=even, 

A2+k=even, J+e+{=odd, 

B,+k=odd, J+e+c=even, 

B2-‘k=odd, J+e+c=odd. 

(2) Operate on this wave function with the Hamil- 
tonian. This step produces a set of coupled differential 
equations in the 6-dimensional space, R,8,@,/3,y. In the 
calculations described below we factor out those portions 
of the Hamiltonian operator which act as raising or low- 
ering operators on the quantum number a. The effect of 
this operator (the Coriolis operator) is evaluated subse- 
quently by direct integration over a small subset of the 
VRT wave functions obtained using the collocation 
method. This approximation reduces the size of the matri- 
ces which must be stored in core with no significant effect 
on the accuracy of the eigenvalues. This is equivalent to 
performing the calculation within the “helicity decou- 
pling” approximation (assuming that fi is a good quantum 
number) and then recoupling these approximate solutions 
to obtain the exact result, 
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(3) Left multiply by a parity adapted spatial rotational 
wave function such as 

+ (- l)E’+o’DJ* M-n,(~,P,W-in’% 

and integrate over the angles which are arguments of the 
spatial wave function (in this case a,P,r) to eliminate the 
dependence of the coupled differential equations created in 
Step 2 on the spatial orientation of the cluster. We also 
include the factor of R in Eq. (16) to simplify the resulting 
coupled differential equations, but this is not necessary. 

(4) Choose a set of collocation points 
[Rn~,~j’k’s#~~k~Ic~n , and evaluate the modified coupled dif- 
ferential equations created in Step 3 on this set of points. 
This step arranges the coupled differential equations in the 
form of a generalized unsymmetric eigenvalue problem. 
The rows of this matrix equation are labeled by the collo- 
cation points and the columns are labeled by the corre- 
sponding basis function. If the IPS has symmetry, it is 
advantageous to restrict the points chosen to be from the 
smallest region of the potential which is mapped onto the 
full IPS by successive symmetry operations. This is analo- 
gous to recognizing that an integral over a symmetric func- 
tion may be performed over the full range of the integra- 
tion or it may be performed only over the unique region 
and then multiplied by a constant describing the symme- 
try. In the application of the collocation method this extra 
constant becomes incorporated into the eigenvector ma- 
trix. 

(5) Solve the unsymmetric matrix eigenvalue problem, 
usually with a standard library routine. 

The solutions to the unsymmetric eigenvalue problem 
can, in principle, be complex and have nonorthogonal 
eigenvectors. However, Yang and Peet4* have shown that 
the collocation method is an approximation to the varia- 
tional solutions to the Schriidinger equation with the same 
accuracy as would be obtained if the integrals were evalu- 
ated by Gaussian quadrature on the collocation points. In 
our own experience, when a sufficient number of 
functions/points are used, the complex components of the 
eigenvalues are observed to approach zero and the eigen- 
vectors obtained are orthogonal to a high level of precision. 

The most significant changes from our previous appli- 
cation of this method are the use of contracted radial func- 
tions and improved distribution of the angular points. The 
use of contracted radial functions was discussed by Peet 
and Yang47 in their application of the collocation method 
to the study of Ar-HCI. For our purposes, contracted ra- 
dial functions have the advantage of more uniform conver- 
gence of states with two quanta of stretching excitation 
than methods which simply limit the range over which 
functions are placed, as we described in Ref. 13. We find 
that all of the states required to determine the IPS are 
converged to 0.01 cm- ’ when using nine contracted radial 
functions. Approximate radial eigenfunctions are obtained 
by solving a one-dimensional problem on a radial potential 
surface which represents the distance of closest approach 
at the dissociation energy (REcO) of the two subunits on 
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the multidimensional surface and the well depth at the 
absolute minimum (emin) on that surface. These parame- 
ters are chosen such that the eigenvcctors of the one- 
dimensional Hamiltonian span the radial space of the full 
three-dimensional IPS. One potential which meets these 
criteria was proposed by Peet and Yang 

Y(R)=4eh[ (+)“-( %)“I. (17) 

However, this potential can not simultaneously repre- 
sent the distance of closest approach and the position of the 
radial minimum on the true Ar-H20 surface very well 
(although it does for other potentials). As a result, each 
eigenvector on the three-dimensional surface has substan- 
tial contributions from several eigenvectors of the one- 
dimensional surface. This is does not present any compu- 
tational dilhculties, but it makes interpretation of the 
eigenvectors somewhat more difficult than necessary. The 
model potential 

Y(R) ,Ae-8(R-Rd - f: G,D,SR)R-“3 (18) 
n=6 

with A=215 cm-‘, /3=2.30 .&-I, RRef=3.6 A, c6=53.91 
hartree (u~)~, C7=l155 hartree (a,-J7, and Cs=3015 har- 
tree (a,,)* was used instead. The potential constants A, fi, 
and C, and Cs were adjusted to give approximately R,=, 
~2.95 A, emin= 160 cm-‘, and Rminz33.6 A, (the position 
of the radial minimum on the full three-dimensional sur- 
face). This choice of REGO and emin insured that the con- 
tracted wave functions would span the entire space of the 
intermolecular dynamics in the radial coordinate through- 
out the least squares fits. C6 was fixed at the same value 
used in the full three-dimensional calculation, 53.91 har- 
tree (~e)~, and the other values were chosen somewhat 
arbitrarily. The first few contracted functions on this one- 
dimensional surface closely mimic the fully coupled radial 
eigenfunctions, making it easier to interpret a list of the 
eigenvectors. Convergence of the full three-dimensional ei- 
genvalues may also be slightly faster using the improved 
model one-dimensional potential, but not significantly. For 
both potentials, the contracted functions were generated by 
distributing 40 Gaussian functions evenly between 2.8 and 
5.9 A, and solving the one-dimensional Hamiltonian 

-ti2 d2 
HID=F &$+ V(R) (19) 

variationally. The integrals were evaluated numerically us- 
ing the trapezoid rule with limits of integration well be- 
yond the centers of the last distributed Gaussian functions. 
As noted by Peet and Yang,47 and earlier by LeRoy et al. ,5’ 
it is counterproductive to attempt to obtain highly accurate 
eigenvalues and eigenvectors for the model problem. It is 
preferable for the higher functions in the trial basis set to 
have increasing oscillation in the well, rather than the 
smoothly varying behavior of the eigenfunctions of the 
one-dimensional surface near dissociation. The one- 
dimensional functions with increasing oscillation in the 
well have more flexibility in the regions where the one- 

J. Chem. Phys., Vol. 98, No. 8, 15 April 1993 

Downloaded 13 Jun 2006 to 128.32.220.140. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



R. C. Cohen and R. J. Saykally: Potential energy surface for ArH20 6019 

dimensional and three-dimensional potentials are very dif- 
ferent than would exact eigenfunctions of the one- 
dimensional Hamiltonian. 

The second significant change in our computational 
approach is in the choice of points in the angular coordi- 
nates. Points in 8 and (b must be chosen by some method 
which couples the two coordinates, since ( 1) the wave 
functions used are not direct-product wave functions, and 
(2) we choose to formulate the problem as a square matrix 
rather than as a rectangular problem which has more 
points than functions. Choosing points appropriate to these 
compound functions is not as obvious as for direct product 
functions. For an unsymmetrized set of spherical harmon- 
ics, including all (I+ 1)2 functions from Yoo through Yrr, 
Friesner52 has described a set of collocation points which 
are Gauss-Legendre points in 8 and evenly spaced 
(Gauss-Chebyshev) in 4. However, when symmetry is 
used to partition the basis set, the points must also be 
partitioned to obtain the optimum accuracy in the eigen- 
values. We assign angular points separately for each sym- 
metry subblock of the Hamiltonian, and within that sub- 
block, we assign them separately for each distinct value of 
the pair of quantum numbers E and a. In Ref. 4, we took 
the points in 8 to be Gauss-Legendre points of the order of 
the number of distinct values of j, (j,,- j,,+ 1) in- 
cluded in the basis. These points were taken to be an or- 
dered set with 8, the Gauss-Legendre point closest to 8=0 
and 8,, the Gauss-Legendre point closest to 8= 180”. 
Points in 4 were chosen on the interval $=0’-900 for each 
set of functions defined by a given value of j, and to be at 
the extrema of the highest order function in 4 associated 
with the set of functions defined by that value of j. For 
example, for the j =2 function, in a B2 symmetry J=O 
calculation, two points in 4 would be chosen at the extrema 
of the k =2 internal rotor basis function (cos 24). Simi- 
larly, two points in 4 would be chosen for j=3, but three 
points would be chosen for j=4. Since the Wigner D ma- 
trices are a nondirect product basis, the direct product of 
these points would give more than one point per function. 
A procedure for associating the points in 8 and I$ was 
established, such that a one-to-one correspondence in the 
number of functions and points is obtained. However, we 
have found that this procedure is inadequate when ex- 
tended to potentials with higher order anisotropy than we 
present in the AWl IPS. 

Our new algorithm for choosing points is as follows: 
As before, we find points separately for each subblock of 
the Hamiltonian matrix and for each pair of E and fi sep- 
arately within that subblock. The individual points in 8 are 
chosen exactly as before; they are taken to be the Gauss- 
Legendre points of order @. In 4 we choose points on the 
interval O-90” at the extrema of the highest order function 
(largest value of k) in the portion of the subblock being 
considered. This is equivalent to choosing Gauss- 
Chebyshev points of order k,, shifted to account for the 
relative phase (sin vs cos) difference of the wave functions 
of different symmetry. We make the association of points in 
8 and 4 with each other differently than we did previously. 
The points in 4 are associated with points in 8 to give the 

TABLE IV. Convergence of the collocation method. Energies of the J=O 
Al and B, eigenstates with the basis sets of g/10/8, 15/10/8, 9/U/11, 
and 13/12/l 1 as defined in the text. 

g/10/8 15/10/8 9/12/l 1 13/12/11 

Al 
-98.329 527 

-68.082 548 

-57.650341 
- 39.252 491 
-32.858 275 

-27.130360 

-18.177 299 
-8.715 959 

82 
-81.582494 

-47.608308 

-25.006934 

- 15.981 081 
-0.611 178 
10.425 154 
16.413 261 
24.221976 

-98.333 004 -98.328544 -98.332450 

-68.066903 -68.076708 -68.060282 

-51.674 869 -57.650484 - 51.611 101 
-39.223 823 - 39.250 009 -39.218 704 

-32.863 308 -32.840428 -32.845 988 
-21.217933 -27.125 563 -21.212 643 

-18.108 819 -18.176983 -18.267616 

-8.115 251 -8.717035 -13.360211 

-81.585959 

-47.584628 

-25.016082 
- 15.951 227 

-0.662878 

10.334113 

17.368084 
26.761243 

-81.580304 -81.584198 

-47.601623 -41.584679 

-24.993121 -24.997145 

- 15.973 842 -15.948 887 

-0.610 803 -0.655204 

10.432 839 8.836 263 

16.420 200 12.233 341 

24.228206 19.652 251 

most even distribution on the surface of the unit sphere 
that is possible. If an exactly even distribution is not pos- 
sible, then the extra functions are associated with points in 
0 near the potential minimum. For Ar-H20, they are dis- 
tributed evenly about 8 = 90”. Specific 8,# associations pro- 
ceed in order. For example, if five points are chosen in 4 
the ordering proceeds as follows: (e,,&>, (Q$,), (Q$,), 
(e2,4,), (e2,&), (e2,W, (e3,$2), etc. It is worth noting 
that this new procedure does not ever require the implicit 
association of a given point in the configuration space of 
the problem with a particular function, in contrast to our 
previous method. This new algorithm gives stable uniform 
convergence for all four of the different C2, symmetry 
blocks. 

The convergence of the calculations with respect to the 
number of functions/points follows the general pattern es- 
tablished by Peet and Yang in calculations of Ar-HCl ei- 
genvalues,47 and which we described in Ref. 4 with respect 
to Ar-H20. The number of functions needed to obtain 
reliable energies for the least squares fits is somewhat 
larger than in our previous calculations because of the 
presence of higher order anisotropies in the new IPS, a 
substantial decrease in the binding energy (20% >, and the 
need to obtain accurate eigenvalues for states which are 
near to the dissociation threshhold. We choose a basis/ 
point set of size NR=9, @= 10, and kmax= 8 (denoted 
9/10/8 for simplicity) and use a radial interval from Rti, 
=2.9 A to R,,= 5.9 A. In Table IV we list Al and B2 
J=O eigenvalues obtained using this basis set and the 
larger basis sets-15/10/g, 9/12/11, and 13/12/11. It is 
evident that the lowest eigenvalues are converged to 0.01 
cm -’ using the 9/10/8 basis. We estimate convergence of 
the VRT energy differences using this basis to be better 
than 750 MHz. Most J= 1+-O rotational transitions are 
converged to better than 5 MHz (the experimental preci- 
sion is typically - 1 MHz). Uncertainties in computed 
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J=2+ 1 transition energies are roughly twice those of the 
J= 1-O transitions. For states affected by strong Coriolis 
mixing, the uncertainty in l-type splittings and rotational 
energy differences can be much larger because of the un- 
certainty in the spacing of the associated VRT state ori- 
gins. Estimates of these uncertainties were made using the 
approximate formulas for the Coriolis splittings derived in 
Ref. 16. These data were weighted accordingly in the fits. 
This 9/10/8 basis set gives matrices of dimensions 270, 
252, 252, and 252 for the A,, A2, B1, and B2 J=O, iI=0 
blocks of the Hamiltonian, respectively. Matrices for n > 0 
are about two times larger. 

A few other comments about convergence are in order, 
since it is possible that the degree of convergence may 
change during the course of the least squares fits. We find 
that the convergence of the radial basis is quite stable to 
large changes in the potential parameters, provided that 
the relevant range of the intermolecular dynamics is rep- 
resented by the contracted radial basis. The distance of 
closest approach and the maximum extension of the radial 
eigenfunctions must be accessed by the contracted func- 
tions. During the course of the least squares fits described 
herein, there were relatively small changes in these aspects 
of the IPS, although the orientation at the closest approach 
underwent many variations. Employing a larger estimate 
for the well depth, a shorter distance of closest approach, 
and a longer R, than can reasonably be expected to oc- 
cur during the course of the least squares fits should pro- 
vide stable convergence throughout the process. The angu- 
lar basis is more diflicult to deal with. Inclusion of higher 
order anisotropies in the well depth expansion or in the 
expansion of the reference distance can dramatically affect 
the number of angular functions that are necessary for 
convergence. The terms R$ effectively generate higher or- 
der well depth anisotropies at distances away from the 
potential minimum. This can be seen by examining the 
form of the C’ and C’s coefficients as defined in Eqs. (9) 
and( 10). If R,,f and ati were isotropic, then these disper- 
sion coefficients would have the form of the nonzero spher- 
ical harmonic expansion coefficients (e+) at all distances. 
Multiplication of EA@ by anisotropic terms in these two 
expansions in Eqs. (9) and (10) causes Cs and C, to be 
proportional to additional higher order spherical harmonic 
terms. Since for the purposes of the least squares fits we 
place a premium on using the smallest basis set of sufficient 
accuracy, for large changes in any of these parameters, we 
found it necessary to confirm that the eigenvalues were 
adequately converged. 

mass of the ground state (R,) structure of the H2160 iso- 
tope. All of the calculations, however, proceed with R’, f3’, 
and 4’ defined relative to the center of mass of the mono- 
mer in question. For the symmetric isotopomers, no other 
changes in the computational methods are necessary. For 
Ar-HDO there is less symmetry and the calculations must 
be performed using a basis set which is twice as large as the 
one for the H20 and D20 isotopes. Since there is only one 
Ar-HDO VRT band available at this time we have not 
incorporated these data. The H2t60, H2170, and D20 ro- 
tational constants, the center of mass distances relative to 
the oxygen atom, and the reduced masses are listed in 
Table III. In the calculation of H2t70 properties we fix the 
quartic centrifugal distortion constants to those of the nor- 
mal isotope. As can be seen from Table III, the rotational 
constants of the H2160 and the H2170 isotopes are nearly 
identical. This approximation is thus not expected to alkt 
the accuracy of any of the calculated properties of the 
Ar-H2170 isotopomer. 

Eigenvectors: Dipole moments, quadrupole hyperfine 
structure, and the Coriolis operator 

lsotopomers 

Calculations of the VRT spectra of isotopomers of Ar- 
H20 proceed in an identical fashion. In principle, each 
different monomer vibrational level of each isotopomer 
represents a different average geometry, and hence separate 
IPS represent the intermolecular forces for each case. We 
choose to represent all of these different potentials in a 
coordinate system referenced to an origin at the center of 

The eigenvectors of the Hamiltonian are routinely ob- 
tained from the collocation calculations. They are ex- 
pressed as coefficients describing a linear combination of 
the basis set used. For example (Table V), we present the 
square modulus of the eigenvectors of selected J=2 states 
for AI-H20 calculated on the AW2 IPS. The coefficients 
describe a linear combination of basis set defined in Eq. 
( 15). These eigenvectors demonstrate clearly that angular- 
radial coupling has little effect on the ortho n =0, j = 1 
states. The square modulus of the eigenvectors of each of 
these states is nearly 90% the n=O contracted function. 
The ground state radial wave function of the complex is 
given approximately by the following linear combination of 
contracted functions: [0.96 n =0 - 0.23 n = 11. The square 
modulus of this eigenvector accounts for most of the ortho 
n=O radial eigenfunctions, and for the eigenfunctions of 
X(0,), Il(l,,), and II(2,,). The n=l ortho eigenfunc- 
tions are also dominated by a single component function of 
the primitive basis, evidence that there is comparatively 
little angular-radial coupling affecting even these excited 
stretching states. However, in the Z( 1 it) para state, the 
n=O eigenfunction accounts for less than 60% of the 
square modulus of the total eigenvector. The coefficients of 
the eigenvector for this state may be compared with those 
of the less strongly mixed ortho II =0 and n = 1 states to 
show that the B ( 1 1 I ) state is mixed primarily with n = 1, 
Z(O,,,-J but also with n=2, X(0,). The X(2,,) state is also 
strongly mixed. The full three-dimensional eigenfunction is 
close to a 50:50 mixture of X(2,,) and n=2, 8( l,,,). This 
is much stronger than the mixing of lI( 2,,) with n =2, 
lI( loi), presumably because the latter two states are not as 
close in energy in the absence of angular-radial coupling. 
These lI states are also less strongly mixed because they 
sample out-of-plane geometries for which the angular ra- 
dial coupling is smaller (see Figs. 1 and 2). 
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TABLE V. Square modulus of the wave functions for the lowest few states J=2 states of Ar-HrO. Only 
components with contributions greater than 0.01 are shown. n is an index referring to the orthonormal 

contracted radial basis function, and the labels on the Wang symmetrized function .S$ are as defined by 
Eq. ( 15). We use the same letter S to designate the angular component of the wave function, but refer here 
to the total end-over-end rotational and angular wave function. The wave functions are normalized such 
that the sum of the square of the coefficients of the orthonormal basis states is equal to one. These 
eigenvectors were calculated on the AW2 IPS described below. 

Assignment 

ww) 
n= l,Z(O,) 

n(l,,) 

P(l,,) 

n=2,8(Od 

alo,) 

n(lo,) 

Wl,,) 
n= lJ(l0,) 

Z( 110) 

n=l,n(l0,) 

1*1* 

[0.91n = 0 + 0.05n = 1]5$$+ [O.O2n = o]s$;* 

[O.O3n = 0 + 0.55n = 1 + 0.05n = 21$+x*+ [0.33n= o+ 0.02n = l]$p 

[0.89n = 0 + 0.05n = l]S$*+ [O.O3n = O]S:::* 

[0.23n = 1 + 0.14n = 2]$$*+ [0.57n = 0 + 0.02n = 1+ 0.02n = 2]$$* 

[O.O7n = 1 + 0.55n = 2 + 0.19n = 3]$#$+ [O.Oln = 0+ 0.13n = l]$$* 

[0.94n = 0 + 0.048 = l]@t* 

[0.88n = 0 + 0.07n = I].$;$*+ [O.Oln = 0 + O.O2n= l].$~ 

[O.O3n = 0 + 0.02n = I]$;$*+ [0.89n = 0 + O.O2n= l]$;$*+[O.Oln=O]S~~* 
[O.O2n = 0 + 0.82n = 1 + 0.06n = Z]S$*+ [O.O6n = O]S$i* 

LO* [0.91n = 0 + 0.08n = l]Ss,r 

[OMn = 0 + 0.69n = 1 + 0.18n = 2]S$*+ [O.O2n = 0 + 0.03n = 2].$;!* 
+ [O.O3n = oJs$(* 

n=1,nc1,0, [O.O4n = 1 + 0.03n = 2]$;1*+ [O.Oln = 0+ 0.80n = 1 + 0.08n = 2]S$* 

X2,2) [0.39n = 2 + 0.02n = 3]S$*+ [0.54n = 0+ 0.01n = l]S$t*+ [O.O2n = O]$$* 

n(2,,) [O.O2n=2]S~~*+[0.07n=2]S~;~*+[0.01n=O]S~;~+[0.82n=0+0.04n=1]S~~* 

n=2,Z(l0t) [0.07n = 1 + 0.35n = 2 + 0.16n = 3]5$*+ [0.32n = 0 + 0.07n = 2]Sa]* 

A(&) [0.89n = 0 + 0.071~ = I]$“* 

In addition to allowing the assignment of the eigenval- 
ues, the wave functions can, of course, be used to calculate 
any properties of interest, such as (cos e), (R) or (R2). 
Two properties are of special interest for predicting near 
and far infrared VRT spectra and for testing the accuracy 
of the IPS, viz., the transition moment and the nuclear 
quadrupole hypertine coupling constants. Expressions for 
the operators describing these properties have been given 
by Hutson.2’ The z component of the space-fixed dipole 
moment operator is given by 

(20) 

where we include the contribution of the dipole-induced 
dipole, but neglect the contribution of higher order perma- 
nent moments (quadrupole, octupole, * * * ) to the induced 
dipole, and the script D’s indicate Wigner D matrices 
which have not been normalized. For FIR VRT bands of 
Ar-H20, which acquire intensity from the pure rotational 
transitions of the monomer, k=O. Infrared transitions to 
the asymmetric stretching vibration of water involve the 
matrix elements of k = + 1 and k = - 1. Matrix elements of 
this operator between the primitive functions 

Gddm o’n*kww , 

which are the angular portion of the basis set defined in Eq. 
(17), have been given by Hutson21 

2k120aAr 

pH20+ R3 ] 1 (-1)“i-ni[(2jj+1) 
n 

jl 1 if ji 1 jf 
X 

--ki k kf )( -i-q 0 i2f 

X 
Ji 1 Jf 

--,Ri 0 fif I( 
(21) 

In Eq. (21), we represent the transition moment matrix 
element in a standard bra, ket notation, where i labels the 
initial state vector and f the final state vector. In our cal- 
culations we have evaluated the transition matrix elements 
( ( f 1,~ 1 i) ) between the eigenfunctions of the three- 
dimensional Hamiltonian by combining the analytical form 
of the angular matrix elements [Eq. (21)] and numerical 
integration over the radial coordinate. The J= 1 t J=O, 
M,=O-0 transition matrix elements computed in this 
manner were then scaled by a factor of \/3 as described by 
Fraser et a12' to express them as a transition dipole mo- 
ment in Debye. 

The quadrupole coupling constants of Ar-H2t70 or 
Ar-D,O are expectation values of the operators QZO and 

Q22 
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Q2o=eJ$&W,r) +qn[&W~,y) + &MW I, 
(22) 

+ K,w44 I, (23) 

where q20=qbb and q22=1/‘/6(q,,a-qcc), in terms of the 
quadrupole coupling constants (q=> of the monomer, 
which are listed in Table III. These operators are diagonal 
in J. Expectation values of Q20 and Q22 are easily evaluated 
by an analytic sum over the component wave functions, by 
analogy to Eq. (21) (see also Hutson”) and the 1 in the 
first two 3-j symbols replaced by 2, omitting the second 
two 3-j symbols, and substituting the appropriate quadru- 
pole constants for the dipole and induced dipole moments. 
The experimental observables eQqao and [eQqbb- eQqcc] 
are given by the relations eQqaa=Qzo and [eQqbb-- eQq,,1 
=2Q22. However, observed spectra do not always allow 
these two components to be separated. We neglect contri- 
butions from induction to the quadrupole hyperfine struc- 
ture of the complex, since these are much smaller than the 
induction contributions to the transition moment. As a 
result, the expectation value of these operators is diagonal 
in the radial basis set. For ease of computation, the Ar- 
H2170 nuclear quadrupole coupling constants are com- 
puted using the Ar-H2160 wave functions. This approxi- 
mation is expected to be accurate to about l%, using the 
ratio of H2t60 to H2170 rotation constants as a guide. It 
should also be pointed out that Coriolis effects on the 
quadrupole structure of many states will be at a level of 1% 
or greater. 

by collocation. For high J states, we include only those fi 
subblocks which are necessary to describe the eigenvalues 
and eigenvectors of the states of interest. Typically this 
would include only a=O,l, and 2. In some cases, e.g., the 
J=2 At states included in the least squares fits, it is ade- 
quate to omit R =2 as well. 

LEAST SQUARES FITS 

The process of improving on the AWl Ar-H20 IPS 
began with fits of the data involving J=O and J= 1 term 
values for the normal isotope. Initial iterations generated 
an improved surface with Ar-H20 data alone, then fits 
were performed using the combined set of Ar-H20 and 
Ar-D,O energy differences, the absolute value of the dipole 
moment of the Ar-H20 X(0,) state, and the 170 nuclear 
quadrupole coupling constants in Z (0,) and B ( lo1 ) given 
in Table I. The data included in the fits were weighted by 
the inverse square of the larger of the estimated computa- 
tional, model or experimental uncertainty. The relative 
weights used are similar to those employed in the fits used 
to derive the AWl surface,4 but the absolute weights are 
about a factor of 2 larger, reflecting the slower convergence 
of the calculations. The uncertainties and the residuals for 
observables calculated on the AW2 IPS are shown in Table 
I. 

In Table VI, we present the J=O and J= 1 eigenvalues 
of Ar-H20 and of Ar-D,O from the AW2 IPS, which is 
described below. The identifying labels used for each state 
represent the dominant contributions to the VRT wave 
function. These eigenvalues are calculated employing a 
9/10/8 basis with Rhn=2.9 and R-=5.9 A. This basis 
set is adequate to converge all of the levels shown, except 
those assigned to n=3, to better than 0.1 cm-‘. We also 
present in this table the transition moments for transitions 
from J=O in the para [X(0,)] and ortho [Z( lot)] ground 
states to all of the J= 1 states connected by electric dipole 
selection rules, and the expectation values of Qzo and Q22 
for Ar-H2170 and Ar-D 0. 

Our last use of the ecgenvectors is to evaluate the Co- 
riolis matrix elements. Individual subblocks of the colloca- 
tion matrix with distinct values of a are evaluated sepa- 
rately, increasing the speed of the overall computation 
significantly. The off-diagonal portion of the rotational op- 
erator which couples eigenstates defined by the primitive 
basis is then evaluated by a combination of analytic and 
numerical integration using the wave functions obtained in 
the original collocation solution. We retain the eight lowest 
energy states of each fl and create a small matrix with 
diagonal elements the energies obtained by collocation and 
off-diagonal elements the Coriolis coupling matrix ele- 
ments. The resulting eigenvalues are negligibly different 
from those obtained by direct evaluation of the full matrix 

In the early stages of these fits, and with the use of a 
small basis set, we explored whether the parameter set used 
to describe the AW 1 surface was sufficient to describe the 
newly available data, and attempted to ascertain which 
new parameters are required to fit this data. A few itera- 
tions of the least squares loop were run with some of the 
parameters held constant and others allowed to vary. Not 
surprisingly, the larger angular-radial coupling evident in 
the vibrational energies of 2( li,), 8(212), and lI(2,,), in 
the Z-type splitting in II( l,,) and II(2,,), and the J= 1 +O 
rotational term value in 8( 1 ,t) required inclusion of 
higher order terms in the expansion R$ than were used in 
the AWl surface. Both R$ and R% have been included to 
more accurately reflect the shape of the H20 molecule in 
and out of the molecular plane. However, the values of 
these two parameters are highly correlated (0.96) and a 
nearly equivalent fit could be obtained by fixing Rg at 
zero. In the monomer plane, both of these parameters in- 
crease the van der Waals bond length at the hydrogen 
bonded orientation and decrease it at approaches along the 
OH bond vector from the oxygen side. The difference is 
that Rg has the same effect both in and out of the mono- 
mer plane, while RE has a dependence on the angle I$ and 
can contribute to structure in the IPS both near the hydro- 
gens and near the lone pairs on the oxygen. These terms 
also allow closer approach of the argon in the space be- 
tween the hydrogen atoms. On the AWl surface, since they 
were constrained to be zero, the repulsive forces in between 
the hydrogen atoms are too large to allow the argon to 
approach any closer than it does directly along the OH 
bond. Similarly, the AWl parameters did not allow any 
structure in the IPS which might reflect the presence of 
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TABLE VI. The calculated J=O, and 1 eigenvalues, the transition moments for allowed J= 1-O transition originating in the lowest ortho [n=O,X( 10, )] 
or para [n=O,Z(O,&] states, and the quadrupole hyperftne coupling constants for Ar-H,O (MHz) and Ar-D20 (kHz) computed on the AW2 surface. 
The quadrupole hyperfine constants for J= 1 Ar-H,O are calculated using the Hz”0 hyperfme constants but the Ar-H2160 wave functions. 

Ar-H20 Assignment l(lPl)12 Q20 Q22 

J=O A, 
-98.329 52 
-68.082 55 

- 57.650 34 
- 39.252 49 

-32.858 26 
-21.130 36 

-18.17730 

J=O A, 

J=O B* 
-81.582 49 

-47.608 31 

- 25.006 93 

-15.98108 

-0.611 18 

J=O B, 

-45.424 25 

- 13.351 46 

Ar-DsO 

J=l A, 
-98.130 12 
-67.893 23 
-61.293 09 
-57.45107 
- 39.084 09 
-33.09121 
-32.245 81 
- 26.983 92 
-24.481 03 
- 18.032 76 

J=l A, 
-61.284 81 
- 32.673 56 
- 24.506 95 

J=l B, 
-81.388 10 
- 70.03 1 298 
- 60.306 62 
-47.426 59 
- 36.705 52 
-25.800 51 
-24.854 16 
- 20.200 37 
- 15.802 66 
- 10.511 01 
- 0.467 49 

0.825 71 

J=l B, 
- 70.038 119 
-60.311 52 
-45.222 59 
-36.711 57 
-25.804 62 
-20.22193 
- 13.170 120 
- 10.520 13 

0.819 55 

n=08(0,) 0.008 89 - 1.23 0.00 

n= lZ(O,) 0.577 8 -1.05 0.00 

n=OB(l,,) 2.75 -1.77 2.45 
n=OP(l,,) 0.527 -0.74 0.00 
n=28(0m) 0.019 9 -0.83 0.00 

n=OZ/rI(2& o.coo 00 - 2.24 2.13 
n=OZ/rI&,) 0.003 86 -2.24 2.03 

n=lX(l,,) o.OCO 31 -0.66 0.02 
n=lfI(l,,) 0.001 42 -1.18 2.41 
n=3Z(O,) 0.002 03 -0.51 0.00 

n=OrI(l,,) 
n=OfI(2,) 
n= lrI( 1,,) 

n=OX(l,,) 0.004 43 -4.03 0.00 

n=OrI(l,,) 0.054 1 0.94 5.55 
n=OrI( l,,) 2.17 -2.63 5.83 
n=lZ(l,,) 0.082 5 - 3.90 0.00 
n=lrI(l,,) 0.131 0.84 5.42 
n=lII(l,,) 0.005 59 -2.31 5.87 
n=OX(2,,) 0.518 -3.40 0.04 
n=OfI(2,,) 0.732 - 1.23 5.12 
n=21(1,,) 0.195 -3.54 0.02 
n=2rI(lc,) 0.013 8 0.95 5.42 
n=3S(lc,) 0.005 34 - 3.66 0.01 
n=3rI(l,,) o.ooo 01 - 1.98 5.89 

n=OfI(l,,) 0.94 -5.55 
n=OII( l,,) -22.62 -5.83 
n=OP(l,,) -3.50 -0.002 
n=lfI(l,,) 0.85 -5.42 
n=lrI(l,,) -2.30 -5.87 
n=OfI(2,,) - 1.20 -5.17 
n= 12(1,,) -3.62 -0.005 
n=2rI(l,,) 0.96 - 5.43 
n=3fI(lo,) - 1.97 -5.90 

- 1.77 2.46 
-2.01 -4.17 
-1.19 2.43 

J=O A, 
- 101.070 89 

-80.383 01 
- 68.939 86 

-64.839 27 

-47.738 47 

-40.942 51 

- 33.552 70 

J=O A2 

-48.027 96 

J=l A, 
- 100.884 42 
-81.705 12 
-80.157 22 
-68.807 37 
- 66.272 06 
-64.619 47 
-48.234 95 
-41.521 65 
-43.467 63 
-40.789 38 
- 33.704 48 
- 32.900 21 

J=l A, 
-81.666 59 
- 66.217 69 
-48.300 45 
-47.755 46 
-43.441 16 
-33.224 14 

n=OzqO,) 

n=OrI(l,,) 
n=OX(l,,) 
n=02(2c2) 
n=On(h) 
?I= lH(0,) 
n=lrI(l,,) 
n=lZ(l,,) 
n=OrI(2,,) 
n=22(0,) 
n= 1ncM 
n= 1~002) 

n=OrI(l,,) 56.5 64.7 
n=oncw 39.8 79.6 
n=OrI(2,,) 13.2 17.1 
n=18(2,,) 12.1 8.5 
n=Orl(2,,) - 13.7 -16.1 
n=lrI(2m) 40.3 77.5 

0.025 4 41.7 0.00 
3.25 55.6 -63.0 
0.546 22.8 - 1.7 
0.008 9 32.3 - 1.5 
0.006 41 39.4 -76.1 
0.025 4 33.2 -2.0 
0.007 16 19.0 -24.0 
0.000 65 21.7 -1.1 
0.019 7 - 13.2 5.8 
0.0@3 16 23.1 -0.1 
0.003 3 35.6 - 30.7 
o.ooo 22 37.6 -46.7 
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TABLE VI. (Continued.) 
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Ar-D20 Assignment I( Q20 Q22 

J=O B2 
-95.299 70 

-66.012 88 

-51.072 53 

-35.252 52 
-33.993 51 

J=O B, 

-66.163 91 

-35.234 41 

J=l B, 
-95.117 76 
- 84.207 46 
-81.170 89 
-65.848 27 
-59.263 61 
-56.881 94 
- 50.654 67 
-47.681 53 
-35.125 80 

33.963 09 
- 32.064 56 

J=l B2 
- 84.212 87 
-81.175 54 
-66.575 60 
- 59.260 32 
- 50.663 07 
-47.684 85 
- 35.063 70 
- 32.248 00 

n=OL( lo,) 0.013 76.7 -0.05 
n=OII( 1,‘) 0.774 12.8 -97.6 
n=Ol-I(l,o) 1.80 41.8 -97.0 
n=02(2,,) 0.534 64.6 -0.33 
n=Ol-I(2,,) 0.638 25.4 -98.5 
n=lP(lo,) 0.137 65.8 -1.1 
n=ln(lo,) 0.001 -7.1 -97.2 
n=lII(l,o) 0.003 51.2 -96.8 
n=18(2,,) 0.003 57.1 -6.7 
n=OI(303) o.coo 1 41.3 - 84.0 
n=011(303) 0.025 34.3 -84.3 

n=OII(l,,) 13.4 98.1 
n=OII(l,o) 41.3 94.6 
n=02(1,,) -50.5 0.002 
n=OII(2,*) 22.0 97.3 
n=llI(l,,) 11.4 100.6 
n=lII(l,,) 34.2 96.1 
n=lZ;(llo) -52.6 0.005 
n=Ol-l(3,,) 32.3 93.1 

localized lone pairs by allowing closer approach at 
8= 180”, than at f3= 125” in the plane perpendicular to the 
Hz0 monomer. 

The second major change to the AWl parameters re- 
quired by the new Ar-H,O data is the size of the isotropic 
well depth, (E&. In initial iterations of the fits, the value 
of this parameter plummeted from its value on the AW 1 
surface of 153.3(2.2) cm-’ to about 120 cm-‘, with a 
large increase in the highly correlated ( -0.98 on the AWl 
surface) parameter & from 2.501(32) A;-’ to a final value 
of 3.617(48) A-’ on the AW2 IPS. The correlation be- 
tween these two parameters is somewhat lower ( -0.96) in 
the AW2 parameters and the uncertainty in coo is more 
than two times lower permitting much more confidence in 
the new value of eo,= 118.15 (88). Test runs with selected 
data removed from the input indicate that the well depth is 
sensitive to the Z and II(2,,) data, although many other 
measurements also contribute. Most likely, it is the strong 
coupling of the 2,, states to the n =2X and II( lo1 ) levels 
which places experimental constraints on the isotropic well 
depth. The sensitivity of the 2,, data to coo and & has the 
unfortunate consequence of reducing the ability of these 
data to precisely determine the values of e30 and e3z. These 
two parameters were highly correlated (0.97) and not very 
well determined in nearly converged fits to the data. In the 
final iterations, ~32 was fIxed at 0, a value not very different 
from that obtained when it was free to vary. Because of this 
arbitrary constraint, additional spectra of j = 2 states, and 
measurements of the n = 2 stretching levels would be par- 
ticularly valuable as a test of the AW2 surface. 

After initial runs to determine a range of parameters to 
vary, data for both isotopes were included as input to the 
least squares loop. The error introduced in requiring the 
two isotopes to move on a single IPS (rather than allowing 
each to move on a different effective IPS averaged over the 
high frequency motions of the monomer) is expected to 

depend on the OH to OD bond length difference of 0.0037 
A.53 Some of the parameters R$ in the final IPS are de- 
termined to this level of precision. It is possible that the 
accuracy of the AW2 potential is limited by the require- 
ment that the two isotopes move on the same IPS. How- 
ever, a potential of equivalent accuracy and detail cannot 
be extracted from separate fits to each individual isotope, 
and we feel it is more likely that omitting high order pa- 
rameters in the three components of the potential expan- 
sion is the most severe limitation. 

The final fits were performed with a basis set of 9/10/8 
on the radial interval 2.9-5.9 A. During the course of these 
fits Rg was found to approach zero, and to be undeter- 
mined. Accordingly, it was fixed at zero. Twelve parame- 
ters were required to reproduce the 37 VRT measure- 

TABLE VII. Parameters describing the AW2 IPS defmed by Eqs. (l)- 
( 11). The uncertainties indicated in parentheses represent 20 (95%) 
confidence intervals. 

Boo (A-‘) = 
em (cm-,) = 
El0 (cm-‘) = 
c20 (cm-‘) = 
e22 (cm-‘) = 
ejo (cm-‘) = 
es2 (cm-‘) = 
es0 (cm-‘)= 
R: (A)= 
R; (A,= 
R: (A, = 
RZ,Z (A,= 
R: (A, = 
R3,2 (A)= 
#ofdata 
# of parameters 
DSE 

AWl 

2.501(32) 
153.3(2.2) 

1.90(24) 
4.518(72) 

19.301(54) 
O(fixd) 
w’=d) 
O(fixed) 
3.6339( 13) 
O.lOOS( 10) 
0.0128(36) 

-0.0342( 17) 
O(fixed) 
O(fy;d) 

11 
9 
1.14 

AW2 

3.617(48) 
118.15(88) 

2.15( 15) 
4.52(24) 

20.949(92) 
-6.7( 1.4) 

O.(lixed) 
-l&(42) 

3.6098( 14) 
0.1050( 13) 
0. (fixed) 

-0.0442(28) 
-0.013( 15) 

0.0630(92) 
37 
12 
1.20 
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ments. The quality of the fit is indicated by the 
dimensionless standard error (DSE)42 of 1.2 and the re- 
siduals shown in Table I. The parameters of the AW2 IPS 
and its predecessor AWl are shown in Table VII. Most of 
the data are reproduced by the AW2 potential within the 
estimated uncertainty. Many of the parameters have values 
outside the 2a error bars of the terms in the AW 1 poten- 
tial. As noted above, the largest changes were in the iso- 
tropic well depth and in the slope of the repulsive wall. The 
change in Rz is also related to the change in the isotropic 
well depth, since in the AWl parameters, it was correlated 
with &, and err, at a magnitude of 0.85. The large change 
in ez2 may be influenced in part by the change in well depth 
(the correlation was 0.55 on the AWl surface), but also 
partly by the inclusion of high order terms in the well 
depth expansion. In contrast to these terms, which have 
changed by many times the least squares estimate of their 
uncertainty, the values of e10 and e20 are nearly identical 
(20 and lo, respectively) to their values on the AWl sur- 
face. 

The parameters of the new potential are expected to be 
much more reliable than those of the AW 1 IPS, since the 
correlations are lower among the leading terms and since 
the number of parameters in the current fits is only one 
third the number of VRT data. In determining the AWl 
surface, we used nine parameters to fit 11 VRT measure- 
ments, compared with 12 parameters and 37 measurements 
used in the current AW2 fit. However, we caution that the 
expansions used in the AW2 potential are slowly converg- 
ing and that many more parameters may be necessary in an 
ultimate description of the IPS. While the leading isotropic 
terms are much larger than any of the anisotropic terms, 
the anisotropic terms are all about the same size. Addi- 
tional high order anisotropic terms will no doubt be nec- 
essary in a more accurate description of the Ar-H20 IPS. 
It would be useful to estimate some of the high order terms 
required to produce a more accurate potential, rather than 
fix them at zero. At this time, however, we do not believe 
that the necessary parameters can be estimated with con- 
fidence. Also some of the correlations are still uncomfort- 
ably large. While we do not show the entire correlation 
matrix for reasons of space, we list below all of the corre- 
lations with magnitudes greater than 0.70: &, with eoa 
(-0.96), e10 with e30 (0.76), e20 with Rz (0.93), e20 with 
RE (0.90), RE with RE (0.96), R!,f with RE (-0.72), 
and RK with RE (-0.79). 

After the final potential denoted AW2 had been ob- 
tained, we attempted to ascertain whether the sign of e10 
was determined unambiguously or if this potential was 
merely one of a family of potentials that reproduce the 
experimental data equally well. We do not feel that the 
signs of e30 and ~32 warrant detailed investigation until the 
values of these parameters are more precisely determined. 
However, we note again that the signs of these terms are 
coupled to the sign of e10 by the measurement of the 
ground state transition moment. et0 was initialized at -2.0 
and held fixed for the first few iterations. All other poten- 
tial parameters were initialized at their AW2 values. We 
were unable to obtain a fit with a DSE less than five while 

0 30 60 90 120 150 180 

8 

FIG. 3. The AW2 intermolecular potential surface [R=3.6098 81. 

holding e10 negative. We take this as convincing evidence 
that it is, in fact, positive. 

The high correlation between Do0 with coo remains the 
largest source of doubt about the accuracy of the AW2 
IPS. However, there are several pieces of circumstantial 
evidence that lend support for values of these parameters 
that are at least close to the AW2 values. First, the AW2 
well depth is within 15% of the well depths obtained by ab 
initio calculations.22’23 Second, the ab initio estimate of the 
well depth by Bulski et al.23 has been shown to reproduce 
the magnitude and temperature dependence of the second 
virial coefficient. Since these authors also show that the 
second virial coefficient is insensitive to the anisotropy in 
the IPS, this similarity in the well depths is sufficient to 
indicate that the AW2 surface will also reproduce the ex- 
perimental pressure second virial coefficients. Finally, the 
slope of the repulsive wall on the AW2 IPS &-J is deter- 
mined to be 3.617(48), close to the values of this constant 
in the H6(3) Ar-HCl [pgo=3.58( 18) A-‘]29 and the TT3 
Ar-H, [poo= 3.582(46) A- ‘]42 surfaces, which have sim- 
ilar parameterizations. This may imply that &~3.6 A-’ 
is a molecular constant which is transferrable from one 
complex of argon with a light hydride to another. The 
similarity is at least suggestive that the slope of the repul- 
sive wall on the AW2 surface is more nearly correct than 
that of its predecessor. 

THE AW2 POTENTIAL SURFACES 

The AW2 potential describes the intermolecular forces 
in the three-dimensional Ar-H20 system at a level of detail 
and precision which has been previously attained only for 
the topologically simpler atom-diatom systems: Ar-HF, 
Ar-HCl, and the Rg-H, complexes.3*718 Plots of the surface 
described by the parameters in Table VII are shown in 
Figs. l-3. These show ( 1) the IPS in the plane of the water 
molecule (#=oO); (2) the IPS in the plane perpendicular 
to the water molecule (4=90”); and (3) the angular IPS at 
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R = Rz= 3.6098 A. These plots show that the AW2 IPS is 
substantially more structured than its predecessor, the 
AW 1 surface, shown in Fig. 1 of Ref. 4. As in all recent 
studies of the IPS for Ar-H20,4t21-23 the new IPS exhibits 
a global potential minimum for orientations with the argon 
located in the plane of the water monomer and with the R 
vector oriented nearly perpendicular to the C2 axis of the 
monomer. In contrast to the recent ab initio calculations by 
Bulski et al. and by Chalisinski et al., the AW2 minimum 
is more nearly hydrogen bonded rather than antihydrogen 
bonded. On the AW2 surface, the minimum of 142.98 
cm-’ occurs at (R=3.636 A, 8=74.3”, 4=0”). Internal 
rotation of the water monomer is hindered by barriers to 
internal rotation in the plane at 13=0” and 180“ and to out 
of plane rotation at 8= go”, 4 =90”. Along the minimum 
energy pathway, barriers to in-plane rotation of 26.3 cm-’ 

(R=3.702 A, 8=0”, +=o”) and 17.2 cm-’ (R=3.518 A, 
8= 180”, 4 =O”> are present. The barrier to out-of-plane 
rotation is much larger, 54.2 cm-’ at (R =3.671 A, 
e=200.7q +900). 

the repulsive forces at the Rg-OH, configuration. This ge- 
ometry becomes 9.1 cm- ’ more stable than the Ar-H,O 
geometry, which is quite strongly favored by attractive 
forces. We can also take the structure of the molecule into 
account. If we compare energies along the OH bond vector 
instead of along the symmetry axis, the ordering of the 
favored orientations is reversed. Approach along the OH 
bond in the hydrogen bonded orientation Ar-HO is fa- 
vored by 7.7 cm-’ over the antihydrogen bonded approach 
Ar-OH. However, the rationale for this result is un- 
changed from that given above, with the exception that the 
attractive forces favor approach along the hydrogen bond 
more strongly than between the two hydrogen atoms, and 
that the repulsive forces are even further weakened at the 
antihydrogen bonded geometry. 

Both strong attractive and repulsive forces operating in 
the vicinity of the hydrogen atom are evident in the shape 
of the AW2 IPS. At intermolecular separations longer than 
3.8 A, the attractive forces dominate and the potential min- 
imum occurs at the linear hydrogen bonded geometry with 
all four atomsOcopla.nar. In the repulsive region of the sur- 
face (R < 3.5 A) the preferred orientations have the argon 
located in the monomer plane in the antihydrogen bonded 
configurations 8 = 125”. At intermediate intermolecular 
separations, the competition between the attractive forces 
favoring hydrogen bonding and the repulsive wall of the 
hydrogen atom results in a transitional region. In Ar-H,O 
this transitional region occurs precisely in the region most 
extensively sampled by the bound states. Thus angular- 
radial coupling is an essential feature of the dynamics of 
this system. Since the strongest coupling of angular and 
radial degrees of freedom occurs in the region of the min- 
imum on the AW2 IPS, this aspect of the potential is es- 
pecially well determined. 

The structure of the IPS for Ar-H20 can be under- 
stood by extension of the rationale for the structure in 
Rg-HX complexes presented by Hutson. In each of the 
Rg-I-IX systems, the effect of the hydrogen atom is to re- 
duce electron density, and consequently repulsion, at the 
linear orientation Rg-XH. As a result, the Rg-HX systems 
are characterized by a primary minimum favored by at- 
tractive forces, at the hydrogen bonded geometry Rg-HX 
and a secondary minimum favored by reduced repulsion in 
the antihydrogen bonded geometry, Rg-XH. The similar- 
ities to Rg-HX systems can be seen in Fig. 2, which shows 
the IPS perpendicular to the monomer plane. Ignoring 
structural details, this cut through the AW2 IPS can be 
considered a Rg-HO potential, analogous to the Rg-HX 
systems. In this figure, we see the now familiar double 
minimum structure of the Rg-HX potentials. However, 
the primary minimum is at the oxygen end-not at the 
hydrogen end. We speculate that this is due to the presence 
of two hydrogens. The electron withdrawing effect is in- 
creased by the presence of two hydrogens, further reducing 

The strong protrusion of the hydrogen atom beyond 
the spherical repulsion surrounding the monomer in the 
Ar-H,O IPS is somewhat surprising. There is little evi- 
dence for structure due to the extension of the hydrogen 
atom beyond a spherical repulsion surrounding the fluorine 
atom in the Ar-HF (u= 1) IPS derived by Nesbitt et aL54 
from a fit to an extensive set of VRT data. On this IPS, the 
argon to HF center of mass distance at the potential min- 
imum is 3.40 8, at both the Ar-HF and the Ar-FH geom- 
etries. Along the OH bond vector, the AW2 IPS has a 
minimum at R = 3.7 1 A in the Ar-HO orientation and 3.46 
A in the Ar-OH orientation. In the plane of the monomer, 
the potential minimum occurs closest to the center of mass 
(R,=3.46 A) at 8= 125” and it is farthest from the center 
of mass (R,=3.73 A) at 8=49”. The reasons for this 
difference between Ar-H20 and Ar-HF arise from many 
competing effects. Fluorine has a smaller van der Waals 
radius than oxygen, which should make the protrusion of 
the hydrogen more pronounced in Ar-HF, the opposite of 
what is observed. The OH bond in water (0.9724 A) is 
longer than the HF bond (0.9263 A), contributing to the 
protrusion. The presence of two hydrogen atoms rather 
than one reduces the repulsion at the Ar-OH geometry, 
perhaps giving the appearance of an extended hydrogen 
atom. Finally, the electronegativity of fluorine is larger 
than that of oxygen, preventing as much electron with- 
drawal in HF as can occur in H20. 

Although the AW2 IPS has been extracted exclusively 
from spectroscopic data, the final test of any model poten- 
tial surface will be its ability to simultaneously reproduce a 
wide variety of experimental phenomena (e.g., pressure 
broadening cross sections, virial coefficients, differential 
scattering cross sections, solubilities, phase diagrams, * - * ) 
that depend on the intermolecular forces. Recent efforts by 
Green, and co-worker?’ to accurately compute pressure 
broadening cross sections on IPS which have been derived 
from VRT data provide one such test. For instance, com- 
parison of measured pressure broadening cross-sections for 
HCl rotational lines, broadened by argon, with those com- 
puted on the H6(3) surface,56 are generally in excellent 
agreement. Only the low temperature broadening of the 
J= 1 +O line is computed to be outside the error bars of the 
experimental measurements. This line is computed to be 
15% (more than five times the experimental error bars) 
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from the experimental values at low temperature. For Ar- 
H20, the pressure broadening cross sections computed” 
using the AWl surface give both the correct magnitude 
and temperature dependence for all of the different rota- 
tional lines tested, but they are all uniformly about 15% 
higher (three times the experimental error bars) than the 
experimental values. Green has suggested that the dis- 
agreement could be the result of having too little anisot- 
ropy in the slope of the repulsive wall (8) of the IPS. These 
terms were constrained to be zero both in the AW 1 and in 
the AW2 surface, since the spectroscopic data are insensi- 
tive to anisotropy in /3 smaller than 0.2 A-’ or so. 

The AW2 IPS reproduces the qualitative picture of the 
anisotropic intermolecular forces presented by Chalisinski 
et al.22 and Bulski et al.23 However, there remain signifi- 
cant quantitive differences between the two ab initio calcu- 
lations and the experimental IPS. While the AW2 surface 
has a minimum with a similar binding energy to that ob- 
tained ab initio, the position of the minimum and the shape 
of the potentials are not in agreement. The decrease in the 
overall anisotropic well depth on the AW2 surface from its 
valu_e, of De=174 cm-’ on the AWl surface to 142.98 
cm is almost entirely due to the decrease in em This new 
well depth is still 10% deeper than the estimate of Chali- 
sinski et al. I2 [D,= 130 cm-‘], who scaled their ab initio 
result of D,= 108 cm-’ by 25%, and 10% shallower than 
the 157 cm-’ binding energy computed by Bulski et al. 
Comparison to other aspects of these calculations requires 
care because of the differences in coordinate systems used. 
Bulski et al. use a coordinate system with the origin at the 
H20 center of mass, but choose the positive z direction to 
point from the hydrogens toward the oxygen. As a result, 
our 8 corresponds to 180”~8 in the coordinates of Bulski 
et aL, and odd spherical harmonic terms in the well depth 
expansion have opposite signs in their work and ours. The 
ab initio calculations of Chalisinski et al. were performed 
at fixed separation of the heavy atoms, with R defined as 
the Ar-oxygen distance, and with f9=0 at the Ar-GH2 
configuration (our 8= 180”). The barriers along the mini- 
mum energy path are not even approximately accessed in 
these ab initio calculations, as they would be in calculations 
performed at a fixed distance from the center of mass. 
Transforming their results to our coordinate system, in- 
plane barriers for rotation of the water of 35 cm- ’ at 
(R=3.68 A, 8=0”, +=oO) and 10 cm-’ at (R=3.82 A, 
f3=180”, +=O”) relative to the energy at (R=3.78 A, 
8= lOl”, (p=O”) are indicated by the ab initio calculation. 
The energy differences between the same points on the 
AW2 IPS are nearly zero. Both ab initio calculations ap- 
pear to overestimate the ratio of the repulsive forces to the 
attractive forces near the hydrogen atom. As a result, they 
produce a global minimum of approximately the same en- 
ergy and position as the short range minimum on the AW2 
surface, but do not find the global minimum indicated by 
our fit to the experimental data. 

The slight bump that occurs in the repulsive wall of the 
AW2 IPS at 8= 125”, #=90° is quite interesting. Localized 
lone pairs would produce repulsive anisotropy in this re- 

gion of the IPS. No evidence is found in the ab initio cal- 

culations of Chalisinski et al. for the effects of localized 
lone pairs in the intermolecular potential. However, be- 
cause the contributions of Rs and Rz are poorly deter- 
mined, and because the effects of truncating the expansion 
in R, no doubt have the largest impact on these two terms, 
we cannot presently say with confidence that the AW2 
surface does unambiguously evidence the influence of lo- 
calized lone pairs. Nonetheless, there is some preliminary 
indication that the experimental data are sensitive to the 
shape of the potential in the lone pair region, and that 
effects of localized lone pairs might be reflected in the data. 
It will be interesting to see if determination of additional 
terms in this expansion reduces or enhances the structure 
in this region of the IPS, and if additional data can confirm 
or deny the influence of the lone pairs on the intermolec- 
ular interaction. 

Additional spectroscopic measurements will provide a 
precise test of the accuracy of the AW2 IPS developed 
here, and will permit further details of the intermolecular 
forces in this system to be elucidated. In Table VIII we 
summarize predictions made for the strongest VRT bands 
which have not yet been observed and the values of VRT 
transitions which were not included in the AW2 fits either 
because their information content was largely redundant or 
because the additional computational expense did not ap- 
pear to be justified. All of the observed transitions are in 
reasonable agreement with the values calculated on the 
AW2 surface, justifying the supposition that they do not 
contain significant new information. However, it should be 
noted that including this additional data might serve the 
purpose of reducing the uncertainty and the correlations in 
some of the parameters. New VRT bands will be far more 
valuable. Transitions to the n =2, Z ( Ooo) and n = 2,X, and 
II( lo,) and the A(2t2) the states of Ar-H,O are all likely 
to be observable with current technology. Among the most 
important measurements will be those that constrain the 
dissociation energy. Some of these states are sufficiently 
close to dissociation that high J transitions may exhibit 
predissociation. Calculations of the lifetimes of these levels 
would be a valuable guide to experimentalists. Direct cal- 
culations on a model IPS have proven valuable in inter- 
preting experimental data on predissociation in Ar- 
HC1.8~46 If predissociation can be observed, it would 
provide an exact measure of the van der Waals bond en- 
ergy. Even if all the transitions observed are bound, mea- 
surement of these transitions may provide a more precise 
lower limit to the binding energy than is currently avail- 
able. There are also many strong Ar-D,O transitions as- 
sociated with j = 2 internal rotor states and n = 1 stretching 
levels. These states are strongly affected by angular -radial 
coupling and would serve as a stringent test of the accuracy 
of the AW2 IPS. These transitions might also provide more 
precise constraints on the T,, and T32 anisotropies, and 
perhaps other constants as well. Measurements of the 
quadrupole hyperfme structure, the dipole moment or 
transition moments would also provide valuable con- 
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TABLE VIII. Spectroscopic predictions on the AW2 surface. See Table VI for predictions of transition moments and quadrupole coupling constants. 

Experiment Calculated Residuals 

Ar-Hz0 
J=ltO 
n=2,Z(O,) 
2(2,,) 
n=2,L(lo,) 

J=l+l 
n(l,,) 
n=lJ(l,,) 
n=m(lo,) 

3=2-l 

Zub) 
n= l,wcxJ 
n(l,,) 
Xl,,) 
n=2,I(O,) 
I(lo,) 
n(l,,) 
n(l,,) 
n=l,Z(lo,) 
Wl,o) 
n=W(lo,) 
n=lJf(l,o) 
n=lJI(l,o) 
W2,*) 
new 
n=2,1(10,) 
n=2,Wlo,) 
n=2J(lo,) 

J=2+2 

n(l,,) 
n(lo,) 
n(l,o) 
n=lJ(lo,) 
n(z,,) 
W,,) 

VRT bands (GHz) 
n=2,2(0~)~m(o,) 
1(2,,)4-x10,) 
n=2,wl,,)+z(lo,) 
n=2,II(l,,)+z(lo,) 
n=1,2(l,,)~n(lo,) 
U7,2)-~(lo1) 

Ar-D20 
J=l+O 
n= l,L(O,) 
LcLJ2) 
1(2,,) 
n=l,Wlo,) 

J=l-1 

ncl,,) 
nom) 
IT(lo,) 
n(l,o) 
mw 

J=2+1 
mm) 
Xl,,) 
H(l,,) 
H(l,,) 
n= 1,2(Om) 

2002) 

AI -4 5 048.6 
B,+-B, 4 580.1 

4 -B2 5 349.0 

AI--A, 
4-4 
B2 +BI 

AI-AZ 
A,+4 
&-AI 
AI +A2 

A,+A2 

B2-- 4 

&+BI 

h-4 

&+BI 

BI+& 

Bz+-4 

B24- 4 

4-h 

4~ 4 

h-4 

4-4 

4-4 

4-h 

&--AI 
h-4 
&+BI 
4-4 
B,--4 
B2- 4 

A,-A,J= 1-O 1176.13 
B,.-B,J=l+O 1 100.67 
B,-B,J=ltO 1 972.03 
B,+B,J=l+O 2 130.67 
B,tB,J=Z+l 1115.73 

B2 +8,5=2-l 1 756.83 

AI-A, 3 912.0 

AI+-% 6 589.3 
4-4 4 934.9 
BI+& 5 713.8 

AI-A, 
A,+4 
Bi+B, 
BI+B~ 
B,+B, 

AI-A, 
Al-4 
AI*& 
4-A, 
AI--% 
A,+4 

2 51.2 

11950.1 
11 351.4 
11 977.7 
11 945.3 

11 647.0 
12 214.2 
12 148.9 
10 920.6 
12 103.0 
11 132.5 

12 517.2 

162.5 
614.4 
440.3 
541.2 

1 939.1 

1 201.0c 

163.36 
133.9d 

11 180.8b 
13 453.8’ 
8 949.3’ 

11 171.8’ 

248.3 
123.1 
273.2 

11 952.5 
11 349.7 
11 971.5 
11 948.5 
10 094.9 
11 654.3 
12 211.6 
12 160.3 
10 892.9 
12 088.7 
11 142.31 
11083.6 
10 837.5 
9 206.2 

12 489.0 
10 710.0 
10 333.4 
9 784.0 

145.3 
612.7 
440.2 
544.0 

1 866.8 
2.62 

2.9 

-2.4 
1.8 
6.2 

-3.2 

-7.0 
2.6 

-11.4 
21.1 
14.3 

-9.8 

88.3 

14.7 
1.8 
0.2 

-4.0 
72.9 

1 155.2 45.8 
168.6 
162.3 1.0 
139.4 -5.5 

-98.1 

11 178.2 2.6 
13 372.5 81.3 
9 012.5 -63.2 

11 159.4 12.4 
13 159.9 
8 071.9 
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TABLE VIII. (Continued.) 

IIc%2) 

alo,) 
II(lo,) 
f-l(l,,) 
W,,) 
new 
n=Wlot) 

J=2+2 
n(l,,) 
nQ-32) 

n(lo,) 
n(l,o) 
n&2) 

AC&,) 

VRT bands (GHz) 
wo,)+wh,) 

n&,,)+mcd 

If= l,Iu&) -x0,, 
~(ll0)+nclo,) 
2(2,2)+z(lor) 

n(2,2)+mlo,) 

n=1,2(10,)+~(1,,) 
~Ch2) + n( lo, 1 

A,+.4 
b-4 
4-h 
4-4 
G-4 
h--B2 
4-4 

AZ-AI 
.-&+A, 
B2+4 
&+4 
4-4 
h-4 

A,+A,J=l+O 
A,-A,J= 1-O 
A2+A,J= 1-O 
B, + B,J=2+ 1 
B, + B,J= 1-O 
B,+B,J=l+O 
B,+B,J=l+O 
B,+B2J=2+1 

Experiment 

10 914.8b 
10 931.5d 
11 196.5d 

3 424.5’ 

489.1d 
401.8d 

Calculated 

11 066.2 
10 901.6 
10 927.1 
11 193.7 
9 878.1 
10 671.5 
11 432.8 

3 302.2 
-389.7 
485.9 
418.2 

-317.2 
3.2 

967.24 
1 043.24 
1 092.19 
528.59 
882.93 

1 080.33 
1 092.19 
892.33 

Residuals 

7.2 
4.4 
2.8 

122.3 

3.2 
- 16.4 

‘Experimental data from Refs. 13, 16, and 20 except where noted. 
bReference 25. 

straints. Predictions for these expectation values are also 
given in Table VI. 

SUMMARY 

We have derived a detailed and precise IPS for the 
Ar-H,O complex by a direct fit of a 12 parameter model to 
37 VRT measurements. The measurements include the po- 
sitions of 14 VRT bands, and 15 rotational term values for 
two isotopes, as well as the ground state dipole moment 
and the quadrupole hypetfine coupling constants in the 
ground and first excited states of Ar-H20. The AW2 IPS 
describes intermolecular forces which reflect the full topo- 
logical complexity of the water molecule. Both the attrac- 
tive and repulsive anisotropic forces are shown to be large 
and to exhibit a truly remarkable level of cancellation near 
the potential minimum. It is small variations in the extent 
of this cancellation which is responsible for the rapid vari- 
ation of the optimum orientation with distance from the 
center of mass in the region of the potential minimum. 
Because of this substantial angular-radial coupling, ap- 
proximate methods of studying the intermolecular dynam- 
ics that depends on separation of variables are grossly in- 
adequate. We have employed the collocation method to 
rigorously solve for the eigenvalues and eigenvectors of the 
three-dimensional Hamiltonian describing the intermolec- 
ular dynamics of Ar-H,O with a minimum of approx- 
imations-we assume a finite basis set is adequate, and that 
the intermolecular dynamics are separable from the in- 
tramolecular vibrational motion. Improvements to the rate 
of convergence and stability of this method have been de- 
scribed. 

‘Reference 26. 
dReference 27. 

The insights derived from the work described herein 
can be applied to enhance our understanding of a wide 
array of phenomena which depend on intermolecular 
forces. Modeling the solvation of nonpolar species (such as 
a rare gas) in liquid H,O continues to be of great interest. 
The AW2 IPS represents a very accurate model of the rare 
gas-H,0 interaction. This potential will also be useful in 
the modeling of energy transfer in collisions of Ar and 
H20, and in the study of predissociation of vibrationally 
excited Ar-H,O complexes. Lascola and Nesbitt have 
studied vibrationally excited Ar-H20,17 and Clary” has 
found a preliminary version of this IPS gives excellent 
agreement with predissociation rates measured by Nesbitt 
and co-workers. More generally, it will be possible to ex- 
tract atom-atom repulsive (and possibly attractive) forces 
from the now accurately determined Ar-H2,3 Ar-HF,’ 
Ar-HCl,* Ar-H,O and and Ar-NH3 (Ref. 9) IPS. A pre- 
cise range for the repulsive forces surrounding the hydro- 
gen atom could then be derived. These atom-atom forces 
could then be fruitfully employed in the many computer 
models which have van der Waals forces represented as a 
sum of atom-atom attractive and repulsive terms. It would 
also be interesting to try to remove the effects of the argon 
atom, and then to see if the repulsive force field surround- 
ing the water monomer and the permanent moments of 
water can be used to build an accurate water dimer 
potential-one which is firmly constrained by experimental 
properties of H,O embedded in a molecular complex. 

The FORTRAN potential subroutine used to define 

the AW2 IPS is available from the authors upon request. 
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