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Abstract

As neurons of the developing brain form functional circuits, they undergo morphological
differentiation. In immature cerebral cortex, radially-oriented cellular processes of undifferentiated
neurons impede water diffusion parallel, but not perpendicular, to the pial surface, as measured via
diffusion-weighted magnetic resonance imaging, and give rise to water diffusion anisotropy. As
the cerebral cortex matures, the loss of water diffusion anisotropy accompanies cellular
morphological differentiation. A quantitative relationship is proposed here to relate water
diffusion anisotropy measurements directly to characteristics of neuronal morphology. This
expression incorporates the effects of local diffusion anisotropy within cellular processes, as well
as the effects of anisotropy in the orientations of cellular processes. To obtain experimental
support for the proposed relationship, tissue from 13 and 31 day-old ferrets was stained using the
rapid Golgi technique, and the 3-D orientation distribution of neuronal proceses was characterized
using confocal microscopic examination of reflected visible light images. Coregistration of the
MRI and Golgi data enables a quantitative evaluation of the proposed theory, and excellent
agreement with the theoretical results, as well as agreement with previously published values for
locally-induced water diffusion anisotropy and volume fraction of the neuropil, is observed.
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I. Introduction

PROPER morphological development of neurons is essential for the formation of functional
neural circuits [1], [2]. In the cerebral cortex, pyramidal neurons undergo morphological
differentiation after migrating from germinal zones near the lateral ventricles to the cortical
plate [3]. Immediately following migration, cell bodies of these neurons are elongated, and
their dominant structural feature is a radially-oriented apical dendrite. Subsequently,
collaterals branch from the primary apical dendrites, basal dendrites grow from cell bodies
at varying orientations relative to the radially-oriented primary apical dendrite, and axons
invade the cortex from the subplate. In several experimental models of neurodevelopmental
disorders, including examples caused by environmental (e.g., fetal alcohol spectrum disorder
[4], [5]) or genetic (e.g., Rett syndrome [6], [7]) factors, the axonal/dendritic arbor
complexity is reduced in affected individuals compared to age-matched controls. A
noninvasive method to characterize cellular morphology in the developing cerebral cortex
could therefore be of value in characterizing neurodevelopmental disorders in humans, and
potentially offer a strategy for detecting disease in affected individuals and/or for assessing
disease severity.

Magnetic-resonance-based techniques for measuring directional dependence in translational
diffusion of water, i.e., diffusion anisotropy [8]–[10], have proven valuable for
characterizing the cellular-level microstructure of brain white matter (WM) [11], [12]. In
WM of mature individuals, diffusion anisotropy results from the presence of densely
packed, coherently oriented axons and myelin sheaths [13]. This is because water
displacements due to diffusion are more restricted in directions perpendicular to an axon
tract than in directions parallel to the tract. Due to this relationship, diffusion tensor imaging
(DTI) measurements provide the basis for several investigations of microstructural changes
associated with development and aging [14], [15], and with various neuropathological [16],
[17] and neuropsychiatric [18], [19] disorders.

The strategy of utilizing water diffusion anisotropy can also be extended to characterization
of the cerebral cortex. Although water diffusion within mature cortical gray matter is only
very slightly anisotropic [20], [21], at early stages of morphological development, cortical
diffusion anisotropy is comparable in magnitude to that within myelinated WM fiber tracts
[22]–[25]. The directional dependence of diffusion in the immature cortex corresponds to
the characteristic radial pattern of the undifferentiated neuropil [22]–[26]. Diffusion is
relatively unhindered in the direction perpendicular to the pial surface (and thus parallel to
elongated cell bodies and apical dendrites), as opposed to diffusion in the parallel direction
where membranes of cellular processes impede molecular displacement [24]. In systematic
studies of prematurely-delivered human infants [24], [27], postmortem human fetal brains
[28], [29], and in several animal model systems [30]–[37], temporal aspects of the transition
from high to low cortical diffusion anisotropy have been characterized [38]. This
comparative approach has consistently demonstrated that loss in cortical diffusion
anisotropy temporally coincides with axonal and dendritic morphological development.
Further, a comparison between normally-reared and neonatally enucleated ferrets has shown
that cerebral cortical areas with visual-deprivation-induced reductions in axonal/dendritic
arbor complexity exhibit elevated anisotropy in water diffusion [39]. These empirical
findings suggest that DTI is a potentially sensitive strategy to characterize the developing
cerebral cortical neuropil; however, a quantitative understanding of this relationship is
lacking. In studies of brain WM, much progress has been made in characterizing
heterogeneous distributions of axon orientations by DTI [40]–[47]. Specifically,
characterization of multimodal distributions of axonal orientations within individual voxels
shows great potential for analyzing diffusion MRI data within areas in which WM fiber
pathways intersect [40]–[48]. Within the developing cerebral cortex however, the orientation
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distribution of axonal and dendritic structures is different. Neighboring axonal and dendritic
processes are generally much less aligned in cortical gray matter than axon segments are in
WM. In addition, the overall orientation distribution of axonal and dendritic elements within
the cerebral cortex is expected to be clustered around a primary (radial) direction, which is
in contrast to the multimodal distribution found within regions of crossing WM fibers [49].
Thus, distinct approaches will need to be developed to analyze diffusion MRI data in the
cerebral cortex [50]–[52] beyond those used to study WM.

Herein, we propose a theoretical relation between the diffusion tensor and the distribution of
structural elements within the developing cerebral cortical neuropil. We have previously
derived an expression for the diffusion-attenuated MR signal intensity produced by water
diffusing within impermeable cylinders of arbitrary orientational distribution [51]. Here, this
expression is used to obtain an analytical relationship between anisotropy in the water
diffusion tensor, and anisotropy in the distribution of axonal and dendritic orientations
within the cerebral cortical neuropil. This relationship expresses quantitatively how
diffusion tensor structure is induced in part by the intrinsic diffusion anisotropy within
neuronal processes, and in part by the anisotropy of the orientation distribution of these
processes. In order to experimentally evaluate the proposed relation, we compare diffusion
tensor measurements to quantitatively analyzed histological preparations. Ideally, DTI and
histological comparisons would test the proposed theory using tissue that exhibits a wide
range of morphological characteristics. In a recent study of diffusion anisotropy changes in
the normally developing ferret cerebral cortex [34], systematic laminar and regional
variability in cortical diffusion anisotropy was found to be maximal approximately two
weeks after birth. This variability arises from laminar and regional gradients in neuronal
birthdates, and is expected to give rise to corresponding variability in anisotropy of the
cerebral cortical axonal/dendritic process orientation distributions. Here, 3-D confocal
analyses were performed on Golgi-stained brain tissue derived from postnatal day 13 (P13)
and P31 ferrets, and the distribution in the anisotropy of axonal and dendritic element
orientations was confirmed to be broader at P13 than at P31. Therefore, the P13 cerebral
cortical tissue was characterized in multiple histological sections, and image registration
procedures were applied to directly compare diffusion anisotropy measurements performed
on the post mortem material immediately prior to Golgi staining and analysis.

II. Theory

In this section, an expression is derived to state how the diffusion tensor is influenced by
microscopic anisotropy within axonal and dendritic processes, as well as anisotropy in the
organization of axonal and dendritic processes within an image voxel. To characterize
microscopic diffusion anisotropy in the intracellular compartment, the distinction is made
between longitudinal diffusion, parallel to the local axis of the neurite, reflected in the
diffusion coefficient DL, and transverse diffusion, perpendicular to the local axis, reflected
in DT [51]–[53]. To express anisotropy in the organization of cellular elements, the
fractional anisotropy in their orientation distribution is defined, as described below.

As published previously [50], [51], the diffusion signal in brain tissue from a Stejskal–
Tanner spin echo sequence is described in terms of two nonexchanging components: the
signal Sc originating from the volume fraction of a voxel consisting of cylindrically-
structured cellular elements such as axons and dendrites, herein termed the neuropil, ν, and
the signal accounting for diffusion in the remaining extra-cylindrical volume fraction, Se

(1)
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in which Δ is the time interval separating the two diffusion-sensitizing magnetic field
gradient pulse onsets, q = γgδ ≡ qn̂ is the diffusion wave vector in the arbitrary direction of
the unit vector n̂, γ is the gyromagnetic ratio of the nucleus under study, δ is the magnetic
field gradient duration, and g is the magnetic field gradient strength and direction. Diffusion
outside of the neuropil is assumed to be approximately Gaussian, characterized by an
effective diffusion tensor D [50], [51], which yields Se = exp(–bn̂TDn̂), in which the
diffusion weighting (b-factor) is defined as b = (Δ – δ/3)q2. Others have similarly utilized a
diffusion tensor expression to account for diffusion anisotropy within cell soma and
extracellular space in WM [50], [54], [55].

The term Sc accounts for signal originating in the neuropil, and is modeled using
expressions for diffusion within cylindrical structures of varying orientations [51]. The
diffusion-weighted MR signal is therefore influenced by both intrinsic diffusion anisotropy
within the cylindrically-shaped axons and dendrites, and by anisotropy in the fiber
orientation distribution. For notational convenience, we define the anisotropic diffusivity DA
as the difference DL – DT ≥ 0. We assume that axons and dendrites can be approximated as
linear segments in which the diffusion signal can be computed as if arising from an infinite

cylinder. This is valid as long as the diffusion length, , is smaller than the length scale
over which the neurites maintain a constant direction and do not branch. Assuming a value
for DL that is half the diffusion coefficient of temperature-matched dilute aqueous solution
[51], the diffusion length for the experiments conducted herein is 4 μm, approximately an
order of magnitude less than the mean branch length of 55 μm for cerebral cortical
pyramidal neurons entered in the NeuroMorpho database1 measured using the associated
querying tool “L-Measure.” The signal from a single cylinder parallel to unit vector û of
arbitrary direction, is thus proportional to exp(–b(DT + (n̂ · û2)DA)) in the Gaussian
approximation, when diffusion weighting b is applied in the direction of n̂. The net signal
from the neuropil then arises as a sum of this expression over all neurites. The fiber axonal/
dendritic orientation distribution function may be expressed as a function of polar
coordinates, f(θ, φ), or equivalently as a function of the vector û, f(û), to quantify the
directional distribution of cylindrical structures in the neuropil, such that f(û)dû = f(θ,
φ)sin(θ)dθdφ is the probability of a fiber being oriented in a direction û with spherical polar
angles θ and φ. Thus, the signal from the neuropil can be written as [50], [51]

(2)

where the domain of integration S2 refers to the 2-D surface of the unit sphere, i.e., θ ∈ [0;
π] and φ ∈ [0; 2π] with dû = sin θdθdφ.

Rather than working with an explicit representation of f(û) as was done in [51] and [56], we
show here that it is possible to compute the apparent diffusion and kurtosis tensors directly
from the second and fourth moments of f(û). Using angular brackets to signify an average
over the orientation distribution of neurites, i.e., for any function of g(û) of û

(3)

a Taylor series expansion of the exponential function in the integrand of (2) yields

(4)

1http://www.neuromorpho.org
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Adding to (4) the Taylor expansion of Se in (1), we have

(5)

Equation (5) depends on the shape of the fiber orientation distribution function through its
second and fourth moments. For example, the second moment of the orientational
distribution is the orientation matrix or scatter matrix T [57] with Cartesian components

(6)

The apparent diffusivity Dapp(n̂) ≡ n̂TDappn̂ in the direction n̂ is the coefficient of the linear
part of the signal in (5) with respect to b, i.e.,

(7)

where I is the identity matrix. Since this equation holds for any n̂, and since diffusion tensors
and scatter matrices are symmetrical, it follows that the identity can be re-expressed as an
equality of tensors

(8)

This equation states concisely how the apparent diffusion tensor is influenced by the
microscopic parameters DL, DT, and D, and the morphology of axons and dendrites of the
developing cerebral cortex, expressed in terms of the scatter matrix T of the fiber orientation
distribution.

If the extra cylindrical space is assumed to be isotropic, D = DeffI, then it follows from (8)
that the apparent diffusion tensor is a displaced and scaled version of the orientation matrix

(9)

This equation, which is a special case of (8), expresses how the anisotropic part of the
diffusion tensor is induced in part by intrinsic diffusion anisotropy of the neurites, and in
part by anisotropy in the orientation distribution of cellular processes. From the equation
above it follows that

(10)

where λi and τi denote the eigenvalues of the diffusion tensor and the orientation matrix,
respectively, and where the overbar signifies an average over the three eigenvalues. Note
that  always, as follows from the definition in (6). We henceforth refer to the

combinations  and  as the centralized eigenvalues λc,i and τc,i. Similarly,
according to (9), the orientation matrix and the diffusion tensor have simultaneous
eigenvectors.
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A fractional anisotropy of the orientation matrix, FAT, can be defined analogously to the
diffusion tensor FAD

(11)

and these two measures of anisotropy are related, using (10)

(12)

It is straightforward to continue the analysis for higher order tensors, and in Appendix I we
compute the kurtosis [58] of the diffusion signal relating it to the axon/dendrite orientation
distribution.

Note that (8) holds generally for models in which the signal originates from two
nonexchanging components, a Gaussian diffusion pool and a pool residing in cylindrically
symmetric structures with an arbitrary orientation distribution. A straightforward
modification would be to use an explicit representation of the orientation distribution, for
example assuming an axially symmetric distribution of cylindrical cellular processes. Such
an assumption, which can be considered a special case of the present framework, would lead
to an approach similar to a recent study of WM [59], where a Watson distribution [57]

(13)

was used. Here ĉ is the “average” direction of the orientation distribution and κ, the
concentration parameter. The Watson distribution is cylindrically symmetric about the main
direction ĉ, with κ describing the “width” of the distribution—lower κ corresponds to
greater dispersion of directions. For the extracellular space, a Gaussian description is used in
[59], with a diffusion tensor related explicitly to the cylinder orientation distribution. This
means that in the style of our notation, the extracellular diffusion tensor D in (8) becomes

(14)

where dL and dT = dL(1 – ν) are the extracellular diffusion coefficients parallel and
perpendicular to axons with a single orientation [59]. For the scatter matrix, we find

(15)

in which τ2 = (1 – τ1)/2 and

(16)

which can be written in terms of Dawson's integral [60], to obtain expressions equivalent to
those presented in [59]. For the Watson model, FAT can be related to the concentration
parameter κ using (11) and τ3 = τ2 = (1 – τ1)/2. For our purposes, it is unnecessary to
assume a particular form for f(û), and therefore the subsequent analysis presented here uses
the general relation in (9) to avoid the potentially confounding assumption of an axially
symmetric distribution of cellular processes.
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III. Methods

A. Tissue Preparation

The left hemispheres of brains from one P13 and one P31 female ferret were prepared as
described in [34] (the corresponding right hemispheres were subjects P13b and P31b,
respectively, in [34]). Procedures were approved by local Institutional Animal Care and Use
Committees, and carried out in accordance with the NIH “Guide for the Care and Use of
Laboratory Animals” [77].

B. Diffusion Tensor Imaging

Imaging was carried out on the P13 hemisphere with the tissue immersed in perfluorinated
media following previously described procedures [34] using a horizontal 30 cm clear-bore
11.7T magnet interfaced with a 9-cm inner diameter magnetic field gradient coil (Bruker,
Rheinstetten, Germany). Diffusion sensitization scheme B in [34] was implemented, in
which icosahedral 25-direction sampling [61] was incorporated into a Stejskal–Tanner
multislice spin echo pulse sequence utilizing a single b-value of 2.5 ms/μm2, in addition to
two images in which b = 0 were collected. Pulse sequence parameters were δ = 12 ms, Δ =
21 ms, and g = 11.6 G/cm, TE = 42 ms, TR = 12.5 s, and image resolution was isotropic
with 250-μm-sided voxels. The total image acquisition time was approximately 6 h, and the
voxel-wise signal-to-noise ratio, determined following previously described procedures [34],
was found to be 80. Representative images used to measure water diffusion are shown in
Fig. 1. Diffusion tensor calculations were performed for each voxel in the image after co-
registration to histology (see below), and fractional anisotropy (FAD) was calculated from
diffusion tensor eigenvalues using the standard formula [10].

C. Golgi Staining and Histological Processing

After acquisition of DTI data, Golgi–Cox staining procedures were followed using the Rapid
GolgiStain kit (FD NeuroTechnologies, Inc., Catonsville, MD). Hemispheres were
impregnated with potassium dichromate, mercuric chloride and potassium chromate
solutions (Rapid GolgiStain Solutions A and B) for 21 days according to manufacturer's
recommendation. Subsequently, hemispheres were frozen using an isopentane and dry-ice
slurry and embedded in Tissue Tek OCT (Optimal Cutting Temperature) compound (Ted
Pella, Inc., Redding, CA). For the entire P13 hemisphere, and for regularly-spaced intervals
of a portion of the P31 hemisphere, 150-μm-thick axial slices were cut using a cryostat, and
tissue was mounted onto Gelatin subbed slides. Staining was performed according to kit
instructions.

Light microscope montage images (2.5× magnification, Zeiss 510 META NLO, Carl Zeiss
AG, Oberkochen, Germany) were acquired of each section. These montages were used to
guide the co-registration of Golgi and DTI images of the P13 brain (described below). For
the P13 brain, 32 775 × 775× ~ 100 μm fields were identified within five equally-spaced
axial sections, at approximately equally-spaced positions along the rostral/caudal extent of
the isocortex for further quantitative characterization. For the P31 brain, 14 fields were
characterized within one axial section.

In order to construct 3-D images of cortical fields, 3-D images of the Golgi-stained tissue
were acquired in reflected light mode using a 20× PLAPO NA 0.7 objective (633-nm light
and a Leica SP5 AOBS microscope, Leica Microsystems, Bannockburn, IL) [62], [63]. Due
to an approximately linear reduction in reflected light intensity with depth from the surface
on the side proximal to the light source, it is only possible to collect data from an
approximately 100-μm-thick slab. Throughout the 150-μm-thick sections, approximately
200 optical sections of reflected light, spaced by 0.5 μm, were obtained at 1.52 μm2 pixel
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resolution (512 × 512 data points per plane) for each cortical field. The detector gain was
linearly scaled with depth from the tissue surface to minimize intensity variation throughout
the serial image set that arises from the aforementioned linear reduction in intensity.
Transmitted light images were also acquired at each focal plane. After assembling serial
reflected light images into 3-D datasets, fields were down-sampled along the “through-
plane” dimension to provide 1.52 μm × 1.52 μm × 1.52 μm isotropic voxel resolution; and
the fields were subdivided into four 387.5 μm × 387.5 μm “in-plane” quadrants, to provide
an approximate match between the volume of a Golgi quadrant (387.5 μm × 387.5 μm× ~
100 μm = 15.0 nL) and a single voxel in the DTI data (250 μm × 250 μm × 250 μm = 15.6
nL).

Fig. 2 provides a comparison of standard transmitted light images and confocal images of
reflected light to demonstrate that through-plane resolution is achievable by applying the
confocal technique to reflected light of Golgi-stained brain tissue. Fig. 2(a) shows an
example Golgi field. In Fig. 2(b) and (c), different parts of one neuron are brought into focus
in the two transmitted light focal planes separated by 15 μm. The region of the apical
dendrite proximal to the cell body is shown in (b) (red arrow), and more of the basal arbor
can be seen (c). However, these images are not readily usable to construct 3-D models of
neurons, due to significant interference from out-of-plane structures. Confocal images of
back-scattered visible light [62], [63] shown in Fig. 2(d) and (e) demonstrate how the
confocal technique can provide substantially improved through-plane image resolution,
suitable for 3-D reconstruction procedures. Color-coded arrowheads indicate corresponding
structures between transmitted and back-scattered light images of (b)–(e). Discontinuities in
dendritic structures in (d) and (e) are places where dendrites leave the plane of focus.

D. Registration of Golgi and DTI Data

For the P13 brain, the Golgi and DTI data were directly compared to each other. The overall
strategy to register the two sets of images was to perform five separate landmark-based
linear registration transformations [64] to the DTI data to obtain slices that are coplanar to
each of the five Golgi-stained sections analyzed. In order to generate landmarks to guide the
five registrations, 3-D surface models of the cerebral cortical surface were first constructed
from the Golgi and DTI data, and these surfaces were registered to one another. From the
registered 3-D surface models, it was possible to utilize a set of points that outline the
cerebral cortex in a given Golgi section to determine the corresponding plane in the DTI
data.

To construct the 3-D surface model from the Golgi data, montages of 2.5× magnification
images were assembled for the 70 adjacent 150 μm axial sections making up the P13 left
hemisphere. The outline of the cortical surface was manually traced on each montage, and
each contour trace was recorded as an ordered set of 2-D points [red dots, Fig. 3(a)]. The 70
contour traces were then used to construct a model of the cortical surface, using
functionalities of the Computerized Anatomical Reconstruction Toolkit (CARET)2 [65],
following procedures described in the software documentation. In the Golgi-based cortical
surface model [Fig. 3(b)], surface nodes closest to each of the contour trace points in Fig.
3(a) are shown as red spheres. The operations used to generate a 3-D cortical surface model
from the DTI data [Fig. 3(c)] also utilized functionalities of CARET software, and have
been described previously [34].

Next, a surface-based registration of the Golgi and DTI models of the cerebral cortex was
performed. This step was implemented using CARET software following previously-

2http://www.nitrc.org/projects/caret
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described procedures [34]. A set of six sulcal landmarks [coronolateral sulcus (CLS),
sylvian sulcus/presylvian sulcus (SS/PSS), suprasylvian sulcus (SSS), splenial sulcus (Sps),
and cruciate sulcus (CS), and the anterior rhinal fissure (aRF); shown as yellow spheres, Fig.
3(b), (c)] were used to constrain the surface-based registration. The result of the surface
registration procedure is to establish a one-to-one correspondence between nodes of the
Golgi surface model and nodes of the DTI surface model. Surface nodes on the DTI model
that correspond to the five contour traces [red spheres, Fig. 3(b)] are shown as green spheres
in Fig. 3(c).

Linear transformations that specify each of the five P13 Golgi slices in the DTI frame were
obtained following the method described in [64] using the set of planar contour trace points
[e.g., the set of red points for a given section in Fig. 3(a)] and their associated nodes on the
DTI-derived cerebral cortical surface model [green spheres for the corresponding section,
Fig. 3(c)]. Parameters that specify a rotation matrix R, a scaling parameter c, and the
translation vector t, were determined that operate on an arbitrary point i in the DTI frame,

, to give the corresponding point in the Golgi frame,  according to the expression

(17)

The above expression contains four adjustable parameters; a rotation angle θ specifies the
elements of the 2 × 2 rotation matrix R, c is a scalar, and t contains two adjustable
parameters in a 2 × 1 column vector. Vector quantities, such as the diffusion sensitization, q,
can be transformed from the DTI frame to the Golgi frame according to qGolgi = RqDTI.
Diffusion data was expressed in each of the five P13 Golgi slice frames by re-sampling the
diffusion-weighted images, and recalculating diffusion tensors for each voxel. For the three
most ventral slices analyzed, there was a subset of contour trace points along the medial
boundary that overlap noncortical tissue. These points were not included in the set of points
used to determine linear registrations because the medial boundary for these slices is not
easily recognized in the MRI data. The regions of contour traces used for registrations to the
DTI data are overlaid on FA parameter maps for the five slices in Fig. 4(a) (red dashed
curves). Traces connecting the set of points in the DTI frame used to determine the linear
registration parameters are also projected onto the Fig. 4(a) FA maps (green dashed curves).
To provide an estimate of the precision in the linear registration, the distance between Golgi
and DTI landmark pairs was determined. The average inter-landmark distance within the
Fig. 4(a) planes is 0.36 mm. However, as described below, manual adjustments were made
to minimize in-plane misregistration effects. An estimate of the misregistration effects that
cannot be corrected by manual adjustment is the average distance for each of the DTI
landmarks [green spheres, Fig. 3(c)] to the corresponding plane in Fig. 4(a), which is 0.20
mm.

The locations of the 32 Golgi fields used for axonal/dendritic orientation distribution
determinations are indicated in Fig. 4(b). As mentioned above and illustrated in Fig. 4(b),
each Golgi field was subdivided into four quadrants so that the volumes of the quadrants
approximately match the volume of a single DTI voxel. The center of each Golgi field,

which is known in the Golgi reference frame common to the set of points , was
transformed to the DTI frame using the equation (17) parameters [blue dots, Fig. 4(a)]. For
26 of the 32 Golgi fields, small manual adjustments to the location of the Golgi field in the
DTI frame were necessary to ensure the neighborhood of DTI voxels was located in cerebral
cortex that most closely corresponds to the location of the Golgi field center. For the
remaining six Golgi fields [asterisks, Fig. 4(a)], no manual adjustment was necessary. For
each Golgi field, DTI voxels corresponding to each quadrant were identified by adding/
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subtracting 387.5 μm to/from the Golgi field center position in the DTI frame. Each set of
four DTI voxels is color-coded yellow in Fig. 4(a).

E. Determination of Scatter Matrices

A procedure for estimating the axonal/dendritic scatter matrix, T, from the Golgi data is
outlined in Fig. 5. Each of the operations are summarized in the following paragraphs, and
the details of how each step was implemented are given as pseudocode in Appendix II.
Italicized text refers to specific data structures that are input and/or output for steps in the
Fig. 5 procedure. The input to the procedure is a 3-D image of the Golgi-stained tissue,
image_stack, and a threshold intensity value to distinguish foreground stained objects from
background. The output is a 3 × 3 matrix T, corresponding to the scatter matrix T of the
region of Golgi-stained tissue.

The first step of the Fig. 5 procedure is to produce skeleton representations of the Golgi-
stained cellular elements. A binary image distinguishing foreground Golgi-stained objects
from the background image voxels, is also produced in this step. This is accomplished by
specifying a threshold value, assigning voxels of value lower than the threshold to
background, and assigning the remaining voxels to foreground objects. Fig. 6(a) and (b) are
a 2-D projection, and a 3-D surface model, respectively, of the dominant foreground object
in Fig. 2, which consists of a single pyramidal neuron cell body, and part of its apical (“a”
red arrow, with an oblique collateral “o” blue-green arrow) and basal (“b” blue arrows)
dendritic arbors. The remaining steps of the procedure will be illustrated using the Fig. 6
neuron. Subsequently, 3-D skeletonization operations are performed on each of the
foreground objects within the image produced in step 1. Herein, the algorithm described by
Palagyi et al. [66], [67] was implemented in Matlab (The MathWorks Inc., Natick, MA).
Pseudocode of our implementation of these operations is given in “Construct binary_mask
and skeleton” in Appendix II. It is noted that the surfaces of dendrites are highly irregular
due to the presence of dendritic spines (see Fig. 2), therefore, the skeletonization operation
produces structures with several short branches emanating from the dendrites and cell
bodies. These structures are filtered from the images in the following steps of the analysis
because they do not represent the longitudinal orientation of a neurite.

As described above, water molecules within cell bodies are not expected to contribute to Sc,
but rather to the extra-cylindrical term Se in (1). Therefore, the second step in the Fig. 5
procedure is to filter voxels that reside within cell bodies from subsequent analysis. Herein,
cell bodies are defined as objects with a radius larger than 6 μm, which corresponds to a

diameter of approximately three diffusion lengths, . To identify cell bodies, the
Euclidean distance from each foreground object voxel to a voxel outside of the object was
calculated. Voxels within 6 μm of a voxel that is more than 6 μm from a background voxel
were excluded from subsequent analysis. The operations used to perform this step are
outlined in the “Filter cell bodies” procedure in Appendix II, which takes the matrices
binary_mask and skeleton as input, and produces the filtered skeleton matrix skeleton_f.

The third step in the procedure converts the filtered 3-D skeleton to a list of paths that span
each foreground object. To accomplish this, the following operations are repeated until each
voxel in the filtered 3-D skeleton has been assigned either to a path spanning a foreground
object, or to a minor branch, defined as a path of less than 10 voxels. First, an arbitrary seed
point is selected from the set of voxels with a value of 1 in the filtered 3-D skeleton, and
Dijkstra's algorithm [68] is used to determine the shortest path to all other connected points
on the 3-D skeleton that are also labeled with a value of 1. The point , which has the
maximum shortest path to the seed point, is said to be furthest from the seed point. This is
one extreme position of the 3-D skeleton. Dijkstra's algorithm is then utilized a second time
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to determine the point P2, which is furthest from P1. Fig. 7(a) illustrates a 2-D projection of
the first pair of points P1 and P2, identified in the object shown in Fig. 6. The path
connecting P1 and P2 (Fig. 7(a), green voxels) is overlaid on a 2-D projection of
binary_mask (Fig. 7(a), black voxels). To remove short segments in the skeleton that arise
from irregularities such as dendritic spines, the next operation within the loop is to set all
skeleton voxels within a Euclidean distance of 5 μm from any point along the path
connecting P1 and P2 to a value of 0, as illustrated by orange voxels in Fig. 7(b). Next, it is
determined whether the path connecting P1 and P2 traverses a threshold distance of at least
10 voxels. If so, the path is considered to be within a major axonal/dendritic fiber, and the
ordered set of coordinates connecting points P1 and P2, is stored to memory. If not, the path
is not considered to be a major fiber segment, but instead arises from image “speckles” or
from dendritic spines, and it is not stored to memory. Fig. 7(c) and (d) shows the result of
the second iteration of this loop. This is repeated for each object included in the filtered 3-D
skeleton. Fig. 7(e) shows the complete set of paths (green voxels) identified for the
foreground object. In Fig. 7(f), the paths are displayed as black voxels. Pseudocode for these
operations are given in Appendix II, “Determine path_coordinates_list.” This step in the Fig.
5 procedure converts the input matrix skeleton_f to the list of paths path_coordinates_list.

In the final step of the Fig. 5 procedure, each of the paths defined in step 3 is approximated
as a set of line segments, and the orientation distribution of these line segments is used to
determine the scatter matrix T. This is accomplished by separating each path in
path_coordinates_list into groups of 10 consecutive coordinates. Each group of 10
coordinates is thus represented as a 10 × 3 matrix, C, in which each of the 10 rows specifies
the x, y, and z component of a coordinate, c1 = (c1,x, c1,y, c1,z), . . ., c10. This group of 10
coordinates approximates a line segment by 3-D orthogonal distance regression. The point m
= (mx, my, mz) is defined as the mean of the x, y, and z components (i.e., the mean of the
columns of C). A 10 × 3 matrix, B, is defined as consisting of the difference between each
row of C and m: di,x, di,y, di,z = ci – m, and

(18)

The direction of the 3-D orthogonal distance regression line is the primary eigenvector of
the matrix BTB. Line segments derived from the example foreground object are shown in
Fig. 8. The set of primary eigenvectors derived from this analysis are projected onto a unit
sphere in the Fig. 8 inset.

For a given Golgi-stained region, this procedure will give orientations of N line segments. In
order to compute the scatter matrix, T, representing the second moment of the orientation
distribution of the N line segments, an N × 3 matrix S, having the N primary eigenvector x,
y, and z components as its rows, is constructed. The scatter matrix T is then T = STS/N, c.f.
(6). Its tensor properties such as fractional anisotropy (FAT) may be derived from the tensor
eigenvalues, τ, as given in (11). Pseudocode to compute the output T from the input
path_coordinates_list according to the fourth step of the Fig. 5 procedure is given in
“Determine T” of Appendix II.

IV. Results

It has previously been shown in ferrets that reductions in cerebral cortical diffusion
anisotropy associated with brain development take place primarily between the first and
fourth weeks of life [34]. It was therefore expected that anisotropy in scatter matrices in the
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cerebral cortex from a P31 animal would be lower, on average, than anisotropy observed
within cerebral cortex of a P13 animal. However, the reduction in cortical diffusion
anisotropy takes place according to an inside-out laminar gradient, such that deep cortical
layers exhibit lower diffusion anisotropy than superficial layers; and a rostral-caudal
regional gradient, such that rostral cortical regions exhibit lower diffusion anisotropy than
caudal regions. Due to the presence of these gradients, it was also expected that more
variability in anisotropy of scatter matrices would be observed in the P13 brain than in the
P31 brain. To experimentally test these predictions, the 32 sites (containing a total of 128
sub-ROIs) within five axial sections of the P13 brain were compared to a set of 14 sites (56
sub-ROIs) characterized within a single axial section of the P31 brain. Mean and standard
deviations of the distributions of FAT values were 0.46 ± 0.15 and 0.34 ± 0.12 for the P13
and P31 sections, respectively, which confirms the expectation that FAT is higher and more
variable at P13 than at P31. Subsequent analysis was therefore focused on the P13 brain, to
determine whether variability in the FAT values is reflected in variability of cerebral cortical
diffusion anisotropy, as predicted by (12).

To provide a visual comparison of Golgi and DTI data, and to evaluate the hypothesis that
neurite orientation anisotropy is a major determinant of diffusion anisotropy, a model
independent comparison of anisotropy in diffusion and axon/dendrite orientation
distributions was made. An intuitive approach is based on comparing the behavior of the
diffusion signal S(n̂) and the neurite orientation density f(n̂) as functions on the unit sphere.
We use spherical interpolation such that both may be evaluated at any point on the sphere.
This can be done e.g., on the basis of an expansion in spherical harmonics Ylm(θ, φ), As
described for example in [50], [51], [69], any sufficiently smooth function f(θ, φ) on the
sphere can be represented as a Laplace series

(19)

with coefficients flm determined by

(20)

where the asterisk denotes complex conjugation. When used to represent the axon/dendrite
segment orientation distribution f(û), we see from the equation above that the coefficients
flm are the average value of the corresponding complex conjugated spherical harmonic. This
average is estimated empirically by using the observed neurite directions

(21)

where N is the number of neurites and ûi is a unit vector in the direction of the i′th neurite3.
Similarly, coefficients Slm are used to represent the normalized diffusion-weighted MRI
signal intensity and were estimated by the linear least squares solution of

(22)

see e.g., [70], where here n̂i is the ith diffusion weighting direction. In our implementation,
we keep terms up to and including l = 4.

3For l odd, we constrained flm = 0 to enforce antipodal symmetry.
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Data from four pairs of neuronal process orientation distributions and diffusion tensors are
shown in detail in Fig. 9. For fields labeled I–IV in Fig. 4(b), transmitted light images are
shown in the left column of Fig. 9. The set of line segments used to estimate the scatter
matrix for cellular processes within one quadrant for each of the four fields is displayed as
3-D surface models in the adjacent column of Fig. 9. The right two columns of Fig. 9 show
Schmidt plots, an equal area stereographic projection [57] method, of the neuronal process
orientation distribution and diffusion MRI data. Each Schmidt plot is shown in the Golgi
reference frame (e.g., the azimuthal angle for each Schmidt plot corresponds to the in-plane
direction in the Golgi images). The orientation distribution plots reflect the probability that a
neuronal process is oriented according to polar and azimuthal angles shown, whereas the
diffusion MRI plots (Fig. 9, right plots showing the negative log of the diffusion signal)
reflect the apparent diffusion coefficient measured along a direction specified by a given set
of polar and azimuthal angles. These plots display qualitatively similar features. In each
row, peak intensities for orientation distributions and diffusion-weighted MRI signal
intensity are observed for similar polar and azimuthal angles. In addition, Golgi quadrants in
which the neuronal process orientation distribution peak is narrow (within fields I and II)
generally correspond to narrow peaks in the diffusion-weighted signal, whereas broad
orientation distribution peaks (quadrants within fields III and IV) are generally matched with
broad peaks in the diffusion weighted signal. For comparison, fractional anisotropy values
FAD (third column) or FAT (fourth column), are given in the upper left corner of each
Schmidt plot. Overall, the Golgi peaks appear sharper than the DTI peaks, and we believe
there are two main reasons for this. First, diffusion anisotropy is affected also by water in
the extracellular space which is arguably less anisotropic than the intracellular space.
Second, even for a single neurite direction, the diffusion peak would be blurred since the
diffusion direction (the diffusion wave vector) has a component parallel to the neurite for
most directions.

The degree of agreement between the principal DTI and scatter matrix eigenvectors was
used as one way to quantitatively assess whether the prediction of (9) was upheld in our
data. Fig. 10 provides a graphical comparison of primary eigenvectors of the DTI data for
voxels within the cerebral cortex, expressed in the Golgi frame (yellow vectors), with
primary eigenvectors of the 128 Golgi field quadrants (red vectors). As expected, the
orientations of the two sets of vectors generally coincide. The distribution of relative angles
θ ∈ [0, π/2] between the corresponding directions was examined to determine whether a
statistically significant correlation exists between the two sets of tensor eigenvectors. The
null hypothesis is that no correlation between these directions exists. Under conditions of the
null hypothesis, cos(θ), which is the z-component of the primary DTI eigenvector in a
coordinate system in which the Golgi primary eigenvector defines the z-axis, would be
uniformly distributed between zero and one. Fig. 11 shows the cumulative distribution of
cos(θ), compared to the uniform distribution. The actual distribution is clearly different from
the uniform, in particular there is a tendency for the relative angles to be close to zero,
indicating general alignment between the principal directions of the diffusion tensor and the
scatter matrix. Indeed, the Kolmogorov–Smirnov test rejects the null hypothesis (p < 10–6).
The average angle between the diffusion principal direction and scatter matrix principal
direction is approximately 36°, and the scatter characterized by the length of the resultant

vector  is 0.93. Note that |R| = 0 would correspond to maximal
scattering over the unit circle, whereas |R| = 1 would correspond to maximal coherence.

To test the prediction in (10) of a linear relationship between the eigenvalues of the two
matrices, the centralized eigenvalues of the scatter matrix were matched pairwise to the
centralized eigenvalues of the DTI matrix according to rank. These pairs are plotted in the
Fig. 12 upper panel where a clear linear relationship is observed, as predicted by the theory,
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corresponding to a significant Spearman correlation using either the largest (ρ = 0.30, p < 6
× 10–4) or smallest (ρ = 0.37, p < 3 × 10–5) eigenvalues. The best linear fit (using the robust
fitting function “robustfit” in Matlab), resulted in a slope of νDA = 0.53. A second analysis
was performed in which the diffusion eigenvalues were represented as radial diffusivity,
defined to be the average of the two smallest diffusion eigenvalues, and axial diffusivity,
defined to be the largest diffusion eigenvalue. Similarly, radial and axial eigenvalues were
defined for the scatter matrix, and the resulting 2 × 128 pairs of points were plotted against

each other in the Fig. 12 middle panel. Given that the mean diffusivity  across the voxels is

relatively constant (average , standard deviation 0.027), (10) predicts a linear
relationship between this set of numbers, with slope νDA and y-axis intercept

. This is shown as a solid line in the middle panel, using the values
obtained from the fit above (νDA = 0.53 and intercept 0.13). An independent fit gave similar
values (νDA = 0.58 and intercept 0.11). In the Fig. 12 lower panel, fractional diffusion
anisotropy FAD is plotted against the fractional orientation anisotropy FAT, cf. (12), and
again a significant linear correlation is found (p < 10–5) with a correlation coefficient of ρ =
0.40, and an estimate of νDA = 0.57.

V. Discussion

In this work we have investigated the structural origins of diffusion anisotropy in the
immature ferret cerebral cortex by comparing DTI measurements to quantitative analyses of
Golgi-stained tissue. The early postnatal ferret brain is suitable for this comparison because
it exhibits a high degree of similarity to fetal human cerebral cortex, including the
development of sulcal and gyral structures at a developmental stage that is temporally
coincident with the loss of cortical diffusion anisotropy. Additionally, the trajectory of DTI
changes with development has been extensively characterized in this species [31], [34]. We
derived a direct mathematical relation between the diffusion tensor and the axonal and
dendritic architecture in the neuropil, expressing quantitatively how diffusion anisotropy is
induced by intrinsic diffusion anisotropy within axons and dendrites and anisotropy in their
orientation distribution. A methodological framework for quantitative characterization of
histologically-prepared tissue was described, and applied to tissue from a P13 and a P31
ferret. In accordance with predictions based on previous studies of cortical diffusion
anisotropy, a larger amount of variance in FAT was observed at P13 than at P31. Therefore,
to assess the veracity of the proposed theoretical relationship in (9), scatter matrices were
measured throughout the P13 cerebral cortex, and these were demonstrated to be
significantly correlated to diffusion tensor measurements performed on the same brain as
predicted by (9).

To experimentally determine cortical orientation distributions of neuronal processes, it was
necessary to choose a staining technique that enables visualization of dendritic and axonal
structures. An ideal technique for providing comparisons to cortical DTI measurements
stains cortical cells in an unbiased manner, provides data from several cells within each MRI
voxel, and will stain cells in a manner that will enable individual axonal and dendritic
processes to be resolved. The Golgi technique is one of very few methods that meet these
criteria. By staining a small, random subset (~1%) of cells in a complete manner [71], the
Golgi technique enables an overall representation of cellular architecture to be characterized,
but the staining is not so dense that it is impossible to resolve neighboring fibers. For these
reasons, the Golgi method has been in use for over a century as a general method for
characterizing neuronal morphology (e.g., see [72] and references cited therein), and has
previously been used to document dendritic development in pyramidal neurons of ferret
cerebral cortex [73]. For these reasons, the Golgi technique was selected here for
comparisons to DTI measurements. However, it is also noted that the procedures described
here can be extended to other methods for visualization of cellular processes in the future.
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There was a strong mutual alignment between the directions of the principal eigenvectors of
the scatter and DTI matrices, in agreement with theory. The theoretical relationship was
further supported by comparing centralized eigenvalues of the neurite orientation and water
diffusion tensors to one another, as well as measures of fractional anisotropy. The straight
line which best fit the pairs of centralized eigenvalues had a slope corresponding to νDA of
0.53 μm2/ms, according to (10) and (12). Typical values of DA = 0.7 μm2/ms were
previously reported in measurements of water diffusion within post mortem baboon cerebral
cortex [52] resulting in an estimate of neurite density on the order of ν ≈ 0.7–0.8, consistent
with literature values of the neuropil volume fraction of 0.7 (rat, [74]) and 0.8 (rhesus
macaque, [75]). Thus the observed slope estimated using (10) to the data is in excellent
agreement with previous measurements by us and others.

Several factors potentially contribute to the variance in the Fig. 12 plots. Variations in
neurite volume fraction ν or intrinsic diffusion anisotropy DA among the different Golgi
fields were not taken into account, which likely explains some of the scatter in the data
points around the straight lines in Fig. 12. Additionally, slight misregistration of the Golgi
and DTI reference frames is also expected to contribute to scatter in the Fig. 12 plots.
Specifically, histological preparation procedures introduce nonlinear deformations of the
tissue that are not fully accounted for by the linear registration approach described in
Section III-D. However, efforts were made to minimize these effects, such as manual in-
plane adjustments to match each Golgi ROI to a specific DTI voxel. Although nonlinear
methods could in principle improve the registration procedures, we found the adopted
approach to provide considerable accuracy (the mean distance between DTI-frame
landmarks and the corresponding planes in Fig. 4(a) was found to be 0.20 mm). Due to the
lack of similarity in image contrast patterns between the Golgi and DTI data, nonlinear
registration strategies were not pursued here. Last, although the volumes of the Golgi
regions were nearly matched to the volume of a single DTI voxel, the shapes of the Golgi
regions (387.5 μm × 387.5 μm × ~ 100 μm) differed from DTI voxels (250-μm-sided
cubes) due to constraints of the Golgi imaging technique. This distinction could lead to
differences in the manner in which the two methods sample cerebral cortical neuronal
morphology. Despite these potential complications, a highly statistically significant
correlation between DTI derived parameters and neurite orientation matrix was observed, in
agreement with the proposed theory.

In addition to factors expected to contribute to variance in Fig. 12, systematic effects related
to simplifying assumptions of the (1) model may also influence the relationship between the
measured diffusion tensor and the orientation distribution in neuronal processes. Several of
these factors have been discussed in previous studies [39], [50], [51]. For example, only
neuronal processes were accounted for in the histological measurements, whereas
vasculature, glial processes and anisotropy of the extracellular space could, in principle,
contribute to diffusion anisotropy. It should be noted, however, that the volume fraction of
capillaries and glial cells are each estimated to be less than 5% [74], and the contribution of
these components to diffusion anisotropy is thus expected to be minor. In addition, since
intra- and extracellular spaces are complementary to one another, the anisotropy of the
extracellular space will very likely mimic the variation in the neuritic anisotropy, and the net
effect may thus amount to a rescaling of the proportionality constant ν in (9). In the future,
experiments with other histological or immunohistochemical stains will be of value to
specifically determine the extent that e.g., glial processes contribute to the observed
measurements, and to separate the axonal and dendritic contributions.

Recent investigations have shown that diffusion MRI is sufficiently sensitive to detect
differences between cortical areas within an individual [50] and between cerebral cortices of
different treatment groups, such as visually-deprived and control animal subjects within
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visual cortex [39]. Despite the obstacles encountered in characterizing the link between MRI
measurements on intact tissue and measurements performed on the same tissue following
histological processing, the work presented here demonstrates it is possible to interpret
directionally-dependent diffusion MRI measurements in terms of the 3-D orientation
distribution function of cellular processes in the developing neuropil. This capability is
particularly significant in the contexts of neurodevelopmental disorders, in which affected
individuals exhibit simplified dendritic arbors within the developing brain [4]–[7], as well as
for studies of the relationship between environmental factors and neuronal morphology,
such as the effect of stress on hippocampal pyramidal dendrite structure [76]. Therefore, it is
anticipated that measurements of diffusion anisotropy within the cerebral cortex will be of
increasing value for extending the diagnostic capabilities of MRI in studies of
neuropsychiatric disorders in the future.

VI. Conclusion

An experimental framework based on confocal microscopy for quantitative comparisons of
histology to MRI was described, and used to evaluate a novel relation between the MR
diffusion tensor and axonal/dendritic architecture. This relation was a mathematical
expression of how microstructural anisotropy in gray matter shapes the diffusion tensor. The
proposed microstructural underpinnings of the diffusion tensor were experimentally
validated on a fixed ferret brain by confocal microsocopy using reflected visible light of
Golgi-stained tissue following diffusion tensor imaging. Quantitative comparisons following
coregistration of the Golgi and DTI data support the proposed theoretical relationship
between the water diffusion tensor and the orientation tensor of neuronal processes. These
results provide a framework for interpreting DTI measurements of the cerebral cortex in
terms of cellular morphological properties that can be influenced by environmental
experience, or perturbed in neurodevelopmental disorders.
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Appendix I

In this section, we focus on the kurtosis to illustrate how to extend the procedure to relate
higher-order cumulants of the diffusion signal to corresponding moments of the neurite
orientation distribution function. Reverting (5) to an expansion of log(S)

(23)

we find for the apparent kurtosis

(24)

Here, we have defined the centralized fourth moment W (a rank 4 tensor) of the neurite
orientation distribution
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(25)

and used the tensor product notation ⊗: e.g., for two second rank tensors A and B, the tensor

product  is a rank four tensor with Cartesian components , and

. The second term in (24) is a cross term of the two compartments, and vanishes
if either ν = 1 or 0. The first term reflects the fourth moment of the neurite orientation
distribution. This result reflects the general property that the nth order cumulant tensor
contains information about the neuronal process orientation distribution moments of order
less than or equal to n. Since the higher-order cumulants affect the diffusion signal only for
sufficiently high diffusion weighting, this in turn implies that increased information about
small-scale angular variations in the microstructure requires higher b values, in addition to
better directional sampling.

Appendix II

This section gives pseudocode routines for the data processing procedures shown in Fig. 5.

Construct binary_mask and skeleton

Input. A 3-D (e.g., 128 × 128 × 100) matrix, image_stack, of reflected light intensity values, and a threshold intensity to
distinguish foreground and background objects.

Output. Two binary 3-D matrices; a thresholded image of stained cellular elements, binary_mask, and a 3-D skeleton of
the thresholded image, skeleton.

1.     Construct 3-D matrices binary_mask and skeleton of size equal to image_stack; Set all voxel
values of both matrices to 0.

2.     For each voxel in image_stack with intensity greater than threshold, assign the corresponding
voxel of binary_mask a value of 2

3.     while the maximum voxel value of binary_mask is 2

4.         Choose an arbitrary voxel, V0, in binary_mask that has a value of 2.

5.         Determine the set S voxels in binary_mask that are connected to V0 by a path that traverses
only voxels of value equal to 2.

6.         Set binary_mask voxels in S to a value of 1.

7.         Determine the 3-D skeleton of S; assign voxels a value of 1 in skeleton.

8. end while

Filter cell bodies

Input. binary_mask and skeleton from “Construct binary_mask and skeleton.”

Output. A filtered binary 3-D matrix of skeletonized foreground objects, skeleton_f, in which voxels within cell bodies
of radius greater than 6 μm are assigned a value of 0.

1.     Construct the matrix skeleton_f by duplicating skeleton.

2.     for each voxel vi with a value of 1 in binary_mask

3.         if the Euclidean distance between vi center and the center of the nearest voxel of value 0 in
binary_mask is greater than 6 μm

4.             Determine the set of voxels N that are within 6 μm of vi.

5.             Set the connected set of voxels within N that contains vi and are of value 1 in
binary_mask to a value of 0 in skeleton_f.

6.         end if

7. end for
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Determine path_coordinates_list

Input. skeleton_f from “Filter cell bodies.”

Output. A list of skeleton paths spanning axons and dendrites, path_coordinates_list.

1.     Construct the matrix M = skeleton_f.

2.     Initialize counting variable i = 1.

3.     while the maximum voxel value of M is 1

4.         Choose an arbitrary voxel, P0, in M that has a value of 1.

5.         Use Dijkstra's algorithm to find P1, the voxel with the maximum shortest path to P0 within the connected
set S of voxels of value 1 in M containing P0. P1 is said to be the furthest voxel from P0.

6.         Find P2, the furthest voxel in S from P1.

7.         Use Dijkstra's algorithm to determine the shortest path between P1 and P2; Define {P1P2} as the list of
coordinates connecting P1 and P2.

8.         Set voxel values for coordinates within a 5 μm Euclidean distance of any {P1P2} coordinate to 0.

9.         if the length of {P1P2} consists of 10 or more voxels

10.         Assign voxel coordinates on {P1P2} to path_coordinates_list(i).

11.         Increment i.

12.     end if

13. end while

Determine T

Input. path_coordinates_list from “Determine path_coordinates_list.”

Output. 3 × 3 scatter matrix T defined in (6).

1. Initialize counting variable n.

2. for1 each of the i paths in path_coordinates_list

3.             Initialize counting variable j = 1.

4.             while j is less than or equal to floor(0.1 * (number of coordinates in path_coordinates_list(i)))

5.         initialize counting variable k = 1.

6.             for2 coordinates 10 * (i – 1) + 1 to 10 * i in path path_coordinates_list(i)

7.                 Assign the x, y, and z components of coordinate 10 * (i – 1) + k to the kth row of the 10 × 3 matrix C.

8. Increment k.

9.         end for2

10.         Define the 1 × 3 vector m as the mean values of the 3 columns of C.

11.         Construct the 10 × 3 matrix B by setting each of its rows equal to the difference between m and the
corresponding row of C.

12.         Assign to row n of matrix S the primary eigenvector of the matrix BTB.

13.         Increment n and j.

14.     end while

15. end for1

16. Define N = n – 1.

17. Determine T = STS/N.
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Fig. 1.
Data used to measure water diffusion in cerebral cortex of a P13 brain. All panels are shown
on a common intensity scale. The b-value for the axial image in (a) was 0, and for (b) and
(c) was 2.5 ms/μm2. The diffusion-sensitizing gradients were approximately parallel to the
brain rostral/caudal axis in (b) and lateral/medial axis in (c). Due to the larger water
diffusion coefficient in aqueous solution than in tissue, image intensity for phosphate-
buffered saline surrounding the brain that was not displaced by perfluorinated media is
observable in the absence of diffusion weighting [(a) black asterisk], but is dramatically
attenuated in images in which b = 2.5 ms/μm2 [white asterisks in (b), (c)]. Water diffusion
anisotropy in the cerebral cortex is manifest in reduced signal intensity for regions in (b), (c)
in which neuronal processes are parallel to the applied diffusion-sensitization gradients
(arrowheads). Abbreviations—C: caudal; L: lateral; M: medial; R: rostral.
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Fig. 2.
Comparison of standard transmitted visible light images and confocal images of reflected
visible light to demonstrate the through-plane resolution achievable by applying the confocal
technique to back-scattered light of Golgi-stained brain tissue. (a) A transmitted light image
of a Golgi field within cerebral cortex is shown. Panels (b)–(e) show side-by-side
comparisons of the indicated subregion of (a) obtained from transmitted (b), (c) and
confocal microscopy of reflected (d), (e) visible light. The focal plane of image pairs (b), (d)
is offset relative to (c), (e) by 15 μm. Confocal microscopy of reflected light enables
sufficient through-plane resolution to be achieved to construct 3-D models of cellular
structures, whereas out-of-plane structures in transmitted light images observable in (b), (c)
would interfere with subsequent steps of the 3-D analysis.
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Fig. 3.
Surface models of the P13 cerebral cortex facilitate co-registration of the Golgi and DTI
data. Montages of the five axial Golgi-stained sections used for comparisons with DTI data
are shown in (a). Manually-traced contour outlines were drawn for each of 70 montages, as
illustrated with red lines/points for the five sections in (a). The Golgi-based model of the
cortical surface (b) is generated from the 70 adjacent contour outlines using CARET
software (see text for details). Surface model coordinates corresponding to the contour
outline points are displayed as red spheres in (b). A surface model of the cerebral cortex is
also generated from the DTI data, shown in (c) (see text for details). Sulcal landmarks were
used to constrain surface-based registration procedures implemented using CARET
software. Sulcal landmarks that are visible on the lateral views of (b) and (c) are indicated
with yellow spheres. Surface nodes corresponding to red spheres on the DTI-based model
are shown as green spheres in (c). Abbreviations—aRF: anterior rhinal fissure; C: caudal;
CLS: coronolateral sulcus; CS: cruciate sulcus; D: dorsal; L: lateral; M: medial; PSS:
presylvian sulcus; R: rostral; SSS: suprasylvian sulcus; SS: sylvian sulcus: V ventral. Scale
bar = 2 mm.
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Fig. 4.
Co-registration results for DTI and Golgi images. In (a), five FA parameter maps that result
from resampling diffusion weighted images to be co-planar with each of the sets of surface
nodes corresponding to each set of green spheres in Fig. 3(c) are shown. The outline of these
points are projected onto each FA map, and overlaid as the green dashed traces. For
comparison, contour outline points derived from the Golgi data are displayed as red dashed
traces. For the bottom three planes, contour outline points along the medial wall were not
included in the registration and are therefore not included in the dashed green and red traces
(see text for details). Panels in (b) show the corresponding montages of Golgi-stained tissue
sections. The boundaries of each Golgi field, with its four quadrants, are shown as an
overlay. Each Golgi field center was projected onto the FA parameter maps in (a), and is
illustrated as a blue filled circle. For six Golgi fields [astrisks in (a)], no manual adjustment
was needed to provide a match between Golgi and DTI locations. For the remaining fields,
manual adjustments were necessary to ensure the field center specified in the FA maps was
consistent with the center shown in the Golgi images, relative to gyral and sulcal landmarks.
128 DTI voxels [shown in yellow in (a)] were chosen based on distance from the Golgi field
center for comparisons between the DTI data and each Golgi quadrant. Fields labeled I–IV
in (b) are shown in more detail in Fig. 9. Abbreviations are as in Fig. 3. Scale bars = 2 mm.
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Fig. 5.
Schematic illustrating the procedure for estimating axonal/dendritic orientation distributions
from serial confocal images of reflected visible light.
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Fig. 6.
Two-dimensional projection (a) and 3-D surface model (b) of the dominant foreground
object identified in Fig. 2. Oblique collateral branches (o, green arrow) off apical dendrites
(a, red arrow), as well as basilar dendrites (b, blue arrows) are indicated on this pyramidal
neuron.
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Fig. 7.
Extraction of major axonal and dendritic neuronal elements from a skeletonized object.
Initially, each voxel within the foreground object pictured in Fig. 2 is labeled with a value of
1, color-coded black in the 2-D projections in panels (a)–(d), and the following operations
are repeated until all foreground object voxels are labeled with a value of 0, color-coded
orange in (b)–(e). First, the longest minimum path length along the 3-D skeleton that
connects two points within the object is determined as described in the text [green path
connecting points P1 and P2 in (a)]. Next, if the path length is greater than 10 μm, the
ordered set of voxel coordinates intersected by the path is stored to memory. Last, regardless
of the length of the path, all foreground object voxels within a Euclidian distance of 5 μm
from any point along the path are relabeled with a value of 0 [orange voxels, (b)].
Subsequent paths are identified within connected subsets of voxels within the object that are
labeled with a value of 1. Panels (c), (d) illustrate the second iteration of the sequence. Panel
(e) shows the paths stored to memory at the end of the sequence. Paths within a 3-D model
of the object are shown in (f).
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Fig. 8.
The set of orthogonal distance regression line segments used to approximate the object, and
estimate the orientation distribution of neuronal processes are shown within the foreground
object surface model. In the inset, the distribution of line segment orientations are shown on
a unit sphere.
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Fig. 9.
Model independent comparison of the angular dependencies of the neuronal process
orientation distribution and negative log of the diffusion signal for four quadrants. Images in
rows I–IV are taken from corresponding fields labeled I–IV in Fig. 4(b). From left to right,
the first column shows transmitted light images for each field. The quadrant shown in the
remaining three columns is outlined with a black box. The second column shows 3-D
surface models of the set of line segments used to estimate the scatter matrix for the stained
cellular processes. Images are rotated slightly to show the boundaries of the quadrants. An
equal area stereographic projection method (Schmidt plot) has been used to render the 3-D
probability density distributions in a manner that is suitable for 2-D graphs in the third and
fourth columns. In each plot, the polar angle θ ranges from 0° (center of plot) to 90° (outer
perimeter of the circle). Concentric circles within the outer perimeter of each plot
correspond to polar angles of 30° and 60°. The azimuthal angles for each plot are aligned
with the first and second columns of the figure. Orientation distributions are expressed using
(19) in the third column, and the negative log of the diffusion signal intensity is expressed
using (22) in the fourth column. Numbers in upper left corners of the third and fourth
columns are FAT and FAD, respectively, as defined in (11).
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Fig. 10.
Overlay of diffusion tensor (yellow) and axon/dendrite scatter matrix (red) primary
eigenvectors on FA parameter maps for each of the five P13 Golgi sections.
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Fig. 11.
Estimated cumulative distribution of the length of the projection of the DTI principal
direction onto the main direction of the scatter matrix. If the two directions were unrelated,
this variable would be uniformly distributed between zero and one, and resemble the dotted
line. Deflection of the solid line below the dotted line indicates diffusion tensor and scatter
matrices are correlated, which is statistically significant according to a Kolmogorov–
Smirnov test (p < 10–6).
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Fig. 12.
(a) The centralized eigenvalues of the diffusion tensor versus the centralized eigenvalues of
the scatter matrix, along with the best robust fit (line). The slope of the lines shown for all
panels corresponds to the product νDA, as described in the text, and is set to a value of 0.53,
determined from the data shown in (a). In (b), radial and axial diffusivities versus
corresponding numbers using the scatter matrix eigenvalues are plotted, and the solid line is
the predicted linear relationship using the fit from (a) and the observed mean diffusivity

 μm2/ms. In (c), fractional anisotropy of water diffusion (FAD) is plotted against
fractional anisotropy of the axon/dendrite scatter matrix (FAT), and the line corresponds to
the fit determined in panel (a).

Jespersen et al. Page 34

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 February 02.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t


