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Abstract
Many toxicological test methods, including assays of cell viability and function, require an evaluation of concentration-re-
sponse data. This often involves curve fitting, and the resulting mathematical functions are then used to determine the 
concentration at which a certain deviation from the control value occurs (e.g., a decrease of cell viability by 15%). Such a 
threshold is called the benchmark response (BMR). For a toxicological test, it is often of interest to determine the concen-
tration of test compound at which a pre-defined BMR of, e.g., 10, 25 or 50% is reached. The concentration at which the 
modelled curve crosses the BMR is called the benchmark concentration (BMC). We present a user-friendly, web-based 
tool (BMCeasy), designed for operators without programming skills and profound statistical background, to determine 
BMCs and their confidence intervals. BMCeasy allows simultaneous analysis of viability plus a functional test endpoint, 
and it yields absolute BMCs with confidence intervals for any BMR. Besides an explanation of the algorithm underlying 
BMCeasy, this article also gives multiple examples of data outputs. BMCeasy was used within the EU-ToxRisk project for 
preparing data packages that were submitted to regulatory authorities, demonstrating the real-life applicability of the 
tool. 

This is an Open Access article distributed under the terms of the Creative Commons 
Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution and reproduction in any medium, provi-
ded the original work is appropriately cited. 

sessment in classical toxicological studies. The NOAEL is the 

highest dose/concentration tested that shows no adverse effect 

in a particular experiment, while the LOAEL is the lowest dose/

concentration at which an adverse effect was observed. The deter-

mination of the NOAEL or LOAEL is straightforward; however, 

uncertainty of these threshold values is poorly defined, and the da-

ta is strongly affected by the study design (e.g., sample size, dose 

1  Introduction  

Investigating the onset of toxicity of chemicals and determining 

their non-cytotoxic concentration ranges is a pivotal task of tox-

icology. The no-observed-adverse-effect-level (NOAEL) and the 

lowest-observed-adverse-effect-level (LOAEL) have been used 

as points of departure (PoD) for hazard estimation and risk as-
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BMC, benchmark concentration; BMCL, benchmark concentration lower limit; BMCU, benchmark concentration upper limit; BMR, benchmark response;  
CI, confidence interval; LOAEL, lowest observed adverse effect level; NOAEL, no observed adverse effect level

selection and dose spacing) (Crump, 1984; Haber et al., 2018; 

Kimmel and Gaylor, 1988; Barnes and Dourson, 1988; Dourson 

et al., 1985).

To overcome this limitation, the benchmark dose concept was 

developed. It is broadly used and recommended for animal-based 

studies (EFSA, 2017; Davis et al., 2011; U.S. EPA, 1995, 2012), 

and it has also been adapted to analyze data sets from in vitro tests 

or so-called new approach methods (NAM). As concentrations 

are the most common dose metric for cell-based tests (Kisitu et 

al., 2019), benchmark concentrations (BMC), rather than bench-

mark doses, are relevant for new approach methods.

The BMC is the concentration at which a specific, pre-defined 
change in an assay endpoint occurs, and the pre-defined change is 
called the benchmark response (BMR) (Crump, 1984). The appli-

cation of this concept is most straightforward for situations where 

the concentration-response behavior is monotonic and a mathe-

matical model can be fitted to the experimental data. The BMC is 
determined as the concentration at which the modeled curve in-

tersects the pre-defined BMR (Fig. 1). For example, in the case 
of viability as test endpoint, a BMR of 12% would define a reduc-

tion of viability from 100% to 88%. The uncertainty of the BMC 

can be calculated and expressed as the confidence interval (CI). 
The lower limit of the CI (bench mark concentration lower bound; 

BMCL) can be considered the highest concentration of a com-

pound that does not affect the assay endpoint with a pre-defined 
confidence level. In this case, “not affecting the assay endpoint” 
would be interpreted as being “non-cytotoxic”, and the CI would 
relate to the given BMR. In the example, the BMCL indicates the 

highest concentration at which one can be 97.5% certain that the 

viability does not deviate more than 12% (BMR) from that of un-

treated or negative control cells.

Taking the viability example above, one may conclude that all 

data above 88% viability mean that there is no cytotoxicity, while 

all data below the BMR (< 88% viability) indicate cytotoxicity. 

One could then conclude that all test compound concentrations 

that are below the BMC are non-cytotoxic (have a viability above 

the BMR). However, this interpretation does not account for the 

statistical uncertainty of the BMC, and one cannot be sure that 

toxicant concentrations at the BMC level are indeed non-cytotox-

ic. If one wants to have a certain confidence that a concentration 
is non-cytotoxic, it should be lower than the BMCL. Thus, the  

BMCL provides a better estimation of non-cytotoxic concentra-

tions than the BMC alone. Knowing this threshold is important 

for choosing test concentrations for functional assays or for gene 

expression studies (Krug et al., 2013; Rovida et al., 2014; Nyffeler 

et al., 2017a,b; Waldmann et al., 2014; Rempel et al., 2015; Shin-

de et al., 2017; House et al., 2017). As the BMC method uses the 

information of the whole dataset, including the data uncertainties 

(i.e., variability produced by experimental errors and fluctuations 
of experimental parameters), it is less influenced by concentration 
spacing than a NOAEL, and it provides an estimate of statistical 

uncertainty of a point of departure (PoD). It is therefore a pre-

ferred method for modern toxicological approaches (Hartung and 

Leist, 2008; Leist et al., 2010, 2012, 2014), and the concept has 

been used for a number of algorithms to define non-cytotoxic con-

centrations (Stadnicka-Michalak et al., 2018; Hsieh et al., 2019; 

Calderazzo et al., 2019; Behl et al., 2015). Several software tools 

have been developed to calculate the BMC (Filer et al., 2017; 

Slob and Setzer, 2014; Ritz and Streibig, 2005)1,2, but applying 

the BMC concept still requires considerably more mathematical/

statistical and programming skills than the NOAEL/LOAEL ap-

proach and can be challenging for experimental biologists.

The ideal tool for an experimental in vitro toxicologist with-

out programming skills and working on low to medium through-

put test methods would have the following characteristics: (1) 

requires neither programming skills nor extensive mathematical 

and statistical knowledge; (2) handles data from cytotoxicity end-

points as well as from functional endpoints (note that the lower 

Fig. 1: The benchmark concentration concept for in vitro 

toxicology data 

An example dataset of concentration-response data of a toxicant 

is shown. Older curve evaluation strategies use the NOAEL 
(maximal concentration that has no observable adverse effect) and 

the LOAEL (lowest concentration that evokes an adverse effect) 
to define the onset of toxicity. The benchmark concept requires 
definition of a benchmark response level (BMR). The compound 
concentration that causes the test endpoint (e.g., viability) to  

drop to the BMR is called the benchmark concentration (BMC).  

A two-sided confidence interval (CI) can be calculated for the BMC. 
The lower limit of the CI is defined as BMCL, the upper limit as 

BMCU. Concentrations lower than the BMCL are likely to produce 

effects lower than the BMR with a pre-defined level of confidence 
(usually 97.5%). 

1 https://www.rivm.nl/en/proast 

2 https://cran.r-project.org/web/packages/drc/drc.pdf 
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detailed user manual of the BMCeasy graphical user interface3 

and the code8 are available.              

2  Curve fitting and calculation of BMR data

Data for up to two different endpoints can be uploaded at a time, 

and any BMR can be specified. For both endpoints, three con-

centration-response models with slightly different constraints are 

available to fit the data. The best model is selected automatically 
by BMCeasy. The outputs are the BMCs, their confidence inter-
vals with lower and upper boundaries (the BMCL and BMCU), 

the parameters used for curve fitting, and a high-quality graph. 

2.1  Pre-processing of the data and data input
The program was designed on purpose to require a manual check 

and pre-processing of data: Initial normalization of raw data, 

detection of outliers and possible re-normalization of data sets 

(Krebs et al., 2018) is left to the user and needs to be done prior 

to data upload in standard laboratory programs such as Graph-

Pad or Excel. It is of utmost importance that the user is aware of 

asymptote of functional endpoint data is often > 0); (3) calculates 

absolute BMC and BMCL values in a standardized way to allow 

comparison in inter-laboratory projects or between different as-

says in a test battery (Fig. 2), (4) ensures transparency and repro-

ducibility by creating publication-quality graphical output and 

providing background on the fitting procedure as well as docu-

menting all parameters of the curve fitted to the concentration-re-

sponse data. To the best of our knowledge, no such program was 

easily available, therefore we created BMCeasy3, a web-based ap-

plication fulfilling all these requirements.
BMCeasy was programmed in R4 (R Core Team, 2019) using 

the well-established drc package for curve fitting and BMC es-

timation5 (Ritz and Streibig, 2005; Ritz, 2010) and the R Shiny 

package to produce the web interface6. The tool is suitable for da-

ta obtained from a wide variety of in vitro test methods. It has 

been used and optimized in practice during collaborative work in 

the EU-ToxRisk project7 and several other international collab-

orative research activities involving laboratories from both aca-

demia and industry. 

In the present work, we aim to give an overview of the work-

flow, together with some example applications of the program. A 

3 http://invitrotox.uni-konstanz.de/BMCeasy/

4 https://www.r-project.org/ 

5 http://www.bioassay.dk/ 

6 https://shiny.rstudio.com/ 

7 https://www.eu-toxrisk.eu/

8 https://github.com/JohannaNyff/BMCeasy

Fig. 2: Graphical representation of the absolute versus the relative BMC50

A) The absolute BMC50 is defined independently of the data and their curve fit, the curve’s inflection point or its lower asymptote. The 
absolute BMC50 is thus always defined as a 50% reduction of the respective endpoint, independent of the lower asymptote.  
B) The relative BMC50 is dependent on the data, in particular on the lower asymptote, because it is defined by the midpoint of the 
difference between the upper and the lower asymptotes. For a 4-parameter sigmoid fit, this is identical to the curve’s inflection point.  
The lower asymptote is shown in red, the upper asymptote in grey. The dashed vertical line (black) indicates the BMC50. BMCeasy uses 

the absolute BMC50 definition as in A.

https://www.r-project.org/
http://www.bioassay.dk/
https://shiny.rstudio.com/
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BMC calculation requires datasets with a downward direction 

(towards 0%) for increasing concentrations of test chemical. For 

example, a decrease in cell viability or inhibition of cell migra-

tion are typical assay responses that can be evaluated. Upward 

responses (e.g., enhanced cell proliferation, or activation of a re-

porter gene) cannot be evaluated directly; such datasets need prior 

transformation (e.g., inversion or mirroring on a line parallel to 

the x-axis) (Weimer et al., 2012). 

2.2  Curve modeling
Concentration-response input data is fitted using the log-lo-

gistic function of the drc package. The curve fits differ in their 
constraints and possible ranges of curve fit variables (Fig. 3A)9. 

The parameters were not derived from and validated by stringent 

statistical procedures. They rather reflect the experience gained 

the quality of data necessary to yield reasonable outputs. In some 

cases, repetitions of an experiment may be necessary to provide 

data sets of sufficient quality. Sometimes data sets may need to be 
excluded from analysis (e.g., when a compound used in a viability 

test makes cells proliferate (reaching values > 100%). As the soft-

ware performs poorly with low-quality data and requires manual 

pre-processing, BMCeasy is not suitable for high-throughput data 

processing. 

BMCeasy input datasets are simple lists containing the name of 

the chemical tested and, in each line, a test concentration, the con-

centration unit, and the response (normalized to 100% relative to 

a vehicle control or to another reference point). In case of several 

replicates, they may be entered as individual values or as mean, 

standard deviation, and number of replicates. A sample MS Excel 

file is provided3. 

Fig. 3: Overview of the different 

models to fit concentration-
response data 

A) The log-logistic 4-parameter 

model on which all fits are based. 
B) The three different fits (based 
on different parameter constraints) 

available to fit viability endpoint 
data. C) The three different  

fits (based on different parameter 
constraints) available to fit 
functional endpoint data. The green 

areas are based on the respective 

upper and lower parameter limits. 

They demonstrate the full range of 

curves that can be generated  

by the model. Conc, concentration 

9 https://cran.r-project.org/web/packages/drc/drc.pdf 

https://cran.r-project.org/web/packages/drc/drc.pdf
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selected for viability data) only to a small extent. The rationale 

was to rather tolerate a reduced fit quality at high concentrations 
than to accept the biologically rather implausible assumption that 

exactly 8% (number chosen only as example of an exact lower 

asymptote) of the cells will survive even the highest test concen-

trations.

A second case for which Fit 1 often works well is a weak, 

non-sigmoidal response, like a linear decrease, e.g., to 80% via-

bility, at high test concentrations. However, users need to be care-

ful with data that have a very gentle slope, as they are error-prone 

and uncertainties can be high. This is a typical case where users 

need to decide whether BMC determination is meaningful. Fit 2 

and Fit 3 are suitable for sigmoidal responses with a lower asymp-

tote that is clearly higher than 0%. An example case may be rel-

during several years of experimental work with the fitting of re-

al-life data sets (Nyffeler et al., 2017a,b). Best results are obtained 

for low BMRs (e.g., 10-30%), as BMCeasy was mainly devel-

oped to determine the onset of toxicity. Accordingly, the program 

performance may be poor for BMRs > 50%. 

For viability data (Fig. 3B), Fit 1 works best for datasets with a 

steep concentration-response and a lower asymptote near 0%. The 

parameter setting takes into account the biological background 

that most viability data sets should theoretically approach 0% at 

high test concentrations. It also accounts for frequent experimen-

tal findings that there is sometimes an imperfect baseline correc-

tion or blank subtraction. Moreover, the parameter setting takes 

advantage of our experience that imperfect curve fits in the lower 
part of the curve affect BMCs with a low BMR (often BMR10 is 

Fig. 4: Overview of data 

processing with the BMCeasy 

tool to determine the BMC and its 

confidence interval
The data are pre-processed 

manually before they are uploaded. 

Ideally, datasets from several 

independent experiments  

(BR, biological replicates) are used 

for input. Three different fits are 
available (➊➋➌; see also Fig. 3)  

to fit the concentration-response  
data. The program automatically  

identifies the most suitable  
concentration-response model and 

uses it to calculate the BMCs  

and the respective BMCL/BMCU.  

* at least three concentrations with  

a mean response exceeding  

the noise level. The noise level was 

defined as 5% for viability and  
10% for the functional endpoint. logL, 

log-likelihood 
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2.3  Best model selection
Following principles of the Akaike information criterion10, con-

centration-response models were compared for their goodness of 

fit and for the risk of overfitting. Fit 2 and 3 have three degrees 
of freedom, while Fit 1 has only two degrees of freedom. Models 

with more degrees of freedom typically fit the data better, but 
they may also overfit them. Therefore, their use must be justi-
fied. The selection procedure was set in a way that Fit 1 is pre-

ferred over Fit 2 or 3 unless either of these models the data con-

siderably better. Moreover, Fit 2 and Fit 3 can be selected only if 

there are at least three data points on the concentration-response 

ative cell count measurements for a cytostatic (but not cytotoxic) 

compound (Fig. 3B). Fit 3 is intended to allow modelling of data-

sets with a lower asymptote > 80%. 

For functional endpoints (Fig. 3C), Fit 1 and 2 are similar to 

those for cytotoxicity data, while Fit 3 was included to account for 

datasets with upward concentration-response curves (Fig. 3C). No-

tably, Fit 3 is not meant to generally capture all responses > 100%  

(e.g., motility, proliferation, reporter assays, etc.). It was includ-

ed in the software to account for unexpected counter-regulations 

(e.g., cytostatic drugs that increase cell numbers; potential en-

zyme inhibitors that activate an enzyme, etc.).           

10 https://www.statisticshowto.datasciencecentral.com/akaikes-information-criterion/ 

Fig. 5: Examples of real-

life outputs from BMCeasy 

demonstrate how curves  

are fitted to various experimental 
datasets

A) Concentration-response data  

of mercury chloride from the  

PBEC-ALI assay (air-exposed 
primary bronchial epithelial cells).  

B) Percent of viable zebrafish 
embryos after 96 h exposure to 

valproic acid (VPA). C) Effect of 
hexachlorophene on migrating 

neural crest cells (cMINC assay). 
D) Concentration-response data 

of rotenone in peripheral neurons 

(PeriTox assay). E) Paclitaxel 
effects on the neurite area of 

peripheral neurons (PeriTox assay). 

F) Data of the NeuriTox assay 
using developing dopaminergic 

neurons (LUHMES cells). G) Fetal 
bovine serum (FBS) enhances 
cell migration of neural crest cells 

(cMINC). H) Cadmium chloride 
(CdCl2) inhibits neural crest cell 

migration (cMINC). G) and H) were 
adopted from Nyffeler et al. (2017b). 
Data provided by the Leiden 

University Medical Center (LUMC), 

The Netherlands for panel A, by 
University of Heidelberg, Germany, 

for panel B, and by the University  

of Konstanz, Germany for panels 

C-H. 

https://www.statisticshowto.datasciencecentral.com/akaikes-information-criterion/
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There are multiple options for layout and design of the graph 

(appearance of curves, legends, axes and data points). However, 

for users who prefer their own graphical representation, the pa-

rameters of the curve fit are returned. This allows reproduction 
in other programs. 

BMCeasy has been used for processing the results of a broad 

variety of methods (Fig. 5). Within the EU-ToxRisk project, its 

use spanned from air-exposed bronchial epithelial cells, through 

zebrafish embryos, neural crest cells and neurons to hepatocytes 
and kidney cell models. The example plots show that the tool 

can handle various challenges, such as curves with almost no de-

cline (Fig. 5A), with large data uncertainty (Fig. 5B, C), data 

with a lower asymptote > 0% (Fig. 5D, F) or curves with a very  

gentle decrease (Fig. 5E) as well as data with increasing re-

sponse (Fig. 5G).              

3  Discussion and conclusion 

We created a web-based tool to help experimental in vitro toxicol-

ogists without programming skills or extensive mathematical and 

statistical knowledge to calculate absolute BMC and BMCL val-

ues in a standardized way. As BMCeasy does not contain a qual-

ity check module for the input data, it requires the user to judge 

which types of data sets can be handled by the program and where 

problems may occur (Tab. 1). It is important to note that the pro-

gram will to some extent also handle “non-suitable” data, and in 
such cases the delivered BMC data may not be meaningful. Like 

any research tool, the program has an applicability domain and 

a working environment that must be known and respected. For 

instance, non-monotonic responses or no-effect datasets cannot 

yield a reasonable BMC. Moreover, curve shapes that are very 

different from those obtained in typical cell-based assays poten-

tially will not result in good quality estimates. The tool is not suit-

able for high-throughput efforts, as batch processing of multiple 

test compounds has not been implemented. A detailed manual3 

explains how to set up the analysis.

Currently, only the log-logistic curve is modelled. It has been 

suggested that a broad range of functions should be available for 

curve with a mean response exceeding the noise level. The noise 

levels were defined empirically as 5% for viability and 10% for 
the functional endpoint because these automatic settings worked 

well in practice. We set a higher noise level (10% instead of 5%) 

for functional endpoints because we observed that these types 

of endpoints often have higher variance than viability measure-

ments. We consider fixed thresholds important to compare dif-
ferent experiments within a given assay and across different as-

says. A different strategy, i.e., a flexible noise level calculated 
from negative control data, has been chosen by others (Behl et 

al., 2019). To decide between Fit 2 and Fit 3, their log-likelihood 

is determined (Fig. 4). 

2.4  BMC calculation
The best fits for viability or the functional endpoint are then used 
to derive the BMC and to calculate the respective BMCU and 

BMCL at the desired BMR. 

To ensure that the estimated confidence interval is of best pos-

sible data quality, it is preferable that data from as many replicates 

as possible are included in the analysis; the number of concen-

trations tested as well as their spacing will also affect the output. 

For calculation of the CI, the ED function within the drc package 

(tlfs function pre-selected) is used (Ritz and Streibig, 2005). The 

resulting CI is usually asymmetrical on a linear axis.

It is important to note that BMCeasy defines BMC as decline/
reduction of an absolute effect. For example, BMC50 is a 50% 

reduction of the respective endpoint. For a curve with, e.g., an 

asymptote at 40%, this point does not coincide with the inflexion 
point of the curve (Fig. 2). This feature differs from other model-

ling solutions (e.g., tcpl) (Filer et al., 2017). According to the defi-

nition of the BMC underlying BMCeasy, an increase in response 

cannot be defined. This means that no BMC can be calculated if 
Fit 3 is selected for the functional endpoint.

2.5  Output
The calculated BMCs, BMCUs and BMCLs are returned in a 

table and can be downloaded as an Excel file. A graph with the 
concentration-response data of both endpoints and the respec-

tive best model fitting the data is plotted in publication quality. 

Tab. 1: Advantages and limitations of the BMCeasy tool

Advantages/strengths Limitations

Forces operator to visually check data and output Handles only one compound at a time

Customized for continuous data from in vitro test methods Only handles effects that decrease relative to the control response

Deals with two different readouts/endpoints in parallel Sensitivity to misspelling
Calculates BMCs of different BMRs in parallel Only ≤ 2 endpoints simultaneously
Free choice of BMR Manual re-normalization required (see Krebs et al. 2018)

Confidence level can be chosen Normalization to control (= 100%) has to be done manually before data entry
No need for coding and scripting Data need to fit standard requirements
No program installation needed Needs internet connection
High quality graphical output No further graphic modification
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A broad range of curve models is particularly important for high 

throughput data that are not manually controlled. The drc pack-

age used for BMCeasy has many curve models implemented, but 

we found that a limitation to the log-logistic function yields suffi-

ciently good and more comparable results. Exceptions to this rule 

are possible and need to be excluded by visual control.

The most severe limitation of BMCeasy is that it requires that 

datasets are normalized to 100% (for negative controls). A typical 

example of data that do not work is determining the percentage 

of lactate dehydrogenase (LDH) released from cells. In a typical 

assay, negative controls may show 15% release (spontaneous cell 

death) and positive controls 90% release. Such datasets may re-

quire complex transformation and renormalization (i.e., express-

ing data in terms of lactate dehydrogenase not released: 85% for 

negative controls, 10% for positive controls, then normalizing the 

negative control to 100% by dividing all data by 0.85). 

Many test methods yield two endpoints, a viability/cytotoxicity 

endpoint and a functional endpoint (e.g., cell migration, electri-

cal network activity, substrate transport or secretion of a biomole-

cule). Often the relation of the two endpoints is used to determine 

acceptance criteria or to identify hits. Therefore, it is often desired 

to represent them in one graph and to use the same tool for BMC 

calculations. BMCeasy is ideal for such cases. This allows exper-

imenters, for example, to rapidly decide if the concentration spac-

ing was chosen appropriately or if they should repeat their experi-

ment with different compound dilutions.
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