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Abstract 

In this study laser induced breakdown spectroscopy (LIBS) is used for elemental 

characterization of outcrop samples from the Marcellus Shale. Powdered samples were pressed 

to form pellets and used for LIBS analysis. Partial least squares regression (PLS-R) and 

univariate calibration curves were used for quantification of analytes. The matrix effect is 

substantially reduced using the partial least squares calibration method. Predicted results with 

LIBS are compared to ICP-OES results for Si, Al, Ti, Mg, and Ca. As for C, its results are 

compared to those obtained by a carbon analyzer. Relative errors of the LIBS measurements are 

in the range of 1.7 to 12.6%. The limits of detection (LOD) obtained for Si, Al, Ti, Mg and Ca 

are 60.9, 33.0, 15.6, 4.2 and 0.03 ppm, respectively. An LOD of 0.4wt% was obtained for 

carbon. This study shows that the LIBS method can provide a rapid analysis of shale samples 

and can potentially benefit depleted gas shale carbon storage research.

1 Introduction 

Shales are of interest in geochemical and geological investigations because they may host 

petroleum and natural gas. For example, oil shale contains solid bituminous material (called 

kerogen) that yields substantial amount of oil and combustible gas upon destructive distillation. 

The Marcellus shale deposits in eastern United States are well known for a large amount of 

natural gas distribution sorbed in the shale and in cracks and pores. Organic-rich shale 

formations that have been depleted of hydrocarbons through a period of primary production are 

potential candidates for geologic storage of CO2 [1][2], accompanied by enhanced gas recovery 

(EGR). Marcellus shale is an ideal material to study elemental profile because: 1) both CO2 and 

© 2016. This manuscript version is made available under the Elsevier user license

http://www.elsevier.com/open-access/userlicense/1.0/

http://ees.elsevier.com/sab/viewRCResults.aspx?pdf=1&docID=4499&rev=1&fileID=130550&msid={0630B4A1-5B39-4B21-A236-DF653A255617}


natural gas (CH4) adsorption/desorption seem to have a correlation with mineral composition of 

the rocks [3], 2) the rocks that contain higher amounts of carbon contents (organic material) have 

greater ability to generate natural gas and potentially a greater capacity of CO2 storage [4],   and 

3) environmental issues associated with shale retorting requires substantial monitoring and 

control of waste products [5]. Thus there are a number of applications that would benefit from in 

situ and/or rapid knowledge of the elemental composition of the shale rock.  

The analytical techniques[6] used for elemental analysis of shale  are instrumental 

neutron activation analysis (INNA), X-ray fluorescence (XRF), and inductively coupled plasma-

optical emission spectroscopy (ICP-OES). INNA needs a large neutron reactor for irradiation 

and the method is inherently slow. Although XRF is a relatively fast technique, the analysis 

generally requires a larger sample size and the technique is known [7] to achieve poor detection 

limits, particularly for light elements. ICP-OES [8] is commonly used for determination of 

elemental composition of shale. This technique requires time-consuming sample digestion and 

has limitations for the analysis of refractory samples, resulting in incomplete digestion. None of 

these techniques is suitable for the analysis of carbon, which is generally analyzed by using a 

number of other analytical techniques[6]. Herein, we propose laser induced breakdown 

spectroscopy (LIBS) as an alternative analytical technique for the analysis of metals and light 

elements, such as C. 

LIBS is very robust for its simplicity and has successfully been used for multi-element 

analysis, including total carbon. It is advantageous to use LIBS because it enables a rapid in situ 

sample analysis with little or no sample preparation. The use of an echelle or multi-channel 

spectrometer gives a broader spectral range allowing for multi-element analysis. Recently, 

Washburn [9] reported the  use of LIBS for geochemical and mineralogical characterization of 

shale. The spectra from the beginning and the end of laser pyrolysis were used for qualitative 

analysis of Mg, Na, Li, K, Ca and H.  No quantification of these elements were reported in his 

studies.  

To the best of our knowledge, no quantitative analysis of the Marcellus shale has been 

done using LIBS. In this paper, we quantitatively determine major elemental composition of 

shale rocks by laser induced breakdown spectroscopy. In order to ascertain the quantitative 

capability of LIBS, our results are compared to those obtained by ICP-OES and a carbon 



analyzer.  The elemental concentrations may be mathematically converted to oxide weight 

percent where necessary for certain geological interpretations.  

 

Experimental set up and sample preparation 

Ten outcrop samples from the Marcellus Shale [10] were used in this study. The 

powdered samples were pressed into 13-mm diameter pellets using approximately 8-ton 

pressure, 4 min of dwell time, and 2 min of release time. No binder was added to the pellets. 

These pelletized shale samples were labeled as S210 – S219. 

Measurements were performed using a J200-EC LIBS instrument (Applied Spectra, 

Fremont, CA) configured with a 266-nm laser and a six-channel optical spectrometer coupled to 

gated CCD arrays for broadband spectral registration within 190‒1040 nm at a resolution of 

about 0.1 nm. Laser pulse energy was 25 mJ; pulse duration was approximately 4 ns, while a 

flat-top shaped laser beam was collimated onto the sample to produce an ablation spot 150 µm in 

diameter. Laser pulse repetition frequency was 10 Hz. Temporal variation of the Signal-to-noise 

ratio (SNR) and signal-to-background ratio (SBR) was used to optimize the gate delay. The gate 

delay with maximum SNR and SBR at 0.2 µs was used as the optimal gate delay for sensitive 

acquisition of both atomic and ionic lines of elements. The gate width was fixed at 1.05 ms. All 

measurements were performed in air at atmospheric pressure. 

The samples were interrogated using a grid of 7×7 laser ablation spots, covering an 

overall area of 1.9×1.9 mm
2
 on the surface of every pellet. Each spot of the grid was ablated with 

10 laser pulses and the spectra acquired from these 10 pulses were accumulated. As a result of 

this interrogation, 49 individual spectra were collected from each sample. The analytical spectral 

lines are averaged over 49 spectra. These spectra were used to build a multivariate partial least 

squares model, in order to rectify inter-sample differences while retaining inherent variability of 

the LIBS signal within every sample.   

2 Results and discussions 

2.1 Quantitative analysis 

Quantification of elements is performed by producing calibration curves with use of 

simple linear regression (SLR) and multivariate partial least squares regression (PLS-R). The ten 



samples were divided into two sets, eight for the calibration and two for the prediction sets. It 

should be noted that some geological analyses may use the independent analyses of samples to 

generate the SLR and PLS models. To evaluate the figures of merit of LIBS, predictive results 

from these two approaches are compared to those obtained by ICP-OES and a carbon analyzer. 

Total carbon was analyzed using a CM5015 Carbon dioxide coulometer (UIC, Inc.) equipped 

with a high-temperature combustion furnace. Detection limits of these elements are also 

calculated. 

2.1.1 Spectral lines selection 

From the collected spectra, we were able to identify some major elements in the Marcellus shale 

notably Al, Ca, Ti, Si, Mg and C. These elements corroborated with the previous findings of 

Heron et al. [11], Gladney et al. [12], and Boström  and Bach [13] on rock characterization using 

neutron induced capture gamma ray spectroscopy, x-ray fluorescence, and inductively coupled 

plasma optical emission spectrometry. Lines with spectral interference, and resonance lines were 

mostly avoided and  preference was given to non-resonance lines[14]. Quite often, resonance 

lines are the most affected by self-absorption and self-reversal effects when the concentration or 

the laser pulse energy is high. These effects are even more pronounced in solid samples than in 

liquids [15]. For quantitative analysis purposes, the following emission lines from these elements 

were selected. Al(308.21nm, 309.27nm), Ca(643.90nm, 646.25nm, 649.37nm), Si(288.15nm), 

Mg(285.21nm), Ti(334.94nm, 336.12nm, 337.27nm) and C(247.85nm) were chosen for simple 

linear regression (SLR) calibration curves. It should be noted that these are all non-resonance 

lines except Al (308.21nm) and Mg(285.21nm).  

2.1.2 Simple linear regression 

Figure 1 shows univariate calibration curves of selected analyte lines from which linear 

regressions are performed for each of the elements using OriginPro 2015 software, manufactured 

by OriginLab Corporation, USA.  

 

 



 

Figure 1. Simple linear regression calibration curves of selected analyte lines. 

The linear regressions in Figure 1 show that R
2
 is greater than 0.90, revealing a good 

correlation of the spectral lines and their concentrations. As seen in the plots in Figure 1, most of 

the calibration samples lie on the linear fit except for Al, Ca, Si and to a certain degree C where a 

few samples cluster away from the regression line and by this, reducing the linear dynamic range 

for these two elements. The data points lying far from the regression lines are likely outliers. 

However, the term “outlier” should be used with care. Although these outliers might just be 

statistical errors in data processing, judging from the relatively small variation of the error bars 

related to the intensity of these points, they might also be inherent in the very nature of the 

sample and the LIBS technique, in which case we describe this as “matrix effect.” By “matrix 

effect,” we refer to the influence of the physical and chemical properties of the sample on the 

plasma excitation. Laser-sample interaction and matrix effect have been reported as the main 

causes of imprecision of LIBS [16]–[18]. Controllable variables including but not limited to 

choice of analytical line, laser shot-to-shot variance, speed of sample movement, and detector 



settings (time delay and gate width) also affect quantitative analysis of LIBS [17][19]. Specific 

emphasis on chemical matrix effects has also being discussed by Eppler et al. [20] in studying 

the effects of chemical speciation and matrix composition on Pb and Ba detection in soil and 

sand samples using LIBS. They found that the chemical compound and sample composition 

strongly influence emission signals. Since shale rock is composed of different elements with 

varying concentrations, chemical matrix effects can as well be invoked as source of the outliers 

observed in the Al, Ca and Si plots (Figure 1,d-f) or spectral interference. 

2.1.2.1 Use of internal standard to minimize matrix effects 

The nonlinearity of the calibration curve in Figure 1 within certain ranges can also be due 

to inhomogeneity and multi-elemental content of the shale samples which can induce changes in 

the plasma excitation. In case the nonlinear calibration curve  is due to these changes in 

excitation, Cremers and Radziemski [16] proposed the use of analyte signal ratioed to another 

element present in the sample to straighten out the curve. This is known as internal 

standardization.  

In the Al curve (Figure 1d), a linear fit is only observed at high concentrations. The lost 

sensitivity at high concentrations is often due to self-absorption although  saturation of the 

detector response may also be responsible [16].  At low concentrations, non-resonance line such 

as Al(309.27nm)  are less sensitive to the detector response and if adjacent lines exist near it 

(which is the case with resonance line Al(308.21nm)), spectral interference is likely to occur. 

This might be the case between the aluminum doublets within the 308-309nm spectral range. 

Consequently, the lines are probably broadened at low concentrations. An attempt to reduce the 

matrix effect observed in Figure 1d, f was done by normalizing Al and Si with Mg and Ti 

respectively. Figure 2 shows the resulting calibration curves. 



 

 

Figure 2. Calibration curve with internal standards. (a) Si(288.15) / Ti(336.12), (b) Al(308.21)/Mg(285.15) 

Calibration curves with internal ratio show R
2
 greater than that 0.90 over a wider linear dynamic 

range. In the case of Ca, no element used as an internal standard could yield a better graph. From 

the results of internal standardization, one can say that the outliers observed in Figure 1d and f 

and linked to the influence of other elements notably Mg and Ti. As for Ca, it is probably related 

to its high concentration. 

It follows that quantitative analysis of a matrix with multiple elements with varying and 

high concentrations can be affected by spectral interference; and the use of non-resonance lines 

and intensity ratios can help reduce the matrix effects and improve the quality of simple linear 

regression calibration curves. 

2.1.3 Partial least squares regression 

An alternative means of minimizing matrix effects is the use of multivariate analysis; this 

approach is especially useful when we have samples containing emission lines from multiple 

elements with high likelihood of strong spectral interferences. Multivariate analysis comes in 

various forms, amongst which is a partial least squares (PLS) analysis.  PLS has been widely 

used to minimize the matrix effect [21][22][23]. PLS provides a model for the relationship 

between a set of predictor variables X (n objects, m variables) and a set of response variables Y 

(n objects, p response). In this case, the m variables are the LIBS spectra intensities and the p 

responses are properties such as the concentration. The p response has to be independently 



measured for each sample. If the spectral data contain information about the properties of 

interest, a reliable calibration model can be constructed [24]. The samples with known elemental 

concentrations are used to create a model relating Y to X that is used to predict the 

concentrations of unknown specimens. PLS has the particularity of reducing the number of 

variables to a few principal components while taking into account the full spectrum of each 

sample. Each row of the data matrix X gives the wavelength-dispersed spectral intensities of one 

of the calibration samples, and these techniques seek to find a small number of principal 

component vectors (with the same dimension as the number of columns of X) upon which to 

base the regression. In the case of PLS, the principal component vectors balance the importance 

of explaining the variance in X with that of creating a strong correlation with Y in the regression 

step described below. This balance results in a robust model with good predictive ability 

[25][26]. Although PLS often uses the full spectrum for models, some authors have proposed the 

use of proper selection of spectral ranges for better results when dealing with multi-elemental 

analysis. Xu and Schechter used an error indicator function of the net analyte signal to determine 

the analytical performance of an element in a certain spectral range [21]. Based on this, the most 

informative spectral ranges to be utilized in multicomponent analysis are selected [27]. Norgaard 

et al. have proposed interval partial least-squares (iPLS), which consists of developing local PLS 

models on equidistant subintervals of the full-spectrum region. This method provides an overall 

picture of the relevant information in different spectral subdivisions, thereby focusing on 

important spectral regions and removing interferences from other regions [28]. 

In the present study, the full spectrum was divided into reduced spectral ranges. The 

reduced spectral range was such that it contains most of the strong lines of a particular element 

(aluminum for example) for which we want to obtain the calibration curve. This procedure was 

repeated for others elements (Ca, Ti, Si, Mg and C). All recorded spectra were used to generate 

the partial least squares regressions using full cross validation on the average spectra. PLS-R 

were done with Unscrambler X version 10.3 software, from CAMO Software Inc, USA and the 

calibration and validation curves are shown in Figure 3.  



  

Figure 3. Partial least squares calibration curves. S210-S219 are the samples used for calibration 



2.1.4 Predictive capability of LIBS 

The predicted concentrations using SLR and PLS-R in our study are compared with those 

from ICP-OES and a carbon analyzer. The results are reported in Table 1 and a comparison 

graph is plotted in Figure 4. 

Table 1. Prediction results of LIBS and relative errors of determination 

Reference values were measured by ICP-OES (Al, Ca, Si, Mg, Ti) and  

Carbon analyzer for C 

Predictions 

Samples 

Reference 

values 

LIBS Relative error (%) 

SLR PLS-R SLR PLS-R 

 (x100ppm)  

S215_Al 79.15 70.52 74.58 10.90 5.77 

S216_Al 84.69 69.23 75.26 18.25 11.13 

S218_Al 47.46 34.08 48.25 28.19 1.66 

S212_Ca 171.78 167.48 156.73 2.50 8.76 

S213_Si 180.54 308.46 197.74 70.85 9.52 

S219_Si 246.88 433.66 235.63 75.65 4.55 

S214_Mg 8.51 10.09 9.35 18.56 9.87 

S218_Mg 9.33 8.27 8.25 11.36 11.57 

S215_Ti 4.06 3.29 3.55 18.96 12.56 

S217_Ti 0.96 1.38 0.52 43.75 45.83 

 (wt.%)  

S210_C 7.58 5.88 7.37 22.42 2.77 

S215_C 3.56 - 3.98 - 11.79 

 

 

In Figure 3, the best fit of the calibration and validation sets deviates slightly from the 

target line as seen from the values of the slopes which are almost equal to 1. The R
2
 values are 

greater than or equal to 0.98. These observations show a strong correlation between the predicted 

and reference values over a wider linear dynamic range than for the univariate method. 



 

Figure 4. Comparison of LIBS (SLR and PLS-R) versus ICP-OES and carbon analyzer for Al, Ca, Mg, Si, Ti, and C. 

In Table 1, a higher error is noted with SLR prediction of Si. This can be understood from 

the silicate nature and inhomogeneity of shale rocks. In fact, studies on silicate rocks have shown 

a high matrix effect of Si which interferes with Ti [29].  In order to reduce the sample 

inhomogeneity, Claisse introduced borate glass [30] to obtain  highly reliable and precise results 

for XRF analysis of all rock types [31]–[33]. The borate fusion method produces homogeneous 

samples that are easy to handle, can be analyzed multiple times without deterioration, eliminate 

grainsize and mineralogical effects, and reduce differences in mass absorption from sample to 

sample [34]. However, LIBS presents a rather simple alternative notably the possibility of 

avoiding sample preparation, like the case of acid digestion, used to obtain homogeneity of a 

sample. Although an attempt to reduce matrix effects was made with internal standardization, 

matrix effect is still present as seen from the SLR calibration, the use of multivariate analysis has 

been preferred to minimize the matrix effect. In Table 1, the comparison shows that the error for 

PLS-R (1.66 to 12.56%) for most elements is about half that of SLR (2.50 to 75.65%). Figure 4 

shows that LIBS results are comparable to those of ICP-OES and a carbon analyzer. 



2.2 Limit of detection   

For each analyte, the spectrum with the lowest concentration was used to calculate its 

limit of detection (LOD), which is defined as          , where c is the lowest concentration, 

σs is the standard deviation of the background near the analyzed line, and I the intensity 

(background subtracted) of the analyzed line.  LODs for Al, Ca, Si, Ti, Mg, and C are reported in 

Table 2. 

Table 2. Calculated Limits of Detection (LOD) 

Elements LOD 

Ti (II) 336.12 nm 15.6 ppm 

Mg (I) 285.21 nm 4.2 ppm 

Al (I) 309.27 nm 33.0 ppm 

Si (I) 288.15 nm 60.9 ppm 

Ca (I) 649.37 nm 0.03 ppm 

C(I) 247.85 nm 0.4 wt.% 

 

3 Conclusions 

Laser induced breakdown spectroscopy (LIBS) was used to determine the elemental 

composition of Marcellus shale rocks. Major elements (Al, Ca, Si, Mg, Ti, and C) in shale rocks 

were qualitatively and quantitatively analyzed. Univariate calibration (SLR) curves of (Al, Ca, 

Si, Mg, Ti and C) were compared to their corresponding multivariate PLS-R calibrations. 

Quantitative analysis using PLS-R in LIBS helps minimize the matrix effect and increase the 

linear dynamic range of concentration determination. LIBS offers the possibility of quantifying 

carbon, which is not possible for analysis by ICP-OES. Predicted results obtained by LIBS are 

similar to those obtained by ICP-OES for Al, Ca, Si, Mg and Ti and by a carbon analyzer for C. 

From our results and the advantages offered by LIBS (such as its simplified set up, cost and 

optical emission nature), we have demonstrated that the LIBS method can provide rapid analysis 

of shale rock samples.  
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