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The weighted average is an efficient way to address conflicting evidence combination in the Dempster-Shafer evidence theory.
However, it is an open issue how to determine the evidence weights reasonably. Although many traditional conflicting
evidence combination solutions based on evidence distance or entropy have been put forward, the evidence weights are
determined with a single aspect, and no comprehensive consideration of other useful information affects the weights. Thus, it
does not ensure that determination of weights is the most reasonable. By introducing deep learning into conflicting evidence
combination, this paper proposes a comprehensive method for determining the evidence weights based on a convolutional
neural network. Taking the evidence as the network input and the corresponding weight as the output, it utilizes convolutional
neural network to fully mine potentially useful information that affects the evidence weights, in order to determine the weights
comprehensively. Additionally, we define a weight loss function. The weights are continuously optimized through back
propagation and achieve the optimal when the weight loss function value is the minimum. Classification experimental results
demonstrate that the proposed method outperforms traditional ones based on evidence distance or entropy and can be flexibly
extended to other application fields as a decision-making fusion method.

1. Introduction

In practical applications, information from different sources
is often uncertain, inconsistent, and vague [1]. How to deal
with uncertain information effectively is an open problem.
Several mathematical theories have been discussed for solv-
ing this problem, such as Bayesian theory [2], fuzzy set the-
ory [3, 4], Dempster-Shafer (D-S) evidence [5, 6], possibility
theory [7, 8], D-numbers [9, 10], Z-numbers [11, 12], rough
set theory [13, 14], and fractal theory [15, 16]. Especially D-S
evidence theory, as a rational and effective method for deal-
ing with uncertain information, has the following three
advantages. First, it does not require prior probabilities or
satisfy probability additivity compared with Bayesian theory.
Secondly, information from different experts and data
sources can be fused by Dempster’s combination rule [17]
to obtain more reasonable results. Thirdly, it can describe
uncertainty more flexibly and conviently than other mathe-
matical theories. Therefore, it has been widely applied to

classification [18, 19], risk evaluation [20, 21], fault diagnosis
[22, 23], decision-making [24, 25], and so on.

However, Zadeh [26] pointed out that evidence combi-
nation would produce counterintuitive results, when there
is a conflict between evidences. To overcome this defect,
scholars have conducted in-depth research and proposed
various improved methods. In general, the existing methods
can be divided into two categories. One is to modify Demp-
ster’s combination rule; the other is to modify the original
evidence.

For the first class, some scholars point out that conflict-
ing information is lost in the process of evidence combina-
tion. So the key to modifying Dempster’s combination rule
is how to allocate the conflict, that is, to which subset the
conflict is allocated and in what proportion. Smets et al. sug-
gest that the conflict should be allocated to empty set [27].
Lefevre et al. propose a novel modified approach which pro-
portionally assign the conflict information to the focal ele-
ment sets [28]. Smardndache et al. propose the conflicting
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proportional distribution rule named PCR3 [29]. The
method of modifying Dempster’s combination rule can solve
the conflict problem to a certain extent, whereas the draw-
back of this method is that the good performance is
destroyed, like commutativity and associativity. So this
paper focuses on the second method.

For the second class, the initial evidences are corrected
with the weights to obtain the weighted average evidences.
Then, the weighted average evidences are fused by using
Dempster’s combination rule to get reasonable results.
Therefore, the weighted average is an efficient way to address
conflicting evidence combination. Nevertheless, this is a
challenging problem how to determinate the evidence
weights reasonably. For this reason, scholars have proposed
some novel methods. Deng defined a new uncertainty mea-
sure Deng entropy to construct the weight coefficient bodies
of evidence [30]. Tang et al. propose a weighted belief
entropy which measure the uncertainty by using the infor-
mation of the mass function and the scale of the FOD, in
order to obtain the weight of evidence [31]. Qin et al. use a
novel belief entropy which is an improved version of
Dubois–Prade entropy and Nguyen entropy, to allocate the
weights of evidence [32]. Yan et al. use an improved belief
entropy based on Deng entropy to determine the weights
of evidence [33]. Liu et al. propose a novel weighted evidence
combination based on MaxDiff distance [34]. Han et al.
introduced the concept of evidence support based on the
Jousselme distance function and took a weighted average
of all the evidences [35]. Liu et al. design an improved
weighted evidence combination method by combining prob-
ability distance and conflict coefficient [36]. Xiao generalizes
the traditional Jousselme distance to the complex evidence
distance to measure the conflicts of complex the basic prob-
ability assignment (BPA) functions [37], and used it as a
weighted factor to revise the original evidence [38]. The
above methods only use entropy or distance information to
determine the weights from the perspective of uncertainty
and evidence conflict. The disadvantage is that determina-
tion of the weights is rather one-sided, and no comprehen-
sive consideration of other useful information that affects
the weights, such as importance, reliability, relativity, and
unknown information hidden within or between evidence.
Consequently, these methods based on evidence distance
or entropy do not ensure that determination of weights is
the most reasonable.

In view of the powerful adaptive learning and informa-
tion mining capabilities of convolutional neural networks
(CNN), we introduce deep learning into conflicting evidence
combination and propose a comprehensive method for
determining the evidence weights based on a CNN to solve
this problem. Taking the evidence as the network input
and the corresponding weight as the output, we define a
weight loss function. Through back propagation, update
the network parameters and fully mine potentially useful
information that affects the weights. So the evidence weights
are determined comprehensively and optimized continu-
ously, and finally achieve the optimal when the weight loss
function value is the minimum. Compared with traditional
algorithms based on evidence distance or entropy, the pro-

posed method makes the determination of weights more
reasonable and can achieve higher accuracy rate in classifica-
tion application.

In summary, the primary contributions in this study are
summarized as follows:

(i) Different from traditional methods, this paper pro-
poses a comprehensive method for determining
the evidence weights based on CNN

(ii) The evidence weights are not determined for a cer-
tain aspect related to the evidence and can reflect
the relationship among evidence comprehensively

(iii) Compared with the traditional algorithms based on
evidence distance or entropy, the proposed method
can achieve higher accuracy rate in classification
application

The rest part of this paper is organized below. Section 2
introduces some relevant basic theoretical knowledge about
the D-S evidence theory. Section 3 proposes a comprehen-
sive method for determining the evidence weights based on
a CNN and introduces overview of proposed method,
CNN architecture, and the weight loss function. Section 4
presents the classification application of the proposed
method, and analyzes and discusses its results. Conclusions
are in Section 5.

2. D-S Evidence Theory

D-S evidence theory is a reasoning system theory first put
forward by Dempster in 1967 and further developed by Sha-
fer in 1976. Compared with Bayesian probability theory, it
can more flexibly and effectively deal with uncertain infor-
mation without prior probabilities. Thus, it is an extension
of Bayesian probability theory. In the frame of D-S evidence
theory, Dempster’s combination rule can be used to combi-
nate evidences collected from different sources, which sat-
isfies the commutative and associative laws. Some basic
concepts about evidence theory is introduced as follows.

Definition 1 (Frame of discernment). Assuming that Θ is a
set of mutually exclusive and exhaustive elements Fiði = 1,
2, 3, 4,⋯,NÞ, and it can be defined as [31].

Θ = F1, F2, F3, F4,⋯, FNf g, ð1Þ

where Θ is called the frame of discernment (FOD), and Fi is
named single-element proposition or subset. We define 2Θ
as a power set which contains 2N elements and can be
described as

2Θ = ∅,F1,⋯, FN , F1, F2f g, F1, F3f g,⋯,Θf g, ð2Þ

where ∅ is an empty set in Eq.(2).

Definition 2 (The basic probability assignment function).
The BPA function m is also called mass function and is
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defined as a mapping of the power set 2Θ to [0,1] [33].

m : 2Θ ⟶ 0, 1½ �, ð3Þ

which satisfies

m ∅ð Þ = 0
0 ≤m Að Þ ≤ 1,

〠
A⊆Θ

m Að Þ = 1,
ð4Þ

where mass function mðAÞ represents the degree of support
to A, and A is called focal element or proposition. The mass
function mð∅Þ is equal to 0 in classical D-S evidence theory.

Definition 3 (Dempster’ s combination rule). In D-S evi-
dence theory, two BPAs can be combined with Dempster’ s
rule of combination, defined as followers [17]:

m Að Þ = m1 ⊕m2ð Þ Að Þ = 1
1 − K

〠
B∩C=A

m1 Bð Þm2 Cð Þ, ð5Þ

in which

K = 〠
B∩C=∅

m1 Bð Þm2 Cð Þ, ð6Þ

where ⊕ represents Dempster’s combination rule. K is
called conflict coefficient, and it has values between 0 and
1. The bigger K is, the more conflict between two evidences
is.

Definition 4 (Weighted average evidence). Suppose that m1
,m2,⋯,mn is the evidence collected from different data
sources, and w1,w2,⋯,wn is the corresponding weights of
evidence. Then, original evidence can be modified by the
weight to obtain the weighted average evidence:

m′ = 〠
n

i=1
wi ×mi, ð7Þ

in which

〠
n

i=1
wi = 1: ð8Þ

The weight wi is equal to 1, indicating that the corre-
sponding evidence mi is a piece of information that can be
fully reliable. Relatively small weight indicates that it plays
little role in evidence combination, and the weight is equal
to 0, which means that it can be discarded directly.

3. Determination of Evidence Weights Based on
Convolutional Neural Network

3.1. Overview of Proposed Method. To determine the evi-
dence weights more comprehensively and reasonably, we

propose a novel method for determining the evidence
weights based on a CNN. First, we take initial BPAs, namely,
evidences, as the input of CNN, and the corresponding
weights are defined as output. Then, we define a weight loss
function and the weights are continuously optimized
through back propagation. Finally, the optimal evidence
weights can be obtained when the weight loss function value
is the minimum.

3.2. CNN Architecture. In this section, a CNN is introduced,
which consists of a convolution layer, two fully connected
layer, and a softmax function output layer, as shown in
Figure 1. The initial BPA mi which is a 1 ×N vector is
defined as the input to the network. N represents the num-
ber of elements within FOD, namely, the number of catego-
ries in the dataset. Before a convolution operation, these
input evidence vectors are combined into k ×N matrix.
After that, we choose k × k convolution kernels to mine the
potential information contained within and between the evi-
dences. Finally, the outputs of two fully connected layer are
fed into a softmax function output layer, in order to produce
probability weights corresponding to the input evidences.
The size of the convolution kernel and softmax function out-
put lay depends on the amount of input evidences.

3.3. The Weight Loss Function. During the conflicting evi-
dence combination, the input evidence mi is modified by
the output weight wi:

m′ = 〠
k

i=1
wi ×mi, ð9Þ

where wi ranges from 0 to 1 and m′ is the weighted average
evidence. After the input evidences is corrected, the final
combination results ŷ can be got by using Dempster’s com-
bination rule to combine the weighted averaged evidence m′
for k − 1 times:

ŷ Að Þ = m′ ⊕m′ ⊕⋯ ⊕m′
� �

k−1
Að Þ

=
∑A1,⋯,Ak⊆ΘA1∩⋯∩Ak=A

m′ A1ð Þ⋯m′ Akð Þ
1 −∑A1,⋯,Ak⊆ΘA1∩⋯∩Ak=∅

m′ A1ð Þ⋯m′ Akð Þ
,

ð10Þ

where ⊕ represents Dempster’s combination rule which sat-
isfies the polarizability. It means that the total belief degree
of a single element increases and the total belief degree of
multiple elements decreases when multiple identical evi-
dences are fused. In addition, provided the basic probability
value of a single element of the evidence is the largest, the
basic probability value of this single element is still the larg-
est when two identical evidences are combinated by Demp-
ster’s combination rule.

The output weights corresponding to the input evidences
should be determined according to the following rules: (a)
The higher the relativity between the input evidence vector
and the true category one-hot vector is, the larger its corre-
sponding output weight will be. (b) The higher the conflict
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between the input evidence vector and the true category one-
hot vector is, the smaller its corresponding output weight
will be, that is, the evidence will contribute little to the com-
bination results.

Based on the above rules, we define a weight loss func-
tion Lw as the sum of the cross entropy between all pairs
of yi and ŷi to obtain the optimal evidence weights:

Lw = −
1
n
〠
i

yi ln ŷi: ð11Þ

In the above formula, n represents the number of train-
ing samples. yi ∈ R

1×N is the true category one-hot vector. ŷi
is the final combination result. In the process of seeking the
minimized loss function value Lw, when Lw does not meet
the condition, network parameters are constantly updated
and output weights are continuously optimized through
feedback. Since Dempster’s combination rule satisfies the
polarizability, the weight of normal evidence will be larger
and larger, and the weight of conflicting evidence will be
smaller and smaller. When Lw satisfies the condition,
namely, reaches the minimum value, the output weights
achieve the optimal. The flow of the evidence weights opti-
mization is showed in Figure 2.

4. Experimental Results and Discussion

4.1. Experimental Setup. This section gives the introduction
of UCR datasets, and the datasets generation, parameter set-
tings, and experiment procedure are presented.

4.1.1. UCR. UCR datasets are obtained from UCR time series
data mining archive (http://www.cs.ucr.edu/eamonn/
timeseriesdata/) which is a publicly available and real-
world time series dataset and has always been used for clas-
sification. To verify the classification ability of the proposed
method, we conduct the experiments on 6 UCR datasets,
including ElectricDevices (ED), UWaveGestureLibraryY
(UY), UWaveGestureLibraryZ (UZ), CricketX, CricketY,
and CricketZ. ElectricDevices consists of 7711 test samples
and contains 7 categories. Both UWaveGestureLibraryY
and UWaveGestureLibraryZ consist of 3582 test samples,
and contain 8 categories. Each of CricketX, CricketY, and
CricketZ consists of 390 test samples and contains 12
categories.

4.1.2. Datasets Generation. UCR datasets are the original
data containing attribute information and cannot be directly
used as the input of the model which determines the evi-
dence weights. Therefore, to obtain the initial BPAs from
these datasets, we utilize the BPA generation method that
is the probability output of neural network [39]. Each class
in UCR test set can be regarded as one element within the
frame of discernment Θ = fF1, F2, F3,⋯, FNg. These ele-
ments are exclusive and independent. We take the probabil-
ity output of a UCR test set on a single neural network as
BPAs. Since the MultiLayer Perceptron (MLP), Fully Convo-
lutional Network (FCN), and Residual Network (ResNet) are
defined as the standard baseline in the time series classifica-
tion [40], these three single neural network are used to gen-
erate BPAs in this paper. A test sample will generate three
pieces of evidence on three single neural networks. For the
same test set, the prediction accuracy rates obtained on three
single neural networks which differ in structure and perfor-
mance will certainly not be all the same, so the BPAs gener-
ated by three neural networks will be different. In other
words, there is a conflict between the BPAs. Hence, it is rea-
sonable that we use the probability output of a test set on the
MLP, FCN, and ResNet as a dataset for conflicting evidence
combination research. However, the BPAs generated by the
neural network only contains singleton element proposition.
Therefore, the artificial simulation method is adopted to
obtain the BPAs which contain multi-element propositions.
The artificial synthesis dataset is formed by manually col-
lecting classical numerical examples from papers with con-
flicting evidence fusion. It consists of 21 training samples
and 42 test samples. Each sample in this dataset contains 5
pieces of evidences, and 3 categories which are denoted by
fF1, F2, F3g. Assuming that the five pieces of evidence in
the first sample are defined as m11ð·Þ, m12ð·Þ, m13ð·Þ, m14ð·Þ
, and m15ð·Þ, the BPAs are shown as follows.

m11 F1ð Þ = 0:41, m11 F2ð Þ = 0:29,m11 F3ð Þ = 0:30
m12 F2ð Þ = 0:90, m12 F1, F3ð Þ = 0:10
m13 F1ð Þ = 0:58, m13 F2ð Þ = 0:07,m13 F1, F3ð Þ = 0:35
m14 F1ð Þ = 0:55, m14 F2ð Þ = 0:10,m14 F1, F3ð Þ = 0:35
m15 F1ð Þ = 0:60, m15 F2ð Þ = 0:10,m15 F1, F3ð Þ = 0:30

:

ð12Þ

4.1.3. Parameter Settings. The proposed method is trained in
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Figure 1: Architecture of the proposed method (S=Stride, P=Padding).
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TensorFlow using back propagation with Adam to update
the network. The learning rate of Adam is 0.001, β1= 0.9,
β2= 0.999, and ε=1e-8 [40]. The second type of dataset is
randomly divided into the training set and test set according
to the ratio of 2 : 8, and the number of training sets is 1542,
716, 716, 78, 78, and 78, respectively. Therefore, the batch
sizes of 13 and 19 are opted. Since the proposed model is
not complicated, we set the number of epochs to 2000.

4.1.4. Experiment Procedure. This paper uses two different
types of datasets as database to introduce the application of
the proposed method in classification. A detailed description
of the procedure is depicted as follows:

(1) The first type of dataset containing multi-element
propositions is derived from the artificial synthesis
dataset. Each sample in this dataset contains 5 pieces
of evidences. Correspondingly, the size of the convo-
lution kernel and the softmax function output lay is
5. The second type of dataset contains only single-
element propositions. It is derived from the pre-
dicted results of 6 UCR test sets on the MLP, FCN,
and Resnet. One sample in these test sets will pro-
duce 3 pieces of evidences. The second type of data-
set is randomly divided into the training set and test
set according to the ratio of 2 : 8. In order to verify
the robustness of model, each dataset is divided ran-
domly for 5 times, and the same random state is
repeated for 5 times to record the average value

(2) Get the optimal evidence weights when the proposed
cross entropy loss function value satisfies the
minimum

(3) Original evidences are corrected with the weights to
obtain the weighted average evidences

(4) Then, the weighted average evidences are fused by
using Dempster’s rule to get the final combination
evidences

(5) The predicted category is determined by the final
combination evidence. As to the first class, the cate-
gory corresponding to the maximum value in the
singleton element is the predicted result. As to the
second class, the category corresponding to the max-
imum probability value is the predicted result

To further verify the feasibility of the proposed method,
we have compared with four well-known traditional
methods, namely, classical D-S theory method [17], two
belief entropy-based methods [30, 33], and a distance-
based method [35]. Accuracy and processing time for classi-
fication are adopted as the evaluation index.

4.2. Results and Discussion

4.2.1. Classification Results. The classification accuracy on
the two types of datasets are shown in Tables 1 and 2,
respectively. According to experimental results, we can draw
the following conclusions: (a) For the first type of dataset,

Yan et al.’s method, Han et al.’s method, and our proposed
method similarly achieve the highest classification accuracy
of 97.6%, while Dempster’s has a classification accuracy of
64.2% and Deng’s method has a classification accuracy of
95.2%. It indicates that the proposed method retains com-
petitive performance. (b) The classification accuracy of the
proposed method is always higher compared with a single
best-performing neural network classification algorithm,
and the average improvement on the second type of datasets
is 2.47%, 4.20%, 1.59%, 0.74%, 3.21%, and 1.73%, respec-
tively. It illustrates that the proposed method which com-
bines the predicted results of three single neural networks
can obtain better classification results than a single network.
In addition, proposed method is to get the final decision by
fusing multiple prediction results, which is regarded as the
decision level fusion, so it can be flexibly extended to other
application fields. (c) For the same dataset, the classification
accuracy of the proposed method under five random states
has little fluctuation. It proves the robustness of our model.
(d) Compared with classic traditional method, two belief
entropy-based traditional methods and a distance-based tra-
ditional method on the second type of datasets, the classifi-
cation accuracy of the proposed method is the highest, and
the total average improvement is 4.06%, 10.11%, 10.11%,
and 16.19%, respectively. These indicate that the determina-
tion of weights based on CNN is more reasonable, which
proves the validity of proposed method.

4.2.2. Processing Time Results. The experiment of processing
time is implemented on an ordinary personal computer with
a Intel Core i7-9750H CPU at 2.60GHz and 8GB RAM.
According to the time complexity calculation presented in
[41], the time complexity of four traditional algorithms is
Oðx × 2nÞ, Oðx × 22nÞ, Oðx × 22nÞ, and Oðx2 × 2nÞ, where x
and n represent the number of evidences and elements in
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Weighted
evidence m′i

Combined
result ŷi

Lw meet the
conditions?

Parameter
updating

NO

Yes

Convolutional
neural network

The evidence
combination

Optimize

Feedback

Figure 2: Flow of the evidence weights optimization.
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Table 1: The classification performance comparison on the first type of dataset.

Dataset Dempster [17] Deng[30] Yan and Deng [33] Han et al. [35] Proposed method

Artificial synthesis 64.2% 95.2% 97.6% 97.6% 97.6%

Table 2: The classification performance comparison on the second type of datasets.

Dataset Random state MLP FCN ResNet Dempster [17] Deng [30] Yan and Deng [33] Han et al. [35] Proposed method

ED

1 59.1% 69.2% 74.1% 71.4% 61.6% 61.6% 37.9% 76.5%

2 59.2% 68.9% 74.2% 71.6% 61.8% 61.8% 37.3% 76.4%

3 59.6% 69.6% 74.0% 71.9% 62.0% 62.0% 37.7% 77.1%

4 59.8% 69.3% 74.2% 71.6% 62.3% 62.3% 37.2% 76.7%

5 59.3% 69.4% 74.3% 71.4% 62.2% 62.2% 37.1% 76.4%

UY

1 68.1% 60.0% 64.1% 71.9% 62.8% 62.8% 70.4% 72.4%

2 69.2% 59.9% 64.6% 72.0% 62.6% 62.6% 71.4% 73.5%

3 68.0% 59.6% 64.4% 71.3% 62.5% 62.5% 71.1% 72.3%

4 69.1% 60.3% 65.0% 72.5% 63.3% 63.3% 71.4% 73.7%

5 69.2% 59.9% 64.4% 72.5% 63.1% 63.1% 71.2% 72.7%

UZ

1 68.3% 69.6% 75.8% 76.6% 70.1% 70.1% 64.5% 77.4%

2 69.5% 69.4% 75.8% 76.9% 70.5% 70.5% 64.4% 77.5%

3 68.8% 69.3% 75.8% 76.6% 70.2% 70.2% 64.0% 77.7%

4 69.1% 69.9% 75.5% 76.4% 70.5% 70.5% 64.2% 76.5%

5 68.4% 69.4% 75.2% 76.3% 70.4% 70.4% 64.2% 76.9%

CricketX

1 56.0% 79.1% 78.2% 72.1% 74.0% 74.0% 63.4% 80.4%

2 54.8% 79.8% 78.5% 73.0% 72.7% 72.7% 63.4% 80.4%

3 58.9% 80.7% 78.8% 73.7% 74.3% 74.3% 62.1% 80.8%

4 57.0% 81.0% 79.4% 74.3% 73.7% 73.7% 62.1% 82.1%

5 58.9% 80.7% 80.1% 73.0% 74.6% 74.6% 63.1% 81.4%

CricketY

1 58.6% 78.2% 78.5% 76.9% 68.9% 68.9% 70.1% 82.6%

2 60.2% 79.4% 80.1% 77.8% 69.8% 69.8% 69.5% 83.4%

3 60.8% 79.1% 79.4% 76.6% 70.1% 70.1% 69.8% 83.5%

4 60.2% 78.5% 79.8% 76.6% 68.5% 68.5% 69.2% 81.6%

5 57.6% 78.2% 79.1% 75.0% 68.5% 68.5% 70.8% 81.9%

CricketZ

1 61.2% 79.4% 80.1% 78.2% 73.3% 73.3% 69.5% 82.5%

2 60.2% 80.4% 79.4% 77.2% 73.0% 73.0% 70.1% 81.4%

3 60.2% 81.0% 80.4% 79.4% 74.3% 74.3% 69.8% 83.3%

4 60.5% 79.1% 80.4% 78.2% 73.7% 73.7% 70.5% 82.6%

5 61.8% 80.1% 81.7% 79.4% 75.3% 75.3% 70.8% 82.5%

Table 3: The processing time of different approaches.

Dataset Dempster [17] Deng [30] Yan and Deng [33] Han et al. [35]
Proposed method

Training time (s) Testing time (s)

ED 0.27 1.08 1.08 0.67 252.33 0.05

UY 0.14 0.59 0.59 0.35 117.43 0.02

UZ 0.14 0.59 0.59 0.35 117.68 0.02

CricketX 0.02 0.09 0.09 0.06 16.76 0.01

CricketY 0.02 0.09 0.09 0.06 16.59 0.01

CricketZ 0.02 0.09 0.09 0.06 17.17 0.01

Artificial synthesis 0.01 0.01 0.01 0.01 235.53 0.04
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the FOD, respectively. The time complexity of Deng and
Yan’s algorithms is higher. For all datasets, we take the aver-
age processing time of 5 random states for comparison, and
the results are illustrated in Table 3. The proposed method
spends a lot of time in the training phase, but after training,
the processing time of our approach is comparable to that of
the other four methods.

5. Conclusion

In this paper, by introducing deep learning into conflicting
evidence combination, we propose a comprehensive method
for determining the evidence weights based on a CNN. Tak-
ing the evidence as the network input and the corresponding
weight as the output, it utilizes CNN to fully mine poten-
tially useful information that affects the evidence weights,
in order to determine the weights comprehensively. Besides,
the weights are continuously optimized through back prop-
agation and achieve the optimal when the weight loss func-
tion value satisfies the minimum. The classification
experimental results show that the proposed method makes
the determination of weights more reasonable and obtains a
higher classification accuracy compared with traditional
ones based on evidence distance or entropy and can be flex-
ibly extended to other application fields as a decision-
making fusion method.
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