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SUMMARY 

Social free energy was recently introduced as a measure of social action obtainable from a 

given social system, without changes in its structure. In this article its relation with physical 

free energy for a toy-model of interacting agents is analysed. Values of the social and 

physical free energies are equivalent for the case of quasi-stationary state of toy-model of 

interacting agents. 
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1. INTRODUCTION 

Modelling of social systems based on notions developed in theoretical physics 

develops rapidly. Within that approach, the social meaning of free energy has been 

addressed [1-4] along with related thermodynamic potentials [5]. Social free energy 

was introduced in a general way as a measure of system resources which are unused 

in regular, predicted functioning, but which are involved during suppression of 

environmentally induced system dynamics changes [3]. Depending on the context, 

it was recognized as a profit [1], a common benefit [2], or availability [4]. The free 

energy in the references listed was introduced with a usual physical formula, and 

was given a sociological interpretation. In that way the multiplicity of notions point 

on the one hand toward solid motivation for introduction of free energy into social 

context, and on the other hand that unified approach into social interpretation of 

physical free energy is missing. 

In order to contribute to consideration of free energy as a quantity with intrinsic 

social meaning, it is opportune to demonstrate for a particular system the equality of 

independently introduced physical free energy and social free energy. That equality 

is demonstrated in this article in case of quasi-stationary states of an interacting 

agent toy-model. Agent based model is exploited in order to gain insight into the 

formation of macroscopic patterns through perpetual realizations of microscopic 

rules of interactions [6], i.e., agent-agent and agent-environment interactions. 

Model exploited has twofold purpose. On the one hand, it contributes to the 

understanding of the evolution of a system characterized by a combination of 

microscopic and macroscopic rules. On the other hand, characterization of its 

evolution in terms of physical and social free energy is emphasized. Contributions 

to social free energy are existing resources of a system that are not required for 

predicted, regular actions. In the toy model of this article that is reduced to a surplus 

of resources. The physical free energy is calculated using the standard, equilibrium 

physics expression. 

The article is organized as follows. The model structure and dynamics are 

introduced in the second section, and model indicators in the third section. Results 

of model simulation are given in the fourth section, corresponding discussion in 

the fifth section, and summary of main results in the sixth section. 

2. MODEL FORMULATION 

The model includes mutually interacting agents, their configuration and 

environmental influence. Agents are located at fixed positions forming a two-

dimensional net of dimensions N0  N0, Fig. 1. The agent coordinates are expressed as 

(i, j) and represents the i-th knot in one direction and the j-th knot in the other 

direction of the net. For simplicity, the agents are denoted as ijA . Agent ijA  collects 

the scalar quantity )(kuij , called a resource in k-th time interval, and tries to maximize 

it without limits. The amount of resources owned is a positive number or zero. An 

agent ijA  with resources )(kuij  is considered rich if 0( )iju k u  is valid, poor if 

0 ( ) 0iju u k   is valid, and dead if ( ) 0iju k  . If resources of a particular agent 

become negative in some time step, they are set to zero and the agent is considered 

dead. For a rich agent ijA  with resources )(kuij  the difference 0( )iju k u  is called 
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surplus of resources. Similarly, for a poor agent with resources )(kuij , the 

difference 0 ( )iju u k  is called lack of resources. The scalar character of resources 

is admissible if there exist an exchange ratio connecting all resource types. Each 

agent is capable of collecting unlimited amount of resources through the 

interaction with the environment. 

i

j

N0 

N0 p

q

ijA

pqA

 

Figure 1. Two-dimensional net with agents. Two of the agents, Aij and Apq, are 

emphasized in order to explain the principle of the agent-agent interaction. To determine 

the total amount of resources that the rich agent will give to the poor one, the total 

resources of their nearest neighbourhoods are considered. Circles denote the nearest 

neighbours of agent Aij. 

As a consequence of internal, otherwise unspecified dynamics, agents regularly 

consume a finite value of resources c. This value is equal for all agents. 

Because of the environmental influence, agents’ resources are changed for a random 

amount ( )ijw k , and in this model synchronously. The distribution of changes ( )ijw k  

is the Gaussian distribution with a mean value a and a variance . The mean value a 

represents the average resource change, and for a system we take a > 0. In each time 

interval there are some resources obtained from the environment, and some resources 

destroyed because of the influences from the environment. If resources are smaller 

after the interaction with the environment this means that destructive influences, e.g., 

fire or flood, were stronger than the effects of making the resources larger. It has been 

shown that the functional representation of the resources distribution usually has a 

skew shape [7]. Seemingly we take here a symmetric function as a resource change 

distribution. However, since the positive (negative) part of the Gaussian distribution 

represents making the resources larger (smaller), we see that this distribution 

qualitatively collects the total interaction of the agents with the environment. A 

consequence of the Gaussian distribution considered is that the environment 

production is infinite. 

Such a setup of the model includes the relevant agent characteristics, in accordance 

with the definitions of the agent [6, 8], and the social agent [9]. Each agent act on 

himself or herself, which is taken into account with the parameter c, and interacts with 
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environment, which is included through a and . The agents respond to the 

instantaneous environment state optimally what, nevertheless, does not assure them a 

sufficient amount of resources. The constancy of the parameters in space means that 

the system latency and integrity are strong [10]. Model parameters partially cover the 

adaptation. It improves for higher values of a. For example, if the agents resemble 

units in agricultural societies, a better adaptation means a better understanding of 

regularities in plant growth, or animal behaviour, clear signs of understanding of a 

part of environment complexity [11]. If the agents are firms in a particular economy 

segment, then a better adaptation means more intensive paying of attention to 

customer needs, and resource provider potentials. In addition, a better adaptation 

means that rapid changes are less possible. 

There is a significant overlap between the model quantities and the quantities in 

related theories. It is not possible to link them directly because of their presumably 

verbal nature. In the sociological approach compacted in the PILOTS model [7], a 

social system state is characterized by the meta-variable population (P), and the 

variables information (I), space (S), technology (T), organization (O), and level of 

living (L). Larger freely disseminated information content, higher technology 

level, better organization, and partially better level of living make parameter a 

larger. 

The resource dynamic can be represented by 

  );,();,()()1( kjiOutflowkjiInflowtkuku ijij  , (1) 

where ( , ; )Inflow i j k  is flow of resources from environment to agent, 

( , ; )Outflow i j k  is flow of resources from agent to environment, and t  is time 

interval. Inflow and outflow can be decomposed in following way 

 ( , ; ) ( ) ( )ij ijInflow i j k w k I k  , (2) 

 )();,( kOckjiOutflow ij , (3) 

where ( )ijI k  is the flow of resources from neighbouring agents to the agent ijA  (if 

agent ijA  is poor) and ( )ijO k  is the flow of resources from the agent ijA  to 

neighbouring agents (if agent ijA  is rich). More precisely, above flows can be 

expressed as 
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is Heaviside step function, )(kI pq

ij  is resources flow from agent pqA  to agent ijA  

(if agent pqA  is rich) , and )(kO pq

ij  is resources flow from agent ijA  to agent pqA  

(if agent pqA  is poor). 

The amount of resources which agent pqA  will give to agent ijA  depend on 

following factors: 

a) surplus of resources in neighbourhood of agent ijA , 
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b) lack of resources in neighbourhood of agent pqA , 

     









1

1

1

1

00 )()()(
p

pn

q

qm

nmnmpq ukuHkuukP , (8) 

c) surplus of resources of  agent pqA , 

 0)()(~ ukuku pqpq  , (9) 

d) lack of resources of agent ijA , 

 )()(ˆ
0 kuuku ijij  . (10) 

So, flow )(kI pq

ij depends on above mentioned factors 

  ˆ( ) ( ), ( ), ( ), ( )pq

ij ij pq pq ijI k f R k P k u k u k  . (11) 

A possible choice of this function is based on following reasoning. If agent pqA  is 

only rich agent in neighbourhood of agent ijA , then he or she assigns own surplus 

of resources to agent ijA  proportionally to rate between lack of resources of agent  

ijA  and lack of resources in neighbourhood of agent pqA , 
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(factor ½  ensure that agent ijA  couldn’t has more resources then agent pqA  in next 

time interval). If agent pqA  is not only rich agent in neighbourhood of agent ijA , 

then previous amount of resources will be multiplied by rate between surplus of 

resources of  agent pqA  and surplus of resources in neighbourhood of agent ijA , 
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Similarly, the amount of resources which agent ijA   will give to agent pqA  depend 

on following factors: 

a) surplus of resources in neighbourhood of agent pqA , 
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b) lack of resources in neighbourhood of agent ijA , 
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c) surplus of resources of  agent ijA , 

 0)()(~ ukuku ijij  , (17) 

d) lack of resources of agent pqA , 

 )()(ˆ
0 kuuku pqpq  . (18) 

Outflow ( )pq

ijO k  depends on above mentioned factors on similar way as for 

inflow )(kI pq

ij ,  
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3. INDICATORS 

States of the model are generally, physically non-stationary states. However, in a 

special case of a = c, the resources average net transfer is zero, hence there is a 

stationary resource flow of intensity equal a. Non-stationarity is then a 

consequence of a variable number of agents. When, furthermore, such a change is 

relatively small, an almost stationary situation occurs. 

Indicators attributed to a system state are heterogeneous. One set of them 

originates in physics: entropy S, temperature denoted here as T, and physical free 

energy F. Other indicators are more similar to social indicators: number of agents 

N, and surplus of resources. The formulas for indicator determination are written 

having in mind restrictions of their validity induced by non-stationarity. 

Entropy is calculated using 

 



0

)(ln)( duupupNS , (20) 

where p(u) is numerically determined distribution of agent resources. It is taken 

that (20) gives the values of both physical and social entropy. That is not always 

valid [7]. Here it is a consequence of only one type of resources and the measure 

associated with it. In more complex models, several types of resources are 

explicitly treated, hence there is need to differentiate e.g., material and 

information flows [7]. 

Temperature is introduced through the relation 
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in which V, N, q are constant space, number of agents and flow from environment 

to a system. Here, temperature is calculated during system evolution as 
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The internal energy is the sum of individual agent resources 
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so that the physical free energy of a system, given by 

 TSUF  , (24) 

may be determined using (20), (22) and (23). Additionally, we consider the 

surplus 
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which we call social free energy, and compare it with (24). The social free energy 

(25) is amount of resources that the agents could disseminate in accordance with (4) 

and (5). 

4. RESULTS AND DISCUSSION 

We concentrate on the case a  c because of two reasons. The formal reason is 

that both for a much larger or much smaller than c the dynamics is trivial, realized 

either as total flourishing or total collapse of a system, respectively. The 

conceptual reason is that when a  c, one expects that the latency of a model will 

be large enough, so that the parameters used in the model could be considered 

constant. Then the states significantly resemble stationary states, and the equations 

(20-23) are highly appropriate. In case a = c system adaptation is maximal, 

because there are no unused environment resources like for a < c, while the 

efficiency of use of obtained resources is not maximal in the case a > c. 

Additionally, in this article the level of consumption c is considered equal to the 

reference level u0. 

The model dynamics is simulated during 100 time units from the initial moment 

what satisfies the assumed constancy of model parameters. 

In Fig. 2 the time dependence of number of rich, poor, and dead agents is given 

for a/c equal to 0.8, 0.9, and 0.99. It is seen that the changes in number of alive 

agents become negligible after several time units. Then the system is equilibrated 

in the sense that the influence of the initial state ceased, and the gradual collapse 

of the system is not clearly seen. 

The distribution of resources among agents is shown in Fig. 3. All graphs shown 

contain one maximum and a localized tail on the side of high resources. 

The time dependence of total resources is shown in Fig. 4, while the time 

dependence of physical and social free energies are shown in Fig. 5. 

One can express the difference between the fitting functions for physical and social 

free energies by integrating the squared relative difference of these two functions in 

the time interval in which the form (22) is applicable. Since there is no preferred 
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function between two of these, their difference is compared with their arithmetic 

mean in obtaining the relative value. The difference function is taken to be 

  


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2/)]()([

)()(
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tFtF
caD

s

s . (26) 

Its dependence on a/c is shown in Figure 6. The conditions in (26) are that 

relaxation of initial state, and long-time dynamics are excluded from integration 

range, which is why it is restricted from t = 30 to t = 80. Relatively small changes 

of D, caused by small changes of integration limits, are therefore admissible. 

The minimum of the relative difference between the free energies D, attained for a 

= c contributes to the statement that F and FS have equal values. In case a = c the 

system behaviour is expected to be the closest to the equilibrium one. Fig. 6 shows 

that the alignment between the F and FS is the largest in the case in which the 

equilibrium physics approach has the largest applicability.  

In a more developed model, in which there are explicit mechanisms for changes 

the values of the defined parameters, the purposefulness of a system development 

could be introduced. Then the transfer of additional resources related to other 

purposes could be defined. Such transfers could contribute to internal system 

development, relatively independently of the environment. 
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Figure 2. Time dependence of a number of agents in the system, for a/c equal to a) 0.8, b) 

0.9, and c) 0.99. Dashed line – number of poor agents. Full lines denote the number of dead 

(rise in time) and alive (fall in time) agents. The initial number of agents is N0 = 40000. 
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Figure 3. Distribution of resources among agents in time unit k = 100. Numbers in the 

graph are values of a/c. 
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Figure 4. Time dependence of total resources U. Numbers in the graph are values of a/c. 
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Figure 5. Time dependence of thermodynamic free energy F and social free energy Fs 

for a/c equal to a) 0.8, b) 0.9, and c) 0.99. 
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Figure 6. Dependence of the difference (26) between thermodynamic and social free 

energy on a/c. This graph shows that the best numerical consistency of thermodynamic 

and social free energy is for the stationary thermodynamic state, where our approach is 

supposed to work best. 

5. SUMMARY AND CONCLUSIONS 

In this article the relation between the social and physical free energies is analyzed 

numerically, using toy model simulation. In the model, the interacting agents in a 

stochastic environment are interpreted from the physical and sociological point of 

views. 

The physical free energy is shown to be equal to the social free energy in case of 

quasi-stationary states. Furthermore, free energy in this model has a clear meaning 

of surplus of resources. Despite the relatively restricted class of states for which 

the equality of the two free energies is shown, because of the different time 

dependence of their fitting functions, it is conjectured that physical and social free 

energy are different representations of the same function. 

In further work on this model more profiled forms of thermodynamic functions, 

e.g., Gibbs energy, are to be used in order to incorporate a variable number of 

agents. In addition, the intrasystem generation of new agents is to be included. In 

this case, the truly stationary states are possible bringing about the possibility of 

testing the equality of free energies in a broader class of states. 
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SAŽETAK 

Socijalna slobodna energija uvedena je kao mjera socijalne akcije dobivene u danom socijalnom 

sustavu, bez promjene njegove strukture. U ovom radu analizira se njena veza sa fizikalnom 

slobodnom energijom na primjeru jednostavnog modela interreagirajućih agenata. Vrijednosti 

socijalne i fizikalne slobodne energije su ekvivalentne u slučaju kvazistacionarnog stanja modela 

interagirajućih agenata. 
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