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National Aeronautics and Space Administration
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ABSTRACT
Microstructural images may be "tone pulse encoded" and subsequently
Fourier transformed to determine the two-dimensional density of frequency
components. A theory is developed relating the density of frequency components
to the density of length components. The density of length components

corresponds directly to the actual grain size distribution function from which

the mean grain shape, size, and orientation can be obtained.

INTRODUCTION
Material characteristics, such as tensile strength, hardness, y1e1d.

-6 and ultrasonic attenuat’ion7

stress, fracture stress, impact resistance,
are directly related to the grain size d1str1but?pn in polycrystalline
materials. Thus prediction of these properties requires detailed knowledge of
the grain size d1§tr1bution. While the theoretical determination of grain
size distribution has received considerable attent1on.B The experimentally
measured distribution function has received 1imited acceptance, primarily due
to complexity of real microstructures where the grain topology varies
considerably. Hence researchers have acquiesced with determination of the
mean or average grain diameter which ideally should be determined from the
grain size distribution.

There are currently several accepted techn‘lques8 for determining the

mean grain size without measuring the grain size distribution function. Most

methods rely on a 1ine intercepts along random directions or in circular paths;

N B~ A0S+



alternatives estimate the circumference or area of each grain. .Current
techniques are not applicable to any arbitrary system and the researcher must
often determine which method will yield the most accurate data. The guidelines
for making this decision are qualitative generalizations and, as such, can lead
to considerable error in the resu]ts.8
The most common method used for determining mean grain size are the ASTM

8 The 1ine intercept method

line intercept and the ASTM comparison method.
has been shown to work well for materjals having regular grain microstructure;
however, this method is not applicable to materials exhibiting oriented or
complex, irregular structure, and when applied by different researchers, the
1ine intercept method can lead to results that vary up to 50 percent.8 The
comparison method relies on the researchers judgment in comparing standard ASTM
grajn charts with the observed microstructure. Neither of these methods 1is
used for determination of the grain size distribution.

This paper describes a technique for determining the grain size
distribution function from a meta]]ograph1ca11yJprepared sample. By applying
two-dimensional Fourier transform theory to tonéapulée encoded microstructural
images, the grain size distribution function is determined. The resulting

relationship is two-dimensional and yields the grain size distribution, mean

grain shape, size and orientation.

THEORY

One Dimensional Fourier Transforms

The Fourier transform of an arbitrary function f(x) s given by.9

oo

(1) Fuy = [ (0 e~ 1(2mux) 4y
|F(u)| represents a density function such that the number of components

10

contained in the interval |du| is given by |F(u)]ldu]. The variable x may
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refer to any quantity such as frequency, time, length, etc. For example, if x
is time then u 1is frequency and |F(u)| represents the density of frequency
components. Given a frequency u the period x' 15 given by x' = 1/u.
Throughout this work we will refer to x' as the reciprocal variable of u

and u as the reciprocal variable of x'.

Equation (1) may be expressed with respect to the period var1ab1e,1] x'.
(2) IP(x*)[ldx"| = |F(u)|ldu]
where |[P(x')|]ldx'|] 1s the number of period components contained in a

period interval |[dx'|. Then

(3) PG| = 1R 1 |§]
using
dx' 1
(4) L
du , u2
we obtain,
(5) IP(x') 1 = 1F(u) Ju?

TWO-DIMENSIONAL FOURIER TRANSFORM THEORY -

A two-dimensional Fourier transform contains two variables, such as x

and y and is given by9

© +m

(6) r<u,v)=f f f(x,y) e 2mlux+vy) 4o 4y

Here the number of components per area interval |du}ldv| 1is given by

{F(u,v)||du}|dv]|. Equation (6) may also be expressed in polar coordinates.

With dx dy = rde dr we have]2

T ©
-{2user
F(s,9) = f(r,0) e rde dr
[, 4

where s = Vu2 + v2 and r = sz + y2



The number of components per-area interval is
(8) [F(s,¢)|1sde]|lds|
and the number of components per radial length at an angle ¢ is
(9) [F(s,o)1lds].
Expressing Equation 9 in terms of period reciprocal variable r' we have
(10) [P(ri,¢)lldr'] = [F(s,4)]lds]
where |P(r',¢)| 1is the density of period components in the interval |dr'].

Using s = 1/r' we obtain
' 2
(1]) Ip(r o¢)| = lF(Sud’)IS

Determination of Boundary Length Distribution Function
Suppose there exists a set of barriers placed along the axis as shown in
Figure 1(a). The boundaries are randomly spaced along the x-axis and have
the same amplitudes. We are interested in determining the distribution of
lengths between the boundaries over the entire length of the x-axis. The
Fourier spectra of a three cycle tone pulse having an amplitude 2A, with x'
and fundamental frequency uo = 3/x' 1s given byf

sin [-nr(u0 - u)x'] s1n[1r(u0 + u)x']
{ [(uy, - u)x'] - [r(u, + u)x'] }

(12) [F(u)|l = Ax'

If a three cycle, sine wave, tone pulse is formed between adjacent barriers

(see Figure 1(b)) the resulting waveform will be made up of a series of tone

pulses each having fundamental frequencies at 3/x;, where X3 refers to

the Tength between the 1 and (1 + 1) barriers. The Fourier transform of the
waveform will yield |F(u)|, the density of frequency components, and

IP(x')] will provide the density of length components (or the length
distribution function). Three cycles will correspond to a fundamental period

one third the true width between the barriers (This true period or length will



be referred to as the barrier width.). This is easily corrected by rescaling
the fundamental periods by a factor of three.

It is possible for the relative phases between the tone pulses to interact
by constructive and destructive interference. This would lead to an erroneous
density of frequency components where constructive or destructive phase
interference dominates. If the phase interference is incoherent (i.e., random)
or negligible, then the density of frequency components is accurate.

Here it is assumed that phase interaction between tone pulses is either
negligible or incoherent. This is a relatively strong assumption, but it will
be shown later to be a reasonable one. It is bo{nted out that for this work
we will use a digital 512 point fast Fourier transform (FFT) which 1imits the
resolution of the x-aX1s to 512 points.

In order to form a smooth barrier width distribution function 512 random
barrier systems similar to that shown in Figure 1(a) will be eva]uatedf .Each
of the 512 barrier systems is frequency coded with tone pulses and subsequently
Fourier transformed to determine IFn(u)I where.the subscript n refers
to the nth barrier system. ' The total density o?lfreduency components for
the entire set of barrier systems is given by

' 512
(13) IF ()l = 320 IF (u)]
n=1
from which the total density of Tength components is obtained
(14) PLX )| = [F(u)|u?

Figures 2(a) and (c) show the density of length components and the actual
barrier length distribution function, respectively. For lengths less than
x' < 13 pixels (u > 0.076), IF(u)lu2 deviates considerably from the actual
parrier distribution function. This deviation originates frgm the
nonnegligible higher order harmonics that are present for a three cycle tone
pulse. These high frequency components are enhanced by the factor -u2
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(Eq. (14)). Equation (12) indicates that the density of frequency components
at the fundamental frequency of a three cycle tone pulse is proportional to

the tone pulse width, x'. If the amplitude of each three cycle tone pulse is
diminished in proportion to its corresponding width, then the resultant density
of frequency components, at the fundamental frequency for each tone pulse, is
normalized tb a constant value, A. While the higher order harmonics are
correspondingly diminished in amplitude. For example, the waveform shown in
Figure 1(b) is modified by decreasing the amplitude of each tone pulse by

1/x, where x; 1is the width of the 1™ tone pulse. If the phases

of the tone pulses exhibit negligible or incoherent 1nteract1onAthen the

Fourier transform of the modified waveform for the jth barrier system is

f1(x)
(15) IFJ(U)I =Z?’
0 X3

i

where & denotes the Fourier transform and fi(x) describes the waveform

1
of the 1th tone pulse. Since Xy 1s constant for the 1th tone

pulse we have

(16) IFy(u) | Zx—:- OAON
i

for the jth barr1ér system.

The density of frequency components for a set of 512 barrier systems becomes

WIACTIEDYINOTED S ﬁj— T4 0] = 1Fg(u) L
3 7

where the subscript m refers to the modified system. Using Equation (14) the

density of length components 1is

(18) PO )1 = IF (W) lu = [F (u) u?



Equation (18) indicates that when the Fourier spectra of the modified system
IFm(u)l 1s multiplied by u the density of length components is obtained
(compare Equations (18) and (14)). The results follow similarly in two
dimensions (from Equation (11)) to yield the density of radial length

components at an angle ¢,

(19) IP(r,e) | = IF (s,0)1s = [Fy(s,) s’

The approximation in Equation (17) become equivalence when F(f1(x))

]

i

In other words, if the number of cycles in each tone pulse is increased the

approach delta func’c1ons]0 at the fundamental frequencies, u, = 3/x

'IFm(u)Iu, the density of length components, becomes a more accurate

representation of the true density of length components. Unfortunately,
increasing the number of cycles of each tone pulse in a digital 512 point array

10 is

prohibits tone encoding of small lengths. Here, the Nyquist frequency
the 1imiting factor. Therefore, there is a trade off between the requiréd
measurement of small lengths and the required accuracy of the length
distribution function.

The resultant modified waveform is shown in Figure 1(c). This
modification is done for the entire 512 barrier systems. The density of length
components for the modified barrier set is shown in Figure 2(b) and is given
by [P(x")]| = IFm(u)lu where one additional factor of u 1s pre-included in
the construction of the modified barrier systems (see Equation (18)). This
modification reduces the high frequency enhancement from u2 to u and
yields a more accurate representation of the length distribution function as
shown in Figure 2(b). The flat region of the distribution for pixel periods
less than 10 pixels is identified as residual noise resulting from higher

frequency harmonics. This flat noise region is observed in all systems

investigated and is intrinsic in the Fourier transform theory. This easily



identifiable region is clipped to a zero value to eliminate the higher
harmonic noise. Figure 2(d) is an overlay of curves shown in Figure 2(a),
(b), and (c). |

The results shown in Figure 2 indicate that the density of length
components corresponds directly to the actual length distribution function.
This supports the assumptions that: (1) The phase interaction of tone pulses
is incoherent or neg1191b]e. (2) The selection of three cycles per length is

sufficient to yield an accurate result.

Application of Fourier Transform Theory to Microstructural Images

To apply Fourier transform theory to microstructural images we tone pulse
encode the two-dimensional image. The construction of a two-dimensional tone
pulse encoded representation of an arbitrary microstructural image requires
enhancement of the original image as indicated below. The microstructure of
stock nickel 200 is shown in Figure 3(a). The image was digitally recorded
into a 512 by 512 pixel array via a vidicon camera connected to a video
digitizer. The image is a numerical average of.f%ve digitizations. The gray
scale resolution of the video digitizer allows for pixel intensities to vary
from 0 to 255, where an image intensity of 0 and 255 correspond to black and
white, respectively. The grain boundaries are clearly visible as
interconnecting dark curves.

The grain boundaries are enhanced by taking the two-dimensional digital
grad1ent9 (Figure 3(b)) of the microstructure shown in Figure 3(a). A gray
level 1ine scan along the x-direction (in Figure 3(b)) at y = 255 is shown
in Figure 3(c). A series of peaks are observed in this line scan that
correspond to the position of the grain boundaries. The peaks vary in
amp11tude where the magnitude derivative between grains varies in agreement

with the optical intensity. Between the peaks there exist noise generated by



variations of the optical intensity within the grains. This noise is also
observed in the original microstructural image (Figure 3(a)). The within grain
noise is removed by determining the magnitude of the derivative of thé weakest
(that is, the most difficult to determine optically) grain boundary. A1l
pixels in the gradient image having a value lower than this value are set to
zero while all others are set to a constant nonzero value. As a result we
have a clean image of the grain structure where each grain boundary is given
equal weight (1.e., the same intensity). A gray level 1ine scan along the
x-direction at y = 255 for the noise reduced, grain boundary enhanced image
(Figure 4(a)) 1s shown in Figure 3(d). The 1ihe scan reveals a series of
equal amplitude, half cycle pulses. Each pulse corresponds to its respective
grain bouﬁdary along the scan direction. The enhanced image is a
two-dimensional representation of the one-dimensional case shown in Figure
1(a). In order to assure that there is equal weighting of grains in all"
directions the enhanced image is circularly masked as shown in Figure 4(a).
Next a tone pulse encoded image containing the fqndamenta] harmonics of each
grain is generated. This is done as in the one—&{men§1ona1 case. The tone
pulse begins at a grain boundary and ends at a grain boundary and has a width
equal to the width of the grain. A new tone pulse is started at an adjacent
grain boundary which generally has a different width. This is done digitally
starting at the center of the image and proceeds outward along a fixed number
of radii to the perimeter of the circular mask. The process is repeated for
all angles (0 to 2« rad) so that the frequency coded image appears as shown in
Figure 4(b). Figure 4(c) is a gray level 1ine scan along the x-direction of
Figure 4(b) at y = 255 and is similar to that shown for the one-dimensional
case (see Figure 1(c)).

Nine different photomicrographs of the same sample are tone pulse encoded
and then digitally Fourier transformed using a compliex 512 point, hardwired,
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fast Fourier transform array processor. The density of length components at
an angle ¢ is given by Equation (19) and is shown in Figure 5(a). This
figure represents the density of length component as d function of the
reciprocal Tength, s. We may better understand this result by plotting the
result in Figure 5(a) as a fqnct1on of 1/s (1.e., length) as shown in
Figure 5(b). Figure 5(b) represents the density of length components as a
function of length, r', and corresponds directly to the actual grain size
distribution function IP(r;,¢)|. From this figure the grain size distribution
and mean grain size of the original microstructure may be determined along any
direction.

The mean grain length D(¢) along an arbitrary angle ¢ is obtained from

Figure 5(b) and is given as

ZIIP(r"cb)I r
(20) D(¢) = rZIP(r',qa)I
r!

where r' = x2+y2

The mean grain shape, size, and orientation Sbtained from Equation (20)
is shown in Fiqure 5(b) (inset). For this microstructure the mean grain shape
is roughly circular with no net orientation.

The grain size distribution along the x-direction (¢ = 0), |P(r',0)},
is shown in Figure 5(c) as a dark curve. Also shown for comparison is a
histogram of the grain size distribution along the x-direction obtained by
using a commercially available image analyzer. The histogram exhibits a s1ight
shift in the distribution toward larger grains. This is most probably due to
the technique used for determining grain size for this instrument. The
histogram obtained is determined by measuring the maximum length (in the x
direct1on) of each grain. Therefore it i1s expected that the histogram be

shifted to toward larger grains. The "tone pulse encoded" and commercial

10



instrument results yield mean grain diameters (along the x-direction) of 60
and.72 um, respectively, and differ by 16 percent.

As the mean grain size of a real microstructure ¥s not known a pf1or1 and
is found to be dependent on the methodology used for its determ1nat1on8, it
seems appropriate to provide a test system for which the mean grain size, shape
and orientation are known. A simulated microstructure containing a
distribution of sizes of identically shaped and oriented grains shown in
Figure 6(a) was used. After tone pulse encoding, the space between the grains
was masked to a zero value tone code to eliminate treating them as "artificial"
grains. The resultant density of length components is shown in Figure 6(b).
The mean grain size, shape and orientation are obtained by use of
Equation (20). The reconstructed mean grain shape and orientation is shown in
Figure 6(c) along with the actual mean grain. The reconstructed grain is
properly oriented and of similar shape to the actual mean grain. The largest
error in the reconstruction of the mean grain has occurred at the regions of
sharp radii of curvature (top and bottom of the qctual grains). The error at
these regions is 12 percent. . |

This work may aliso be applied to ceramics for the determination of pore
size distribution. Figure 7(a) is a digitally enhanced photomicrograph of a
sintered ceramic showing a distribution of pores. The area between the pores
was set to a zero value tone code after tone pulse encoding. The pore size
distribution function shown in Figqure 7(b) exhibits an anisotropic
distribution. The mean pore (see Figure 7(b) inset) is oval in shape and is

oriented along the vertical axis with an aspect ratio of 10:7.

DISCUSSION
The entire process of digitizing images, image enhancement, tone pulse

encoding, Fourier transformation and determination of the grain size

1



distribution function takes about 15 hr using a nonvirtual minicomputer,
hardwired array processor (for FFT) and a video digitizer. The operator needs
to interact during the digitization of the microstructural images which takes
about 20 min. Most of the computer time is spent reading and writing to the
video digitizer. This time could be easily reduced by at least an order of
magnitude by using a virtual minicomputer that can perform mathematical
operations on an entire image contained in a random access memory array. By
comparison the commer61a1 image analyzer requires about 2 hr of operator
intensive activity (tracing grain boundaries) to yield grain distribution data
along two perpendicular directions.

Since each microstructural image contains a different set of grains the
grain size distribution will not be identical for each image. Thus averaging
over a number of photom1crographs10 is necessary to estimate the real grain
size distribution. The increase in accuracy of the grain size distr1but16n
function is proportional to \/ﬁ_. where N 1is the number of averaged images.
Nine images provide for an increase in accuracy by a factor of three; it
should be noted that it would take 100 images to:%hcréase the accuracy by a
factor of 10.

In order to tone pulse encode three full cycles between adjacent
boundaries, at lease 10 pixels are required. Therefore, the smallest grain
width measurable has a length of 10 pixels, and all grains having widths less
than 10 pixels are not included in the determination of the grain size
distribution. This 1s observed in Figure 5(c) where the grain size
distribution begins a sharp rise at 10 pixels. The functional form of the
grain size distribution is not known for smaller grain widths. It could be
argued that more data would be available by tone pulse encoding with one or two
cycles instead of three cycles. By using oné or two cycles in the tone pulse,
grains having widths of 4 or 7 pixels, respectively, could be encoded. In

12



order to address this argument we must examine the gradient image (Figqure 4(a))
where the uncertainty of the grain widths is 3 pixels.

Tone pulse encoding with fewer cycles would allow for the incliusion of
smaller width grains (grains having widths 4 to 7 pixels). However, the
current uncertainty (3 pixels) in the grain width would remain the same making
detailed measurement of these narrow width grains of questionable validity.

The percent uncertainty in the grain width is given by

AX

X « 100 percent, where Ax = 3 pixels and x 1is the grain width.

lo, | =

The percent uncertainty is inversely proportiona] to the grain width. That is,
the larger the grain width to be measured the more accurate the measurement.
There is less that 15 percent uncertainty (due to the uncertainty in the grain
widths) in the grain size distribution function for grain widths greater than
20 pixels.

This work could be enhanced in several ways. A hardwired tone pu]sé
encoding processor could be used in conjunction with a virtual
superminicomputer to reduce the processing speed”to a few minutes. Increased
accuracy (via averaging) of the distribution funet1on could be available with
a computer controlled vidicon camera scanning the actual microstructural
surface. Also, anlimage array greater than 512 by 512 pixels would allow for
finer definition of boundaries allowing for tone encoding of narrower widths.

This technique is not 1imited to grain or porosity distributions. It may
also be applied to any system for which the Tength distribution function is
required. Some specific examples are the determination of whisker size
distribution function in chopped fiber composites as well as the length
distribution function between whiskers. This also applies to continuous fiber
composites. In metals the inclusion and metallic phase length distribution

functions may be determined. Application of this work to three mutually
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perpendicular planar sections will yield the full three-dimensional mean grain
and/or pore size, shape, and orientation.

CONCLUSIONS

Microstructural images may be tone pulse encoded and subsequently Fourier

transformed in order to determine the two-dimensional density of frequency
components. A theory has been developed and applied to relate the density of
frequency components to the density of length components. The density of
length components corresponds directly to the two-dimensional grain and/or pore
size distribution function from which the mean grain or pore size, shape, and
orfentation are obtained.
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