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Determination of growth-coupling
strategies and their underlying principles
Tobias B. Alter1 and Birgitta E. Ebert1,2*

Abstract

Background: Metabolic coupling of product synthesis and microbial growth is a prominent approach for maximizing

production performance. Growth-coupling (GC) also helps stabilizing target production and allows the selection of

superior production strains by adaptive laboratory evolution. To support the implementation of growth-coupling strain

designs, we seek to identify biologically relevant, metabolic principles that enforce strong growth-coupling on the

basis of reaction knockouts.

Results: We adapted an established bilevel programming framework to maximize the minimally guaranteed

production rate at a fixed, medium growth rate. Using this revised formulation, we identified various GC

intervention strategies for metabolites of the central carbon metabolism, which were examined for GC

generating principles under diverse conditions. Curtailing the metabolism to render product formation an

essential carbon drain was identified as one major strategy generating strong coupling of metabolic activity

and target synthesis. Impeding the balancing of cofactors and protons in the absence of target production

was the underlying principle of all other strategies and further increased the GC strength of the aforementioned

strategies.

Conclusion: Maximizing the minimally guaranteed production rate at a medium growth rate is an attractive principle

for the identification of strain designs that couple growth to target metabolite production. Moreover, it allows for

controlling the inevitable compromise between growth coupling strength and the retaining of microbial viability. With

regard to the corresponding metabolic principles, generating a dependency between the supply of global metabolic

cofactors and product synthesis appears to be advantageous in enforcing strong GC for any metabolite. Deriving such

strategies manually, is a hard task, due to which we suggest incorporating computational metabolic network analyses

in metabolic engineering projects seeking to determine GC strain designs.

Keywords: Growth-coupled production, Bilevel algorithms, Stoichiometric modeling, Model-guided metabolic

engineering, Optimality principles

Background
Metabolic engineering approaches strive to optimize mi-

crobial cell-factories for robust, profitable, and sustain-

able industrial applications [1]. One applied principle

within this field of research is to metabolically couple

the synthesis of the product of interest to microbial

growth by appropriate genetic modifications [2–6]. The

main motivation in generating growth-coupled produc-

tion is to shift the tug of war for the substrate carbon

towards the synthesis of the desired chemical [7–9].

Consequently, growth-coupling (GC) efficiently facili-

tates the use of well-established adaptive laboratory evo-

lution methods for production strain optimization

purposes by employing growth as a simple selection

criterion [10, 11].

Three distinct GC phenotypes differing in GC strength

can be distinguished, which become apparent from com-

puting and plotting so-called metabolic production enve-

lopes [12]. These production envelopes are projections

of the accessible flux space onto the 2D plane spanned

by the growth rate and the production rate of the target

metabolite (Fig. 1). The lower limit of a production en-

velope depicts the minimally guaranteed production rate
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for the accessible range of growth rates. Hence, a lower

bound greater than zero for a particular growth state

directly implies GC. In the following, production enve-

lopes, in which a production rate greater than zero only

occurs at elevated growth rates, will be denoted as a

weak GC (wGC) characteristic (Fig. 1a). For Saccharo-

myces cerevisiae and Escherichia coli, for example, such

a wGC is naturally observed for fermentation products,

e.g., ethanol or acetate, under anaerobic conditions or

during overflow metabolism. By this means, holistic GC

(hGC) is encountered if the lower production rate bound

is above zero for all growth rates greater than zero

(Fig. 1b) while strong GC (sGC) is referred to produc-

tion envelopes showing a mandatorily active target com-

pound production for all metabolic states including zero

growth (Fig. 1c). The physiological equivalent of an sGC

behavior in a microbial strain is the concurrent secretion

of a metabolite during carbon source consumption inde-

pendent of the carbon uptake and growth rate, i.e., the

metabolite is a necessary byproduct of carbon metabol-

ism. Besides the oxidation byproduct CO2, native exam-

ples for such mandatory byproduct secretion are, e.g.,

acetate and lactate formation by acetogenic bacteria dur-

ing growth on CO2 and H2 and lactic acid bacteria with

obligate homo- or heterofermentative metabolism, re-

spectively. Note that sGC can only be achieved in silico

if a positive minimal value for the ATP maintenance re-

quirement (ATPM) reaction is enforced. This constraint

precludes the zero flux vector from the solution space

and enables the identification of sGC strategies using re-

action deletions only [13]. Hence, if not stated otherwise,

we employ or refer to models including a minimal con-

straint on the ATPM reaction in this work.

Various computational algorithms exploiting the rich

information content of stoichiometric metabolic models

have been developed to specifically provide reaction de-

letion strategies leading to GC. These approaches are

generally grouped into Flux Balance Analysis (FBA) and

Elementary Modes Analysis (EMA) based methods. Clas-

sical FBA focuses on a particular metabolic phenotype

by optimizing a biological meaningful objective function

subject to steady-state mass balance constraints [14].

Thus, GC strain designs identified by FBA-based frame-

works such as OptKnock [15] and RobusKnock [16] en-

force GC at only distinct metabolic states, which is

maximal biomass formation in the given examples.

While OptKnock attempts to solely maximize the target

compound production, RobustKnock maximizes a min-

imally guaranteed production and thus enforces GC at

maximal growth. Complementarily to FBA, EMA utilizes

the nondecomposable steady-state flux distributions,

called elementary modes (EMs), of a metabolic network

from which any feasible flux state can be derived by lin-

ear combinations of these EMs [17, 18]. By exploiting

the nondecomposibility feature of EMs, minimal sets of

reaction deletions, coined minimal cut sets (MCSs), can

be identified that disable all EMs responsible for un-

desired metabolic functionalities [19]. Methods such as

constrained minimal cut sets [20, 21] or minimal meta-

bolic functionality [4] use EMA to determine MCSs,

which remove all EMs producing only biomass and

hence lead to GC. The main disadvantage of EMA-based

compared to FBA-based methods is the computationally

expensive necessity to enumerate all EMs, thus limiting

the application of EMA to small or mid-scale metabolic

networks. Recently, this has been overcome by introdu-

cing MCSEnumerator, an algorithm that sequentially

enumerates the smallest MCSs and significantly reduces

the computational costs [22]. Still, the underlying con-

strained MCS method requires the definition of a min-

imal bound on growth rate and target product yield.

Depending on the user-defined boundary conditions,

this may result in neglection of the best possible but

suboptimal solutions, that is wGC or hGC when no sGC

A B C

Fig. 1 Exemplary production envelopes showing three distinct types of GC. a weak, b holistic and c strong growth-coupling. The grey area

represents the production envelope of the wild-type strain which is inaccessible for the mutant strain. The lower production rate bound, hence

the minimally guaranteed production rate, is marked by the red line
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solutions exist for the user-defined maximum allowable

number of reaction deletions. To effectively gain from

the advantages of different methods in terms of a bio-

logically robust strain design, combinations and adap-

tions of the mentioned algorithms have been reported

[12, 23, 24].

Beside the in silico identification of GC intervention

strategies, research on the general feasibility and driving

forces of the coupling between growth and target prod-

uct synthesis has been conducted. Based on the EMA

approach, Klamt & Mahadevan [25] have built a theoret-

ical framework to relate GC to the existence of elemen-

tary modes and vectors that fulfill specific requirements

on biomass and product yields. By applying this frame-

work to a metabolic model of the central carbon metab-

olism of E. coli [4, 20], they were able to show that

synthesis of any metabolite can be coupled to growth.

Recently, Jouhten et al. [9] proposed a biochemical basis

for the generation of growth-coupled product synthesis.

They introduced the concept of anchor reactions, which

split the substrate carbon among one or more biomass

precursors and the target compound. Existence of an an-

chor reaction that is or can be made essential for the

synthesis of a biomass precursor thus implies feasibility

of growth-product coupling. This has similarly been

expressed by Klamt & Mahadevan [25] in the require-

ment for at least one elementary mode allowing for both

growth and product synthesis. In contrast, it was

claimed elsewhere that GC results from an induced im-

balance of reduction or energy equivalents, which can

only be overcome by active product synthesis [5, 23, 26].

Erdrich et al. [26] pointed out, that this imbalance is

particularly pronounced under anaerobic conditions

where oxygen as final electron acceptor is missing and

ATP generation is naturally limited mainly to fermenta-

tion pathways and glycolysis.

In view of these disparate explanations for GC, we

aimed at further unraveling key principles of reaction

deletion strategies leading to GC by identifying relevant

genetic intervention strategies for a set of metabolites

and investigating the specific operating principle of these

strategies. We adapted the mixed-integer linear program

formulation of OptKnock to determine GC knockout

strategies for a given target compound, a specific sub-

strate and a defined maximum number of reaction dele-

tions. Particularly, our framework, which we termed

gcOpt, maximizes the minimally guaranteed production

rate at a medium, fixed growth rate and was applied to

calculate GC intervention strategies for a broad range of

metabolites of a core as well as a genome-scale meta-

bolic model of E. coli. The resulting strategies were sub-

sequently examined regarding the consequence of

imposed growth-coupled product synthesis on metabolic

network operation.

Results
gcOpt prioritizes strain designs with an elevated growth

coupling strength

The pursued approach to identify GC strain designs with

maximal possible GC strength was derived from the pro-

duction envelope representation of GC mutants (cf.

Fig. 1). While the GC classification into wGC, hGC, and

sGC provides a qualitative notion of the GC strength,

the position of the lower production rate boundary can

be interpreted as a quantitative measure: the higher the

boundary in terms of positive rate values, the stronger

the GC. The shape of this production envelope boundary

along the growth rate axis is not arbitrary. It is rather a

part of the hull giving the admissible flux space and,

since the flux space is determined by a linear equation

system, the lower production envelope boundary is con-

vex [27]. It follows from the convexity property that by

increasing the lower production rate for one specific

growth rate by, e.g., deletion of one or more reactions,

the lower production rate boundary at all admissible

growth rates is raised, resulting in an overall increase of

the GC strength. This principle was implemented in a

bi-level optimization algorithm, gcOpt, which maximizes

the minimum production rate of a target compound at a

fixed, medium growth rate μfix using appropriate reac-

tion deletions (Fig. 2). Ultimately, gcOpt provides strain

designs with high GC strengths for the production of a

specified target metabolite. The theoretically maximal

GC strength, however, may be restricted due to the

A B

Fig. 2 Schematic principle of gcOpt. a represents an exemplary

production envelope of a wild-type strain showing no GC, with the

black dashed and dotted lines denoting the lower production rate

bounds of possible mutant strains. The red dashed line denotes the

optimization principle of gcOpt, which is maximization of the

minimally guaranteed production rate at a medium fixed growth

rate. b is a production envelope of a reaction deletion mutant strain

showing the best possible GC, where the grey area represents the

production envelope of the wild-type strain which is inaccessible for

the mutant strain
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structure of the given metabolic network, the chosen en-

vironmental conditions and the defined maximum num-

ber of modifications, in which case gcOpt inherently

allows for the identification of suboptimal designs (see

the Methods section for a detailed description and for-

mulation of gcOpt).

Identification of strain designs leading to GC of etha-

nol production in E. coli under anaerobic conditions was

used to demonstrate the functionality of gcOpt. This

classic example has already been investigated by applying

diverse computational methods to a metabolic model of

the central carbon metabolism of E. coli, here referred to

as CT86 [4, 20]. Using CT86, gcOpt was applied allow-

ing maximum numbers of reaction deletions from one

to five at three different fixed growth rates μfix of 0.01

h− 1, 0.1 h− 1 and 0.25 h− 1. Anaerobic growth on glucose

was simulated by setting the maximum glucose and oxy-

gen uptake rate to 12 mmol g− 1 h− 1 and zero, respect-

ively. The respective reaction deletions of each identified

strain design as well as the strategies from literature are

given in Additional file 4: Table S1. By applying gcOpt

as well as OptKnock, an exhaustive enumeration of GC

strain designs from one to five reaction deletions was

additionally conducted for the target products succinate

and lactate to support the following findings (refer to

the Additional file 3: Figures S1 and S2 as well as Add-

itional file 4: Tables S2 and S3 for the corresponding

production envelopes and deletion strategies, respect-

ively).

The designs identified by gcOpt (Fig. 3a-c) clearly indi-

cate that the lower production rate bound, and hence

the GC strength, increased with a growing number of

simultaneous reaction deletions while the maximal

growth rate decreased and approached the chosen μfix

(refer to Additional file 3: Figure S3 for the correspond-

ing yield spaces). The most extremely trimmed produc-

tion envelope was computed for the triple, quadruple

and quintuple mutants at a μfix of 0.01 h
− 1 (Fig. 3a). The

maximum growth rates did not exceed values of 0.05 h−

1 while an ethanol production rate of approximately 20

mmol g− 1 h− 1, or a corresponding yield of 1.7 mol mol−

1, was strictly guaranteed implicating a tight metabolic

coupling of growth and ethanol production. Frequent re-

action deletions include the fermentation pathways to

prevent the secretion of e.g., lactate and formate, which

is in line with GC strain designs given by Trinh et al. [4]

and Hädicke et al. [20]. In contrast to these previously

reported strategies, the gcOpt designs for a μfix of 0.01

h− 1 and 0.1 h− 1 consistently target the upper glycolysis

pathway, e.g., the glucose-6-phosphate isomerase or the

A B C

D

Fig. 3 Ethanol production envelopes of GC strain designs identified by gcOpt in comparison to designs taken from literature. Maximal intervention

sizes between one and five reaction deletions were used (a-c) and compared to several methods reported in the literature (d) (MMF strategy from [4],

all others from [20]). Black lines denote the production envelopes of the wild-type. The vertical black dashed lines mark the chosen fixed growth rates

μfix for the respective computations (0.01 h−1 (a), 0.1 h−1 (b) and 0.25 h−1 (c)). The maximal glucose uptake rate was constrained to 12mmol g−1 h−1 for

all respective simulations
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triosephosphate isomerase. However, the quintuple mu-

tant design computed for μfix = 0.25 h− 1 (Fig. 3c) was in-

teresting in that it enforced a high ethanol production

rate at a relatively high maximal growth rate of 0.31 h− 1.

The minimally guaranteed production rate was 10.2

mmol g− 1 h− 1 (yield of 0.85 mol mol− 1), thus pointing to

an excellent combination of GC and viability of this mu-

tant. The predicted intervention strategies at a μfix = 0.1

h− 1 a (Fig. 3b) were a good compromise between this

and the extremely trimmed strain designs at a μfix = 0.01

h− 1 with guaranteed production rates of approximately

14.2 mmol g− 1 h− 1 (yield of 1.2 mol mol− 1) and maximal

growth rates of 0.13 h− 1. Figure 3D contrasts production

envelopes of GC strain designs found by various other

methods to those identified by gcOpt (Fig. 3a-c). By con-

sulting the lower bounds of the production envelopes as

a measure for the GC strength, the double and quadru-

ple mutants determined by OptKnock, RobustKnock

and cMCS [20], respectively, generally showed inferior

GC characteristics than mutants of the same interven-

tion sizes found by gcOpt. Moreover, although cMCS

and the minimal metabolic functionality (MMF) [4]

method identified a tight GC for the quintuple and sep-

tuple mutants, for both mutant strains the product yield

at maximal growth could take a range of values. A

bottleneck in biomass precursor supply at elevated

growth rates can be assumed in these cases since such

edges of flux polyhedra in general, and thus of produc-

tion envelopes in particular, correspond to flux capacity

constraints [25]. Such a phenomenon, however, was not

seen for any gcOpt strain design and thus might be

avoided by this algorithm.

Consequently, gcOpt offers the advantage to compute

attractive GC strain designs for a given microbial host,

target compound, environmental condition and specified

maximum number of genetic interventions. The inevit-

able compromise between the predicted viability of GC

mutants (the maximal growth rate) and the expected GC

strength can furthermore be controlled by adapting the

fixed growth rate μfix. Reducing μfix gradually favors the

identification of strain designs with higher GC strengths,

thus elevated guaranteed target production rates but

possibly lower maximal growth rates. Moreover, the in-

herent approach of increasing the minimum production

rate enforces the generally preferred sGC and hGC solu-

tions, which guarantee product synthesis with growing

or metabolically active organisms. This is a beneficial

trait compared to alternative FBA based algorithms

such as OptKnock or RobustKnock, which per se do

not favor these designs over wGC solutions. In terms

of computing time, these algorithms are similarly

costly as compared to gcOpt due to the same mixed

integer linear program (MILP) formulation (cf.

Methods section).

Do metabolic principles leading to growth-coupling exist?

As mentioned in the introduction, there is a diverse dis-

cussion about possible principles and routes to enforce

GC. These range between pure stoichiometric forces,

such as anchor reactions, to flux-based notions which

relate GC to imbalances in the households of energy and

redox equivalents. As a first computational screening,

we applied gcOpt to compute a comprehensive dataset

of GC designs, which we analyzed in-depth to decipher

general metabolic principles that trigger GC. To this

end, we computed intervention strategies with one to

seven reaction deletions for the 36 central carbon me-

tabolites of the E. coli iAF1260 core model under aerobic

as well as anaerobic conditions. The corresponding reac-

tion and gene deletion set of each identified strategy can

be found in the Additional files 1 and 2.

Under both anaerobic and aerobic condition, gcOpt

simulations were additionally conducted with a de-

creased as well as an increased non-growth associated

maintenance (NGAM) ATP requirement by changing

the lower flux bound of the corresponding ATPM reac-

tion (Eq. 1) about 50% from its standard value of 8.39

mmol g− 1 h− 1 [28] to 4.2 mmol g− 1 h− 1 and 12.2 mmol

g− 1 h− 1, respectively.

ATP þ H2O→ADP þ Hþ þ Pi ð1Þ

Equivalently to simulating the influence of the NGAM

demand on finding GC strain designs, NGAM reactions

were separately introduced for NAD(+/H) and NADP(+/

H), virtually resembling an elevated turnover of these co-

factors (Eqs. 2–3). Based on metabolic flux analyses of

the NADH oxidase gene nox overexpression in Pseudo-

monas putida KT2440 [29], the allowable flux range for

the consumption of the oxidized or reduced cofactor

was set between 5.0 mmol g− 1 h− 1 and 20.0 mmol g− 1 h−

1, respectively.

NADþ þ Hþ
in↔NADH ð2Þ

NADPþ þ Hþ
in↔NADPH ð3Þ

Equations 2 and 3 are mass but not charge balanced to

allow for the inclusion of principally any electron donor/

acceptor. It is assumed that the electrons are transferred

from/to an imaginary electron donor/acceptor, which

can be freely reduced or oxidized to avoid mass imbal-

ances of additionally included redox cofactors. In this

way the necessity to oxidize /reduce a particular electron

acceptor/donor and the corresponding influence on par-

ticular metabolic flux routes is circumvented. For each

altered ATPM and virtual cofactor NGAM, GC strain

designs were successfully identified for approximately

90% of all metabolites under aerobic conditions, except

for the condition of increased NADP+ consumption,
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which reduced the coupleable metabolites to 75%. The

four metabolites, which could not be coupled to growth,

were acetyl-CoA and succinyl-CoA, due to the model’s

inability to compensate for the CoA drain, acetyl phos-

phate, and L-glutamine. For anaerobic growth, the per-

centage of growth-coupled metabolites was much lower.

Interestingly, metabolites, for which gcOpt computed

only wGC designs for standard conditions, could be

strongly growth-coupled when the ATP NGAM was re-

duced. Among those were, e.g., phosphorylated interme-

diates of glycolysis such as glucose-6-phosphate and 2-

phosphoglycerate. The growth-coupled synthesis of

those metabolites was apparently fueled by excess ATP.

To more quantitatively compare GC characteristics be-

tween different designs, a novel measure for the GC

strength, termed GCS, was introduced (cf. Methods).

GCS relates the area of the accessible production enve-

lope of the wild-type strain to the inaccessible or

blocked area below the lower production rate bound of

the mutant strain up to the maximum growth rate of the

mutant (cf. Figure 4). Thus, the higher the lower produc-

tion rate boundary of the mutant, the higher the GCS.

The minimally guaranteed yield of the target compound

at maximal growth of the mutant strain is considered as

an additional factor for determining the GCS (Eq. 6) to

also incorporate the production capabilities at physiolo-

gically relevant growth conditions. Exemplarily and for a

better tangibility of the concept, Table 1 shows GCS

values for all strategies depicted in Fig. 3.

Figure 5 shows the mean GCS of all investigated me-

tabolites for an increasing number of maximal reaction

deletions for anaerobic as well as aerobic conditions and

for altered or additionally introduced cofactor require-

ments. If no GC strain design was identified for a metab-

olite, the GCS was set to − 2, defined as a complete lack

of a coupling between growth and product synthesis.

Under anaerobic conditions (Fig. 5a), the mean GCS

steadily increased with cumulative reaction knockouts

from one to four and reached a plateau above this

threshold for all investigated conditions. As already ap-

parent form the increased number of sGC designs

(Table 2), a reduced ATP demand, i.e., a low NGAM re-

quirement, increased the mean GCS while alterations of

the demand of the redox cofactors NAD(P/H) did not

have a comparable effect. For aerobic conditions, we

found coupling strategies with significantly higher

mean GCS values. 5 B). Again, the mean GCS steadily

increased with a growing number of reaction knock-

outs. The increase attenuated but did not reach a

plateau in simulations restricted to maximal seven re-

action deletions.

Does product-coupled biomass precursor synthesis

exhaust the GC potential?

A possible principle leading to GC, recently discussed by

Jouhten et al. [9], is the dependence of the synthesis of

one or more biomass precursors on the activity of the

target production, e.g., by restricting precursor synthesis

to reactions that split the substrate into a precursor es-

sential for growth and the target metabolite. This as-

sumption was tested by applying each found GC design

to the iAF1260 core metabolic model and computing

the capability of the impaired metabolic network to

synthesize each reactant of the biomass synthesis equa-

tion while disabling the production of the respective tar-

get metabolite. In case the synthesis of a biomass

precursor was blocked under these settings, the applied

knockout strategy was considered to directly couple tar-

get compound production to precursor synthesis and

thus to growth in general.

Sixteen biomass precursors were derived from the left-

hand-side of the biomass formation reaction included in

the E. coli core reconstruction. In Fig. 6, the percentage

of accessible precursors for each identified strain design

leading to GC is plotted against the GCS, not distin-

guishing between the number or reaction deletions or

metabolites coupled to growth. For all strain designs

showing a GCS below − 1, thus being of type wGC,

100% of the biomass precursors were still accessible.

This contradicts the principle of a direct coupling be-

tween biomass precursor and product synthesis but is

actually trivial since for wGC strategies product synthe-

sis is only enforced above a certain threshold growth

Fig. 4 Illustration of the yield space areas used for calculating GCS.

Scheme of a wild-type yield space showing no GC (black hull curve)

and a GC strain design (red hull curve). The blue area TA illustrates

the yield space of the wild-type up to the maximal growth rate of

the mutant strain. The inaccessible yield space IA below the lower

yield bound of the mutant is marked by the red hatched area
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rate (cf. Fig. 1). Likewise, this principle cannot explain

product formation at zero growth for sGC. However,

each identified sGC intervention strategy for anaerobic

conditions resulted in blockage of all biomass precur-

sors. Under aerobic conditions, this fraction was lower

but still considerable. Only among the hGC strategies, a

partial precursor blockage was found along with designs

that had no effect on precursor availability at all. In none

of the identified hGC solutions the synthesis of all bio-

mass precursors was blocked.

Motivated by the observed increase in coverage and

strength of GC strategies upon decreased ATP demand

(Fig. 5), we wanted to further understand if and how the

ATP metabolism might be a factor in establishing GC.

To this end, we tested the biomass precursor availabil-

ities for all identified strain designs allowing a reversible

and completely unlimited flux through the ATPM reac-

tion (Eq. 1). The consequence of this relaxation of the

ATPM flux constraint is an unrestricted generation of

ATP from ADP and free phosphate. While in all hGC

cases (− 1 < GCS < 0), none of the precursors could be

recovered, i.e., made accessible again by this relaxation,

the synthesis of every blocked biomass precursor was

restored for roughly 60 and 80% of the sGC strain de-

signs (GCS > 0) under aerobic and anaerobic conditions,

respectively (Fig. 6b and d).

The effects of relaxing cofactor balances on growth-

coupling strain designs

The investigation of biomass precursor availability in

the GC mutants indicated that an enforced produc-

tion of the target compound (sGC) is likely due to a

global metabolic necessity rather than caused by a

strict dependence of the synthesis of a particular bio-

mass precursor on target compound production.

Moreover, ATP scarcity seemed to be a metabolic

trigger for GC in those sGC cases in which the syn-

thesis of any biomass precursor was blocked by the

intervention strategies. To challenge this hypothesis,

the GCS of a GC strain design was investigated upon

relaxing the directionality constraint of the ATPM

equation (cf. Eq. 1) thereby enabling the model to

freely phosphorylate ADP to ATP and vice versa.

Since the ATP metabolism is interconnected with the

redox cofactor and cross-membrane proton balance,

e.g., via the electron transport chain and ATP

Table 1 Computed growth coupling strength values for all strategies shown in Fig. 3. GCS values of the respective strain designs

and number of reaction deletions are colored according to the GC classification of increasing GC strength from wGC (red), hGC

(blue) to sGC (green). The values in bold mark the highest GCS among the GC strain designs from literature (D) as well as from

gcOpt with a fixed growth rate μfix of 0.01 h−1 (A), 0.1 h−1 (B) and 0.25 h−1 (C), respectively. The MMF strain design is taken from [4].

All other designs in column D are taken from [20]

μfix = 0.01 h–1 (A) μfix = 0.1 h–1 (B) μfix = 0.25 h–1 (C) Literature (D)

Design GCS Design GCS Design GCS Design GCS

WT -1.97 WT -1.97 WT -1.97 WT -1.97

1 KO -0.91 1 KO -1.91 1 KO -0.91 MMF 7 KO 0.27

2 KO 0.16 2 KO -1.87 2 KO 0.26 OK 7 KO No GC

3 KO 0.63 3 KO 0.40 3 KO 0.35 cMCS 4 KO -0.75

4 KO 0.58 4 KO 0.43 4 KO 0.31 RK 2 KO -1.83

5 KO 0.58 5 KO 0.45 5 KO 0.48 cMCS 5 KO 0.52

A B

Fig. 5 Mean GCS progressions as a function of the number of reaction deletions. GC strain designs were identified by gcOpt for all metabolites

of the E. coli iAF1260 core model under anaerobic (a) and aerobic (b) conditions. The different lines embrace independent simulations applying a

particular cofactor demand as illustrated by the legend
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synthase, a free NAD(P)H/NAD(P)+ generation and

proton transport over the cell membrane were add-

itionally tested for their effects on the GCS. To simu-

late this, the NADH and NADPH NGAM reactions

(Eqs. 2–3) were reintroduced and a new proton trans-

location reaction was added:

Hþ
ex↔Hþ

in: ð4Þ

Here, the indices ex and in locate the H+ protons to

the extracellular and intracellular compartment, respect-

ively. Both reactions were unbounded, i.e., allowed to

carry any flux. All identified GC strategies and their

GCS values under all investigated conditions are pro-

vided in the Additional files 1 and 2.

For anaerobic conditions, GC was completely sup-

pressed for all but two strategies by relaxing either the

ATP balance, the NAD(P)H/NAD(P)+ conversion, the

proton exchange or a combination of these strategies

(Fig. 7). These two resistant strategies coupled formate

to growth by forcing the carbon flux through the anchor

reaction catalyzed by the pyruvate formate lyase, which

splits pyruvate to formate and acetyl-CoA. However, the

GCS of these strategies decreased when relaxing the

constraints on cofactor generation and proton export.

Disclosure of the basic coupling principles was im-

peded by the interrelatedness of redox cofactor, ATP

and H+ balancing. For example, GC of lactate synthesis

was abolished in most designs by relaxation of either

ATP/ADP, NADH/NAD+ conversion or a free proton

translocation. The basic coupling principle for this re-

duced metabolite is however NADH reoxidation,

achieved by the reduction of pyruvate to lactate. Conse-

quently, growth-coupling is abolished upon opening the

NADH balance. Relaxation of the ATP and proton bal-

ance had the same effect as it fuels flux through the

NADH transhydrogenase, which couples NADH oxida-

tion and NADPH reduction to proton import. The

formed NADPH is oxidized in biomass forming reac-

tions making NADH re-oxidation by lactate dehydrogen-

ase activity superfluous. Under standard conditions

NADH transhydrogenase activity is limited by the cell’s

potential to maintain a proton gradient over the cell

membrane. In contrast, GC of ethanol was only abol-

ished when free proton exchange was enabled. That was

not expected as ethanol and lactate share almost the

same synthesis pathway and as ethanol is more strongly

reduced than lactate. Apparently, GC of ethanol was

achieved in these designs by coupling the intracellular

proton balance to the ethanol-proton symporter activity.

As all intervention GC strategies for ethanol included

the deletion of the ATP synthase, proton export via a re-

versed ATP synthase activity under relaxed ATP turn-

over conditions was not possible. GC of pyruvate was

diminished by both free proton transport and ATP/ADP

conversion. Inspection of the flux distribution under re-

laxed ATP/ADP conversion conditions revealed that ex-

cess ATP was used to drive the ATP synthase as proton

Table 2 Percentage of metabolites for which strain designs of type wGC, hGC or sGC were identified. Strain designs were computed by

gcOpt with the E. coli iAF1260 core model and glucose as the sole carbon and energy source. The total number of investigated carbon

metabolites was 36

Metabolites for which the best GC strategy was of type [%] Metabolites that could
be coupled to growth [%]

wGC hGC sGC

Aerobic

standard 6 6 78 89

ATPM high 17 3 69 89

ATPM low 6 11 72 89

NADH demand 17 3 69 89

NAD+ demand 17 11 61 89

NADPH demand 33 6 50 89

NADP+ demand 25 11 39 75

Anaerobic

standard 14 3 19 36

ATPM high 3 14 17 33

ATPM low 0 3 53 56

NADH demand 3 14 19 36

NAD+ demand 3 6 31 39

NADPH demand 3 14 25 42

NADP+ demand 3 8 19 31
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exporter. Consequently, pyruvate secretion was enforced

by the need to balance intracellular protons as was the

case for ethanol. For aerobic conditions, relaxation of sin-

gle or combinations of the tested constraints relieved GC

for all wGC and most hGC strategies, as well. Again, for-

mate was the only metabolite that was hard-coupled to

growth by forcing flux through the pyruvate formate lyase

anchor reaction. However, under aerobic conditions, this

strategy is not of any relevance due to the pyruvate for-

mate lyase’s sensitivity to oxygen [30]. Surprisingly, more

than 50% the sGC strategies were not affected by alleviat-

ing cofactor and proton supply although in most of these

cases all biomass precursors were accessible without

enforced product synthesis (Fig. 8). Inspection of the ro-

bust strategies showed that coupling of metabolites of the

upper central carbon metabolism was achieved by prohi-

biting phosphoenolpyruvate (PEP) conversion in the lower

central carbon metabolism by deletion of PEP carboxy-

kinase and pyruvate kinase, as well as the elimination of

a cyclically operating pentose phosphate pathway,

which would allow complete oxidation of the substrate

to CO2. In vivo, this strategy might not be specific but

could enforce the secretion of any upper central carbon

metabolite. In our simulations, this was prohibited as

only export reactions of lactate, ethanol, and formate

were included in the model and the formation of these

fermentation products was prevented by further reac-

tion deletions in the GC strategies. In the remaining de-

signs the metabolism was curtailed in a way that forced

glucose oxidation through metabolic anchor reactions,

here, transketolase, transaldolase or fructose bispho-

sphate aldolase, splitting the substrate into the target

compound and an essential central carbon metabolism

intermediate. As for the formate coupling strategies,

the GCS of these strategies, although not completely

abolished, was significantly reduced in most strategies

upon relaxation of cofactor turnover and proton ex-

change. For the complete statistics corresponding to

Figs. 7 and 8, we refer to Additional file 4: Tables S4

and S5.

Growth-coupling affects the energy hierarchy of

metabolites

The examination of the biomass precursor availability in

the GC mutant strains and the influence of the ATP and

NAD(P) H turnover and proton exchange on GC gave a

A B

C D

Fig. 6 Biomass precursor availabilities for all identified GC strain designs under anaerobic and aerobic conditions. Standard ATPM requirements

(a, c) and an unbounded, reversible ATP hydrolysis reaction (b, d) were employed. The vertical dashed lines separate the GCS range into three

regions denoting wGC, hGC and sGC
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A B C

D E F

Fig. 7 GCS of identified strain designs for anaerobic conditions and the corresponding GCS under certain relaxations. Relaxations concern ATPM

(a), NADH/NAD conversion (b) and H+ translocation constraints (c) or combinations of those (d-f). The different colors or symbols relate to Fig. 6

showing the accessibility of biomass precursor for the same strain designs is shown. Red squares, blue circles and green triangles symbolize

designs that allow for the synthesis of all, no or a reduced number of biomass precursors, respectively

A B C

D E F

Fig. 8 GCS of GC strain designs for aerobic conditions and the corresponding GCS under certain relaxations. Relaxations concern ATPM

(a), NADH/NAD conversion (b) and H+ translocation constraints (c) or combinations of those (d-f). The different colors or symbols relate

to Fig. 6 showing the accessibility of biomass precursor for the same strain designs is shown. Red squares, blue circles and green triangles symbolize

designs that allow for the synthesis of all, no or a reduced number of biomass precursors, respectively
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first indication of the importance of the balancing of

redox and energy cofactors. To further unravel the inter-

dependency between GC and the cellular energy metab-

olism, the parameter ‘ATP synthesis capability’ (ATPsc)

was defined. ATPsc assesses the contribution of the

product synthesis to the global provision or consump-

tion of ATP (cf. Methods section). The ATPsc repre-

sents the change in the maximal flux through the ATPM

reaction when product synthesis is increased by 1 mmol

g− 1 h− 1. It is furthermore practical to normalize ATPsc

with the number of carbon atoms of the target product

yielding the ATPsc per carbon (ATPcsc).

For the E. coli iAF1260 core model the ATPcsc of CO2

is the highest followed by those of fermentation and over-

flow metabolites such as ethanol, lactate, succinate or

acetate under anaerobic as well as aerobic conditions

(Fig. 9). An almost identical energy hierarchy of metabo-

lites is computed using the E. coli iJO1366 genome-scale

model (Additional file 3: Figure S5), thus pointing to the

fundamental nature of the ATPcsc value for the microbial

metabolism. In line with the common understanding of

the mechanisms of fermentation pathways [31, 32], this

hierarchy correctly reflects the order of metabolites se-

creted by this organism under oxygen-limited or carbon

excess conditions. Hence, we used the energy hierarchy as

a measure for quantifying the ATP gain from product syn-

thesis relative to other possible side products.

We hypothesized that growth coupling is induced or

enhanced by the set of reaction deletions computed by

gcOpt that deletes more efficient ATP generation routes

so that the ATP yield of the target compound synthesis

pathway excels those of residual ATP forming pathways.

The observation that the ATP synthase was a frequent

knockout target under aerobic conditions, diminishing

ATP generation via oxidative phosphorylation, is in line

with this hypothesis. Such a causality would become ap-

parent by an increase of the ATPcsc in the mutant

models and, in turn, an elevated rank of the target prod-

uct in the energy hierarchy of metabolites. To test this

assumption, the ATPcsc was calculated for a selection of

36 central metabolites of the wild-type E. coli iAF1260

core model and every identified GC intervention strategy

using standard.

NGAM requirements. Energy hierarchies of metabo-

lites for each GC strain design were arranged such that

the metabolite with the highest ATPcsc value was

ranked position one.

Under anaerobic and aerobic conditions, for most sGC

strategies the target compound’s rank in the hierarchy of

metabolites increased compared with wild type condi-

tions (Fig. 10). This was reversed for the wGC and hGC

designs, in which the majority of target products faced a

reduction of the energy hierarchy rank. For aerobic con-

ditions (Fig. 10b), the upward shift of the target

compounds in the energy hierarchy was considerably

more pronounced than under anaerobic conditions

(Fig. 10a) and for 30% of the sGC strain designs the tar-

get compound was even ranked second or first, thus, in

case of the latter, surpassing CO2 as the most beneficial

production pathway for generating an excess supply of

ATP.

Discussion

Two major GC principles have been described in the lit-

erature, in which target production is enforced by either

coupling it to the synthesis of biomass precursors or the

balancing of energy and redox cofactors. Besides, the ob-

servation that yield and specific productivity is increased

upon inducing an ATP futile cycle has been discussed as

another principle [29, 33]. However, this latter interrela-

tionship cannot be transferred to GC according to the

findings shown in this work. Under anaerobic condi-

tions, only a simulated decrease of the ATP consump-

tion for cell maintenance processes led to an increased

number of growth-coupled metabolites as the surplus of

available ATP allowed for the secretion of compounds

with higher energy contents such as phosphorylated in-

termediates. Identified GC strain designs also showed an

enhanced GCS at reduced maintenance requirements.

The prevalent ATP scarcity under anaerobic conditions

may also be the reason for the observed stagnation of

the GCS with increasing size of the intervention sets. A

metabolic boundary, most likely ATP limitation, might

confine the maximal ratio between the energetically dis-

advantageous product synthesis and growth. ATP supply

is less critical in an aerobic setup due to a fully func-

tional respiratory chain. This is reflected in the indiffer-

ence of the GCS to alterations of energy and equally

redox balances. Apparently, the better supply of redox

and energy cofactors under aerobic conditions implies a

superior metabolic capacity for product-growth coupling

as was previously hypothesized [21]. Accordingly, we can

phrase the following GC requirement:

Generation of strong coupling of growth and product

synthesis is ultimately limited by the cell’s natural

capacity to generate energy equivalents in form of

ATP.

This may be seen contradictory to the findings shown

in Fig. 5 where it can be observed that for a high as well

as low ATP maintenance demands GC strain designs

with similar mean GCS values can be obtained under

aerobic conditions. In fact, this simply reflects the ability

of the cell under aerobic conditions to compensate for

the energy-demanding product secretion by flexible

adjusting the metabolic pathway usage to generate ATP
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A

B

Fig. 9 ATP synthesis capability values normalized by the number of carbon atoms (ATPcsc) for several metabolites of the central carbon

metabolism. The E. coli iAF1260 core metabolic model was employed under anaerobic (a) and aerobic (b) conditions using glucose as the sole

carbon and energy substrate. The order of the metabolites according to the ATPcsc value depicts the energy hierarchy of metabolites. Error bars

denote the standard deviation of ATPcsc calculations at different growth rates spanning the feasible range of growth states. The color code links

the metabolites to glycolysis and pentose phosphate pathway (PPP) (blue), TCA cycle (green) and fermentative pathways (red), respectively
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via substrate level phosphorylation sustaining its ATP

demand, at least in the range tested here.

This became also apparent from the ATPcsc values of

GC mutants. For aerobic conditions, most target prod-

ucts soared in the energy hierarchy ranking. Thus, their

synthesis pathway became a more, or in some case the

most advantageous metabolic route to regenerate ATP

in terms of an optimal compromise between carbon

usage and ATP yield.

In summary, the here presented, rigorous calculations

of GC strategies using gcOpt confirmed previously pub-

lished results [21, 25]:

Principle 1: Feasibility of GC holds for a wide range

of metabolites.

Yet, GC of energy-rich as well as oxidized metabolites

and the ability to reach high coupling strengths was

found to be limited to aerobic conditions. The apparent,

global feasibility of GC pronounces the applicability of

this concept for any microbial strain engineering project

aiming to increase productivity and yield. This observa-

tion of global feasibility is primarily based on reaction

deletion strategies. Due to the existence of isozymes,

promiscuous enzymes and multiprotein complexes, the

number of necessary gene deletions may significantly

differ from the number of suggested reaction deletions.

The realization and implementation of GC strain designs

in vivo may thus be hampered. In turn, the application

of a strain design framework based on a heuristic genetic

optimization algorithm proved to overcome this limita-

tion [34]. It allows for the identification of gene deletion

strategies leading to GC by employing the gcOpt

principle and specifically considering the logical links be-

tween genes and reactions given by the model-inherent

gene-protein-reaction relations.

However, the intuitive approach towards the gener-

ation of GC is to enforce an obligatory dependence of

the synthesis of one or more essential biomass precur-

sors on target compound production. However, such a

GC criterion can only explain or lead to hGC character-

istics, in which product synthesis is strictly bound to

biomass formation. In fact, we found that the majority of

hGC strategies blocked the synthesis of one or more bio-

mass precursors at zero product formation. The concept

can be broadened to the following principle and was in-

deed evident for 50% of all aerobic hGC and sGC

strategies.

Principle 2: Linking product synthesis to reactions

essential for any steady state flux distribution on the

chosen carbon source results in holistic and strong GC.

Those reactions include but are not restricted to

biomass precursor forming reactions.

However, our analysis also highlights the balancing of

global cofactor as an additional, important criterion for

establishing or enhancing GC, hence leads us to a spe-

cialized version of the third principle.

Principle 3: Reconfiguration of the metabolic

network rendering the product synthesis pathway

the superior ATP supply route is one major

principle for generating strong growth coupling or

enhancing the GCS.

A B

Fig. 10 Rank of target metabolites in the energy hierarchy of energy for wild-type and GC mutant strains. Comparison of the rank of GC target

products of the E. coli iAF1260 core model in the energy hierarchy of metabolites of GC mutants and the wild-type under anaerobic (a) and

aerobic (b) conditions. The hierarchy is based on the ATPcsc values
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Here again, this principle seems to contradict the find-

ings in Fig. 5 stating that the ATP demand does not

affect the identification of strain designs with increasing

GCS values. Principle 3, however, refers to the majority

of (s)GC strategies identified under standard conditions

for which lowering the ATPM demand a posteriori

weakens the GC strength of the respective mutants.

In any way, principle 3 can be intuitively inferred from

the observation that the ATP synthase is a frequent

knockout target in aerobic GC strategies and more

quantitatively be described with the rise of the target

metabolite in the energy hierarchy. This is supported by

the observation of Jensen & Michelsen [35] that an ATP

synthase deficient E. coli strain shifts the flux distribu-

tion towards substrate-level phosphorylation pathways,

i.e., glycolysis and TCA cycle, and the secretion of corre-

lated metabolites. We conclude that, for E. coli strains,

ATP synthase deletion forms a basis for GC under aer-

obic conditions whereas additional knockouts enforce

specificity of product secretion as can be derived from

the steadily increasing mean GCS with increasing gen-

etic interventions. Exceptions from this pattern are fer-

mentation products or products exported via proton

symporters, for which GC is induced by disrupting alter-

native NADH re-oxidizing or proton translocating

pathways.

Conclusion
The formulation of a mixed integer linear program

which maximizes the minimally guaranteed production

rate of a target metabolite at a medium, fixed growth

rate, realized in gcOpt, has been shown to yield attract-

ive strain designs with growth-coupled target produc-

tion. One advantage of the identified growth-coupling

(GC) strategies, at least of the investigated test cases, is

the existence of only one feasible target production rate

at maximal growth rather than a range of possible pro-

duction rates.

Generally, metabolic network reconfigurations that

render product secretion into a carbon drain necessary

for metabolic activity might be the more robust GC ap-

proach as it is independent of cofactor and proton

balancing that might vary under different growth condi-

tions. However, such a coupling might not be possible

for all metabolites. Our analysis revealed that coupling

product formation to cofactor supply or turnover not

only enhances the GCS of the former strategies but also

seems to be globally applicable to any metabolite. In

contrast to the more comprehendible and manually ap-

plied concept of coupling target metabolite production

to biomass precursor synthesis, metabolic designs that

are based on such cofactor balancing are hard to derive

manually. This is mainly due to the complex intercon-

nectedness of energy and redox cofactors within

metabolic networks. Accordingly, we argue that

computer-aided network analysis can accelerate the de-

velopment of strain designs strictly coupling production

to microbial growth by predicting effective GC strategies

with a reasonable number of gene deletions.

Methods

Formulation of gcOpt

gcOpt is geared to existing multi-level optimization

frameworks and their lower-level formulations optimiz-

ing an engineering objective by searching for appropriate

sets of reaction deletions [15, 16]. gcOpt maximizes the

minimally guaranteed production rate vt of a target com-

pound t for a fixed growth rate μfix. The corresponding

bi-level optimization problem is formulated as follows:

(5)

(6)

(7)

(8)

(9)

(10)

(11)

where y is a boolean vector indicating for each reac-

tion i ∈ R within the reversible metabolic model if i is in-

active (0) or active (1). With constraint (6), the size of

the reaction deletion set is limited to K interventions.

Note that the gcOpt formulation requires the splitting of

all reversible reaction of the original model into irrevers-

ible forward and backward reactions. This results in an

irreversible metabolic model containing N reactions with

strictly positive fluxes (Eq. 10). The flux value of each ir-

reversible reaction is contained in the vector v . Steady

state mass balances of intracellular metabolites are as-

sured by Eq. 8. Here, S ∈ℝ|M| × |N| is the stoichiometric

matrix where each non-zero value Sj, i denotes the stoi-

chiometric coefficient of metabolite j ∈ M participating

in reaction i ∈ N. Each flux vi is constrained by lower

and upper bounds vlbi and vubi , respectively, or set to zero

if yk indicates a knockout (Eq. 9). The connection be-

tween a reversible reaction k and one of its irreversible

counterparts i is kept in the mapping matrix B ∈ {0,

1}|N| × |R| by Bi, k = 1. Since the biomass reaction vbm is

fixed to μfix by Eq. 11, μfix needs to be lower than the

maximally achievable biomass formation rate vmax
bm .

Solving the nested mixed-integer optimization prob-

lem (Eq. 5-11) using linear programming solvers is in-

tractable [15]. By virtue of the linearity of the outer and

inner objective function as well as the posed equality

and inequality constraints, the bi-level optimization

problem (Eq. 5-11) can be recast to a single-level MILP
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by exploiting the strong duality theorem in linear pro-

gramming [36]. For gcOpt, the reformulation was done

as described by Tepper & Shlomi [16] but adapted to

the differently formulated objective functions.

In this work, core models of the central carbon metab-

olism introduced by Trinh et al. [4] and Orth et al. [37]

as well as the advanced metabolic model iJO1366 of E.

coli K-12 MG1655 [38] were used. To improve the tract-

ability of strain designs computations, the solution space

of the genome-scale model iJO1366 (1366 genes, 2251

reactions and 1136 metabolites) was reduced following a

preprocessing routine similar to a protocol of Feist et al.

(2010), which was integrated into the gcOpt framework.

More specifically, essential as well as exchange, diffusion,

transport and spontaneous reactions were excluded from

the set of possible target reactions for deletion. Further-

more, reactions contained in the subsystems cell enve-

lope biosynthesis, membrane lipid metabolism, murein

biosynthesis, tRNA charging and glycerophospholipid

metabolism were also not regarded as deletion targets.

In addition to reducing the solution space of the prob-

lem posed by gcOpt, the actual number of reactions

within the considered metabolic model was trimmed by

entirely removing all reactions unable to carry any flux.

These so called blocked reactions were identified by flux

variability analysis [39] by means of a maximum and

minimum flux equal to zero.

The gcOpt framework was implemented in MATLAB

2016b and is freely available on GitHub (https://github.

com/Spherotob/gcOpt). For solving the single-level

MILP derived from problem (1), the Gurobi Optimizer

(7.0.2, Gurobi Optimization, Inc.) was utilized. All com-

putations in this work were conducted on a Windows 7

machine with a maximum configuration of 16 GB of

RAM and an AMD FX-8350 Eight-Core (à 4.00 GHz)

processor.

Quantification of the growth-coupling strength

To quantify and compare the GC level or strength of mi-

crobial strain designs we sought for a distinct measure.

We required this measure to simultaneously (1) reflect

the actual coupling strength in terms of the position of

the lower production rate bound, (2) the yield at physio-

logically relevant growth conditions, as well as (3) the

qualitative coupling type. Hence, we defined GCS, a

novel measure for the growth coupling strength based

on the production envelope representation. As visualized

in Fig. 4, the ratio between the area IA below the lower

production rate bound and the total area TA under the

upper production rate hull curve in the production enve-

lope of a strain design is the core of the GCS and fulfills

requirement (1). This expresses the principle that the

flux modes with the lowest yields are sequentially made

inaccessible the stronger the coupling between growth

and product synthesis becomes. To account for point

(2), the minimally guaranteed target product yield at

maximal growth Y
μmax

min divided by the theoretical max-

imal yield Ymax is considered as a factor in the formula

for the GCS (Eq. 6.1-6.3). For strain designs with similar

GC levels according to an evaluation of the production

envelope areas, this factor promotes those that predicts

high yields at physiologically relevant growth rates. To

be able to directly distinguish the GC types sGC, hGC

and wGC as stated in requirement (3), the intersection

of the lower production rate boundary and the growth

axis was further integrated. Following this, the GCS is fi-

nally calculated as follows:

(12)

Here, v
μ¼0
p; min and μ

Y¼0
max are the minimal target produc-

tion rate at zero growth and the maximal growth rate at

zero production, respectively. GCS increases with in-

creasing GCS values and the three GC types are defined

by distinct GCS ranges. To allow for an immediate dis-

tinction of the GC types, GCS of hGC and wGC strat-

egies are normed by considering one and two as an

additional subtrahend in Eq. 12. Thus, a GCS between

−2 and − 1 denotes wGC, the interval [−1, 0] indicates

hGC and GCS > 0 implies sGC. Hence, the GCS param-

eter enables both a qualitative classification and a quan-

titative ranking of GC strain designs. In the data

evaluation process, strategies with GCS ≤ − 1.975 and be-

tween −0.975 and -1 were considered to confer no

coupling.

Probing the biomass precursor availability

To evaluate the capability of a metabolic network to

synthesize a particular biomass precursor the biomass

synthesis equation was singularized into separate, inde-

pendent reactions, i.e., for each single reactant M with

stoichiometric coefficient υm in the biomass equation a

new, unbounded reaction of the form υmM→was de-

fined. Similarly, for each product N and stoichiometric

coefficient υn a reaction → υnN was added to the model.

Likewise, if the consumption of a precursor was coupled

to the production of a certain compound, e.g. ATP and

ADP, both were linked in a mass-balanced reaction of

the form υmM→ υnN. The original biomass equation

was erased from the model. The availability of a biomass

precursor of this original equation was then tested by

setting up a linear program that maximized the related

singularized reaction subject to all mass balance, sub-

strate uptake and thermodynamic constraints of the
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original model. A maximal achievable flux of zero, im-

plies loss of the metabolic capacity to synthesize the re-

spective precursor and hence, this precursor is

inaccessible. For cases with positive maximal fluxes, the

synthesis of the precursor is not impaired.

ATP synthesis capability

The ATP synthesis capability (ATPsc) parameter was

created to deduce the influence of byproduct secretion

on the synthesis and provision of the cellular energy

equivalent. For a given metabolic network and produc-

tion rate of a target compound, the ATPsc describes the

change of the maximal flux through the reaction ATPM

in response to a change of the production rate of the tar-

get chemical. Mathematically, the ATPsc is defined by

the derivative dvATPM max/dvtarget exchange with vATPM max

being the maximal flux through the ATPM reaction

(Eq. 1) computed by linear programming and a meta-

bolic network constrained with a target product ex-

change rate fixed to values between zero and the

maximal flux. Graphically, ATPsc can be determined by

plotting the ATPM flux values against the product ex-

change rate and calculating the slope of the graph (Add-

itional file 3: Figure S4). Using the E. coli iJO1366

metabolic model, the ATPsc was calculated for a range

of metabolites of the central carbon metabolism for low

production rates. Thus, the resulting ATPsc values cor-

respond to the differences in maximal accessible excess

ATP between inactive and active metabolite secretion.

For each metabolite, the ATPsc was calculated for a

range of accessible growth rates. Additional file 3: Figure

S4 shows the results for anaerobic and aerobic condi-

tions. Here, mean ATPsc values were normalized by the

number of carbon atoms of the target compound

(termed ATPcsc).

Additional files

Additional file 1: GCS values for the identified GC strategies of all

metabolites of the central carbon metabolism under anaerobic

conditions. GC strategies with different numbers of maximally allowable

reaction deletions were computed using gcOpt with the E. coli iAF1260

core model. GCS values are additionally provided for an unconstrained

ATP/ADP and NADH/NAD conversion, an unhindered proton translocation

reaction, as well as combinations of these relaxations. The dataset includes

the respective reaction and gene deletions for each identified

strategy. (XLS 87 kb)

Additional file 2: GCS values for the identified GC strategies of all

metabolites of the central carbon metabolism under aerobic conditions.

GC strategies with different numbers of maximally allowable reaction

deletions were computed using gcOpt with the E. coli iAF1260 core

model. GCS values are additionally provided for an unconstrained ATP/

ADP and NADH/NAD conversion, an unhindered proton translocation

reaction, as well as combinations of these relaxations. The dataset

includes the respective reaction and gene deletions for each identified

strategy. (XLS 107 kb)

Additional file 3: Figure S1. Succinate production envelopes of strain

designs identified by gcOpt (A) and OptKnock (B) under aerobic

conditions. Figure S2. Lactate production envelopes of strain designs

identified by gcOpt (A) and OptKnock (B) under anaerobic conditions.

Figure S3. Ethanol yield spaces of GC strain designs identified by gcOpt

in comparison to designs taken from literature. Figure S4. Relation

between maximal ATP maintenance flux (ATPM) and the production rate

of several metabolites under anaerobe and aerobe conditions. Figure S5.

ATP synthesis capability values normalized by the number of carbon

atoms (ATPcsc) for several metabolites of the central carbon metabolism.

(DOCX 1805 kb)

Additional file 4: Table S1. Reaction deletions of GC strain designs

identified by gcOpt in comparison to designs taken from literature. Table

S2. Reaction deletions of GC strain designs identified by gcOpt and

OptKnock for the production of succinate under aerobic conditions.

Table S3. Reaction deletions of GC strain designs identified by gcOpt

and OptKnock for the production of lactate under anaerobic conditions.

Table S4. Effect of the relaxation of ATP/ADP and NADH/NAD+

conversion as well as the proton translocation on the GCS of the

identified GC strain designs for anaerobic conditions. Table S5. Effect of

the relaxation of ATP/ADP and NADH/NAD+ conversion as well as the

proton translocation on the GCS of the identified GC strain designs for

aerobic conditions. (DOCX 59 kb)
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