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Featured Application: The paper describes a low-complexity/efficient algorithm to determine the
short-term Autocorrelation, HNR, and NHR in sustained vowel audios, to be used in stand-alone
devices with low computational power. These parameters can be used as input features of a smart
medical decision support system for speech pathology diagnosis.

Abstract: The harmonic parameters Autocorrelation, Harmonic to Noise Ratio (HNR), and Noise to
Harmonic Ratio are related to vocal quality, providing alternative measures of the harmonic energy
of a speech signal. They will be used as input resources for an intelligent medical decision support
system for the diagnosis of speech pathology. An efficient algorithm is important when implementing
it on low-power devices. This article presents an algorithm that determines these parameters by
optimizing the window type and length. The method used comparatively analyzes the values of
the algorithm, with different combinations of window and size and a reference value. Hamming,
Hanning, and Blackman windows with lengths of 3, 6, 12, and 24 glottal cycles and various sampling
frequencies were investigated. As a result, we present an efficient algorithm that determines the
parameters using the Hanning window with a length of six glottal cycles. The mean difference of
Autocorrelation is less than 0.004, and that of HNR is less than 0.42 dB. In conclusion, this algorithm
allows extraction of the parameters close to the reference values. In Autocorrelation, there are no
significant effects of sampling frequency. However, it should be used cautiously for HNR with lower
sampling rates.

Keywords: voice disorder parameters; autocorrelation; harmonic to noise ratio; autocorrelation
algorithm; HNR algorithm; noise to harmonic ratio

1. Introduction

A disturbance in the voice has profound implications for a person’s social and profes-
sional life. In patients with progressive pathologies, it is essential to have access to a rapid
diagnosis to promote better treatment and prognosis [1].

Some tests can be performed to detect voice pathologies, such as laryngoscopy, en-
doscopy, or stroboscopic exams. However, they are more or less invasive tests, at least from
the patient’s point of view, and they cause discomfort [2].

Electroglottography (EGG) is a non-invasive technique that allows measuring the
vibration of the vocal folds during speech and singing [3]. It can provide important informa-
tion about the function of the vocal folds and phonation, as well as the durations of glottic
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closure and opening patterns [4]. It can be combined with other diagnostic techniques,
such as videostroboscopy, for a more comprehensive evaluation of the vocal folds [5]. This
technique is helpful in voice therapy, as it allows real-time feedback and assessment of the
patient’s progress with the treatment being performed [6]. However, this technique has
some limitations, such as sensitivity to skin conductance changes and difficulty obtaining
clear signals in some individuals [7]. This technique is not used in this work since it is
necessary to use an electroglottograph, which is not always available.

Acoustic analysis is a non-invasive technique that allows the determination of the
individual’s voice quality and allows a pre-diagnosis, avoiding several invasive tests. It
is a technique that can be used to diagnose and study vocal pathologies as it will enable
measuring the acoustic signal properties of recorded speech or sustained vowels [8–10].

Several acoustic parameters can be used in the evaluation and classification of vocal
pathologies, such as Peak Slope (PS), a ratio of the first harmonic to the second harmonic
energy (H1/H2), Normalized Amplitude Quotient (NAQ), Cepstral Peak Prominence
(CPP), Mel-Frequency Cepstral Coefficients (MFCCs), Autocorrelation, Harmonic to Noise
Ratio (HNR), and Noise to Harmonic Ratio (NHR) [11–13].

The parameters Autocorrelation, Harmonic to Noise Ratio, and Noise to Harmonic
Ratio are used by several authors as features to describe voice quality in assessment tools
for voice pathologies [14–19].

Concerning the pathological voices classification tools, several models have been used.
Kolhatkar et al., 2016 [14], used the k-Nearest Neighbors (k-NN) algorithm to identify and
classify pathological voices from normophonic voices. Ankışhan and İnam, 2021 [17], used
a Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) recurrent
neural network model in their internal structure to classify pathological and normophonic
voices. Guedes et al., 2019 [20], used LSTM and CNN to classify four voice disturbance
classes, dysphonia, chronic laryngitis, vocal cord paralysis, and normophonic voices. In
previous work, Oliveira et al., in 2020 [21] used several parameters, including Autocorrela-
tion, HNR, and NHR, and performed a statistical analysis using the boxplot tool to compare
several pathologies. The authors have identified three clusters of pathologies. Guedes et al.,
2018 [22], intended to classify chronic laryngitis and normophonic subjects. They used
LSTM and Feedforward Artificial Neural Network (ANN) classifiers and Autocorrelation,
relative jitter, and relative shimmer input parameters. In this binary classification, an
accuracy of 99% was achieved. In Teixeira et al., 2018 [23], several combinations of input
features were experimented with, including HNR, using a Support Vector Machine (SVM)
classifier to classify between pathological (a set of three pathologies) and normophonic
voices. The author’s best accuracy was 71%.

Several authors have developed pathological voice identification systems, that al-
low the identification of some pathologies using different parameters. However, there
are no devices that make the diagnosis automatically, or that allow the identification of
pathologies automatically.

This manuscript contributes with an efficient algorithm for determination of autocorre-
lation, HNR, and NHR in order to develop devices using efficient algorithms to support the
diagnosis of pathologies. Concerning the determination of harmonic parameters for voice
analysis purposes, Bielamowicz et al. in 1996 [24], compared fundamental frequency (f o),
jitter, shimmer and harmonics—or signal-to-noise ratio (HNR) measures made by commer-
cially available acoustical analysis programs (CSpeech—Computer software working on
DOS—Wisconsin, DC, USA, Computerized Speech Laboratory—PENTAX Medical—Hoya,
Japan, SoundScope—Microsoft, and hand marking)—using a set of dysphonic voices. Mea-
surements of HNR were demonstrated to receive a poor rank-order correlation between
programs. Correlations between 0.4 and 0.6 resulted from the two-by-two comparison
of the referred programs. The average HNR Hand marked with 21.31 dB received an
average HNR of 8.58, 14.34, and 18.48 dB. This result showed very low consistency between
commercial systems software to determine HNR.
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In signal processing, the Autocorrelation of a discrete time signal (or a time series)
is the correlation of the signal with a lagged copy of itself as a function of the lag. The
autocorrelation has maxima at lags equal to multiples of the fundamental period (T0 = 1/f o).
The value considered in this work for the Autocorrelation parameter, in the context of
speech signals, is the amplitude of the first peak after zero delays. Since the algorithm
will be applied to quasi-periodic signals (voiced speech produced during the utterance
of a vowel), this peak corresponds to the period of the quasi-periodic signal. It provides
the identification of similar speech waveforms repeated throughout the signal. For the
normalized Autocorrelation, this parameter can vary between 0 and 1, for white noise
signals and periodic signals (harmonic component only), respectively. The Autocorrelation
is very close to 1 (higher than 0.990) for normophonic voices and lower for dysphonic
voices because normophonic voices uttering a vowel signal have mainly harmonic com-
ponents (periodic) and very low noisy components (aperiodic). In contrast, dysphonic
voices (depending on the pathology) tend to have lower harmonic components and higher
aperiodic or noisy components.

The HNR is a parameter in which the relationship between the harmonic and noisy
components of a voiced speech segment indicates the general voice quality of the speech
signal. The cyclic opening and closing of the vocal folds produce the harmonic components.
The higher the HNR of a voiced signal, the higher the harmonic components, denoting
normophonic behavior. It is common to find an HNR of over 20 dB in normophonic voices.
There is no threshold value between normophonic and pathological voices, but there is
a tendency for normophonic voices to have higher values and lower variance for HNR
for the vowel /a/ [25,26]. However, for vowel /u/, there is no statistical significance for
different HNR between control and dysphonic voices, as shown in Figure 1 (right-hand
side). As can be seen in Figure 1 (left-hand side), Teixeira and Fernandes [25] showed
statistically significant higher values of HNR for the higher tone (higher f o) of the /a/
vowel than for normal and lower tones (lower f o). The same authors showed (Figure 1)
statistically significant higher values of HNR for the vowel /u/ than for the vowel /a/. This
difference evidences the dependency of the HNR on the sound and its structure concerning
the frequency and energy of its formants.
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Figure 1. HNR along tones (h—high, l—low, n—neutral) for vowel /a/ (left-hand side), and along
vowels (/a/, /i/, /u/) for neutral tone (right-hand side) for dysphonic and control voices. Groups
are FD—Functional Dysphonia, HD—Hyperfunctional Dysphonia, PD—Psychogenic Dysphonia,
D—Dysphonia and CG—Control Group. Bars represent the mean value ± standard deviation
(95% confidence interval). (Adapted and with the courtesy of [25]).
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In the literature, there are basically three methods for determining the HNR. These
methods are based on the time, spectral, and cepstral domains. All methods are applied to
a short-time signal window.

The algorithm proposed here is based on the time domain, and the results are com-
pared with another method based on the time domain, as is the case of Boersma’s algo-
rithm [27]. Boersma’s algorithm uses the second peak of the normalized Autocorrelation to
determine the HNR. The differences are detailed in Section 2.4.

Algorithms based on spectral components separate the signal spectrum into harmonic
and noise regions, considering peaks as the center of harmonic regions and valleys as noise
regions. Yegnanarayana and Darsinos, 1995 [28], is based on the iterative reconstruction of
the signal. Initially, using Linear Predictive (LP) analysis, speech is separated into approxi-
mate excitation and filter components. Next, noise frequency regions and deterministic
excitation components are identified using the cepstrum. Two excitation components are
reconstructed using an iterative algorithm. Finally, the deterministic and stochastic compo-
nents of the excitation are obtained by combining the reconstructed data frames using an
overlay and addition procedure. These components are passed through the time-varying
all-pole filter to get the speech signal components. In this method, it is considered that
the spectral peaks correspond to the information of the harmonic component, and the
valleys correspond to the noise. Additionally, in 2009, Sousa [29] proposed a method where
initially the signal is segmented into frames, and then a sine wave is applied. The harmonic
component is estimated from the Odd Discrete Fourier Transform (ODFT) of the signal
by extracting each harmonic’s frequency, magnitude and phase. In the ODFT domain, the
parameters of the harmonic structure are easily measured and are not significantly affected
by noise. These parameters are used to synthesize the harmonic structure in the ODFT
domain. The harmonic component is subtracted from the complete signal, producing the
noise component estimate. Based on a comparison with other methods, the author men-
tioned that this algorithm is more suitable for high f o signals (female voices). Deliyski in
1993 [30], proposed an algorithm based on spectral components. However, this algorithm
seems to have some difficulties in determining the peaks and valleys, which sometimes
arise when there is a peak with a low amplitude followed by one with a high amplitude.

Algorithms based on cepstral analysis consider that the harmonic components are
represented by the rahmonic peaks (cepstrum peaks), and the noise components are con-
centrated in the low quefrencies. The segmentation of zones with harmonic or noise
components is based on short-pass or comb lifters, adequately dimensioned. These lifters
(filters in the cepstral domain) estimate the noise’s spectral baseline, which allows the
determination of the HNR value [31].

The NHR parameter quantifies the relationship between the aperiodic component
(noise) and the periodic component (harmonic part) [32]. This parameter is rarely used
because it is directly related to the Autocorrelation, as described below. NHR has very low
values for normophonic voices and can be slightly higher for some pathological voices.

The development of an algorithm that allows for determining these parameters is
presented. As a reference, version 6.0.33 Praat software’s output values for the same acoustic
signals are used for comparison. This software is generally used by the scientific community
and speech therapeutic professionals. It should be mentioned that the Praat algorithm has
a higher complexity level than the one proposed in this manuscript because it determines
several candidates for the peaks of the Autocorrelation [27]. The Praat algorithm is designed
to deal with any speech segment, while the proposed algorithm is intended to deal only
with voiced speech segments.

The focus for developing an alternative algorithm is to create low-complexity algo-
rithms independent of Praat, to be used in a support system for diagnosing vocal pathologies.

The present paper describes the low-complexity algorithm to determine the short-term
Autocorrelation, HNR, and NHR of sustained vowel audios, to be used in stand-alone
devices with low computational power. These parameters can be used as input features of
a smart medical decision support system for speech pathology diagnosis.
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The methodology compares the values determined by the algorithm with the values
taken as a reference defined by the general purpose Praat software. Different window
shapes and lengths were experimented with. In addition, the sensitivity of the algorithm
with sampling frequency was measured.

This article is organized as follows: Section 2 describes the pathologies and the
database used, the number of subjects for the study, and the foundations of the parameter
determination: Autocorrelation, HNR, and NHR. This section also describes the low-
complexity algorithm developed to determine the parameters. Section 3 presents the results
obtained with different windows and window lengths, the results with lower sampling
frequencies, and a preliminary discussion. Finally, Section 4 presents the discussion and
final conclusions.

2. Materials and Methods

This section presents the groups of voice disorders, the voice database used, and the
theoretical framework for the determination of Autocorrelation, HNR, and NHR.

The justification for this methodology is based on the need for an efficient algorithm
to use in hospital devices and for tracking vocal pathologies.

The automatic acquisition and analysis of speech signals in the diagnostic aid device
are performed using the platform under development [33]. It performs the acquisition and
pre-processing to identify the quality of the audio signal, followed by the application of the
algorithm here presented, and others for the determination of a set of parameters and to
suggest a diagnosis.

2.1. Voice Disorders

Lesions in the vocal folds alter the phonation process since the vibration patterns
during the opening and closing phases of the vocal folds are irregular [10]. For this
study, 3 groups were used, chronic laryngitis pathology, dysphonia, and vocal fold paraly-
sis pathology.

Chronic Laryngitis pathology corresponds to persistent inflammation of the laryngeal
mucosa, sometimes with many years of evolution, usually provoked by repeated acute
infections [34].

Dysphonia is a symptom with no defined associated pathology, expressed as a general
communication disorder with an unidentified origin that makes vocal production difficult,
with an impediment to voice production [35].

Vocal Folds Paralysis is a pathology that occurs when the laryngeal muscles cannot
perform their function. The paralysis can be in one of the vocal folds or both [10].

2.2. Database

In the development of this work, two databases were used: the Saarbrucken Voice
Database and the University of São Paulo (USP) database.

2.2.1. Saarbrucken Voice Database (SVD)

The speech files were extracted from the German Saarbrucken Voice Database (SVD),
available online by the Institute of Phonetics at the University of Saarland [36].

The database contains voice signals from over 2000 subjects with voice disorders as
well as normophonic voices (controls). Each subject has the recording of phonemes /a/,
/i/, and /u/ at the low, neutral/normal, and high tones, varying between tones, and the
German phrase. “Guten Morgen, wie geht es Ihnen?” (“Good morning, how are you?”).
The size of the sound files is between 1 and 3 s, recorded with 16 bits resolution, mono, and
a sampling frequency of 50 kHz.

In this analysis, 10 control subjects (5 male and 5 female) speech files were used,
and another 10 subjects (5 male and 5 female) with the 3 voice disorders were also used.
Patient subjects consisted of four subjects with chronic laryngitis, two male and two female;
four with dysphonia, of which two were males and the other two females; and two with
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paralysis of the vocal folds, one of each gender. According to de Oliveira et al., 2020 [13],
there is no statistically significant difference in Autocorrelation, HNR, and NHR between
the audios of subjects with chronic laryngitis, dysphonia, and paralysis of the vocal folds.

The control subjects were between 40 and 65 years of age, with a mean of 55 years and
a standard deviation of 8 years, and the patient subjects were between 16 and 77 years of
age, with a mean of 51 years and a standard deviation of 19 years. Only subjects with the
9 audio files without audible disturbances related to awful voice quality (unvoiced speech)
or technical issues were selected.

The set of extracted features (Autocorrelation, HNR, NHR, and others) using the
algorithm can be found at http://www.ipb.pt/~joaopt/produtos/CuredDatabase/base_d
e_dados_curada.xlsx, (last access on 18 September 2022).

2.2.2. USP Database

This database consists of 61 subjects, divided into 4 classes: normophonic (16); di-
agnosed with dysphonia of neurological origin (14); diagnosed with nodules (15); and
diagnosed with Reinke’s edema (16). The database contains subjects diagnosed with a
pathology. The diagnosis has been made through a laryngoscopy.

Signal acquisition was performed with a sampling frequency of 22,050 Hz in uniform
PCM and quantified with 16 bits per sample. Subjects produced the vowel /a/ with a
comfortable level of amplitude for 5 s [18].

2.3. Acoustic Signal Parameters

The parameters that the algorithm will extract will be described in the following
sections. A short-term analysis (according to the window length) will be used for the
parameters under analysis, although the terms Autocorrelation, HNR, and NHR are used
in this document.

2.3.1. Autocorrelation

The Autocorrelation provides a measure of the similarity of successive phonatory
periods repeated throughout the signal. The higher the Autocorrelation value, the greater
the periodicity of the signal.

The studies undertaken by Boersma were considered to determine this parameter [27].
The x(t) signal, already with the mean value removed, will be multiplied by a window

function w(t) to obtain a signal windowed xw(t) (Equation (1)).

xw(t) = x(t)·w(t) (1)

The window function, w(t), is symmetric, and is zero outside the time interval [0, T],
as shown in Figure 2 (upper right side). The Hamming, Hanning, and Blackman windows
have been used in this work.

The normalized Autocorrelation a(τ) of the selected segment of the signal is calculated
according to Equation (2). This signal is in the time domain (τ) and is symmetric to the
delay τ (Equation (2)) with −T< τ <T.

a(τ) = a(−τ) =

∫ T
0 xw(t)xw(t + τ) dt∫ T

0 xw2(t) dt
(2)

Finally, it is necessary to calculate the window function’s normalized Autocorrela-
tion aw(τ).

To estimate the Autocorrelation ax(τ) of the original signal segment, the normalized
Autocorrelation of the windowed signal segment a(τ) is divided by the normalized Auto-
correlation aw(τ) of the window used (Equation (3)).

ax(τ) =
a(τ)

aw(τ)
(3)

http://www.ipb.pt/~joaopt/produtos/CuredDatabase/base_de_dados_curada.xlsx
http://www.ipb.pt/~joaopt/produtos/CuredDatabase/base_de_dados_curada.xlsx
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The Autocorrelation value (A) will be assumed as the magnitude of the first peak with
delay τ > 0.003 s. This delay must correspond to the fundamental period T0. The value of
the Autocorrelation will be between 0 and 1. For perfectly periodic signals, Autocorrelation
will be 1. For voiced segments of normophonic voices, it tends to be very close to 1, and for
dysphonic voices, it tends to be slightly lower, as shown in Fernandes et al. in 2018 [37].
This is because the Autocorrelation is directly related to the voiced sound’s harmonic
component produced by the glottis.

2.3.2. Noise to Harmonic Ratio—NHR

The NHR parameter quantifies the relationship between the aperiodic component
(noise) and the periodic component (harmonic part).

According to the representation of the normalized Autocorrelation represented in
Figure 2, the signal S = 1, and the Harmonic component is the Autocorrelation value
H = A. NHR is the relationship between the noise (given by the difference between the
total signal—S, and the Harmonic component—H) and the Harmonic component. There-
fore, Equations (4) and (5) provide the NHR. This relationship is not the one used by
Boersma [32], where NHR = 1 − A. Equation (5) is close to 1 − A for A ≈ 1, which happens
for most signals corresponding to the normophonic sustained vowels.
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NHR =
N
H

=
S− H

H
(4)

For S = 1, and A = H,

NHR =
1− A

A
(5)

2.3.3. Harmonic to Noise Ratio—HNR

The HNR is a parameter in which the relationship between harmonic and noise
components provides an indication of the voiced components of the speech signal by
quantifying the relationship between the periodic and aperiodic components, expressed
in dB [38–40]. This measurement relates to the energy conveyed by the voiced signal
through the glottal impulses and the energy of the glottal noise fraction after being filtered
through the vocal tract. This noise arises from the turbulence generated when the airflow
passes through the glottis during phonation, occurring when, for example, the vocal folds
close inappropriately [37,38]. A signal’s overall HNR value varies because different vocal
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tract configurations give different amplitudes for harmonics. Various approaches can be
used to determine the HNR automatically. For instance, [41,42] used the cepstrum to
measure the harmonic and noise components, while [27,43] used the Autocorrelation in the
time domain.

Considering that a signal x(t) has additive harmonic and noise components, in the
frequency domain, it can be expressed as in Equation (6).

X(w) = H(w) + N(w) (6)

where X(w) corresponds to the speech signal, H(w) to the harmonic component, and N(w)
to the noise component in the frequency domain.

The HNR is a logarithmic measure of the energy ratio associated with the harmonic
and noise components. Through Equation (7), it is possible to integrate the spectral power
over the audible range of frequencies [44].

HNR = 10× log10

∫
w|H(w)|2∫
w|N(w)|2

(7)

The spectral power of the harmonic components, expressed by the nominator in
Equation (7), corresponds to the power of the harmonic components determined in the
Autocorrelation function (H). The spectral power of the noise, expressed by the denominator
in Equation (7), corresponds to the remaining power defined in the Autocorrelation function
as N.

The proposed method for the HNR determination is based on the Autocorrelation, as
described above, and previously used by Boersma in [27]. This method determines HNR
according to Equation (8).

HNR(db) = 10× log10
H
N

(8)

From the normalized Autocorrelation, and considering S = 1, and H = A (Autocorrela-
tion), according to Figure 2,

HNR (dB) = 10× log10
H

S−H = 10× log10
H

1−H

HNR (dB) = 10× log10
A

1−A

(9)

2.4. Efficient Algorithm for Autocorrelation, HNR, and NHR Determination

The purpose of developing this algorithm is to be implemented in a medical decision
support system to detect speech pathologies.

Teixeira and Gonçalves, 2016 [43], implemented an algorithm to determine the jitter,
shimmer, and the HNR. However, the authors claim the need to improve the HNR deter-
mination. In addition, Fernandes et al., in 2018 [37] had already explored the selection
of window shapes and length, but using the ax(τ) and without the division referred to
in Equation (3) in the algorithm. They selected longer windows lengths, but the error
was higher than with this new algorithm. This algorithm project is an attempt to reduce
the computational complexity and improve the quality of Autocorrelation, HNR, and
NHR measurement.

As mentioned in the description of the parameters, the determination of the Auto-
correlation is the base for the determination of the other parameters. Therefore, the main
concern here is the correct determination of the Autocorrelation. The Autocorrelation deter-
mination is sensitive to the type of window and its length. Therefore, several combinations
were tested.

The method used for the window length selection considers multiples lengths of
glottal periods. The glottal period is the inverse of the fundamental frequency f o. The f o is
determined using the Autocorrelation method with a frame window length of 100 ms and
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considering a minimum f o of 50 Hz. The initial f o is determined with a frame window from
the middle of the speech record, and then it is updated for each new frame of the analysis.

Then, the normalized Autocorrelation of the Hanning window with a length of 6 glottal
cycles is determined.

Segmenting the signal into frames, which have a length of 6 glottal cycles, is necessary.
Each frame is multiplied by a Hanning window of the same size, and the normalized
Autocorrelation of the frame is determined. Then it is divided by the normalized Auto-
correlation of the window. At that time, it is necessary to find the first maximum peak in
half of the segment between 0.002 and 0.03 s. These values assume that f o is between 33
and 500 Hz. The Autocorrelation is considered to be the magnitude of this peak. Finally,
the HNR is calculated for each peak using Equation (9). According to the results in the
following section, the next frame is assumed without overlapping. After determining these
values for all frames, the Autocorrelation and the HNR are averaged. Through Figure 3, it
is possible to observe the flowchart of the developed algorithm.
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Figure 3. Flowchart of the algorithm to determine Autocorrelation, HNR, and NHR.

Some advantages of this algorithm over other time domain algorithms for HNR
determination are as follows:

• It allows the determination of Autocorrelation, HNR and NHR at once with the same
window and window length. The best window and window length are presented in
the following sections.

• Determining the Autocorrelation’s first peak is more straightforward (less complex
and more efficient) than other algorithms, such as Boersman’s [27].

• No overlapping is used because the results are the same for sustained vowels.

For a complexity analysis of the proposed algorithm, a time and space analysis is
presented [45,46]. In this analysis, n is the length of all audio signals, and m is the length of
each segment (the length of the number of glottal cycles). Therefore, m can be considered
approximately constant for each audio file. Once there is no overlapping, the loop of
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Figure 3 will be repeated n/m times. Therefore, the time complexity of the loop is O(n). The
main operation in the loop is the peak determination, which is also O(n) for the whole audio.

The main loop of Figure 3 is the normalized Autocorrelation determination imple-
mented by operations in Equation (10), using the Wiener–Khintchine theorem [47,48].

A(τ) =
real

{
iDFT

(
|DFT(x)|2

)}
AHanning

(10)

where AHanning denotes the Autocorrelation of the Hanning window vector (determined
outside of the loop and stored in a vector), x is the segment signal with six glottal periods
length, DFT denotes the Discrete Fourier Transform (DFT), iDFT is the inverse DFT, and
real is the real part of the complex signal.

This implementation requires the determination of the DFT. It is efficiently determined
by the Cooley–Tukey Fast Fourier Transform (FFT) algorithm. For a given segment, the
time complexity of this algorithm to obtain the FFT a is O(m × log(m)), considering an
efficient implementation of the FFT transform, such as Cooley–Tukey, is used. For the
whole audio, the time complexity is O

( n
m m log m

)
= O(n log m). It is noticeable, however,

that m behaves as a constant value. Consequently, the time complexity for the whole audio
is O(n). The inverse FFT is determined based on the FFT algorithm and has the same
complexity. Regarding memory, the proposed algorithm allocates the audio and support
variables, whose size is considered constant, resulting in O(n) space complexity.

2.5. Methodology of the Analysis of Results

A comparative analysis is presented in the Section 3 for the HNR and Autocorrelation
values between the values obtained by the algorithm and Praat software to know the best
window length and the best window shape to use.

We also present an estimation of how HNR and Autocorrelation vary with the sam-
pling frequency.

The comparison was made using the 9 files with recorded speech for 10 control subjects
and 10 patient subjects, in a total of 180 measurements for each analysis. It was decided not
to use all the subjects in the database because, in several cases, there is at least one of the
9 sound files with poor acoustic quality. This lousy quality consists of having silent parts, or
the voice does not present voicing characteristics, and therefore does not contain harmonic
content. The measurement of the parameters in these cases results in meaningless values,
which are statistically considered outliers. Thus, it was decided to select 10 control and
10 pathological subjects, in which all recordings are without defects.

Hamming, Hanning, and Blackman windows were tested. For each window shape,
4 window lengths were used, corresponding to 3, 6, 12, and 24 glottal cycles. Using the
Autocorrelation method, the glottal cycle is pre-determined in the middle of the speech
signal record and adjusted in each cycle. These window lengths were based on the values
experimented with in [27], which used the same window lengths. Gonçalves 2015 [43]
tested 5, 10, 20, and 50 glottal cycles, and selected the 10 glottal cycles length.

The overlapping of windows was also tested. The Autocorrelation and HNR values
were similar to those that did not have a window overlap. Therefore, to reduce the
computational weight of the algorithm, it was decided to use the algorithm with zero
overlapping over windows. This option is acceptable because the signals used are mainly
stationary. For non-stationary signals, the use of overlapping should be considered. In this
case (zero overlapping), the number of frame windows is proportional to the signal length.
Otherwise, it depends on the degree of overlap.

Concerning the Praat software used as the reference, the default parameters were
used [49], namely:

• Time step over windows of 10 ms (overlapping). This value corresponds to the interval
between successive frame values.
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• Minimum f o = 75 Hz. This value is used to limit the length of admissible fundamental
periods and the analysis window length.

• Silence threshold: standard value, 0.1. Frames that do not contain amplitudes above
this threshold (relative to the global maximum amplitude) are considered silent.

• Number of cycles per window: standard value, 4.5.
• Window used: Hanning.

Boersma (1993) [27] argues that 4.5 cycles of speech are best for speech HNR values up
to 37 dB because it is guaranteed to be detected reliably, and 6 cycles per window raise this
figure to more than 60 dB, but the algorithm becomes more sensitive to dynamic changes
in the signal.

3. Results

In order to understand how the algorithm behaves, an analysis was performed in
which a signal was generated and the HNR and Autocorrelation were measured, using the
reference software and the algorithm.

Another analysis was carried out using the USP database, where 10 pathological and
10 normophonic subject’s audio records were selected. For each subject, the vowel /a/ was
used. This analysis compares HNR and Autocorrelation values using the algorithm and
reference software.

3.1. Windows Type and Length Selection

For the 10 control subjects and the 10 pathological subjects, the Autocorrelation and
HNR were extracted using the developed algorithm for nine speech samples (three vow-
els × three tones) with the three windows (Hamming, Hanning, and Blackman) and, for
each window, four lengths (3, 6, 12, and 24 glottal periods). Praat software also determined
the Autocorrelation and HNR for the same speech samples. The difference in HNR and
Autocorrelation between the algorithm and Praat was determined for each speech sample.
Finally, the differences were averaged for all 90 patient samples (average over 90 values)
for each window and length.

Table 1 presents the mean of absolute differences and standard deviation for each
window/length. The goal is to find the window type and length similar to the Praat
reference values.

Table 1. Comparison of results from Praat and the proposed algorithm: HNR and Autocorrelation
average differences and standard deviation for each window and length.

Window
Window Length (No.

of Glottal Cycles)

Average of Absolute Differences

HNR (dB) Autocorrelation

Patients Control Patients Control

Hamming

3 2.47 (σ = 1.43) 3.60 (σ = 2.08) 0.005 (σ = 0.003) 0.001 (σ = 0.001)
6 0.42 (σ = 0.29) 0.50 (σ = 0.31) 0.004(σ = 0.005) 0.001(σ = 0.001)

12 1.69 (σ = 0.54) 2.23 (σ = 0.60) 0.007 (σ = 0.006) 0.004 (σ = 0.003)
24 3.10 (σ = 0.76) 3.88 (σ = 0.97) 0.018 (σ = 0.015) 0.009 (σ = 0.007)

Hanning

3 3.33 (σ = 1.81) 4.95 (σ = 2.61) 0.006 (σ = 0.004) 0.002 (σ = 0.001)
6 0.26 (σ = 0.29) 0.42 (σ = 0.23) 0.004(σ = 0.005) 0.001(σ = 0.001)

12 1.59 (σ = 0.50) 2.07 (σ = 0.53) 0.007 (σ = 0.006) 0.003 (σ = 0.002)
24 2.94 (σ = 0.74) 3.68 (σ = 0.94) 0.017 (σ = 0.0014) 0.009 (σ = 0.007)

Blackman

3 8.61 (σ = 1.71) 11.56 (σ = 2.52) 0.013 (σ = 0.006) 0.009 (σ = 0.006)
6 0.37 (σ = 0.20) 0.40 (σ = 0.23) 0.004(σ = 0.004) 0.001(σ = 0.000)

12 1.21 (σ = 0.52) 1.66 (σ = 0.43) 0.006 (σ = 0.005) 0.002 (σ = 0.002)
24 2.56 (σ = 0.71) 3.21 (σ = 0.88) 0.015 (σ = 0.013) 0.007 (σ = 0.005)

From Table 1, it can be observed that for the HNR for the patients, the smallest
difference (in bold) occurs with a Hanning window with six cycles (0.26 dB). The smallest
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difference for the control subjects is obtained with the Hanning and Blackman windows
with six glottal cycles (0.42 and 0.40 dB). Since only one of the windows can be chosen, the
Hanning window is the best one, considering controls and patient subjects.

For the Autocorrelation, the best results are obtained with the three windows types
for six glottal cycles (in bold). The smallest difference is 0.001 for the control group and
0.004 for the pathological group.

In conclusion, for the determination of the Autocorrelation using six glottal cycles
with one of the Hanning, Hamming, or Blackman windows gave the closest match to the
results obtained using the default settings in Praat.

3.1.1. HNR

The average absolute difference can hide some high discrepancies, so it follows an
individual comparison over the 180 measurements. For the algorithm, the window chosen
was that previously mentioned, Hanning, with a length of six glottal cycles.

Figure 4 shows the scatter plot of the 90 HNR measurements over 10 control subjects
(left-hand side) and 90 measurements for 10 pathological subjects (right-hand side). Each
subject has nine HNR measurements for three vowels, and each vowel has three tones.
These measurements were determined by the developed algorithm and by the reference
software (Praat).

From the previous figure, it is possible to observe that the results of the HNR of the
algorithm and reference are very similar since the individual HNR is very close.

Thus, it is concluded that the window more adequate for HNR should be Hanning
with a length of six glottal cycles. The Hanning window with six glottal periods length
is in accordance with previous works presented in Boersma, 1993 [27], and Teixeira and
Gonçalves, 2016 [43], using other algorithms.
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3.1.2. Autocorrelation

Similarly, as for HNR, an individual Autocorrelation analysis was made, considering
the values for each subject. The Hanning window with six glottal cycles was used.

In Figure 5, it is possible to observe the scatter plot of the 90 Autocorrelation measure-
ments over 10 control subjects (left-hand side), and 90 measurements for 10 pathological
subjects (right-hand side). Each subject has nine Autocorrelation measurements for three
vowels, and each vowel has three tones. These measurements were determined by the
developed algorithm and by the reference software (Praat).
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Figure 5. Comparison of Autocorrelation values for the 90 control measurements (left-hand side)
and 90 patient measurements (right-hand side).

Figure 5 shows that the results obtained by the algorithm and the reference for the
Autocorrelation are almost identical, with a large part of the values overlaid.

Thus, for the Autocorrelation, the window can be a Hanning, Hamming, or Blackman
window with a length of six glottal cycles.

3.1.3. NHR

The NHR parameter is determined as a function of Autocorrelation (1-A)/A. Therefore,
the analysis to compare the NHR values of the algorithm with Praat was not performed
because it was already completed for the Autocorrelation parameter. However, the sub-
jects’ analysis was performed to understand how the algorithm behaves compared to the
reference value.

For the NHR, the Hanning window with six glottal cycles was also used since it is the
value used for Autocorrelation.

Figure 6 shows the scatter plot of the 90 NHR measurements over 10 control subjects
(left-hand side), and 90 measurements for 10 pathological subjects (right-hand side). Each
subject has nine NHR measurements for three vowels, and each vowel has three tones.
These measurements were determined by the developed algorithm and by the reference
software (Praat).
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Through Figure 6, it is possible to observe that the results obtained by the algorithm
and the reference to the NHR are practically identical.

In conclusion, this algorithm obtains values very close to the reference values and can
be used to extract this parameter.

3.2. Sensitivity to the Sampling Frequency Variation

In order to test how the algorithm behaves in the determination of Autocorrelation
and HNR with the variation of the sampling frequency, the same sounds were decimated
(resampled) from the original 50 kHz to the sampling frequency of 25 kHz and 12.5 kHz.

The decimation process intends to reduce the original sampling frequency. An anti-
aliasing digital low-pass filter preceded the decimation process. The Chebyshev Type I of
order 8 was used.

For this analysis, the same method was used for the original signal with 50 kHz to
determine the best window and glottal period. However, in this case, only the Hanning
window with six glottal cycles was used since this window and length obtained the best
results for the two parameters previously.

Table 2 presents a similar analysis as previously, now only with the Hanning window
and six glottal cycles, but for 25 kHz and 12.5 kHz. The HNR and Autocorrelation values
obtained by the algorithm for these sampling frequencies were compared with the refer-
ence value for the signal with 50 kHz (original signal). The comparison also consists of
determining the average of the individual sample differences (90 samples for each group).

Table 2. HNR and Autocorrelation average differences as a function of sampling frequency.

Sampling
Frequency (kHz)

Average Difference

HNR (dB) Autocorrelation

Patients Control Patients Control

25 0.58 (σ = 0.38) 1.16 (σ = 0.33) 0.006 (σ = 0.005) 0.001 (σ = 0.001)
12.5 2.03 (σ = 0.32) 3.45 (σ = 0.63) 0.006 (σ = 0.006) 0.004 (σ = 0.002)

The data in Table 2 show a slight increase in the HNR differences in the value measured
by the algorithm compared to the values obtained with the sampling frequency of 50 kHz.
This increase is more accentuated for Fs of 12.5 kHz. For the Autocorrelation, the results are
similar to those obtained with the sampling frequency of 50 kHz. There is an insignificant
variation in the patients and control subjects for 25 kHz and 12.5 kHz.

Then, the mean and standard deviation of all HNR values determined by the algorithm
and the reference software for the three values of sampling frequency were compared.

Table 3 shows the average HNR considering all control subjects and patients, for the
nine audio samples per subject (180 samples in total), with the Hanning window and
six glottal cycles in the algorithm.

Table 3. HNR and Autocorrelation as a function of the sampling frequency.

Sampling Frequency (kHz)
HNR (dB) Autocorrelation

Algorithm Reference Algorithm Reference

50 23.89
(σ = 2.56)

24.02
(σ = 2.32) 0.981 (σ = 0.009) 0.984 (σ = 0.007)

25 22.98
(σ = 2.59)

23.85
(σ = 2.49) 0.980 (σ = 0.010) 0.984 (σ = 0.007)

12.5 21.85
(σ = 2.55)

24.59
(σ = 2.33) 0.980 (σ = 0.010) 0.984 (σ = 0.007)

Through the analysis of Table 3, it is possible to observe that the HNR for the values of
the algorithm varies with the sampling frequency and has a maximum variation of 2.04 dB.
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The Autocorrelation has a slight variation since the difference along Fs is 0.001 for the
algorithm and 0.004 comparing the algorithm with the reference value.

Therefore, it can be concluded that the sampling frequency does not influence the
Autocorrelation value in the algorithm.

3.2.1. HNR

Since the values of the algorithm for the HNR vary somewhat with the sampling
frequency, a comparative analysis was made between the three sampling frequencies for
the 90 control and patient acoustic records. In Figure 7, it is possible to observe the scatter
plot for 25 and 12.5 kHz of the 90 HNR measurements over 10 control subjects (left-hand
side), and 90 measurements for 10 pathological subjects (right-hand side). Each subject has
nine HNR measurements for three vowels, and each vowel has three tones.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 22 
 

 

Figure 7. Comparative analysis of the HNR with 25 and 12.5 kHz over 50 kHz sampling frequency. 

From Figure 7, it is possible to observe some variations in the measurement of HNR. 

The variations occur mainly in the measurement with Fs of 12.5 kHz in both control and 

pathological subjects.  

Since this variation exists as a function of the sampling frequency, a second analysis 

was performed to ensure that the algorithm could be used to extract the HNR for the dis-

tinction between pathological and normophonic subjects. Therefore, the average of all 20 

subjects (90 sounds for control and 90 for patients) as a function of the sampling frequency 

is presented in Table 4. 

Table 4. HNR as a function of the Sampling Frequency for the control and patient groups. 

Sampling Frequency (kHz) Patients (dB) Control (dB) 

50 21.91 (σ = 2.49) 25.60(σ = 2.63) 

25 21.41 (σ = 2.58) 24.55(σ = 2.60) 

12.5 20.72 (σ = 2.49) 22.98(σ = 2.61) 

Table 4 shows that even though there is a variation of HNR with the sampling fre-

quency, there still is a difference in the average HNR between the pathological and control 

groups. This critical difference is higher at 50 kHz. 

It is concluded that this algorithm can be used cautiously to determine HNR param-

eters with lower sampling frequency. When the sampling frequency is lowered, the 

Nyquist frequency of the signal is reduced, losing noise components, which can influence 

this measure. The minor difference between pathological and control subjects is 2.26 dB, 

which is indicative of the relevance of the HNR to distinguishing normophonic from 

pathological speech. 

3.2.2. Autocorrelation 

Although the values for the Autocorrelation did not vary with the sampling fre-

quency, a comparative analysis was made between the three sampling frequencies for the 

90 control and pathological audios. In Figure 8, it is possible to observe the scatter plot for 

25 and 12.5 kHz of the 90 Autocorrelation measurements over 10 control subjects (left-

hand side), and 90 measurements for 10 pathological subjects (right-hand side). Each sub-

ject has nine Autocorrelation measurements for three vowels, and each vowel has three 

tones. 
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From Figure 7, it is possible to observe some variations in the measurement of HNR.
The variations occur mainly in the measurement with Fs of 12.5 kHz in both control and
pathological subjects.

Since this variation exists as a function of the sampling frequency, a second analysis
was performed to ensure that the algorithm could be used to extract the HNR for the
distinction between pathological and normophonic subjects. Therefore, the average of
all 20 subjects (90 sounds for control and 90 for patients) as a function of the sampling
frequency is presented in Table 4.

Table 4. HNR as a function of the Sampling Frequency for the control and patient groups.

Sampling Frequency (kHz) Patients (dB) Control (dB)

50 21.91 (σ = 2.49) 25.60 (σ = 2.63)
25 21.41 (σ = 2.58) 24.55 (σ = 2.60)

12.5 20.72 (σ = 2.49) 22.98 (σ = 2.61)

Table 4 shows that even though there is a variation of HNR with the sampling fre-
quency, there still is a difference in the average HNR between the pathological and control
groups. This critical difference is higher at 50 kHz.

It is concluded that this algorithm can be used cautiously to determine HNR pa-
rameters with lower sampling frequency. When the sampling frequency is lowered, the
Nyquist frequency of the signal is reduced, losing noise components, which can influence
this measure. The minor difference between pathological and control subjects is 2.26 dB,
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which is indicative of the relevance of the HNR to distinguishing normophonic from
pathological speech.

3.2.2. Autocorrelation

Although the values for the Autocorrelation did not vary with the sampling frequency,
a comparative analysis was made between the three sampling frequencies for the 90 control
and pathological audios. In Figure 8, it is possible to observe the scatter plot for 25 and
12.5 kHz of the 90 Autocorrelation measurements over 10 control subjects (left-hand side),
and 90 measurements for 10 pathological subjects (right-hand side). Each subject has nine
Autocorrelation measurements for three vowels, and each vowel has three tones.
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From Figure 8, it is possible to observe that the Autocorrelation is just slightly influ-
enced by the frequency variation, as previously confirmed.

3.3. Additional Measures

Through the analyses carried out previously, it was possible to perceive that the values
obtained with the algorithm and with the reference software are very similar. However,
two more analyses were carried out to guarantee that the values were reliable. Using
a generated signal, the first analysis compares algorithm reference software HNR and
Autocorrelation measurements. The second analysis compares the algorithm values with
the reference software using audio files from the USP database.

3.3.1. Generated Signal

A pure sinusoidal wave was generated with a frequency of 250 Hz, sampling frequency
of 44,100 Hz, and an amplitude of 10. White noise with an amplitude of 1 was added.

Table 5 shows that the values obtained by the reference software and by the algorithm
are identical.

Table 5. Autocorrelation and HNR values on a generated signal.

Reference Algorithm

HNR 21.79 21.78
Autocorrelation 0.993 0.993
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3.3.2. USP Database Comparison

Additional comparative analysis was made on HNR and Autocorrelation measure-
ments between the algorithm and the reference software. Table 6 presents the comparison.
The last line shows the mean absolute difference and standard deviation.

Table 6. Comparison of the values obtained by the algorithm with the reference software, for the
parameters HNR and Autocorrelation, for the USP database.

Samples

HNR Autocorrelation

Patients Control Patients Control

Ref. Alg. Ref. Alg. Ref. Alg. Ref. Alg.

1 32.86 30.75 15.03 13.64 0.998 0.998 0.942 0.935
2 18.95 17.24 19.76 18.88 0.982 0.976 0.987 0.985
3 19.14 18.40 20.04 19.10 0.985 0.983 0.989 0.986
4 19.52 19.05 22.70 20.52 0.984 0.983 0.991 0.989
5 24.50 23.06 25.21 22.24 0.994 0.993 0.995 0.992
6 24.56 23.21 22.25 21.29 0.995 0.993 0.990 0.989
7 18.34 17.17 18.44 16.23 0.983 0.979 0.977 0.972
8 19.16 18.61 21.15 19.58 0.986 0.984 0.989 0.987
9 14.78 14.68 23.03 20.04 0.955 0.953 0.992 0.987

10 19.48 18.86 23.04 21.13 0.987 0.985 0.994 0.990
Mean Abs. Difference 1.03 (σ = 0.53) 1.80 (σ = 0.66) 0.002 (σ = 0.001) 0.003 (σ = 0.002)

Looking at Table 6, it is possible to notice that the mean absolute difference for the
HNR is slightly higher than that observed in Table 1. However, as observed in Table 2,
lower sampling frequency leads to a slight increase in the HNR differences.

For Autocorrelation, the results are similar to those obtained in Tables 1 and 2.

4. Discussion

Autocorrelation, HNR, and NHR were analyzed to understand if this efficient algo-
rithm obtains values close to the reference values for control and pathological voices. The
availability of an efficient algorithm allows the depuration of support diagnosis systems
into hardware devices with lower computational power.

Concerning the complexity of the proposed algorithm, it has a linear complexity be-
havior both in time and space. Boerma’s algorithm [27] seems to have the same complexity
level, but the proposed algorithm can be faster because of no overlapping requirement.
Additionally, and according to the description of the Praat algorithm [27], it considers
several peak candidates in the normalized Autocorrelation and takes the candidate in the
voiced speech part with the highest value of the local strength, determined according to
the rules defined (requiring additional calculus). In opposition, the method used in this
algorithm straightly considers the peak as the highest value of the normalized Autocorrela-
tion between 0.002 and 0.030 s (33 < f o < 500 Hz). This difference between the algorithms is
acceptable because the Praat algorithm is adequate to be used with voiced and unvoiced
parts of speech; meanwhile, the proposed algorithm is supposed to be used only with
voiced speech parts of the signal.

Sousa, in 2009 [29], compared the measure of HNR in synthesized and pathologic
human voices using time-, spectral-, and cepstral-based methods. The mean absolute
errors for synthesized voices were 0.11, 0.52, and 0.61 dB for time- (using Boersma’s
algorithm [27]), spectral-, and cepstral-based algorithms using 100 Hz f o voices, respectively.
For human pathologic voices, the HNR difference measured by the three methods was
up to 1.93 dB for male voices and 3.68 dB for female voices. The author mentions a lower
variation in time domain algorithms for different voices. The efficient algorithm presented
in this manuscript has an average absolute difference of HNR of 0.26 (σ = 0.29) dB for
pathological voices and 0.42 (σ = 0.23) dB for normophonic voices, compared to the same
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Boersma’s algorithm. The efficient algorithm presents results consistent with the best
results in the literature.

The differences in the efficient algorithm are also insignificant compared to the dif-
ferences presented in [24], where the average HNR Hand marked with 21.31 dB received
average HNR from commercial systems with a difference between 3 and 10 dB. Compared
to this efficient algorithm, this difference shows a much higher inconsistency between
commercial systems software to determine HNR.

This algorithm is being used to develop a diagnostic support device in a hospital
environment. In the future, it could also be used on a mobile device or mobile app for
tracking purposes. The use of low-power devices in the field presents issues such as the
background noise and speaker voice level that may not be well controlled. It is assumed
that voice Sound Pressure Level (SPL) would be monitored because the measurement of
voice perturbation features, including Autocorrelation, HNR, and NHR, are highly affected
by SPL and f o [50].

5. Conclusions

In this work, the SVD database was used, since it presents voice signals of sustained
vowels and speech signals of a sentence, which are the required conditions for the type of
analysis intended.

An algorithm was developed to determine the HNR, the Autocorrelation, and the
NHR. The algorithm uses an integer number of glottal periods to determine the frame to
be analyzed, so it was necessary to compare the algorithm values and the reference values.
The selection of windows and their length were optimized.

One of the analyses was to search for the best window contour and length so that the
value of the parameters was as close as possible to the reference value.

For the HNR parameter, the patient subjects’ samples obtained the lower difference
using a Hanning window with six glottal cycles, and for normophonic voices, the Hanning
or Blackman window, both with six glottal cycles.

In the comparative analysis between subjects, it is possible to perceive that the values
of HNR of the algorithm and reference software are pretty close.

Therefore, considering both groups of subjects, a Hanning window with six glottal
cycles was selected.

For the Autocorrelation, the objective is also to know the best window and length
to obtain, through the algorithm, the value for this parameter as close as possible to the
reference value.

Thus, through the analysis made for the Autocorrelation, the three windows (Ham-
ming, Hanning, and Blackman) with six glottal cycles obtain the lower difference.

However, the Hanning window with six glottal cycles will be considered because, as
seen in the flowchart of Figure 3, it allows the processing of Autocorrelation and HNR
simultaneously, reducing the computational load.

In the comparative analysis between subjects, it is possible to observe that the results
obtained by the algorithm and the reference for Autocorrelation are practically identical for
patient and control subjects.

The window and its length were not analyzed extensively for the NHR since it was
completed for Autocorrelation, thus justifying the choice of window and length.

However, the comparative analysis of NHR between subjects was performed, and the
results obtained by the algorithm and the reference are practically identical for both cases
(patients and control).

A further analysis was made to see if the variation of the sampling frequency influences
the Autocorrelation and HNR values. The decimation was made for the same speech
samples to have signals with a sampling frequency of 12.5 kHz and 25 kHz.

For HNR, the values of the algorithm vary with the sampling frequency and have a
maximum variation of 2.04 dB. Further analysis showed that the variations occur mainly in
the measurements with a sampling frequency of 12.5 kHz for all vowels and tones.
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For the Autocorrelation, the variation of the sampling frequency is insignificant since
the Autocorrelation difference is 0.001 and 0.004, comparing the algorithm values with the
reference values. Therefore, the sampling frequency does not significantly influence the
Autocorrelation value.

In the analysis of the HNR and the Autocorrelation measurements on the generated
signal, it was noticed that the algorithm and the reference software measured the same.

A comparative analysis with the USP database was made. The same mean absolute
difference level was noticed on Autocorrelation measurements, and a slight increase on
HNR mean absolute difference.

As a final consideration, the proposed efficient algorithm allows the determination of
the short-term Autocorrelation, HNR, and NHR using a Hanning window with six glottal
periods length without overlapping with results very close to the ones presented by Praat
software. The algorithm gives similar measurements at 50 kHz sampling frequency and
25 kHz. The average absolute difference is lower than 0.004 for the Autocorrelation and
0.42 dB for HNR. Future research on the issue is to use the algorithm in a smart support
system for vocal analysis, which is already under development.
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