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A novel method to determine the total hydrogen density and, accordingly, a precise plasma temperature

in a lowly ionized hydrogen plasma is described. The key to the method is to analyze the energy loss of

swift heavy ions interacting with the respective bound and free electrons of the plasma. A slowly

developing and lowly ionized hydrogen theta-pinch plasma is prepared. A Boltzmann plot of the hydrogen

Balmer series and the Stark broadening of the Hβ line preliminarily defines the plasma with a free electron

density of ð1.9� 0.1Þ × 1016 cm−3 and a free electron temperature of 0.8–1.3 eV. The temperature

uncertainty results in a wide hydrogen density, ranging from 2.3 × 1016 to 7.8 × 1018 cm−3. A 108 MHz

pulsed beam of 48Ca10þ with a velocity of 3.652 MeV=u is used as a probe to measure the total energy loss

of the beam ions. Subtracting the calculated energy loss due to free electrons, the energy loss due to bound

electrons is obtained, which linearly depends on the bound electron density. The total hydrogen density is

thus determined as ð1.9� 0.7Þ × 1017 cm−3, and the free electron temperature can be precisely derived as

1.01� 0.04 eV. This method should prove useful in many studies, e.g., inertial confinement fusion or

warm dense matter.

DOI: 10.1103/PhysRevLett.119.204801

In general, the free electron density and the free electron

temperature are measured to describe a plasma. In practical

application, however, the total particle density which

governs, e.g., mean free path length or the state of matter,

is of significant importance as well. For instance, the total

particle density is a key factor for realizing metallic liquid

hydrogen [1] and a critical condition for realizing the

ignition of inertial confinement fusion [2–4], and, gener-

ally, the total particle density is used as a restricting

condition for the definition of warm dense matter (WDM).

Although the total particle density can, in principle, be

derived from the measured free electron density and

temperature, the computation often involves large error

margins due to the exponential dependence of the ioniza-

tion degree on the free electron temperature for a low-

ionization plasma. Hence, we propose a novel method to

extract directly the total particle density of a low-ionization

hydrogen plasma by measuring the energy loss of a swift

heavy ion beam interacting with the plasma column.

Beam-matter interactions are significant for many fields

of research, such as accelerator physics, fusion plasma

physics, high energy density physics, and astrophysics. The

interaction of swift particles with matter, hence, has been

extensively studied, resulting in early publications like the

Bethe formula [5], stopping power data tables [6], and

modern stopping power simulation programs like SRIM [7]

or GEANT4 [8]. Moreover, the energy loss and stripping of

heavy ions in a fully ionized (hydrogen) plasma have

already been intensively investigated [9–15]. Taking ad-

vantage of these well-known beam-matter interactions, the

total hydrogen density—and hence the ionization degree—

of a lowly ionized hydrogen theta-pinch plasma has been

measured during the cylindrical pinch phase. Furthermore,

a highly precise free electron temperature can thus be

derived in a self-consistent way.

In the experiments described here, a spherical theta pinch

has been used as a plasma device, as described in Refs. [16–

24]. The energy stored in a capacitor bank is transferred to

the target by a coil surrounding a 4 l glass vessel filled with

the working gas. Inside the glass vessel, the fast alternating

magnetic field induces a strong electric field to ignite a

discharge. The discharge then acts as a secondary winding

to the primary copper coil, leading to a stable pinch

compression along the discharge axis. In experiments
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described here, the total capacitance is summed as 37.5 μF,

and the operation voltage is set at 14 kV. Before igniting the

discharge, the initial pressure of the hydrogen gas inside the

glass vessel is stabilized at 20 Pa. Discharging the device,

the hydrogen plasma first ignites near the wall of the glass

vessel at a certain time; then dragging neutral particles with

it, the hydrogen plasma moves inward to pinch; afterwards,

the plasma dissipates outwardly, and hence one cycle of

the dynamic movement of the plasma is completed. To

determine the target conditions during the pinching, most

of the diagnostics are carried out by spectroscopic methods.

Emitted light is transported to the spectrometer by a quartz

fiber optic cable. The 0.6 m spectrometer (Jobin-Yvon

HRP) is equipped with an 1800 l/mm grating and blazed at

250 nm. The spectra are recorded by an intensified and

gated camera (Dicam Pro). By measuring the width of

weak, nonbroadened impurity lines, an instrument reso-

lution of 0.09 nm in full width at half maximum (FWHM)

is determined. The spectra shown here are recorded at a

fixed delay time ΔT after triggering the device, and the

recording time is set at 1 μs. A relative spectrometer-

detector intensity response function is determined, using a

manufacturer-calibrated halogen-deuterium lamp combina-

tion (Heraeus Fiberlight).

In a first step, a preliminary electron temperature Te is

obtained by a Boltzmann plot of the hydrogen Balmer lines

Hβ−ϵ using the system-response corrected spectra inten-

sities. It should be noted that Hα has not been included in

the plot because of the spectrally visible and strong

centerline self-absorption. The Boltzmann plot results in

a free electron temperature of between 0.8 and 1.3 eV.

In order to obtain the corresponding free electron density

ne, the Stark-broadened Hβ line has been analyzed, using

tabulated FWHM values [25], as well as a peak-separation

method [26], as shown in Fig. 1. Applying the tabulated

value for a free electron temperature of 10 kK in the free

electron density range of 1016 cm−3 [25], the actual free

electron density is derived as 1.86 × 1016 cm−3 from a

measured FWHM of 1.47 nm in Fig. 1. However, because

of a possible partial self-absorption of Hβ, the obtained ne
value might not be reliable without further information.

Here, thus, a newly described method to determine ne has
been used: To avoid analyzing a possibly modified width

of the Hβ line, the peak separation within the line profile

is used, as described in Ref. [26]. The peak separation in

Fig. 1 ismeasured as 0.57 nm, and the free electron density is

hence determined as ð1.9� 0.1Þ × 1016 cm−3. It should be

noted that the obtained density by the FWHM agrees

fairly well with that by the two-peak separation method

for the Hβ line. Hence, the self-absorption of Hβ for our

plasma is negligible, and the free electron density is taken as

ð1.9� 0.1Þ × 1016 cm−3 for further calculations.

Applying the measured free electron temperature of 0.8–

1.3 eV and free electron density of ð1.9�0.1Þ×1016 cm−3,

the total hydrogen density n0 is obtained from a FLYCHK

simulation [27,28], ranging between 2.3 × 1016 and

7.8 × 1018 cm−3. It should be emphasized that the moder-

ate 20%–30% uncertainty of Te results in an uncertainty of

more than 2 orders of magnitude for the total hydrogen

number density n0 due to the strong exponential depend-

ence of the ionization degree on Te.

Based on both the measured temperature and the

estimated total hydrogen density, employing the dissocia-

tion equations in Ref. [29] and the simulation results shown

in Ref. [30], one can conclude that the hydrogen molecules

in the target are completely dissociated. Hence, the plasma

target is composed of free electrons e, hydrogen ions H1þ,

and monatomic hydrogen atoms H0þ.

To derive a precise value of the total hydrogen density in

the plasma, beam-plasma interaction experiments are per-

formed, and the energy loss as well as the charge-state

distribution of the swift heavy ions is measured. For the

experiments described here, the nuclear stopping is neg-

ligible compared to the electronic stopping. Hence, the

energy loss is directly proportional only to the total electron

density ntotale (equaling the total hydrogen density n0), with

ntotale being the sum of the free electron density ne and the

bound electron density nbe.
For interacting with the theta-pinch plasma, a pulsed

48Ca10þ beam with a velocity of 3.652 MeV=u and a

108 MHz repetition rate is provided by the GSI

UNILAC accelerator. A fast diamond detector, installed

at a distance of 6.0 m after the plasma column center, is

used to register the beam pulse signal. The measurement of

the total energy loss is carried out by means of the

differential time of flight (TOF) method. The 108 MHz

clock of the accelerator is used as the reference signal.

The phase difference between the 108 MHz clock and

the vacuum-TOF reference signal, originating from the ion

beam pulses traveling through the evacuated theta-pinch

setup, is measured and noted as t1. Analogously, the (time

dependent) phase difference between the 108 MHz clock

FIG. 1. The measured Hβ spectrum and a two-peak Lorenz

fitting is shown. The measured peak separation of 0.57 nm results

in a free electron density of ð1.9� 0.1Þ × 1016 cm−3 by using the

two-peak separation method [26].
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and the beam pulse signal from the diamond detector

during the ion-plasma interaction is measured as t2, which
depends on the time after triggering the theta-pinch device

ΔT. The time difference Δt ¼ t2 − t1 gives the extra flight
time due to the energy loss of the beam ions interacting

with the plasma. In the experiments described here, ΔT is

tuned such that the plasma is in its intense pinch condition,

as mentioned above.

In order to precisely determine the time difference Δt,
the noisy analog signals have been fitted properly. The

108 MHz clock is fitted by a sine function. Regarding the

diamond detector signal, it contains the Gaussian profile of

the beam and a two-stage response of the detector. Hence, a

convolution of a Gaussian function and a two-stage

response function is used to fit the recorded beam signal.

Figure 2 shows both reference signals and beam signals for

the vacuum condition and the plasma condition. The

minimum peak value of the sine function for respective

reference signals is set as the time zero. Consequently, the

corresponding beam signals, being displayed in the same

plot, own the same clock. Taking the deconvoluted mass

center to represent the whole pulsed beam, the arriving time

for the vacuum condition t1 is obtained as 3.506 ns, while t2
for the plasma condition is obtained as 4.060 ns. It should

be noted here that the peak of the measured signal shifts

towards a longer time with respect to the beam mass center

because of the relatively slow decay response of the

detector. Hence, the extra flight time due to plasma Δt
is calculated as 0.554 ns. For experiments described here,

the average time difference is taken as Δt ¼ 0.57� 0.1 ns.

Owing to the small change of the ion energy during the

entire process of the beam-plasma interaction, ΔE can be

linearized with respect to the velocity along the flight path,

and hence it is expressed as

ΔE ¼ 2

�

Δt

T0

�

E0; ð1Þ

where the initial energy E0 is given as 175.133MeVand the

flight time for vacuum condition T0 is thus calculated as

226.5 ns. Therefore,ΔE can be easily obtained if onlyΔt is
determined. Hence, the total energy loss for our plasma

target is obtained as ΔE ¼ 0.881� 0.155 MeV.

In a partially ionized hydrogen plasma target, the swift

heavy ion beam loses its energy due to interaction with free

and bound electrons. Considering the homogeneity of the

plasma target and the (nearly zero) slope of the stopping

power function at the ion beam energies, a stepwise

integration is not necessary and the total energy loss ΔE
can be expressed as

ΔE ¼

��

dE

dx

�

free

þ

�

dE

dx

�

bound

�

× L; ð2Þ

where L ¼ 0.63 m is the plasma target length, and

½dE=dx�free and ½dE=dx�bound represent the stopping power

of the free and bound electrons, respectively.

Taking into account the beam velocity and the free

electron temperature of the plasma target, the stopping

power of the free electrons is given by the formula

[10,11,14]

�

dE

dx

�

free

¼
4πneZ

2

eff

mev
2

�

e2

4πϵ0

�

2

ln

�

0.764mev
3

Zeff
e2

4πϵ0
wp

�

; ð3Þ

where Zeff represents the projectile effective charge state, v
denotes the projectile velocity, me and e are the electronic

mass and charge, ϵ0 is the vacuum permittivity, and wp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2neϵ
−1

0
m−1

e

p

is the plasma frequency. The only unknown

physical quantity here is the effective charge state. It can be

estimated from a charge-state distribution measurement,

using a charge-state spectrometer which consists of a dipole

magnet, a scintillator, and a scintillation observing camera.

The charge-state distributions of the ion beam traveling

through the target under cold gas and discharge conditions

are shown in Fig. 3.

The initial charge state of the projectiles entering the

target is 10þ. For the cold gas condition, the peak charge

state is 11þ and the average is calculated as 11.3þ. The

stripping of the projectiles in the cold gas is weak. Under

the discharge condition, a peak charge state of 13þ and an

average of 12.7þ are measured. It should be noted that this

distribution is a time-integrated result for a long beam

duration which covers the main discharge. During this

discharge, while the plasma target is in its intense pinch

FIG. 2. (a) Reference signals and (b) beam signals for vacuum

and plasma conditions. Setting both of the minimum peak values

of the respective corresponding reference signals as time zero, the

beam signals can be directly compared. Applying the deconvo-

luted beam mass center as a representative, t1 ¼ 3.506 ns is

obtained for the vacuum condition while t2 ¼ 4.060 is obtained

for the plasma condition. The time difference Δt is obtained as

0.554 ns.
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phase, the projectiles should be stripped more effectively,

and an effective charge state of 13� 1 is hence considered.

The energy loss due to free electrons is accordingly

calculated as 0.177� 0.035 MeV, where the uncertainty

stems from the effective charge state and the measured free

electron density. Using Eq. (2), where the determined total

energy loss ΔE ¼ 0.881� 0.155 MeV and the measured

plasma length L ¼ 0.63 m, the energy loss due to bound

electrons ½ΔE�bound ¼ 0.704� 0.190 MeV is obtained, and

the corresponding differential stopping power results

to ½dE=dx�bound ¼ 1.117� 0.302 MeV=m.

Using the Bethe formula,

�

dE

dx

�

bound

¼
4πnbeZ

2

eff

mev
2

�

e2

4πϵ0

�

2

ln

�

2mev
2

I

�

; ð4Þ

where I represents the ionization potential of 13.6 eV for

hydrogen atoms, the unknown bound electron density nbe
can be derived. Applying a wide range of charge states from

12þ to 14þ as the effective charge state, nbe is calculated as
ð1.7� 0.7Þ × 1017 cm−3. As the free electron density ne is
known as ð1.9� 0.1Þ × 1016 cm−3, the total hydrogen

density n0, equaling the total electron density ntotale , is

hence calculated as ð1.9� 0.7Þ × 1017 cm−3. Furthermore,

a low ionization degree which is equivalent to the ratio

between the free electron density and the total hydrogen

density ranges from 7% to 17%. With the two known

plasma parameters of the free electron density and the

ionization degree, the third plasma parameter of the free

electron temperature Te ¼ 1.01� 0.04 eV is obtained

from FLYCHK with a nonlocal thermodynamic equilibrium

plasma condition. As a comparison, a rigorous quantum

mechanical method, described in Ref. [31], gives almost the

same Te value.

In summary, a novel method to precisely determine the

total hydrogen density in a lowly ionized hydrogen plasma,

using the energy loss of a swift heavy ion beam, is proposed

and realized for the first time. Through measuring the very

precisely accessible quantities “free electron density,”

“charge-state distribution,” and “heavy ion energy loss,”

the total hydrogen density in a pinched hydrogen plasma

can be derived. Here, the obtained value of the total

hydrogen density for the pinched plasma condition is

ð1.9� 0.7Þ × 1017 cm−3. Compared to the results derived

from the measured plasma temperature, the precision of the

novel method is increased by about 2 orders of magnitude.

Correspondingly, the error of the derived plasma temper-

ature is reduced from 20%–30% to 4%. The successful

determination of the total hydrogen density by using a

heavy-ion beam opens a new pathway for diagnosing

potential WDM. This novel method can also be applied

to fully ionized plasmas and cold matter, representing the

high and low free electron density limits, respectively.

This work is funded by BMBF (the German Ministry for

Education and Science) under Contract No. 05P12RFRB8.

The infrastructure of the GSI Helmholtzzentrum für

Schwerionenforschung, Darmstadt, was used to do the

research presented here. G. X., A. S., and J. W. received

funding from HGS-HIRe (the Helmholtz Graduate School

for Hadron and Ion Research) for FAIR (the Facility for

Antiproton and Ion Research). S.-X. Q. is supported by a

postdoctoral research fellowship from the Alexander von

Humboldt Foundation. We are very grateful for Dr.

Christian Teske’s great contribution of manufacturing the

spherical theta-pinch device.

*
g.xu@gsi.de

[1] R. P. Dias and I. F. Silvera, Science 355, 715 (2017).

[2] D. Keefe, Annu. Rev. Nucl. Part. Sci. 32, 391 (1982).

[3] R. C. Arnold and J. M. ter Vehn, Rep. Prog. Phys. 50, 559

(1987).

[4] U. Neuner et al., Phys. Rev. Lett. 85, 4518 (2000).

[5] H. Bethe, Ann. Phys. (Berlin) 397, 325 (1930).

[6] L. Northcliffe and R. Schilling, At. Data Nucl. Data Tables

7, 233 (1970).

[7] See http://www.srim.org.

[8] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res.,

Sect. A 506, 250 (2003).

[9] C. Deutsch et al., in Proceedings of the International

Symposium on Heavy Ion Inertial Fusion, Darmstadt,

Germany, 1988 [Nucl. Instrum. Methods Phys. Res., Sect.

A 278, 38 (1989)].

[10] K. Weyrich et al., in Proceedings of the International

Symposium on Heavy Ion Inertial Fusion, Darmstadt,

Germany, 1988 [Nucl. Instrum. Methods Phys. Res., Sect.

A 278, 52 (1989)].

[11] D. H. H. Hoffmann, K. Weyrich, H. Wahl, D. Gardés, R.

Bimbot, and C. Fleurier, Phys. Rev. A 42, 2313 (1990).

[12] G. D. Alton, R. A. Sparrow, and R. E. Olson, Phys. Rev. A

45, 5957 (1992).

[13] K.-G. Dietrich, D. H. H. Hoffmann, E. Boggasch, J. Jacoby,

H. Wahl, M. Elfers, C. R. Haas, V. P. Dubenkov, and

A. A. Golubev, Phys. Rev. Lett. 69, 3623 (1992).

FIG. 3. Charge-state distributions of the beam ions. The

effective charge state for the pinch plasma target is estimated

as 13� 1.

PRL 119, 204801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 NOVEMBER 2017

204801-4

https://doi.org/10.1126/science.aal1579
https://doi.org/10.1146/annurev.ns.32.120182.002135
https://doi.org/10.1088/0034-4885/50/5/002
https://doi.org/10.1088/0034-4885/50/5/002
https://doi.org/10.1103/PhysRevLett.85.4518
https://doi.org/10.1002/andp.19303970303
https://doi.org/10.1016/S0092-640X(70)80016-X
https://doi.org/10.1016/S0092-640X(70)80016-X
http://www.srim.org
http://www.srim.org
http://www.srim.org
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/0168-9002(89)91127-3
https://doi.org/10.1016/0168-9002(89)91127-3
https://doi.org/10.1016/0168-9002(89)91129-7
https://doi.org/10.1016/0168-9002(89)91129-7
https://doi.org/10.1103/PhysRevA.42.2313
https://doi.org/10.1103/PhysRevA.45.5957
https://doi.org/10.1103/PhysRevA.45.5957
https://doi.org/10.1103/PhysRevLett.69.3623


[14] D. Hoffmann et al., Nucl. Instrum. Methods Phys. Res.,

Sect. B 90, 1 (1994).

[15] J. Jacoby et al., Phys. Rev. Lett. 74, 1550 (1995).

[16] C. Teske and J. Jacoby, IEEE Trans. Plasma Sci. 36, 1930

(2008).

[17] C. Teske, J. Jacoby, W. Schweizer, and J. Wiechula, Rev.

Sci. Instrum. 80, 034702 (2009).

[18] C. Teske, B.-J. Lee, A. Fedjuschenko, J. Jacoby, and W.

Schweizer, IEEE Trans. Plasma Sci. 38, 1675 (2010).

[19] C. Teske, J. Jacoby, F. Senzel, and W. Schweizer, Phys.

Plasmas 17, 043501 (2010).

[20] C. Teske, Y. Liu, S. Blaes, and J. Jacoby, Phys. Plasmas 19,

033505 (2012).

[21] G. Loisch et al., in Proceedings of the 19th IEEE Pulsed

Power Conference (PPC), San Francisco, 2013 (IEEE,

New York, 2013), p. 1.

[22] G. Loisch et al., IEEE Trans. Plasma Sci. 42, 1163

(2014).

[23] G. Loisch, G. Xu, A. Blazevic, B. Cihodariu-Ionita, and J.

Jacoby, Phys. Plasmas 22, 053502 (2015).

[24] G. Xu, C. Hock, G. Loisch, G. Xiao, J. Jacoby, K. Weyrich,

Y. Li, and Y. Zhao,, Phys. Plasmas 22, 052703 (2015).

[25] H. R. Griem, Plasma Spectroscopy (McGraw-Hill,

New York, 1964).

[26] M. Ivkovi, N. Konjevi, and Z. Pavlovi, J. Quant. Spectrosc.

Radiat. Transfer 154, 1 (2015).

[27] H.-K. Chung, W. Morgan, and R. Lee, J. Quant. Spectrosc.

Radiat. Transfer 81, 107 (2003).

[28] H.-K. Chung, M. Chen, W. Morgan, Y. Ralchenko, and R.

Lee, High Energy Density Phys. 1, 3 (2005).

[29] I. Langmuir, J. Am. Chem. Soc. 37, 417 (1915).

[30] D. Mihalas, W. Dappen, and D. G. Hummer, Astrophys. J.

331, 815 (1988).

[31] O. Theimer and P. Kepple, Phys. Rev. A 1, 957

(1970).

PRL 119, 204801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 NOVEMBER 2017

204801-5

https://doi.org/10.1016/0168-583X(94)95500-X
https://doi.org/10.1016/0168-583X(94)95500-X
https://doi.org/10.1103/PhysRevLett.74.1550
https://doi.org/10.1109/TPS.2008.927377
https://doi.org/10.1109/TPS.2008.927377
https://doi.org/10.1063/1.3095686
https://doi.org/10.1063/1.3095686
https://doi.org/10.1109/TPS.2010.2048763
https://doi.org/10.1063/1.3368795
https://doi.org/10.1063/1.3368795
https://doi.org/10.1063/1.3690107
https://doi.org/10.1063/1.3690107
https://doi.org/10.1109/TPS.2014.2309976
https://doi.org/10.1109/TPS.2014.2309976
https://doi.org/10.1063/1.4919851
https://doi.org/10.1063/1.4919938
https://doi.org/10.1016/j.jqsrt.2014.11.014
https://doi.org/10.1016/j.jqsrt.2014.11.014
https://doi.org/10.1016/S0022-4073(03)00064-5
https://doi.org/10.1016/S0022-4073(03)00064-5
https://doi.org/10.1016/j.hedp.2005.07.001
https://doi.org/10.1021/ja02168a002
https://doi.org/10.1086/166601
https://doi.org/10.1086/166601
https://doi.org/10.1103/PhysRevA.1.957
https://doi.org/10.1103/PhysRevA.1.957

