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From the numerical solution of the time-dependent Schrödinger equation, we obtain the times of

ionization and return of the laser-driven electron in high-order harmonic generation by probing the

dynamics with a second harmonic field polarized orthogonal to the fundamental field and observing the

harmonic emission in dependence on the two-color delay. Our retrieval method using complex-time

evolution gives ionization and return times in excellent agreement with the quantum-orbit model, while a

retrieval based on real-time classical dynamics can introduce substantial errors. Because of the imaginary

parts, the harmonic signal polarized along the probe field is nonzero for any two-color delay. The

tunneling time can be retrieved under an assumption for the return time.

DOI: 10.1103/PhysRevLett.111.043901 PACS numbers: 42.65.Ky, 32.80.Rm

High-order harmonic generation (HHG) from atoms or

molecules exposed to strong laser pulses has been inten-

sively investigated in the past two decades [1,2]. HHG as a

highly nonlinear process provides a unique source of co-

herent extreme ultraviolet radiation in the form of single

attosecond pulses or attosecond pulse trains, which paves

the way for monitoring and controlling electronic dynam-

ics on the attosecond time scale [3,4]. Because the HHG

signal contains information about electronic dynamics and

molecular structure, it is also extensively used for high-

harmonic spectroscopy [5–10].

The key to understanding HHG is the three-step model

[2]: An electron tunnels into the continuum through

the potential barrier formed by the atomic potential and

the laser field. Then the electron is accelerated as a free

particle in the strong oscillating field. Finally, the electron

may recollide with the parent ion and recombine to the

initial state by emission of an extreme ultraviolet photon.

The photon carries away the sum of the binding energy and

the electronic kinetic energy acquired in the continuum.

Classical electron dynamics in the continuum is sufficient

to explain approximately the cutoff in the harmonic spec-

trum, but the initial tunnel ionization is a quantum-

mechanical process that requires separate treatment. A

complete quantum-mechanical description, based on the

strong-field approximation, was developed to give a quan-

titative treatment of HHG [1]. Resulting from this

approach is the quantum-orbit (QO) model, where each

harmonic emission frequency is attributed to a few domi-

nant quantum trajectories evolving in complex time [11].

The question arises how accurately reality follows these

model trajectories, especially since time-resolved high-

harmonic spectroscopy is based on the knowledge of the

electron excursion times. Another question concerns the

physical meaning of the imaginary parts.

With the development of time-resolved methods operat-

ing on the attosecond scale, the precise timing of electron

release from an atom has been investigated for various types

of ionization processes. As for single-photon ionization,

isolated attosecond pulses were applied to set electrons

free from the 2s and 2p orbitals of neon [3]. Streaking by

aweak infrared field produced two different streaking traces

in the photoelectron spectra. Their relative phase lag indi-

cated an emission time difference of about 20 as. Similarly,

using attosecond pulse trains, it was found that the 3p
photoelectrons from argon appear to be emitted about

20 as after the 3s photoelectrons [4]. An entirely different

ionization mechanism is laser-induced tunneling. A tunnel-

ing time characterizing the under-barrier electron motion

was proposed by Keldysh in 1965 [12], but it does not seem

to correspond to a measurable real delay. The arrival of the

angular streaking technique [13], which provides attosec-

ond resolution without attosecond pulses, gave experimen-

tal insight into this ionization process. The technique uses

elliptically polarized laser pulses both to ionize the atom

and to rotate the emission direction of the ion. The instant of

ionization is thus mapped on the position of the peak in the

final ion angular distribution. Very small delays between the

maximum of the electric field and the maximal electron

emission were found, thus supporting the concept of instan-

taneous tunneling [14]. Here, ‘‘instantaneous’’ means there

is no real time delay needed to pass through the barrier. This

delay must be distinguished from the Keldysh time, which

is typically a few hundred attoseconds and which is almost

equal to the imaginary part of the complex ionization time

obtained in the QO model [15]. The angular streaking

experiment measures the real delay for those electrons

that tunnel at the maximum of the electric field. However,

ionization can take place at any instant during the applied

pulse. In fact, each harmonic order in HHG has its own

ionization time (or set of times).

From the viewpoint of electron control, orthogonally

polarized two-color laser pulses were proposed to monitor

and control the tunneling electron wave packet [16] and to
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image molecular orbitals with attosecond resolution [17].

Recently, two-color high-harmonic spectroscopy has

revealed the precise exit times of electrons in HHG [18].

The principle of the experiment is as follows. A moderate

second harmonic field, polarized perpendicular to the main

field, is applied in order to perturb the motion of the

electron laterally once it is released from the atom. The

electron trajectory depends on the phase difference

between the two fields (the two-color delay). HHG is

possible only when the electron returns to its initial posi-

tion. Hence, the two-color delay determines the required

initial lateral velocity and thus affects the harmonic inten-

sity. The variations of harmonic intensity and recollision

angle as a function of the two-color delay constitute two

separate observables, facilitating the reconstruction of two

quantities: ionization and return times. The experiment

[18] has shown that the times at which electrons exit

from the atom are well reproduced by the real parts of

the ionization times from the QO model [11] and they are

substantially different from the classical trajectory model

[2]. In the experiment, however, there are two uncertain-

ties. First, applying the QO model requires knowledge of

the laser intensity, which is difficult to measure accurately.

Second, the absolute value of the two-color delay was not

measured in the experiment. Instead, the absolute scale was

determined by requiring minimal averaged deviation of the

retrieved return times from the QO return times. To over-

come these limitations, we follow a theoretical approach

based on the numerical solution of the time-dependent

Schrödinger equation (TDSE). Although the ionization

time has been investigated previously on the basis of

numerical wave functions [19], it has remained an open

problem to extract the dependence of the ionization time

on harmonic frequency numerically, especially when atto-

second resolution is desired. In this work, we follow pre-

cisely the experimental procedure, but without uncertainty

about laser intensity or two-color delay. Moreover, the

numerical treatment provides two independent ways to

determine the return times: either from the dependence

of the harmonic emission on the two-color delay as in

the experiment or alternatively by inspection of the

Gabor time-frequency analysis of harmonic radiation,

since the electron return times coincide with the harmonic

emission times. This is so unless the emission time is

shifted due to a nonconstant recombination phase [20].

One challenge in the numerical approach is that the

single-atom HHG spectra cannot be used directly for the

two-color delay scan because every harmonic order has

contributions from more than one trajectory [1]. To sepa-

rate the trajectories, we use a time-frequency analysis. We

find that the ionization and return times retrieved from the

two-color scan deviate significantly from the QO model

when we use the classical retrieval method proposed in

[18]. We introduce an improved quantum-mechanical

retrieval method based on trajectories evolving in complex

time. Complex treatment of the lateral motion in two-color

HHG has not been considered before; it explains the ellip-

tically polarized bursts found in our TDSE results. As an

alternative application of the two-color scheme, we show

below that the tunneling time, which we define as the

imaginary part of the complex ionization time, can be

retrieved when an assumption is made about the return

time.

Within the single-active-electron approximation, the

TDSE for the wave function �ðr; tÞ describing a model

He atom in the length gauge reads (atomic units are used

throughout)

i@t�ðr; tÞ ¼ ½p2=2þ VðrÞ þ r �EðtÞ��ðr; tÞ (1)

with a two-dimensional (2D) potentialVðrÞ ¼ �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ �
p

or a three-dimensional (3D) potential VðrÞ ¼ �ð1þ
e��rÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ �
p

, where r is the electron position. The soft-

core parameters �, �, and � are adjusted to reproduce the

ionization potential of He (Ip ¼ 24:6 eV). The electric field

EðtÞ is composed of a fundamental pulse linearly polarized

along the x axis and a second harmonic field polarized along

the y axis with relative amplitude " ¼ 0:1,

EðtÞ ¼ E0fðtÞ½ex cosð!tÞ þ ey" cosð2!tþ�Þ�; (2)

where � is the two-color delay. E0 and! are the amplitude

and frequency of themain fieldwithwavelength 799 nm. For

the trapezoidal profile fðtÞ, we use a total duration of three

optical cycles and one-cycle linear ramps. The TDSE is

solved using the split-operator method [21] with 2048 time

steps per optical cycle, starting from the ground state as

obtained by imaginary-time propagation. From the wave

function, the dipole acceleration aðtÞ is calculated. The

Gabor time-frequency analysis as a function of harmonic

frequency � and emission time t is obtained separately for

the x and y components, i.e.,

IGxð�; tÞ ¼
��������

Z

dt0axðt0Þe�ðt�t0Þ2=ð2�2Þþi�t0
��������

2

; (3)

and similarly for IGyð�; tÞ. We choose � ¼ 1=ð3!Þ [22].
The total harmonic intensity is IGð�; tÞ ¼ IGxð�; tÞ þ
IGyð�; tÞ. For given harmonic frequency, we obtain the

emission time tr numerically by finding the local maximum

of the Gabor intensity as a function of time. Thewell-known

short and long trajectories [1] can be separated. Near the

cutoff, the short and the long trajectories merge together. We

therefore fit the numerical Gabor intensity for each harmonic

order to a coherent sum of two Gaussians to determine the

emission times.We focus on the short trajectory, correspond-

ing to electrons with excursion time shorter than 0.65 optical

cycles. We perform the analysis on trajectories that are born

in the first half-cycle of the central part of the trapezoidal

pulse.

To retrieve two quantities, namely, ionization time and

return time, from the HHG spectra, we require two
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observables per harmonic order. We consider the harmonic

intensity, obtained as IGð�; trÞ and the amplitude ratio of

the y and x component of the generated field,

Rð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IGyð�; trÞ=IGxð�; trÞ
q

: (4)

The ratio R is precisely the quantity measured in the

experiment [18] where the square root of the ratio of

neighboring even and odd harmonics was taken [23]. For

linearly polarized harmonics, the polarization angle � rela-

tive to the x axis is given by tan� ¼ R. Note that our

method works even when the harmonics are not linearly

polarized.

The harmonic intensity and the amplitude ratio R as a

function of harmonic order and two-color delay are shown

in Fig. 1. These results are in good agreement with the

experiment. It is apparent that both the harmonic intensity

and the amplitude ratio are modulated as the two-color

delay is varied. The details of the modulation depend on

the harmonic order. These dependencies lead to an

approach to measure the electron exit times, based on the

classical analysis of the electronic lateral motion after

tunneling [18]. Because the second harmonic field is

weak, the times of ionization �i and return �r are deter-

mined by the fundamental field. Recombination is possible

if the electron returns at time �r to the position where it was
released at time �i, i.e., yð�rÞ � yð�iÞ ¼ 0. To satisfy this

condition, the required initial velocity in the y direction is

vy0 ¼ � "E0

2!

�

sin’i þ
cos’r � cos’i

2!ð�r � �iÞ

�

(5)

with ’i ¼ 2!�i þ� and ’r ¼ 2!�r þ�. The HHG ef-

ficiency is maximized for vanishing vy0 [24,25]. If the

bound state has spherical symmetry, the amplitude ratio

R is fully determined by the return velocity vector, namely,

R ¼ jvyð�rÞ=vxð�rÞj. In the case of linear polarization, this
would mean that the recollision angle is identical to the

harmonic polarization angle. We have

R ¼ "E0=ð2!Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð�� IpÞ
q

��������
sin’r þ

cos’r � cos’i

2!ð�r � �iÞ

��������
: (6)

The variations of harmonic intensity and amplitude ratio

with two-color delay have been termed displacement gate

and velocity gate, respectively, in [18]. From the two-color

delay �hð�Þ maximizing the harmonic intensity and the

two-color delay �að�Þ maximizing the amplitude ratio,

the ionization and return times can be retrieved. However,

the classical analysis of the dynamics along the y axis may

not be sufficient for an accurate retrieval. A quantum-

mechanical version has been derived for the displacement

gate [18] but not for the velocity gate. Here we propose to

use complex times in Eqs. (5) and (6), which remain

otherwise unchanged. Using quantum orbits with complex

times is the essence of our quantum-mechanical retrieval

method, which is not only different from the classical and

quantum retrieval methods of [18] but also conceptually

simpler than the displacement-gate quantum corrections of

[18]. The velocity in the y direction becomes complex and

the two equations determining the two-color delays�h and

�a read

Revy0 ¼ 0; @R=@� ¼ 0: (7)

In the QO model, the ionization and return times are found

by solving simultaneously the two equations [1,11]

½psð�i; �rÞ þ Að�iÞ�2=2 ¼ �Ip; (8)

½psð�i; �rÞ þ Að�rÞ�2=2 ¼ �� Ip; (9)

where psð�i; �rÞ ¼ �1=ð�r � �iÞ
R
�r
�i
Aðt0Þdt0 is the saddle-

point momentum and AðtÞ ¼ �R
t Eðt0Þdt0. The solutions

are the complex times �i ¼ ti þ iIm�i and �r ¼
tr þ iIm�r. The real parts ti and tr are regarded as the

physical exit and return times.

As the first step in the analysis of the TDSE results, we

extract for every harmonic frequency the two-color delays

�h and �a. For comparison, we insert the ionization and

return times from the classical three-step model or the

QO model into Eqs. (5) and (6) to find �h that gives

Reðvy0Þ ¼ 0 and �a that maximizes R. Figure 2 shows

the results for two different laser intensities, including 3D

TDSE results for the lower intensity. The comparison

clearly shows that the 2D and 3D simulations give similar

results. For the lower intensity, neither of the two trajectory

models matches the TDSE results when the real times are

used. If we use the complex times from the QO model,

however, we find a very good match with the TDSE,

although the QO model lacks Coulomb effects, which

can be important in other strong-field situations [26]. For

the higher intensity, the deficiencies of the real-time

approach are less pronounced but still visible.

In the insets of Fig. 2 we show the amplitude ratio R as a

function of the two-color delay obtained from the TDSE,
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FIG. 1 (color online). (a) Normalized harmonic intensity and

(b) amplitude ratio R for two-color HHG as a function of

harmonic order and two-color delay �, obtained from the 2D

TDSE. The laser intensity is 4� 1014 W=cm2. The classical

cutoff is at harmonic order 65.
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compared to Eq. (6) with the complex times from the QO

model. The good agreement is in accordance with the

previous observation [27] that the recollision angle in

elliptically polarized fields is not strongly modified by

Coulomb focusing. Interestingly the signal polarized along

the y axis does not become zero although classically the

recollision angle must pass through zero for an appropriate

choice of two-color delay. This indicates that a single

recollision in the two-color field generates elliptically po-

larized harmonics, mathematically arising from complex

return velocity components.

A problem arises in the retrieval of both complex times �i
and �r from themeasured two-color delays�h and�a using

Eq. (7): if the times are complex, there are four unknown

variables but only two equations. It is a good approximation

[15] to neglect the imaginary part of �r and to assume that

the tunneling time (the imaginary part of �i) equals the

Keldysh time evaluated at the instantaneous field ExðtiÞ,
i.e., Im�i ¼

ffiffiffiffiffiffiffi
2Ip

p
=jExðtiÞj. The retrieved real parts of the

ionization and return times are shown in Fig. 3(a). They

match very well with the QOmodel. The retrieval based on

classical dynamics (using real times) yields return times up

to about 50 as too early; the ionization times are too early for

the higher harmonic orders and too late for the low orders.

Figures 3(c) and 3(d) show the deviations of the retrieved

ionization and return times from the QO model. From

harmonic order 40 to 55, where a clean retrieval is possible

since the short-trajectory branch is perfectly isolated from

other trajectories, we find remarkably small deviations

below 5 attoseconds for the 3D results. The error of the

classical retrieval did not become apparent in the experi-

ment [18] because the absolute scale of the two-color delay

was fixed by requiring agreement with the QO model.

In an alternative scheme, we use the same observables to

retrieve the real and imaginary part of the ionization time,

by making suitable assumptions about the return time. We

neglect the imaginary part of the return time, and we take

the real part from the QO model. Note that this approach is

very suitable for experiment; for example, the return times

could be taken frommeasurements as in [11]. The retrieved

imaginary part is shown in Fig. 3(b). Although the retrieval

is very sensitive to small errors in the input parameters, we

find good agreement with the QO model and the Keldysh

time. To our knowledge, this is the only reported scheme

for determination of the tunneling time.

In principle, additional observables such as themaximum

and minimum of the �-dependent harmonic intensities in

the x and y polarizations could be measured to obtain more

observables for the time retrieval. Note that the imaginary

parts explain why the y-polarized harmonic signal does not

reach zero for any two-color delay (insets of Fig. 2).
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FIG. 2 (color online). Two-color delays �hð�Þ (left) and

�að�Þ (right). Thick solid lines (grey), QO model with complex

times (QO-com). Thin solid lines (black), results using only the

real parts of the QO times (QO-real). Thick dashed lines (grey),

classical three-step model (CM). Purple circles and blue squares,

results from the 3D and 2D TDSE, respectively. (a),(b) Intensity

4� 1014 W=cm2; (c),(d) 8� 1014 W=cm2. The insets show the

amplitude ratio versus two-color delay for harmonic order 40 (b)

and 60 (d).
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FIG. 3 (color online). (a) Reconstructed ionization times

and return times. (b) Reconstructed tunneling times. Time zero
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from the complex-time retrieval. Green crosses represent the
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=jExðtiÞj. Bottom: ionization times (c) and return times

(d) relative to the QO model. Orange triangles and cyan dia-

monds in (d) are the Gabor emission times (2D and 3D, respec-

tively). The laser intensity is 4� 1014 W=cm2.
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In conclusion, we have obtained the ionization and

return times in high-order harmonic generation from the

numerical solution of the TDSE. We use a retrieval based

on complex-time trajectories and we find astonishing

agreement with the QOmodel. The classical retrieval gives

only approximate results as it ignores the change of the

lateral position and velocity during tunneling. We have

also retrieved the tunneling time by making reasonable

assumptions for the return time. This shows the physical

relevance of the tunneling time: it affects the lateral dy-

namics in the two-color field and makes a measurable

change in the dependence on the real two-color delay.

Such a position-space effect is in contrast to the view

that the tunneling time determines merely the ionization

rate. A signature may also be expected in the vibrational

wave packet in the probing of attosecond dynamics by

chirp encoded recollision [6].

We acknowledge valuable discussions with Ingo

Dreißigacker.
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