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An original method is presented to determine the complex Lamb wave spectrum by using a
numerical spectral method applied to the elasticity equations. This method presents the advantage to
directly determine complex wave numbers for a given frequency via a classical matricial eigenvalue
problem, and allows the wave numbers to be determined at relatively high frequencies~i.e.,
corresponding to many propagating modes!. It does not need initial guess values for the wave
numbers, contrary to the usual method of root finding of the Rayleigh–Lamb frequency equations
~dispersion relation! in the complex plane. Results are presented and the method is discussed.
© 2001 Acoustical Society of America.@DOI: 10.1121/1.1391248#
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I. INTRODUCTION

Lamb waves are involved in the nondestructive test
of plate structures because of their guided nature. The c
acterization of flaws through the scattering of elastic wa
in such plates has received considerable attention in the
20 years,1 but Lamb wave propagation in an inhomogeneo
medium has not been widely investigated.

A possible method for solving the problem of Lam
wave propagation in a medium with geometrical or mate
discontinuities is based on an eigenfunction expansion of
displacement and the stress, where the considered eigen
tions are the Rayleigh–Lamb modes in an infinite plate. T
expansion is combined with a mode-matching technique
treat the discontinuities. This method solves problems rela
to a semi-infinite plate2,3 or to two dissimilar semi-infinite
plates welded along their lateral boundaries.4

This method requires determining the complex wa
number spectrumkn associated with the eigenfunctions us
in the expansion. In the context of Lamb waves, it is diffic
to determine eigenfunctions and associated wave numb
because of the spectrum complexity. It is well establish
that the Lamb wave spectrum in a free solid layer, compo
of elastic material, consists of complex wave numberskn ,
real wave numbers corresponding to propagating La
waves, and complex wave numbers related to evanes
Lamb waves.5–9 Usually, the dispersion relationD(v,k)
50 ~the so-called Rayleigh–Lamb frequency equations! is
numerically solved to determine the wave spectrum.

For propagating modes, the problem remains sim
since the wave number is known to be real. On the ot
hand, when the mode-matching technique is used, eva
cent modes have to be taken into account and a signifi
part of the entire complex spectrum has to be determin
The direct strategy of finding the roots of the dispersion
lation D(k,v)50, at a given frequencyv, is not well suited

a!Electronic mail: vincent.pagneux@univ-lemans.fr
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for systematic computation since the locations of the wa
numbers are not known,a priori, in the complex plane. Con
sequently, initial guess values are not available for class
root finding routines. One technique to overcome this lac4,2

consists in calculating the spectrum at zero frequency, wh
the dispersion relation is more tractable, and then to gra
ally increase the frequency to the desired value by us
dk52(]vD/]kD)dv and/or k(v) as an initial guess for
k(v1dv). Apart from the difficulties arising from the van
ishing of the denominator, this ‘‘step by step’’ technique
time consuming because a series of spectra has to be
puted for frequencies from zero to the desired frequency

Here, we present an original method that direc
projects the ordinary differential equation governing t
Lamb modes on a spectral basis of orthogonal functio
Instead of solving the transcendental equationD(k,v)50,
one calculates the solutions of a classical eigenvalue prob
in the form (M2kI)X50, whereM is a matrix resulting
from the projection of the differential equation. We obta
approximate eigenvalues that can be used as starting va
for a more precise solution. This technique is classically u
in the theory of fluid dynamics instability.10,11 In this case,
the coefficients of the differential equation governing t
transverse modes are nonconstant; the method of finding
roots of the dispersion relation is then not natural since i
impossible to get ananalytical dispersion relation.

The Lamb problem is posed in Sec. II. Then, spect
decomposition is performed~Sec. III!, and a second-orde
polynomial system onk is derived~Sec. IV A!. This system
can be rewritten as a reduced eigenvalue problem forkn

2

~Sec. IV B!. Results are presented and discussed in Sec.

II. LAMB MODE PROBLEM

The Lamb mode problem~see Fig. 1! consists of search
ing for a solution of the elasticity equation in the wavegui
defined by2h<y<h with free boundaries, and for which
1307307/8/$18.00 © 2001 Acoustical Society of America
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displacements are in the~x, y! plane. The time dependence
e2 ivt and will be omitted in the sequel. The equation
motion is

2rv2w5m Dw1~l1m!“~div w!, ~2.1!

wherer is the density,~l, m! are the Lame´’s constants, and
w5(û,v̂) is the vector of displacements, whose compone
are of the ‘‘modal’’ form:

S û~x,y!

v̂~x,y! D5S u~y!

v~y! Dexp~ ikx!. ~2.2!

The facesy56h are free of traction, corresponding t
boundary conditions:

txy~x,6h!5m~]yû1]xv̂ !50,
~2.3!

tyy~x,6h!5l ]xû1~l12m!]yv̂50.

Defining kt5Ar/mv, kl5Ar/(l12m)v, and g5(l
12m)/m, the system~2.1! can be written for (u,v):

k2u2 ik
g21

g
v82S kl

2u1
u9

g D50, ~2.4a!

k2v2 ik~g21!u82~kt
2v1gv9!50, ~2.4b!

and the boundary conditions~2.3! become

u8~6h!52 ikv~6h! ~2.5a!

v8~6h!52 ik
g22

g
u~6h!, ~2.5b!

where the prime and double prime stand ford/dy and
d2/dy2.

III. SPECTRAL DECOMPOSITION

The eigenproblem~2.4!–~2.5! is known to be separabl
into symmetric and antisymmetric solutions, where symm
ric ~resp., antisymmetric! modes correspond to even~resp.,
odd! u and odd~resp., even! v.5 In the following, super-
scriptss anda, respectively, refer to symmetric and antisym
metric modes. Basis functionsfn for us, va, andcn for vs,
ua, with n>1, are chosen such that

fn91an
2fn50, and fn8~0!5fn8~h!50,

~3.1!
cn91bn

2cn50, and cn~0!5cn8~h!50,

that yields

FIG. 1. Geometry of the Lamb wave problem.
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fn5Aen

h
cos~any!, with H e151, en52, for n>2,

an5
~n21!p

h
,

cn5A2

h
sin~bny!, with bn5

~n21/2!p

h
;

~3.2!

fn and cn are such that (fnufm)5dnm and (cnucm)
5dnm , where the scalar product is defined by (f ug)
5*0

hf (y)g(y)dy.
Functionsfn ~resp., cn! form a complete basis to de

scribe any even~resp., odd! function because they are eige
functions of a classical Sturm–Liouville problem.12 Thus,
symmetric and antisymmetric solutions can be decompo
in these bases as

us~y!5 (
n>1

Un
sfn~y!, and Us5~Un

s!,

vs~y!5 (
n>1

Vn
scn~y!, and Vs5~Vn

s!,

~3.3!

ua~y!5 (
n>1

Un
acn~y!, and Ua5~Un

a!,

va~y!5 (
n>1

Vn
afn~y!, and Va5~Vn

a!.

The next step is then to obtain the projection of Eq
~2.4! on the basis functions. This is presented in the follo
ing paragraphs.

A. Symmetric modes

The scalar product of~2.4a! by fn and ~2.4b! by cn is
performed. Then, the projection of the derivatives are~using
the same procedure as in Ref. 13!:

„~vs!8ufn…5@vsfn#0
h2~vsufn8!

5 (
m>1

„fn~h!cm~h!2~fn8ucm!…Vm
s ,

~3.4!
„~us!9ufn…5@~us!8fn2usfn8#0

h1~usufn9!

52 ik (
m>1

fn~h!cm~h!Vm
s 2an

2Un
s ,

and

„~us!8ucn…5 (
m>1

„cn~h!fm~h!2~cn8ufm!…Um
s ,

~3.5!

„~vs!9ucn…52 ik
g22

g (
m>1

cn~h!fm~h!Um
s 2bn

2Vn
s .

It can be noticed that both boundary conditions have b
taken into account in the course of projection@Eq. ~2.5a! for
~3.4! and Eq.~2.5b! for ~3.5!#. Eventually, a system of equa
tions onUs, Vs is obtained:
V. Pagneux and A. Maurel: Lamb mode eigenvalues
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FIG. 2. ~a! Tridimensional representation of the dimen
sionless complex wave numbersknh for symmetric
modes~S0 to S10! when the dimensionless frequenc
kth varies,~b! real and imaginary parts of the dimen
sionless complex wave numbersknh for symmetric
modes~S0 to S3! as a function of the dimensionles
frequencykth.
ric

on
k2Us1kAsVs1BsUs50,
~3.6!

k2Vs1kCsUs1DsVs50,

with matricesAs, Bs, Cs, andDs expressed by

As
m,n5 i S g21

g
~cmufn8!1

22g

g
cm~h!fn~h! D

55
& i ~22g!~21!m

hg
, n51,

2i ~21!m1n
„an

21~g22!bm
2
…

hg~bm
2 2an

2!
, n>2,

Bs
m,n5S am

2

g
2kl

2D dmn , ~3.7!

Cs
m,n52gAn,m

s , Ds
m,n5~gbm

2 2kt
2!dmn .
J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
B. Antisymmetric modes

Similar calculations are performed for antisymmet
modes. In this case, the scalar products of~2.4a! by cn and
~2.4b! by fn are performed and a system of equations
Ua,Va is obtained:

k2Ua1kAaVa1BaUa50,

~3.8!

k2Va1kCaUa1DaVa50,

with matricesAa, Ba, Ca, andDa expressed by
1309V. Pagneux and A. Maurel: Lamb mode eigenvalues
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FIG. 3. Dimensionless phase velocities of symmet
Lamb waveskt /kn ~for real kn! as a function of the
dimensionless frequencykth.
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m,n5 i S g21

g
~fmucn8!1

22g

g
fm~h!cn~h! D

55
& i ~21!n

hg
, m51

2i ~21!m1n~~g22!am
2 1bn

2!

hg~am
2 2bn

2!
, m>2

Ba
m,n5S bm

2

g
2kl

2D dmn , ~3.9!

Ca
m,n52gAn,m

a , Da
m,n5~gam

2 2kt
2!dmn .

IV. RESOLUTION

The system~2.4! with boundary conditions~2.5! is an
eigenvalue problem with differential operators. Owing to t
spectral decomposition presented in Sec. III, it has becom
discretized eigenvalue problem with matricial operators.

The discretized systems~3.6! and ~3.8! are in the form
of a nonlinear eigenvalue problem:

k2U1kAV1BU50, ~4.1a!

k2V1kCU1DV50, ~4.1b!

where matricesA, B, C, D result from projections of the
original differential equations and also take into account
boundary conditions. System~4.1! can be easily expressed a
a classical eigenvalue problem (M2kI)X50, as presented
in the following section, Sec. IV A. In this case, for a give
truncation corresponding to the firstN basis functions, a
4N34N system has to be solved to obtain 4N eigenvaluesk.
In Sec. IV B, it is shown that an alternative system can
derived, benefiting from the symmetry properties of thek
spectrum; in this latter case, the system is only 2N32N, to
also obtain 4N eigenvalues.
1310 J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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A. Eigenvalue problem

System~4.1! can be rewritten as

k2X11kF1X11G1X150, ~4.2!

with

X15S U
V D , F15S 0 A

C 0 D , and G15S B 0

0 D D .

~4.3!

Then, following Ref. 11, withY15kX1 and

Z15S X1

Y1
D , M15S 0 I 2N

2G1 2F1
D , ~4.4!

whereI 2N is the 2N32N identity matrix; the system~4.2! is
rewritten as

M1Z12kZ150. ~4.5!

It corresponds to a classical eigenvalue problem for theN
34N matrix M1 , in which the eigenvaluek appears linearly.

B. Reduction of the matrix dimension

By inspection, it can be noticed that system~4.1! pos-
sesses~fortunately!! the usual symmetries of the Lam
modesk→2k andk→k* . In order to reduce the dimensio
of the involved matrices, and, consequently, to increase
merical efficiency, it is possible to take advantage of t
symmetryk→2k. This can be done by casting~4.1! in the
form of a nonlinear eigenvalue problem, where only the ev
powers of the eigenvalue appear.

ExpressingV as a function ofU in ~4.1b!, ~4.1a! can be
written as

„k2I N2k2A~k21D !21C1B…U50. ~4.6!

In ~4.6!, UPKer„k2I N2k2A(k21D)21C1B… and a solution
U corresponds tok such that det„k2I N2k2A(k21D)21C
V. Pagneux and A. Maurel: Lamb mode eigenvalues
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FIG. 4. Dimensionless complex Lamb wave spectru
at ~a! kth51: ~* !: N56, ~s!: N514, ~•!: exact values
ke and ~—! asymptotic valueska, ~b! kth514: ~* !: N
516, ~s!: N532, ~•!: exact valueske and ~—!
asymptotic valueska, and ~c! kth528: ~* !: N524,
~s!: N544, ~•!: exact valueske and ~—! asymptotic
valueska.
,

tte

ur
pre-

m-
for
of
1B…50. If this equation is multiplied by det„(k21D)A21
…

on the left-hand side and det(A) on the right-hand side, we
obtain det„K21(D2CA1A21BA)K1DA21BA…50, with
K5k2. The reduced eigenvalue problem onK5k2 is

~K21F2K1G2!X250, ~4.7!

with F25(D2CA1A21BA), G25DA21BA.
In the course of the derivation of the reduced system

has been assumed that det(A)Þ0 and det(k21D)Þ0. The
former assumption has been numerically verified. The la
assumption is verified as long ask2Þkt

22gbn
2.

As previously, we now introduce

Y25KX2, Z25S X2

Y2
D ,

and ~4.8!
J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
it
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M25S 0 I N

2G2 2F2
D ,

whereI N is theN3N identity matrix. An eigenproblem for
K5k2 with the 2N32N matrix M2 is obtained:

M2Z22KZ250. ~4.9!

V. RESULTS

In order to check the validity and the efficiency of o
technique, results obtained using the spectral method are
sented. Without loss of generality, we will focus on the sy
metric Lamb modes, but similar results can be obtained
antisymmetric modes. The material properties are those
1311V. Pagneux and A. Maurel: Lamb mode eigenvalues
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copper: vs5Am/r52150 m s21 and v l5A(l12m)/r
54170 m s21

„g5(v l /vs)
2
… and the plate thickness is take

to be 2h50.02 m.
For u andv projected onN spectral basis functions, 4N

eigenvalues are calculated from the 2N32N system~4.9!.
For clarity, only the 2N rightgoing modes will be presented
the other 2N modes, which are leftgoing, are simply o
tained by the symmetryk→2k. On the other hand, as pre
sented in the forthcoming section Sec. V C, a part of
calculated spectrum corresponds to spurious eigenvalues
this reason, a qualitative criterium is used and only a sub
of the determined spectrum is selected.

In the following, in order to assess the obtained valu
we refer to ‘‘exact’’ valueske, obtained from a Newton con
vergence method with a tolerance of 10210. Here, the wave
numbers obtained from the spectral method are used as
tial guess values and it has been verified that these ‘‘ex
values correspond to actual zeros of the dispersion relat

A. Eigenvalues in the complex plane

Figure 2 shows thek spectrum obtained in the comple
plane varyingv. In the computation,N516 leads to 32
rightgoing eigenvaluesk; as discussed in Sec. V C, on
aboutN values are identified as correct values~11 eigenval-
ues are shown in the figure!. The usual behavior of Lamb
modes is recovered: for low frequency, onlyS0 is propagat-
ing and, to increase the frequency leads to more and m
propagating modes. We recover also the particular beha
of S2 : it becomes propagating with negative phase veloc
and recovers a positive phase velocity at higher frequen

B. Phase velocities of Lamb modes

To recover the usual representation of propagat
modes,5,14 we have plotted in Fig. 3 the dimensionless pha
velocities of symmetric Lamb waves,kt /kn , for realkn , as a
function of the dimensionless pulsationkth. This is obtained
in Fig. 2 at constant Im(k)50. The expected form is obtaine
1312 J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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but we underline the fact that the branchk,0 of the S2

mode corresponds to a rightgoing mode with negative ph
velocity but positive group velocity. Incidently, it can be n
ticed that, in some papers, this negative phase velo
branch is erroneously identified as a part of anS1 mode5 or is
not represented.14 The S2 mode turns purely imaginary in a
frequency band corresponding tokth between around 3.06
and 3.13, in agreement with previous studies~see, for in-
stance, Rokhlinet al.15!.

C. Representation of the spectrum for a given v

Figures 4 show the evolution of the rightgoing compl
wave spectrum derived from the spectral method whenN
increases. These 2N values are compared with the exact va
ues ke and the asymptotic valueska derived by Merkulov
et al.6 for largek:

kn
ah5

1

2
lnF2pS n1

1

2D G
2

i

2 FpS n1
1

2D2
ln@2p~n11/2!#

p~n11/2! G . ~5.1!

It can be seen from these figures that thek spectrum found
with the spectral method coincides with the exact one (ke)
for the N or so first values, and this, independently of t
complexity of the spectral structure when the frequency
creases. A qualitative criterion to select the useful part of
calculated spectrum can be to restrict the complex w
spectrum to the firstN values.

D. Convergence

The evolution of the relative error is shown in Fig. 5
a function of N at two different frequencies. The relativ
error is defined asuD(k)/ku, whereD(k)5k2ke. In both
cases, it appears that the method converges as 1/N for large
N.
V. Pagneux and A. Maurel: Lamb mode eigenvalues
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FIG. 5. Convergence for the first modes as a function
the orderN of the truncation for a given frequency,~a!
kth51 ~modesS0 to S8! and ~b! kth514 ~modesS0

to S4!.
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For kth51, only the modeS0 is propagating; the sym
metry properties of the spectrum for evanescent modes
pliesk2n52k2n21* for n>1, implying the same convergenc
for the pairs (2n,2n21).

For kth514, 14 modes are propagating; we give t
convergence for the first five modes. It can be noticed t
the modeS0 reaches a type 1/N convergence law only for
N.10, but is given with a reasonable accuracy~10%! as
soon asN51.

VI. CONCLUSION

A new method for the determination of the Lamb wa
spectrum has been presented. This method is based
spectral projection of the equation of the elasticity, leading
a classical eigenvalue problem.

This method is an alternative to the usual method of r
J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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finding of the Rayleigh–Lamb dispersion relation. The fo
lowing points make the method attractive.

~i! It is easy to implement. For a given frequency, it
very simple to take the expression of theM2 matrix from
~3.9!, ~4.10!, and~4.11!, to put in it the material~g, kl , and
kt! and geometrical~h! properties and then, to use any eige
value solver package to obtain the wave numbers.

~ii ! In a step by step method, the series of spectra ca
lated from zero to a given frequency can cross a criti
frequency, for which two wave numbers collapse, leading
]kD50. A particular treatment then has to be applied to
through this critical frequency since]k/]v5]vD/]kD di-
verges. With our method, these critical frequency cases h
bearing on the determination of the spectrum because its
culation does not depend on the history of the spectrum.

~iii ! If the goal is to obtain the wave numbers with
prescribed precision, the results of the spectral method
1313V. Pagneux and A. Maurel: Lamb mode eigenvalues
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be used as very good initial guess values in a Newto
Raphson method. That is to say that our method can
viewed as a ‘‘super initial guess value provider.’’

~iv! The method can be easily generalized to other w
guided modes. In fact, it can be implemented as long as
transverse problem can be written in the form of a differe
tial equation with an integer power of the eigenvalue in
coefficients. Then, this technique offers the possibility
much greater certainty in finding all the families of tran
verse modes. For instance, it may be applied to fluid-loa
plates, plates with damping, or transversally layered plat
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