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Leaf water content is one of the most common physiological parameters limiting

efficiency of photosynthesis and biomass productivity in plants including Miscanthus.

Therefore, it is of great significance to determine or predict the water content quickly and

non-destructively. In this study, we explored the relationship between leaf water content

and diffuse reflectance spectra in Miscanthus. Three multivariate calibrations including

partial least squares (PLS), least squares support vector machine regression (LSSVR),

and radial basis function (RBF) neural network (NN) were developed for the models

of leaf water content determination. The non-linear models including RBF_LSSVR and

RBF_NN showed higher accuracy than the PLS and Lin_LSSVR models. Moreover, 75

sensitive wavelengths were identified to be closely associated with the leaf water content

in Miscanthus. The RBF_LSSVR and RBF_NN models for predicting leaf water content,

based on 75 characteristic wavelengths, obtained the high determination coefficients

of 0.9838 and 0.9899, respectively. The results indicated the non-linear models were

more accurate than the linear models using both wavelength intervals. These results

demonstrated that visible and near-infrared (VIS/NIR) spectroscopy combined with

RBF_LSSVR or RBF_NN is a useful, non-destructive tool for determinations of the leaf

water content in Miscanthus, and thus very helpful for development of drought-resistant

varieties in Miscanthus.

Keywords: Miscanthus, leaf water content, drought-resistant breeding, VIS/NIR spectroscopy, sensitive

wavelengths

INTRODUCTION

Miscanthus is a class of grass species, some of which have high potential of biomass productivity
and could be used as a feedstock of renewable energy (Zhao et al., 2014; Yu et al., 2015). M.
sacchariflorus, M. sinensis, and M. fIoridulus belonging to subtribe Saccharinae were proved the
most potential biomass grass species (Xi and Jeźowski, 2004). These species generally grow in the
similar environment; even grow together (Xi and Jeźowski, 2004; Clark et al., 2016). In China,
the bioenergy Miscanthus crop is proposed to be planted on the marginal lands where water is
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deficient, so the drought-tolerant genotypes or varieties are
needed for this type of lands (Dai et al., 2013; Yu et al.,
2015). Water deficit is one of the major factors limiting biomass
productivity in crops. Leaf water content is a very important
parameter in determination of plant drought and salinity
tolerance, because water stress restricts transpiration including
closure of stomata and water evaporation from leaf surface.
Water stress also affects crop photosynthesis and productivity
(Shirley et al., 1990; Arndta et al., 2015). The genotypes with
tolerance to drought and salinity in barley showed stable water
content and more dry matter (Nevo and Chen, 2010; Ahmed
et al., 2013). Moreover, the leaf water content was used for
guiding crop fertilizer application and irrigation, even for remote
sensing (Hunt and Rock, 1989). Thus, leaf water content is very
important for crop management.

Today, the classical assessment of water content is based on
the weight change between fresh and dried leaves. It is certainly
destructive and time-consuming. Meanwhile, detection of plant
water stress caused by drought is a major goal for remote sensing
in the field. Determination of plant water stress by remote sensing
has been proposed using indices of Near-Infrared (NIR, 0.7–
1.3 µm) and Middle-Infrared (MIR, 1.3–2.5µm) lights (Hunt
and Rock, 1989). But the natural variation in relative water
content (RWC) under water stress is about 20% for most plants,
and thus the indices derived from NIR and MIR reflectance
cannot be used to remote-sense of water stress. Recently, Near-
Infrared spectroscopy analysis has been extensively studied for
measurement of water content. NIR spectroscopy is frequently
used for rapid and reliable prediction of quality parameters in
plant, food, animal, and pharmacy (Prevolnik et al., 2011; Lin
et al., 2014; Aernouts et al., 2015; Wahid et al., 2015). Lin
et al. (2014) successfully developed four calibration models of
grain protein content (GPC) in barley, which could be applied
to quality control in malting, feed processing, and breeding
selection. NIR measurement with subsequent sorting is usually
based on the chemical composition of materials, but it has
also been used for more physical parameters such as the gross
meat content of intact crabs (Wold et al., 2010). A prediction
performance for unpeeled potatoes (R2 = 0.92, RMSECV =

1.06) was obtained with the on-line measurement configuration,
showing the possibility of using the instrument for the on-line
measurement (Helgerud et al., 2015).

Likewise, there were several reports on water content in plant,
food, animal, and pharmacy. Accurate determination of residual
moisture content in a freeze-dried (FD) pharmaceutical product
is critical for prediction of its quality. The multivariate modeling
of moisture content in freeze-dried mannitol-containing
products were constructed by NIR spectroscopy (Yip et al.,
2012). The near-infrared hyperspectral imaging was applied
to predict the water content of golden pothos (Epipremnum
aureum) leaves, after which partial least square regression (PLSR)
analysis was performed to predict the averaged water content
(Higa et al., 2013). A good-quality model of moisture content was
constructed with a root mean square error of cross validation of
0.90% (R2 = 0.99) for the straws of the Miscanthus × giganteus,
a triploid hybrid of M. sacchariflorus and M. sinensis, and the
short rotation coppice willow (Fagan et al., 2011). All in all, NIRS

was used to successfully estimate several key quality parameters
including water content, moisture, dry matter, ash, and protein
content (Boschetti et al., 2013).

In order to develop relationship between spectral data and
analyzed objects, several multivariate calibration algorithms
were applied. Partial least squares (PLS) regression is linear
algorithm, which obtain good performance when there was a
linear relationship between spectra and properties of objects
(Shao et al., 2010). PLS regression have been widely used in
the determination of NIR and properties of objects. Recently,
two non-linear regression models including least squares support
vector machine regression (LSSVR) and artificial neural network
(ANN) were popular. LSSVR is an interesting reformulation
of the standard support vector machine (SVM) simplified
by Suykens and Vanderwalle (1999). It develops models by
small samples, non-linearity, and high dimension with a good
generalization performance. Moreover, ANN also deals with
non-linear regression, but many parameters such as hidden layer
size, learning rate, and momentum have been to be set using
ANN algorithm (Despagne and Massart, 1998). Above all, the
near-infrared spectroscopy has the potential to predict water
content. However, no model for leaf water content was explored
so far in multiple Miscanthus species. Therefore, the aim of
the current study was to investigate and evaluate application
of the near-infrared instrument in determination of leaf water
content in multipleMiscanthus species with diverse geographical
origination and big sample size.

PLANT MATERIALS AND METHODS

Sample Preparation
A total of 624 Miscanthus samples consisting of 167 M.
sinensis, 169 M. sacchariflorus, 120 M. lutarioriparia, 166 M.
fIoridulus, and 2 M.×giganteus were collected from Miscanthus
fields in three China provinces, Zhejiang (Zhuji, E120◦09.441′,
N29◦49.509′), Hubei (Changsha, E113◦04.08.4′, N28◦11.14.6′),
and Hunan (Wuhan, E113◦04.08.4′, N28◦11.14.6′; Table S1).
The detailed information regarding the samples is listed in the
Table S1. Fresh leaves were taken from each sample, sealed in
plastic bags and stored at 4◦C under dark condition before
scanning.

Water Content Analysis
The fresh leaves of each sample were weighed and record as
Wf, then dried at 104◦C for 2 and 72 h at 80◦C. The dry matter
weighed was record as Wd. The leaf water content was calculated
as the following:

Water content(%) = (Wf−Wd)/Wf∗100

Where, Wf, fresh weight and
Wd, dry weight.

Each sample was measured in biological triplicate.

Measurement of Near-Infrared
Spectroscopy
The fresh leaves of about 2.5 g in weight were loaded into a circle
sample cup (35mm in diameter and 18mm in depth) and pressed
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slightly to obtain similar packing density. All the samples were
scanned in transmission mode (400–2,500 nm) with an interval
of 2 nm using a scanning monochromator FOSS NIRSystems
6500 (FOSS NIRSystems, Silver Spring, MD, USA) in reflectance
mode. Spectral data were collected using Vision software (version
3.5.0.0). Thirty-two scans were performed for each sample. In
addition, each sample was loaded and scanned three times, and
the average spectrum of each of the three recordings was used
for NIR analysis. To avoid bias in subset partition, all samples
were first arranged in an ascending order according to their
respective water content values. Then one sample was picked
out in order from every three genotypes. This process resulted
in the prediction set of 208 samples for the validation, and the
calibration set of the remaining 416 samples.

Data Processing and Analysis
Spectral Data Pre-treatment
In order to improve quantity of the spectra and reduce the
systematic noise, some spectral preprocessing methods were
applied. The procedure for pretreatment embedded in the
Unscrambler V9.5 (CAMO PROCESS AS, Oslo, Norway) was
carried out. The preprocessing methods including wavelet
transformation (WT), smoothing, normalization, spectroscopic
transformation, multiplicative scatter correction (MSC), the first
derivative of the calibration spectra calculated with three gaps
of data points, baseline and standard normal variance with de-
trending (SNV-D) were used in this study, respectively. The effect
of every pretreatment was analyzed by naked eyes and partial
least squares (PLS).

Multivariate Data Analysis
Principle component analysis (PCA) was performed as a tool
to extract the main information in multivariate data in this
study using the Unscrambler V9.5 (CAMO PROCESS AS, Oslo,
Norway). The PLS was carried out to develop a linear model for
the relationship between a set of independent spectral variables
(X) and a single dependent variable (Y) by Unscrambler V9.5
(CAMO PROCESS AS, Oslo, Norway).

LSSVR and RBF_NN were carried out with the embedded
LSSVM toolbox of MATALAB (Version 7.8.0.347, The
MathWorks, Inc., US). LSSVR presented an interesting
formulation of SVM regression by a linear set of equations
to obtain the support vectors. All standard LSSVR algorithms
were defined by Suykens and Vanderwalle (1999). In the
optimization of the modeling parameters, two parameters, γ

and the σ
2 in the RBF kernel function, should be determined

before the application of RBF_LSSVR, while only γ was
optimized using Lin_LSSVR model. RBF_NN is a type of
non-linear neural network, evaluated by standard error of
calibration (SEC), standard error of prediction (SEP), and
the correlation coefficient (r) between the predicted and
measured parameters. A model with a low SEC, a low SEP, and
a high r was considered as a good model (Li and He, 2006).
Moreover, the residual predictive deviation (RPD), defined
as the ratio between standard deviation (SD) of the samples’
reference values and SEC for NIR spectroscopy calibrations,
was a good index to evaluate the quality of regression models

(Fearn, 2002; Arana et al., 2005). A relatively high RPD value
indicates that the model is able to reliably predict the chemical
composition (Arana et al., 2005). SEC and SEP were defined as
follows:

SEP =
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where,
ŷi, the predicted value of the ith observation
yi, the measured value of the ith observation
Ip, the number of observations in the testing set
Ic, the number of observations in the calibration set
Bias, systematic difference between the predicted and

observed values.

RESULTS AND DISCUSSION

Water Content and the Character of the
Reflectance Spectra
In our study, the 624Miscanthus samples were randomly divided
into two groups: a training set (416 samples) was formed to
develop the calibration models, and a testing set (the remaining
208 samples) was built to validate the models (Table S1). The
water content in the training/calibration set ranged from 57.77
to 82.64% with a mean of 69.55%, while the water content in the
testing set varied from 58.20 to 85.94% with a mean of 74.14%
(Table 1). The range of water content in the training set almost
covered the testing set. Meanwhile, the testing set was evaluated
using the spectral data by principal component analysis. The first
and second component accounted for 65 and 26% of the raw
spectral data, respectively, and could explain 91% of variation
in total (Figure 1). All the samples in the testing set distributed
evenly in the training set.

In order to reduce background noise and improve the spectra
quantity, various pre-treatment modules for determination of
Miscanthus water content were evaluated using the Unscrambler

TABLE 1 | Statistic parameters for leaf water content in calibration and

testing sets of Miscanthus samples.

Set SNa Minimum (%) Maximum (%) Mean (%) SDb

Calibration set 416 57.77 82.64 69.55 4.54

Testing set 208 58.20 85.94 74.14 5.49

Total samples 624 57.77 85.94 71.08 5.33

aSample number; bStandard deviation.

Frontiers in Plant Science | www.frontiersin.org 3 May 2017 | Volume 8 | Article 721

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Jin et al. Determination of Leaf Water in Miscanthus

FIGURE 1 | Distribution of training samples and testing samples in

principal components space.

TABLE 2 | The evaluation of various pre-treatment models in leaf water

content of Miscanthus.

Pre-treatment R-square RMSE

Raw 0.927434 1.435722

Smoothing 0.927319 1.436861

Normalize 0.929284 1.417296

Spectroscopic 0.919114 1.515791

MSC/EMSC 0.924611 1.463382

Derivatives 0.927133 1.438693

Baseline 0.916432 0.912578

SNV 0.903898 1.652224

V9.5 (CAMO PROCESS AS, Oslo, Norway; Table 2). Of all
pre-treatments, smoothing, and normalization showed higher
accuracy relative to the other treatments. The pre-treatments
with normalization and smoothing of the spectra improved the
regression performance by reducing the noise or getting a more
even distribution of the variances and the average values. The
normalization pre-treatment was selected for further analyses in
the following models, because it had higher accuracy than the
smoothing. Figure 2A exhibited the typical reflectance spectra
of all samples, and the data pre-treated with normalization
showed a significant change. The peaks in Figure 2B were
clearer and sharper, while the NIR lines were compact.
The results indicated that the data with normalization pre-
treatment might be more accurate than the other pre-treatment
procedures.

Optimization for the LSSVR
Before developing the LSSVR model, the modeling parameters
should be optimized.

The implementation of LSSVM requires the specification
of only two parameters (γ and σ

2). The γ is a regularization

parameter, and determines the tradeoff between the structural
risk and empirical risk minimization, while the σ

2 is the kernel
width parameter, playing an important role in improving the
generalization performance of the LSSVR model. Furthermore,
the σ

2 is related to the confidence in the data and influences
the non-linear nature of the regression. The model tends
to lessen the complex solution by increasing the σ

2, so σ
2

reflects the distribution/range of x-values of the training data
(Chauchard et al., 2004; Cherkassky and Ma, 2004). Only
when the appropriate parameters are selected, the accuracy of
the model can be predicted. In this study, the grid searching
technique was used to optimize the two parameters. The
process for optimization of the modeling parameters is to
determine the minimum of a cost function with possibly multiple
optima (Cherkassky and Ma, 2004). The mean of the squared
residuals in the individual error (MSE) was selected as the
cost function, which calculated by the standard notations as
follows:

MSE =

∑Ic
i= 1

(

ŷi− yi
)2

Ic

ŷi, the predicted value of the ith observation in the training set
yi, the measured value of the ith observation in the training set
Ic, the number of observations in the training set

An optimization process of lin_LSSVR model for the water
content was shown in Figure S1. The initial values of both γ

and σ
2 in the RBF_LSSVR model were set as 2 at first. The

range of both γ and σ
2 were set as 1 – 500,000. The logarithmic

transformation was employed in the search plane owing to the
large magnitude in the investigated ranges of these parameters.
The optimal values of γ and σ

2 were obtained with 322.4957 and
4.1720e+003, respectively, which resulted in the smallest MSE
value of 0.0028.

Accuracy Comparison of LSSVR with Other
Regression Models
In our study, the models of PLS, lin_LSSVR, RBF_LSSVR, and
RBF_NN with the same optimal parameters were developed.
These four models presented good correlation between the
predicted and actual water content in the correlation plots
for training and testing sets (Figure 3; Table 3). In Figure 3,
we found that the samples from models of Lin_LSSVR,
RBF_LSSVR, and RBF_NN were more concentrated and
closer to the regression lines compared with those from
PLS model. Moreover, the predicted values were almost
the same to the actual values in the RBF_NN model.
Table 3 showed that linear determination models of PLS and
Lin_LSSVR obtained lower r2c and r2p, while these parameters
in the non-linear determination models of RBF_LSSVR and
RBF_NN were higher. The r2c and r2p in the RBF_NN even
reached 100%. The results indicated that the non-linear
determination models were better than linear determination
models.
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FIGURE 2 | (A,B) Near infrared reflectance spectra of water content in Miscanthus, displayed by raw data (A), and smoothing and normalize (B).

FIGURE 3 | The results of four calibration models: (A) PLS, (B) Lin_LSSVR, (C), RBF-LSSVR, (D) FBF_NN. The panes and circles represent the training samples

and testing samples, respectively.

Sensitive Wavelengths for Determination of
Leaf Water Content in Miscanthus
Although, we have constructed good models in determining
leaf water content in Miscanthus, we still need to know which

wavelengths are the most sensitive for the determination. In
this study, we tried to figure out the sensitive wavelengths
closely related to water content in Miscanthus. If models
are constructed using the whole wavelength data, redundant
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TABLE 3 | Calibration models of leaf water content corresponding to four

different arithmetics using the whole and 75 sensitive wavelengths in

Miscanthus.

Wavelength Model Full cross-validation Testing set validation

rc2 SEC rp2 SEP

400–

2,500 nm

PLS 0.9051 1.4747 0.9165 1.3118

Lin_LSSVR 0.9857 0.7504 0.9259 1.4905

RBF_LSSVR 0.9998 0.5782 0.9782 0.7855

RBF_NN 1.0000 0.0063 1.0000 0.0796

Sensitive

wavelengths

PLS 0.9177 1.3024 0.9058 1.3969

Lin_LSSVR 0.9579 1.0714 0.9517 1.1691

RBF_LSSVR 0.9831 0.6823 0.97169 0.8952

RBF_NN 0.9899 0.0136 0.9868 0.1536

Sensitive wavelengths: 11, 14, 17, 21, 34, 64, 80, 91, 102, 108, 115, 120, 131, 140,

149, 156, 164, 175, 264, 279, 336, 348, 353, 365, 373, 382, 391, 408, 421, 439, 461,

485, 499, 511, 530, 565, 593, 627, 641, 647, 655, 661, 670, 721, 750, 759, 761, 765,

785, 806, 825, 838, 850, 855, 863, 886, 917, 927, 939, 949, 958, 965, 985, 999, 1,006,

1,008, 1,014, 1,016, 1,021, 1,023, 1,026, 1,029, 1,032, 1,039, 1,041 nm.

wavelengths insensitive to leaf water content would be used
to calculate the predicted values. This whole wavelength-
based prediction should be an cost-ineffective process requiring
extensive computational time without any gain in precision.
Thus, it is helpful to figure out the contributions of individual
wavelengths to measurement values in M. sinensis. According
to the theory of Haaland and Thomas (1988), the wavelengths
with a large absolute regression coefficient were selected as the
sensitive wavelengths. Thus, the wavelengths with sharp peaks
and valleys were considered sensitive to the leaf water content
in Miscanthus (Figure S2). In total, 75 sensitive wavelengths
were found, and they yielded a significant positive correlation
between the reference value and VIS/NIR spectra and had larger
contribution to the calibration model for leaf water content in
Miscanthus (Table S2).

Generally, spectral interval between 1,888 and 1,956 nm
has been associated with the second overtone for biding O-H,
while the second overtone and combination for free-OH located
on 960–980 and 1,920–1,980 nm, respectively (Haaland and
Thomas, 1988; Suykens and Vanderwalle, 1999; Fearn, 2002;
Chauchard et al., 2004; Cherkassky and Ma, 2004; Tran and
Grishko, 2004; Arana et al., 2005; Frost et al., 2007; Fagan et al.,
2011). In the current study, 75 wavelengths were identified as
sensitive and important for determination of leaf water content
in Miscanthus (Figure S1; Table S2). The spectra with 926 and
956 nm of wavelength correspond to the 2nd overtone of free
O-H, as well as 1,214 nm for the 2nd overtone of binding O-
H, while the spectra at wavelengths of 1,320, 1,368, 1,396, 1,420,
and 1,458 nm are associated with the 1st overtone of free O-
H. Meanwhile, the wavelengths of 1,928 and 1,940 nm displayed
the combination of O-H and other molecules. Furthermore, the
bands around 2,203–2,237 nm of wavelengths in humite minerals
are the combination of fundamental bands due to Si-OH bonding
(Kronenberg, 1994). The observation of combination bands in
NIR spectra of Miscanthus shows bands at wavelengths of 2,232,

2,252, 2,275, 2,296, 2,314, 2,328, 2,368, and 2,396 nm. The
band centered at 2,440 nm was the same as that of norbergite
and alleghanyite (Frost et al., 2007). In addition to these 19
wavelengths mentioned above, the other 56 wavelengths were
also associated with leaf water content in Miscanthus, and were
not observed in other materials. This result may imply the
complex feature of leaf water content in Miscathus. In order to
evaluate the actual contributions of above wavelengths, these 75
wavelengths and leaf water content were set as the independent
variables and the dependent variable, respectively. The models
for leaf water content were built up after 10-fold cross-validation.
When the accuracy of a developed methodology is evaluated,
the linear regression between reference and predicted data is
usually applied (Table 3). Both the training and testing sets
showed a significant correlation between the predicted leaf water
content and the training result (r2c =0.9177 and 0.9579 for PLS
and Lin_LSSVR model, respectively; Table 3). Furthermore, the
r2c for non-linear models including RBF_LSSVR and RBF_NN
were 0.9831 and 0.9899, while the r2p of testing validation for
two models were 0.97169 and 0.9868, respectively. Obviously,
not only for the models of all wavelengths but also for the
75 sensitive wavelengths, the non-linear models showed higher
accuracy than the linear models, indicating that the non-
linear models were more suitable for determination of the
leaf water content in Miscanthus. Even though the accuracy
of the models decreased using the 75 sensitive wavelengths
compared with the models based on all the wavelengths, the
models based on the 75 sensitive wavelengths still presented a
reasonable high accuracy. According to the analysis above, the
calibration model built using the 75 sensitive wavelengths was
more stable and had high prediction capability in Miscanthus.
It provided the theory basis for the portable instrument
development to detect the leaf water content rapidly and
non-destructively.

In China, the bioenergy Miscanthus crop is proposed to be
planted on the marginal lands, and thus often subjects to drought
stresses (Dai et al., 2013; Yu et al., 2015). The drought-tolerant
genotypes or varieties are needed for this type of marginal lands.
Using the models built up with 75 sensitive wavelengths could
be applied to development of the drought-tolerant Miscanthus
varieties.

CONCLUSIONS

We explored the feasibility of VIS/NIR spectroscopy for
determination of leaf water content in Miscanthus. The
smoothing and normalization pretreatments were the best
procedures to reduce background noise and enhance quality
of the spectra. The multivariate calibrations PLS, lin_LSSVR,
RBF_LSSVR, and RBF_NN based on whole and the 75 sensitive
wavelengths were developed for determination of leaf water
content in Miscanthus. The RBF_LSSVR and RBF_NN models
demonstrated higher accuracy than the linear models including
PLS and Lin_LSSVR based on both the whole wavelengths
and the 75 sensitive wavelengths. Although optimization of
RBF_LSSVR and RBF_NN parameters including grid search
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approach and 10-fold cross-validation cost long time, it was still
very effective to establish good-quality models for leaf water
content in Miscanthus. Thus, the non-linear models based on
these spectra sensitive to leaf water content could be used
to develop a simple, low-cost, and effective instrument and
determine the leaf water content rapidly and non-destructively
inMiscanthus.
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