
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Determination of material properties by use of third-harmonic generation
microscopy.

Schins, J.M.; Schrama, Th.; Squier, J.; Brakenhoff, G.J.; Müller, M.
DOI
10.1364/JOSAB.19.001627
Publication date
2002

Published in
Journal of the Optical Society of America B - Optical Physics

Link to publication

Citation for published version (APA):
Schins, J. M., Schrama, T., Squier, J., Brakenhoff, G. J., & Müller, M. (2002). Determination of
material properties by use of third-harmonic generation microscopy. Journal of the Optical
Society of America B - Optical Physics, 19, 1627-1634.
https://doi.org/10.1364/JOSAB.19.001627

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:25 Aug 2022

https://doi.org/10.1364/JOSAB.19.001627
https://dare.uva.nl/personal/pure/en/publications/determination-of-material-properties-by-use-of-thirdharmonic-generation-microscopy(93f4fbad-a0d8-4773-804e-2a035bed92e4).html
https://doi.org/10.1364/JOSAB.19.001627


Schins et al. Vol. 19, No. 7 /July 2002 /J. Opt. Soc. Am. B 1627
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The fundamental features of third-harmonic generation microscopy are examined both theoretically and ex-
perimentally, and the technique is applied to the characterization of layered structures. Measurements and
model calculations have been performed of the third-harmonic yield generated from homogeneous layers.
Model calculations based on the paraxial approximation show good agreement with the experimental results,
despite the conditions of high numerical aperture. The method proposed here allows for the determination of
(i) the layer’s third-order susceptibility relative to that of the substrate, (ii) its index of refraction at the third-
harmonic frequency relative to that at the fundamental frequency, and (iii) its thickness and for the identifi-
cation of a gradient region between two adjacent layers. © 2002 Optical Society of America

OCIS codes: 180.6900, 190.4410, 190.4160, 120.6710.
1. INTRODUCTION
Unlike second-order parametric processes such as second-
harmonic generation, which vanish in isotropic media,
third-harmonic generation (THG) can be obtained in prac-
tically all kinds of material as long as the materials are
transparent at the wavelengths involved. However, un-
der strong focusing conditions all the harmonic radiation
produced before the focus is reabsorbed coherently behind
the focus as a result of the Gouy phase shift. In practice,
this effect limits significant THG to sample geometries
with an interface between two bulk materials that differ
in dispersion or in third-order susceptibility.

When the amplitude of the driving electric field has a
Gaussian profile, the paraxial equations that describe
THG can be solved analytically to a large extent. This
analysis was first made by Ward and New,1 who followed
closely the analysis of second-harmonic generation by
Kleinman et al.2 Strictly speaking, this description is
valid only for small and intermediate numerical aper-
tures, and in that regime it has proved to describe the ex-
perimental results accurately.3,4

Under tight focusing conditions, THG has an inherent
optical sectioning capability as a result of the signal’s
third-order power dependence on laser intensity. Indeed,
the potential of THG for microscopic applications has
been recognized.5–7 The high sensitivity of THG micros-
copy to spatial variations in third-order susceptibility and
in dispersion makes it complementary to the classic mi-
0740-3224/2002/071627-08$15.00 ©
croscopic techniques, such as phase contrast and differen-
tial interference contrast microscopy, which are sensitive
only to spatial variations in refractive index.

In this paper we explore the potential of THG micros-
copy for material characterization, and we study the con-
ditions under which the paraxial equations may be used
for the theoretical description. The sample geometry is
chosen to be as simple as possible: just one or two flat
interfaces between isotropic, homogeneous bulk materi-
als. All experimental results presented here were ob-
tained with such samples. We start out theoretically in
Section 2, reviewing the physical mechanism and intro-
ducing the parameters involved. The paraxial equations
are solved analytically for a Gaussian profile of the inci-
dent beam and numerically for an evenly illuminated ob-
jective pupil (hat profile). Numerical solutions are pre-
sented only when the Gaussian theory does not suffice.

2. THEORY
In this section we describe the theoretical procedure that
we used to calculate the THG response under various fo-
cusing conditions and for various specimen configura-
tions. The calculations are based on the paraxial wave
equation with two kinds of initial intensity distribution:
the theoretically easy, tractable Gaussian profile and the
experimentally more realistic hat profile.
2002 Optical Society of America
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A. Gaussian Profile
In isotropic, nonmagnetic materials the paraxial wave
equations8 for the fundamental (v f) and the third-
harmonic (vth 5 3v f) field envelopes Ef (r) and Eth(r)
propagating in the z direction take the simple form
(Gaussian units)

S 2ikf
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In Eqs. (1) the wave numbers are defined as

kf 5
2pn~v f!

l f
,

kth 5
2pn~vth!

lth
,

Dk 5 3kf 2 kth 5
6pDn

l f
,

where Dn 5 n(v f) 2 n(vth) and with vacuum wave-
lengths l f 5 2pc/v f and lth 5 2pc/vth for the funda-
mental and the third harmonic, respectively. Third-
order susceptibility x (3) is shorthand notation for
isotropic tensor element x (3)(vth ; v f , v f , v f) that de-
scribes the THG response of the material. The total elec-
tric field E(r, t) is related to the field envelopes Eth(r)
and Eth(r) as

E~r, t ! 5 exy$Ef ~r!exp@i~kf z 2 v f t !#

1 Eth~r!exp@i~kthz 2 vtht !# 1 c.c.%. (2)

That is, all fields are linearly polarized (exy) in the xy
plane, with time-independent envelopes. In practice,
such a description is applicable to time-dependent enve-
lopes as well, and it holds for pulse durations as short as
100 light cycles (in our experiments we used a pulse du-
ration of the order of 105 light cycles).

The paraxial equations are solved by

Ef ~r! 5 hAf expS 2
hkf r2

2zRn
D ,

Eth~r! 5 hAth~z !expS 23
hkf r2

2zRn
D , (3)

where

h~z ! 5
1

1 1 iz/zRn
,

Ath~z ! 5 2pivthx~3 !Af
3

S~z !

nthc
,

S~z ! 5 E z

h2~j!exp~iDkj!dj. (4)
Besides peak amplitude Af (and a constant phase) the
only free parameter in this solution is zRn . This
parameter—the so-called Rayleigh length—determines
the numerical aperture @NA (5n sin a)# through the re-
lation zRn 5 2/kf sin2 a and is equal to half of the confocal
parameter (b 5 2zRn).

We now briefly consider some general characteristics of
THG based on Eqs. (1)–(4). Under strong focusing con-
ditions the Gouy phase shift prevents THG in isotropic
media when Dk < 0.8 This is the result of destructive in-
terference of the third-harmonic radiation produced be-
fore focus with that generated after the focus. Efficient
THG—through (partially) constructive interference—
occurs only in case of an interface that changes either the
dispersion or the nonlinear susceptibility.

At focus (z 5 0) one has h(0) 5 1, and the radial in-
tensity distribution of the fundamental has a width at a
1/e maximum of 2AzRn /kf. The radial intensity distribu-
tion of the THG beam is A3 times smaller than that of the
fundamental. Precisely on the axis of symmetry (r
5 0) the axial dependence of the fundamental is given by
h(z), so the intensity has a Lorentzian profile with a full
width at half-maximum (FWHM) equal to 2zRn . For the
(hypothetical) case of constant amplitude Ath(z), the THG
intensity profile is exactly equal to that of the fundamen-
tal.

Equations (4) yield explicit analytical results only in a
reduced number of special cases. Here we mention two
of these cases:

(i) A single interface medium–air transition with ex-
act zero phase mismatch in the medium (Dk 5 0). In
this case the amplitude of the THG signal is determined
by

uS~z0!u2 5 U E z0

h2~j!djU2

5
zRn

2

1 1 ~z0 /zRn!2 ,

where z0 is the optical distance between the interface and
the beam waist. Consequently, the THG intensity has a
FWHM of 2zRn , exactly like the fundamental beam itself.

(ii) A double interface air–medium–air transition,
with a medium thickness Dz far below the excitation
wavelength. Here the amplitude of the THG signal is de-
termined by

uS~z0!u2 5 Uh2~z0!exp~iDkz0!E
z0

z01Dz

djU2

5 F Dz

1 1 ~z0 /zRn!2G2

,

where z0 is the optical distance between the thin slab and
the beam waist. Consequently the THG intensity has a
FWHM of 1.28zRn , as was pointed out by Barad et al.5

In most realistic cases, however, the integral of Eqs. (4)
cannot be calculated analytically. We have therefore cal-
culated integral S(z) of Eqs. (4) numerically for layered
structures, with the interfaces oriented perpendicularly
to the direction of light propagation. At each interface
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we impose continuity of the phase difference between the
third-order (material) polarization and the generated
third-harmonic beam. Consequently, the phase of S(z)
needs to be corrected, at every interface, with a constant
value:

Df 5 Dk1n1~v f!z if 2 Dk2n2~v f!z if .

Here subscripts 1 and 2 refer to the layers, and z if is the
distance from the interface to the focal plane. Medium-
dependent optical distance n(v f)z if reflects the medium-
dependent curvature of the wave fronts, as can be deter-
mined from the analytical solutions [Eqs. (3)] to the
paraxial equations: Electric field envelopes Ef(r) and
Eth(r) at z 5 n(v f)z if are both independent of n(v f), pro-
vided that the Rayleigh length in the medium scales as an
optical distance, i.e., zRn 5 n(v f)zR1 , with zR1 5 l f /
pNA2 the Rayleigh length in vacuum @n(v f) 5 1#.

The integral to be calculated for an arbitrary number of
interfaces can now be generalized as follows:

S~z ! 5 (
j

exp~iDf j!E
qj

rj

dj
exp~iDkjj!

~1 1 ij/zR, j!
2 , (5)

where the z-dependent integration limits (qj and rj) and
phases (Df j) are determined iteratively:

qj11

nj11~v f!
5

rj

nj~v f!
,

rj 2 qj 5 layer thickness,

Df j11 2 Df j 5 Dkjrj 2 Dkj11qj11 .

Equation (5) can also be used for calculation of THG in
the case of a transition gradient, from one layer to an-
other, either in the refractive index or in the third-order
susceptibility. We consider only the case in which the
layer gradient is in the direction of light propagation. To
simulate such a gradient we calculated integral S for a
transition region divided into many subregions, each of
numerical step-size thickness. Every subregion is con-
sidered homogeneous, with third-order susceptibility x (3)

and wave-vector mismatch Dk such that the transition
from one bulk material to the other occurs linearly over
the transition region.

B. Non-Gaussian Profile
No analytical solution to coupled Eqs. (1) has been pub-
lished, to our knowledge, for other than Gaussian beam
profiles. In most experimental situations, especially
when one is measuring with high-NA objectives, the ob-
jective apertures are overilluminated. In this case one
can simulate the experimental results by assuming a flat
intensity distribution over the objective aperture.
Fraunhofer diffraction of a flat beam profile at a circular
aperture (hat profile) yields a radial amplitude distribu-
tion at focus given by the well-known Airy function
J1(z)/z, where J1 is the first-order Bessel function (of the
first kind) and z 5 r/r0 is the radial distance expressed in
units of r0 5 lf/2pa, where a is the radius of the aper-
ture and f is the focal distance.9 To calculate the third-
harmonic beam profile generated by a fundamental beam
that has an Airy distribution at focus we discretized
coupled Eqs. (1), using a space-marching Crank–
Nicholson algorithm.10 We verified that the algorithm
yields the correct sin(h)/h dependence of the fundamen-
tal’s amplitude along axis of propagation z, where
h 5 z/z0 is the axial distance expressed in units of
z0 5 2lf 2/pa2.9 Because of the high spatial frequencies
of the hat profile far from focus, we performed the calcu-
lation by starting off at the focus, using Airy function
J1(z)/z as a radial profile.

The calculations show that the THG beam generated
by a hat-profile fundamental beam approaches a Gauss-
ian profile in the far field, with a FWHM equal to 0.30
6 0.01 times the diameter of the input beam. For a
Gaussian input beam profile, however, we calculated a ra-
tio for the FWHM of the harmonic and the fundamental
beams of 0.58 6 0.01, which is in agreement with the
analytical value 1/A3 derived above.

3. RESULTS
A. Experimental Setup
The experimental setup is shown schematically in Fig. 1.
An optical parametric amplifier (Coherent, Sunnyvale,
Calif., Model OPA-400) provides tunable radiation over
the range 950–2200 nm. At a repetition rate of 250 kHz,
;100-fs pulses are produced, with a typical power of ;60
nJ. In the experiments, neutral-density filters are used
to reduce the power entering the objective to ,10 nJ per
pulse. The output of the parametric amplifier is upcolli-
mated by a telescope, passes a variable aperture and two
additional lenses, and is focused onto the sample by a
high-NA microscope objective. The positions of the vari-
able aperture and the two lenses are such that the aper-
ture is imaged onto the entrance pupil of the excitation
objective and the laser enters the objective as a parallel
beam. The upcollimation of the laser beam ensures that
the variable aperture is overfilled significantly at all set-
tings, ensuring an approximately flat intensity profile
across the entrance pupil. The fundamental and THG
beams are collected by a second high-NA objective placed
collinearly. A bandpass filter is used to block the funda-

Fig. 1. Schematic of the experimental setup, with two variants
for the detection path. An IR beam generated by the optical
parametric amplifier (OPA) is apodized by a variable aperture (A)
and imaged onto the entrance pupil of the excitation objective by
means of two lenses (L1 and L2). L2 and L3 are the tube lenses of
the respective microscope objectives. The distance between the
two lenses (d) and the sample position (z) can be varied. The
total amount of THG intensity is measured with a photomulti-
plier tube (PMT), with a filter (F) blocking out the fundamental.
Alternatively, the numerical aperture of the THG signal is mea-
sured by imaging of the output pupil of the collection objective
onto a CCD camera (CCD).
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mental beam. The transmitted THG beam is detected by
a photomultiplier tube. In one set of experiments the
exit pupil of the collection objective was imaged onto a
video camera (Hamamatsu Model C5985 CCD). This set-
ting allowed for the measurement of the NA of the THG
signal as a function of the excitation NA.

The focal position of the specimen is under piezo-
electric control with position-sensor (Queensgate Model
NS50 nanosensor) feedback, providing a positioning accu-
racy of 100 nm. The third-order power dependence of the
third-harmonic signal on the input intensity has been
checked regularly (results not shown). Also, spectral
evaluation of the signal proved that no other than THG
signals (e.g., white-light generation or fluorescence) were
recorded.

In what follows we discriminate between basically two
sample configurations. The single-interface configura-
tion indicates an interface between two bulk media, each
with its own dispersion characteristics and third-order
nonlinear susceptibility. The second type of sample con-
figuration is denoted a double interface. In this case
there is a layer of a medium with different material prop-
erties inside a bulk medium. The two configurations are
shown schematically in Fig. 2.

B. Single Interface
The microscope objectives are designed for roughly half of
the wavelength that we used to excite the sample. Con-
sequently, the optimal tube point position might be differ-
ent from that specified by the manufacturer (Zeiss). We
determined the optimal tube point position by measuring
the total THG yield as a function of sample position
z—denoted THG axial profiles in what follows—for sev-
eral positions of lens L1 relative to L2 . Figure 3(a) shows
the THG axial profiles at three positions of L1 . Clearly
the profile changes from broad and asymmetric for L1
close to L2 (335 mm), to narrow and symmetric (365 mm),
and to broad and asymmetric again, though with opposite
sign, for L1 far from L2 (405 mm). The FWHM, as well as
the peak intensity, of the axial traces is plotted as a func-
tion of lens position in Fig. 3(b). The flip in asymmetry
results from spherical aberration of the focused excitation
beam. The lens position at which the THG yield culmi-
nates coincides with the absence of spherical aberration,
which is clear evidence of diffraction-limited focusing. In

Fig. 2. Two sample geometries used in the experiments: top,
with a single interface, also referred to as bulk–bulk, and bot-
tom, with two interfaces, also referred to as bulk-layer–bulk.
Media 1 and 2 are characterized by their refractive indices at the
fundamental and tripled frequencies, n(v f) and n(vth), respec-
tively, and by their third-order susceptibility x (3).
spite of the quite different wavelengths used, the L1 –L2
lens separation at which spherical aberration is canceled
(365 6 5 mm) coincides with the manufacturer’s specifi-
cations (364.5 mm). This lens position was used in all
further experiments reported here.

The width of the axial THG profiles determines the
resolution of THG microscopy. Figure 4 shows how the
width of the axial THG profiles depends on the excitation
NA. Data were collected with two objectives: a 63
3 1.25-NA oil-immersion objective (open triangles) and a
40 3 /0.65-NA air objective (filled circles). We adjusted
the effective NA by changing the size of variable aperture
A. With FA the diameter of the variable aperture (as im-
aged onto the objective’s entrance pupil), and F full the ob-
jective’s pupil diameter at full numerical aperture NAfull ,
the effective NA, NAeff , follows from the ratio
NAeff /NAfull 5 FA /F full . Pupil diameter F full can be de-
duced from the objective’s magnification M and tube
length TL as F full 5 2NA 3 TL/M. The correctness of
this procedure has been demonstrated by experiments in

Fig. 3. THG dependence on tube-lens position for a glass–air in-
terface, with 1.25-NA excitation at l f 5 1.2 mm. (a) THG axial
profiles measured at three tube lens positions. (b) FWHM and
maximum THG intensity of the THG axial profile as a function of
the tube-lens position. (The solid and dashed curves are guides to
the eye only.)

Fig. 4. FWHM of THG axial profiles from a glass–air interface
as a function of input NA (fundamental). Solid line, prediction
from Gaussian theory (no fitting parameters). The data repre-
sented by the filled circles were obtained with an air objective
in the excitation path; the open triangles, with an oil-immersion
objective.
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which anomalous behavior was observed for NAeff
. NAfull .

We have found experimentally that the width of the
THG axial profile decreases with increasing input NA,
closely following an inverse square dependence. In Sub-
section 3.A we showed that, for Dn 5 0, Gaussian theory
predicts a Lorentzian axial profile for the THG signal,
with a width equal to the confocal parameter of the exci-
tation beam. We calculated the S integral [Eqs. (4)] nu-
merically, for the experimental case of Dn 5 20.032 (K5
glass with vacuum wavelengths of 1.2 mm and 400 nm for
the fundamental and the THG beams, respectively). The
numerical results are shown in Fig. 4 by the solid curve.
There is excellent agreement between the experimental
data and Gaussian theory for low NA, with a slight over-
estimate at high NA.

To measure the dependence of the output NA (THG) on
the input NA (fundamental) we imaged the exit pupil of
the collection objective onto a CCD camera. For all NAs
the illumination distribution is close to a hat profile (flat
intensity distribution with a hard, circular top), whereas
the third-harmonic intensity profile is close to Gaussian.
Excitation NAin is calculated as indicated above. NAout
of the THG signal is determined as follows: The inten-
sity profile at the exit pupil is fitted to a two-dimensional
Gaussian with a single radius. We used the FWHM of
the distribution determined from the fit to calculate the
output NA according to NAout 5 FWHM 3 NAfull /f full ,
where again f full and NAfull denote, respectively, the pupil
diameter and full the NA of the collecting microscope ob-
jective. Figure 5 shows the results of this measurement.
The output NA is equal to 0.3 (60.01) times the input NA.

The solid curve in Fig. 5 represents the numerical re-
sults for hat-profile excitation. Because a radial hat pro-
file in the far field corresponds to an Airy profile at focus,
we obtained the numerical results by propagating an Airy
function through the glass, as explained in Section 2.
The theoretical slope is in excellent agreement with
theory. This means that the paraxial model, which is
valid in principle for small slope angles only, describes the
higher-NA case just as well. It was found both experi-

Fig. 5. Dependence of the output NA (THG) on the input NA
(fundamental). Open triangles, data obtained with a 63 3 /
1.25-NA (oil-immersion) objective; filled circles, with a 40 3 /
0.65-NA (air) objective in the excitation path. The excitation
beam approximately follows a radially flat intensity distribution
(hat-profile excitation) at all input NA values.
mentally and theoretically that the intensity distribution
of the output THG beam always follows a Gaussian pro-
file, even for the highest-NA hat-profile excitation. This
suggests that the characteristics of the THG process are
determined almost completely by the central—and
highest-intensity—part of the focal region. This is in
agreement with the third-order nonlinear nature of THG,
considering that the largest differences between the focal
field distributions produced by Gaussian- or hat-profile il-
lumination of the pupil are found in the low-intensity
wings of the distribution, which make a negligible contri-
bution to the total THG yield.

The paraxial Gaussian theory8 predicts a 1/A3 ratio be-
tween the FWHM of the THG intensity distribution and
that of the IR excitation intensity distribution. Instead,
with a hat-profile excitation intensity distribution, this
ratio becomes 0.3 if the THG output NA is defined again
through the FWHM of the THG intensity distribution (as
is done in this paper). It should be noted that other slope
values are obtained when the width of the output THG in-
tensity profile is defined differently. For example, the
slope equals 1/A3 when the Gaussian width is defined to
be 7.5% of maximum intensity instead of half-maximum.

An important difference between Gaussian- and hat-
profile excitation is in the functional form of the total
THG yield as a function of axial position. In Subsection
3.A we showed that for Dn 5 0 this profile is Lorentzian.
Our calculations (results not shown) indicate that the
axial THG profile is extremely close to Gaussian when the
radial excitation profile is hatlike in the far field.

C. Two Interfaces
We now turn to a sample with two interfaces spaced ap-
proximately 10 mm apart. The two interfaces are re-
solved independently if the width of the focused axial in-
tensity profile is much smaller than this separation. In
this case, one expects two THG peaks as a function of
sample position z (shown in Fig. 1), as in the situation
when the beam focus lies exactly upon an interface. The
specific sample geometry becomes important when the
width of the axial intensity profile is of the order of, or
slightly exceeds, the interface separation: Depending on
the value of Dn in the gap (between the interfaces) the
signal generation after the gap may interfere more posi-
tively or negatively with what was generated before the
gap. Typical traces are presented in Fig. 6. To charac-
terize the functional shape of the THG axial profile in this
case we chose a limited number of parameters, as follows:
With the first interface located at z 5 0 and the second
interface at z 5 L we define three intensity ratios:

Rpre 5
ITHG~2L/4!

ITHG~0 !
,

Rpost 5
ITHG~1L/4!

LTHG~0 !
,

Rmid 5
ITHG~1L/2!

ITHG~0 !
.

The THG yield is represented by ITHG , with the z position
of the interface as its argument: The ratios represent the
THG intensities that result when the focus lies exactly
halfway between the interfaces, ITHG(1L/2); one-quarter
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gap thickness before the first interface, ITHG(2L/4); and
likewise behind the first interface, ITHG(1L/4); all nor-
malized by the intensity at the first interface, ITHG(0).
The three relevant intensities are indicated in Fig. 6.

Model calculations of the behavior of the intensity ra-
tios as a function of NA are presented in Fig. 7 (right-
hand side) for an air-filled and an immersion-oil-filled gap

Fig. 6. Typical THG axial profiles for the double-interface con-
figuration with either an air gap (left) or an immersion-oil gap
(right). The gap is 8 mm thick and is situated between two K5
glass slides. The axial profiles are recorded at different input
NA values of 0.25, 0.30, and 0.35 as indicated.

Fig. 7. Measured (left) and calculated (right) intensity ratios
Rpre , Rmid , and Rpost for a double-interface geometry. Gaps are
filled with immersion oil or air, as shown. Experimental condi-
tions are given in the text.
between K5 glass slides. For comparison, the experimen-
tal data are displayed on the left-hand side in Fig. 7. Be-
cause the calculations were made for Gaussian beams,
and the experiments were performed with hat-profile
beams, the agreement is only qualitative. Nevertheless,
the calculations reproduce the basic features of the ex-
perimental data. For the calculations we used Dnoil
5 20.028 and DnK5 5 20.032, with noil 5 1.50276 and
nK5 5 1.51146 at l f 5 1100 nm. The ratio of the nonlin-
ear susceptibilities of K5 glass and immersion oil was cho-
sen arbitrarily to be xoil

(3)/xK5
(3) 5 3. The numerical calcu-

lations show that the functional form of the signal
depends almost solely on the change in refractive indices,
whereas the magnitude of the THG signal depends prima-
rily on the ratio of nonlinear susceptibilities (see the dis-
cussion below).

Figure 8 shows the strong dependence of the THG con-
version efficiency (with the interface positioned at z
5 0 mm) on susceptibility ratio xgap

(3) /xglass
(3) as a function of

NA. The THG conversion efficiency—i.e., the ratio be-
tween THG output power and IR input power (which is of
the order of 1027 –1028 for glass–air interfaces11)—is pro-
portional to uS/zRnu2, where S is the integral of Eqs. (4).
Because the absolute conversion efficiency of THG de-
pends on the intensity of the fundamental beam, which
for a given power depends on its pulse duration, we did
not represent the results of our calculation in terms of ab-
solute efficiencies. Note that the functional form of the
THG conversion efficiency as a function of NA is almost
independent of Dngap (data not shown).

D. Periodic Structures and Gradients
For periodic structures and gradients the S integral of
Eqs. (4) must be generalized to Eq. (5). We performed
some calculations that are relevant for the THG charac-
terization of multilayer coatings. For example, one may
wish to measure the thickness of deposited layers. Cal-
culations point out that the visibility of a periodic stack of
layers depends critically on layer thickness and disper-
sion. Figure 9 shows the visibility of 0.5-mm-thick layers
scanned axially with a 1.0-NA IR beam of 1.55-mm wave-
length. The visibility is defined as ulog(Q)u, where Q is

Fig. 8. Calculated THG conversion efficiencies as a function of
NA of the excitation beam for four values of the third-order sus-
ceptibility ratio xgap

(3) /xglass
(3) . For all traces, Dngap 5 20.022 and

Dnglass 5 20.032.
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the ratio of THG yield with the IR focus exactly on the in-
terface to that which is halfway between interfaces (Fig.
9, inset).

Whether THG microscopy can discriminate between a
sudden and a gradual change of material parameters at
an interface depends critically on the steepness of the gra-
dient relative to the confocal parameter of the focused
fundamental beam. Only when the zone of gradual
change in material properties exceeds the confocal param-
eter can THG be used to characterize this gradient. For
Fig. 10 two typical cases have been calculated: the dis-
persion of the two pure materials differs but not their
third-order susceptibility (dashed curve) and the third-
order susceptibility of the two pure materials differs but
not their dispersion (solid curve). That for a sudden
transition, i.e., in the limit of an infinitely steep gradient,
these two curves do not converge is a property that is in-
herent in the process of THG buildup: Susceptibility

Fig. 9. Visibility of a stack consisting of 100 layers, each 0.5 mm
thick, with focusing in the middle. Visibility is defined here as
the absolute logarithm of the ratio between the yield for focusing
on an interface to that for focusing halfway between the inter-
faces. The dispersion ratio is defined as Dngap /Dnglass , where
Dnglass 5 20.032 and the susceptibility ratio is xgap

(3) /xglass
(3) .

Fig. 10. Calculated gradient sensitivity (width of the THG axial
profile at high NA) as a function of gradient extension between
two different bulk materials. Two situations are displayed:
Dashed curve, the materials have equal third-order susceptibil-
ity @x1

(3) 5 x2
(3)# but unequal dispersion (Dn1 5 20.022 and Dn1

5 20.032); solid curve, the two materials have equal dispersion
(Dn1 5 Dn2 5 20.032) but differ in third-order susceptibility
@x1

(3) 5 4x2
(3)#.
transitions yield smaller THG axial profile widths (i.e.,
better resolution) than do dispersion transitions.

We calculated the THG response of a gradient region by
dividing that region into many homogeneous layers that
contain mixtures of both pure materials, such that the
amount of admixture increases linearly from one pure
layer to the other (Fig. 10, inset). At every interface the
required phase shift between the third-order material po-
larization and the induced THG beam has been accounted
for. Any kind of spatial mixing profile between two ma-
terials can be simulated with this technique.

4. DISCUSSION AND CONCLUSIONS
The experiments and theoretical analysis have demon-
strated the potential of THG microscopy for material
characterization. In particular, double-interface geom-
etry provides an excellent means for determining the ra-
tios of the third-order susceptibilities of layer and sub-
strate and also of their dispersion. Because of the
coherent nature of the THG signal, interference effects
show up in the THG axial profiles whose shapes depend
markedly on the dispersion of the various media. One
can effectively uncouple dispersion and susceptibility by
measuring the axial profiles and THG conversion efficien-
cies, respectively. The functional shapes of the axial pro-
files are largely independent of the susceptibility ratio.
The strongest dependence of the axial profiles on the ma-
terial dispersion is achieved when the confocal parameter
of the fundamental beam is equal to the distance between
the interfaces. By characterizing the functional shapes
of the axial profiles in terms of three ratios, and plotting
these ratios as a function of NA, the comparison of experi-
ment with theory allows for a straightforward determina-
tion of the dispersion. However, one can use the THG
conversion efficiencies at high NA to determine the third-
order susceptibility, because these efficiencies are practi-
cally insensitive to the dispersion of the materials in-
volved.

The coherent nature of the THG process renders THG
microscopy highly sensitive to the specific sample geom-
etry. In general, various geometries may yield identical
results and vice versa: Geometries that differ only
slightly may yield widely different THG responses, as has
become especially clear in our studies in the evaluation of
the effect of periodic structures. Small differences in, for
instance, either the thickness or the dispersion of the lay-
ers result in large differences in the THG response. This
behavior is also clear from Fig. 9, which shows a strong
dependence of the visibility of a particular periodic struc-
ture on both susceptibility and dispersion ratio. The
message of this result is twofold: (i) It is virtually impos-
sible to reconstruct the sample geometry and properties
from complicated samples without any prior knowledge of
the sample and (ii) with some a priori information about
the sample, THG microscopy may provide detailed infor-
mation on the various material parameters.

From theoretical arguments one expects paraxial
theory to fail at high NA values, in which case other ap-
proximations (e.g., the Debye approximation) are more
appropriate. At the highest NA values, even scalar dif-
fraction theory is inadequate, and polarization effects
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should be considered. However, we have found that all
experiments are described adequately by the paraxial
theory, even at high NA. A similar result was recently
obtained by Potma et al.,12 who concluded that the
paraxial approximation underestimates the scalar diffrac-
tion theory results only slightly for high NAs in the case
of coherent anti-Stokes Raman scattering microscopy. In
this context it should be noted also that the famous clas-
sical description of the focal field at high-NA conditions
with hat-profile pupil illumination in terms of the Lom-
mel functions9—which has been verified experimentally
in great detail—is actually based on two conflicting ap-
proximations, the Debye and the paraxial approxima-
tions.13

Finally, we note that THG microscopy can discriminate
between interfaces composed of a sudden transition in
material properties and those with a gradual change in
these parameters when the confocal parameter of the fun-
damental beam is of the same order as or smaller than
the physical extension of the gradient.
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