

NRC Publications Archive Archives des publications du CNRC

Determination of methionine and selenomethionine in seleniumenriched yeast by species-specific isotope dilution with liquid chromatography-mass spectrometry and inductively coupled plasma mass spectrometry detection

McSheehy, Shona; Yang, Lu; Sturgeon, Ralph; Mester, Zoltan

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:

https://doi.org/10.1021/ac048637e Analytical Chemistry, 77, 1, pp. 344-349, 2004-12-02

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=e7cb1604-6eb4-4289-986e-a2a184b65dce https://publications-cnrc.canada.ca/fra/voir/objet/?id=e7cb1604-6eb4-4289-986e-a2a184b65dce

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Technical Notes

Determination of Methionine and Selenomethionine in Selenium-Enriched Yeast by Species-Specific Isotope Dilution with Liquid Chromatography–Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry Detection

Shona McSheehy, Lu Yang, Ralph Sturgeon, and Zoltan Mester*

Institute for National Measurement Standards, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R9

Selenomethionine (SeMet) and methionine (Met), liberated by acid hydrolysis of selenium-enriched yeast, were quantified by liquid chromatography-mass spectrometry (LC/MS) using standard additions calibrations as well as isotope dilution (ID) based on species-specific ¹³C-enriched spikes. LC inductively coupled plasma mass spectrometry (ICPMS) was also employed for the quantification of SeMet, and ⁷⁴Se-enriched SeMet was used for ID calibration. The results were evaluated to ascertain the feasibility of using these methods in a campaign to certify selenized yeast. Good agreement was found between the methods, which, when averaged, gave concentrations of 5482.2 ± 101 and $3256.9 \pm 217.4 \ \mu g/g$ for Met and SeMet, respectively. This corresponds to a 1.68:1 Metto-SeMet ratio in the yeast. Quantification by ID LC/MS and LC ICPMS vields the most precise sets of results with relative standard deviations in the range 0.5-1.3% (*n* = 6). A total selenium concentration of 2064.6 \pm 45.4 μ g/g was obtained for this yeast material. The extraction efficiency and a mass balance budget were determined. Acid hydrolysis liberated 81.0% of the total selenium present. SeMet comprised 79.0% of the extracted selenium and 63.9% of the total selenium present in the yeast.

Since the discovery in 1957 that selenium is an essential trace element for mammals,¹ it has been increasingly implicated in a beneficial role for human health. Selenium is an essential trace element, present in several proteins as selenocysteine, and selenium availability is directly linked to the regulation of selenoprotein expression.² Due to low levels of selenium available in the average human diet in certain geographic areas,³ it has become increasingly popular to use supplements. As well as maintaining

(1) Schwarz, K.; Foltz, C. M. J. Am. Chem. Soc. 1957, 79, 3292-3293.

adequate levels of selenium in the body, the use of supplements has been shown to prevent cancer in humans,⁴ act as an antiviral agent, and play a preventative role in several syndromes associated with deficiencies.⁵ Selenium is most often supplemented in the form of selenomethionine (SeMet): the major form found naturally occurring in foods and generally thought of as one of the most bioavailable. Selenium-enriched yeast has become the most popular matrix for food supplements as it contains SeMet as the major species and is economically viable. Inorganic selenium in yeast growth media intrudes on the sulfur assimilation pathway, ultimately forming SeMet. The SeMet is then believed to be nonspecifically incorporated into the protein in the place of Met.⁵

Due to limited regulations for food supplements, there is a need for robust methodology characterizing Se-enriched supplements to ensure that they contain the appropriate dosage and the particular form of selenium that is most beneficial. Most studies have focused on identification and quantification of SeMet in supplements. For the quantification of SeMet, degradation of all proteins to their constituent amino acids, either enzymatically or via acid hydrolysis, is required. Many protocols employ an element specific mode of detection, such as inductively coupled plasma mass spectrometry (ICPMS) coupled with liquid chromatography (LC).^{6–11} Increasingly, electrospray mass spectrometry (ES MS)

- (5) Hatfield, D. L., Ed. Selenium: Its molecular biology and role in human health; Kluwer Academic Publishers: Boston, 2001.
- (6) B'Hymer, C.; Caruso, J. A. J. Anal. At. Spectrosc. 2000, 15, 1531-1539.
- (7) Marchante-Gayon, J. M.; Thomas, C.; Feldmann, I.; Jakubowski, N. J. Anal. At. Spectrosc. 2000, 15, 1093–1102.
- (8) Wrobel, K.; Kannamkumarath, S. S.; Wrobel, K.; Caruso, J. S. Anal. Bioanal. Chem. 2003, 375, 133–138.
- (9) Larsen, E. H.; Sloth, J.; Hansen, M.; Moesgaard, S. J. Anal. Atom. Spectrom. 2003, 18, 310–316.
- (10) Uden, P. C.; Boakye, H. T.; Kahakachchi, C.; Hafezi, R.; Nolibos, P.; Block, E.; Johnson, S.; Tyson, J. F. J. Anal. At. Spectrom. 2004, 19, 65–73.
- (11) Lobinski, R.; Edmonds, J. S.; Suzuki, K. T.; Uden, P. C. Pure Appl. Chem. 2000, 72, 447–461.

^{*} Corresponding author. Fax: 613 9932451. E-mail:zoltan.mester@nrc.ca.

⁽²⁾ Kohrle, J.; Brigelius-Flohe, R.; Bock, A.; Gartner, R.; Meyer, O.; Flohe, L. *Biol. Chem.* 2000, 381, 849–864.

⁽³⁾ Schrauzer, G. N. J. Nutr. 2000, 130, 1653-1656.

⁽⁴⁾ Clark, L. C.; Combs, G. F.; Turnbull, W. B.; Slate, E. H.; Chalker, D. K.; Chow, J.; Davis, L. S.; Glover, R. A.; Graham, G. F.; Gross, E. G.; Krongrad, A.; Lesher, J. L.; Park, H. K.; Sanders, B. B.; Smith, C. L.; Taylor, J. R. J. Am. Med. Assoc. **1996**, 276, 1957–1963.

has been utilized,^{12–14} where the distinguishing isotopic profile of selenium can be exploited for identification. However, ES MS has not been the method of choice for quantification of SeMet. Similarly, in gas chromatography/mass spectrometry (GC/MS), the characteristic selenium isotopic profile can be observed,^{10,15–17} but derivatization of the selenium species is needed to render a volatile product for separation on the GC column.

In regulated environments, quantitative measurements are validated using certified reference materials (CRMs), against which an analyst may compare results. Unfortunately, production of CRMs is laborious and costly and so a limited range of materials is commercially available. With selenium becoming increasing relevant to the scientific community, it is the objective of the certified reference materials program of the National Research Council Canada to produce a CRM for selenized yeast. Optimization of the extraction procedure and the development of an inhouse reference method based on isotope dilution (ID) GC/MS have already been completed and described elsewhere.¹⁸⁻²⁰ Good agreement among quantitative measurements derived from use of several different analytical techniques is needed for certification. This study was undertaken to provide accurate and precise data for SeMet and Met concentrations in a selenium-enriched yeast using LC-based techniques. Results are compared to those generated using in-house reference method.

Several calibration strategies for quantification of analyte compounds in a given matrix exist, including external calibration, standard additions (prior to and after the sample treatment), and isotope dilution. The latter, a more accurate and precise method than the method of standard additions, has been increasingly applied to bioinorganic speciation, especially for organotin²¹ and organomercury²² species-specific measurements. To date though, there are limited applications of species-specific isotope dilution for the speciation of selenium. Selenite (⁷⁸Se-selenite) and selenate (⁷⁸Se-selenate) were determined offline in natural water samples with microwave induced plasma MS.²³ Species-specific ID of SeMet in enriched yeast supplements was determined with ID (⁷⁴Se-SeMet) GC/MS ¹⁶ and LC/ICPMS (⁷⁷Se-SeMet).²⁴ Speciation of selenium has been attempted with postcolumn ID ICPMS.^{25,26}

- (12) Larsen, E. H.; Hansen, M.; Fan, T.; Vahl, M. J. Anal. At. Spectrom. 2001, 16, 1403-1408.
- (13) Lindemann, T.; Hintelmann, H. Anal. Chem. 2002, 74, 4602-4610.
- (14) McSheehy, S.; Mester, Z. Trends Anal. Chem. 2003, 22, 210-224.
- (15) VanDael, P.; Barclay, D.; Longet, K.; Metairon, S.; Fay, L. B. J. Chromatogr., B 1998, 715, 341–347.
- (16) Wolf, W. R.; Zainal, H.; Yager, B. Fresenius J. Anal. Chem. 2001, 370, 286– 290.
- (17) Iscioglu, B.; Henden, E. Anal. Chim. Acta 2003, 505, 101-106.
- (18) Yang, L.; Mester, Z.; Sturgeon, R. E. Anal. Chem. 2004, 76, 5149–5156.
 (19) Yang, L.; Sturgeon, R. E.; Wolf, W. R.; Goldschmidt, R. J.; Mester, Z. J.
- Anal. At. Spectrom. 2004, 19, 1448–1453.
 (20) Yang, L.; Sturgeon, R. E.; McSheehy, S.; Mester, Z. J. Chromatogr., A 2004, 1055. 177–184.
- (21) Monperrus, M.; Zuloaga, O.; Krupp, E.; Amouroux, D.; Wahlen, R.; Fairman, B.; Donard, O. F. X. J. Anal. At. Spectrom. 2003, 18, 247–253.
- (22) Yang, L.; Colombini, V.; Maxwell, P.; Mester, Z.; Sturgeon, R. E. J. Chromatogr., A 2003, 1011, 135-142.
- (23) Minami, H.; Cai, W.; Kusumoto, T.; Nishikawa, K.; Zhang, Q.; Inoue, S.; Atsuya, I. Anal. Sci. 2003, 19, 1359–1363.
- (24) Reyes, L. H.; Sanz, F. M.; Espilez, P. H.; Marchante-Gayon, J. M.; Alonso, J. I. G.; Sanz-Medel, A. J. Anal. At. Spectrom., in press.
- (25) Reyes, L. H.; Marchante-Gayon, J. M.; Garcia-Alonso, J. I.; Sanz-Medel, A. J. Anal. At. Spectrom. 2003, 18, 1210–1216.
- (26) Huerta, V. D.; Reyes, L. H.; Marchante-Gayon, J. M.; Sanchez, M. L. F.; Sanz-Medel, A. J. Anal. At. Spectrom. 2003, 18, 1243–1247.

Table 1. Experimental Conditions

ICPMS Operating Conditions				
nebulizer gas flow	0.7 L/min			
ICP rf power	1100 W			
lens voltage	10 V			
ES MS (Operating Conditions			
spray voltage	3000 V			
capilliary temp	350 °C			
sheath gas flow	40			
auxiliary gas flow	10			
tube lens	100			
Anion-Exchange Chromatography				
Gra	dient Conditions			
eluent A	20 mM ammonium acetate/			
	acetic acid, pH 4.7			
eluent B	200 mM ammonium acetate/ acetic acid, pH 4.7			
$0-5 \min$	100% eluent A			
5-30 min	100–0% eluent A, 0–100% eluent B			
30-40 min	100% eluent B			
flow rate	1.5 mL/min			
Reversed-Phase Chromatography				
Gradient Conditions				
eluent A	0.02% formic acid, 99.8% water			
eluent B	0.02% formic acid, 99.8% acetonitrile			
$0-5 \min$	100% eluent A			
5-30 min	100-50% eluent A, 0-50% eluent B			
30-40 min	50% eluent B			
flow rate	0.2 mL/min			

The majority of ID applications to selenium, however, concern total selenium concentrations.^{15,26–28} Species-specific ID of bioinorganic compounds with ¹³C-enriched compounds has not as yet been exploited despite its customary use in LC/MS applications for a range of small molecules in biological matrixes, including amino acid analysis.^{29,30} Thus, it was proposed to quantify SeMet in the selenized yeast by species-specific ID using ¹³C-SeMet (LC/MS) in addition to ID quantification with ⁷⁴Se-SeMet (LC/ICPMS). Moreover, with LC/MS, the simultaneous quantification of Met by species-specific ID using ¹³C-Met can be achieved.

EXPERIMENTAL SECTION

Instrumentation. A Thermo Finnigan TSQ quantum AM triple quadrupole instrument (San Jose, CA) was used for ES MS analysis. ES MS conditions (e.g., capillary voltage, lens voltage, multipole offset, and entrance voltage) were optimized for selenomethionine using the standard tune procedure, and typical conditions are outlined in Table 1. An ELAN 6000 (PE-Sciex, Thornhill, ON, Canada) ICPMS equipped with a Ryton spray chamber and cross-flow nebulizer was used for the detection of selenium species. ICPMS parameters (nebulizer gas flow, rf power, and lens voltage) were optimized daily using a standard procedure recommended by the manufacturer, and typical conditions are outlined in Table 1.

Anion-exchange HPLC separations were achieved using a Hamilton PRPx-100 (250 \times 4.6 mm \times 5 μm) column (Hamilton,

 ⁽²⁷⁾ MacLeod, F.; McGaw, B. A.; Shand, C. A. *Talanta* **1996**, *43*, 1091–1098.
 (28) Turner, J.; Hill, S. J.; Evans, E. H.; Fairman, B.; Wolff-Briche, C. S. J. J.

Anal. At. Spectrom. 2000, 15, 743–746. (29) Piraud, M.; Vianey-Saban, C.; Petritis, K.; Elfakir, C.; Steghens, J.-P.; Morla,

⁽²⁹⁾ Firaud, M.; Vianey-Saban, C.; Petrius, K.; Enakir, C.; Stegnens, J.-F.; Moria, A.; Bouchu, D. *Rapid Commun. Mass Spectrom.* 2003, 17, 1297–1311.

⁽³⁰⁾ Qu, J.; Wang, Y.; Luo, G.; Wu, Z.; Yang, C. Anal. Chem. 2002, 74, 2034– 2040.

Reno, NV) with a PRPx-100 guard column (Hamilton). A Dionex BioLC, model LCM (Dionex Corp., Sunnyvale, CA) fitted with a 100- μ L injection loop was employed for the anion-exchange HPLC separations. Reversed-phase separations were undertaken using a Prevail C18 (150 × 2.1 mm × 5 μ m) column (Alltech, Deerfield, IL). A Hewlett-Packard HP 1100 pump with autosampler was used for the reversed-phase separations.

A CEM MDS-2100 closed-vessel microwave digestion system (Matthews) was employed for complete digestion of the yeast tissue for determination of total Se.

Reagents and Solutions. Analytical reagent grade chemicals were used throughout. Water was purified to 18.2 M Ω ·cm resistivity using a NANOpure mixed-bed ion-exchange system fed with reverse osmosis domestic feedwater (Barnstead/Thermolyne, Dubuque, IA). Acetic acid was purified in-house by sub-boiling distillation of reagent grade feedstock. Methanesulfonic acid (98% purity) was purchased from Fluka (Oakville, ON, Canada). OmniSolv acetonitrile and formic acid (98% purity) were purchased from EM Science (Gibbstown, NJ). Ammonium acetate was obtained from Sigma Aldrich (Oakville, ON, Canada).

Eluent B for anion-exchange chromatography was prepared from a mixture of 200 mL of acetic acid (1 M) and 200 mL of ammonium acetate (1 M) diluted to 1 L with water. Eluent A was prepared by diluting eluent A 10-fold. Eluents A and B for reversed-phase chromatography were prepared by adding 200 μ L of formic acid to 1 L of water and 1 L of acetonitrile, respectively. The gradient elution programs employed for anionexchange and reversed-phase chromatography are outlined in Table 1.

Standard stock solutions (1000 µg/mL) of natural abundance L-methionine, seleno-DL-methionine and seleno-DL-cystine (Sigma Aldrich) were prepared by dissolving the target compound in water. Selenite and selenate were prepared from Na₂SeO₃ and Na₂SeO₄, respectively, purchased from Sigma Aldrich, and dissolved in 0.8 M HCl. Selenoadenosylhomocysteine was isolated from an aqueous extract of selenized yeast by 2D LC. The chromatographic purity was verified by LC/ICPMS. ES MSⁿ was employed to confirm the identity of the species. A 1000 μ g/mL elemental solution for determination of total selenium was purchased from SCP Science (Baie d'Urfe, PQ, Canada). For isotope dilution analysis, high-purity13C-enriched L-methionine and ¹³C-enriched DL-selenomethionine, purchased from Sigma Aldrich, were gravimetrically prepared in 1% HCl. ⁷⁴Se-enriched L-selenomethionine (74SeMet) was donated by Dr. W. Wolf (Food Composition Laboratory, USDA, Beltsville, MD), and a stock solution of 450 μ g/mL was prepared in 1% HCl. The solution concentration was verified using reverse isotope dilution GC/MS. Working solutions were prepared on the day of analysis by appropriate dilution of the stock solutions with water. The stock solutions were kept at 4 °C in the dark.

Selenium-Enriched Yeast. The Se-enriched yeast tissues were provided by Lallemand-Institut Rosell (Montreal, PQ, Canada). Yeast preparation essentially consisted of growth in a Se-rich medium, followed by a heat treatment process intended to stop yeast growth and inhibit enzymatic activity.

Procedures and Sample Preparation. *Microwave Digestion for Total Selenium Content Determination.* For total analysis, a subsample (100 mg) of selenium-enriched yeast was weighed into a clean, dry Teflon microwave bomb. Nitric acid (7 mL) and hydrogen peroxide (200 μ L) were added, and the sample was digested by closed-vessel microwave digestion. The digestion conditions were as follows: 10 min at 20 psi and 40% power, 10 min at 40 psi and 40% power, 15 min at 85 psi and 60% power, and 30 min at 120 psi and 70% power. After cooling, the contents of the bomb were transferred to a volumetric flask and diluted to 50 mL with water. The selenium content was then determined by the method of standard additions with off-line ICPMS.

Acid Hydrolysis: Postsample Treatment Standard Addition for Determination of SeMet and Met by LC/MS and Determination of SeMet Content by LC/ICPMS. The extraction procedure employed for the yeast was based on a method developed by Wrobel et al.⁸ For each replicate, one subsample (250 mg) of selenium-enriched yeast was weighed into a clean, dry conical flask. The appropriate volumes of water and methanesulfonic acid were added to give a concentration of 4 M methanesulfonic acid (24 mL). The sample was subjected to reflux on a hot plate for 16 h with glass beads acting as antibumping granules. After cooling, the digest was transferred to a volumetric flask and diluted to 100 mL with water. Known masses of SeMet and Met were added to aliquots of the prepared sample, to make solutions that contained close to two and three times the concentration of the target species. The solutions were filtered (0.45 μ m) prior to injection.

Acid Hydrolysis: Presample Treatment Standard Addition Spiking for Determination of SeMet and Met Content by LC/MS and Determination of SeMet Content by LC/ICPMS. For each replicate, three subsamples (250 mg) of selenium-enriched yeast were weighed into clean, dry conical flasks. Known masses of SeMet and Met were added to the yeast to make final solutions that contained close to two and three times the concentration of the target species. The above acid reflux procedure was followed, and the digests, diluted to 100 mL with water, were filtered (0.45 μ m) prior to injection.

Acid Hydrolysis: Isotope Dilution Spiking for Determination of SeMet and Met Content by LC/MS. For each replicate, one subsample (250 mg) of selenium-enriched yeast was weighed into a clean, dry conical flask. A suitable mass of ¹³C-SeMet and ¹³C-Met spikes was added to the yeast, and the above acid reflux procedure was followed. The digests were diluted to 100 mL with water and filtered (0.45 μ m) prior to injection.

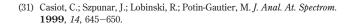
Acid Hydrolysis: Isotope Dilution Spiking for Determination of SeMet Content by LC/ICPMS. For each replicate, one subsample (250 mg) of selenium-enriched yeast was weighed into a clean, dry conical flask. A known mass of ⁷⁴Se-SeMet was added to the yeast, and the above acid reflux procedure was followed. The digests were diluted to 100 mL with water and filtered (0.45 μ m) prior to injection.

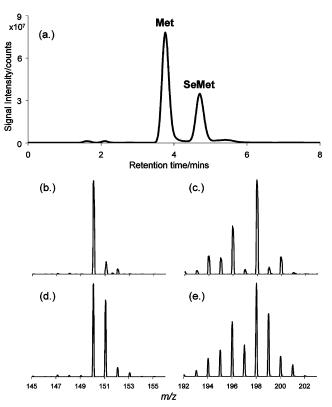
RESULTS AND DISCUSSION

Determination of Total Selenium Content. For this study, closed-vessel microwave digestion with nitric acid and hydrogen peroxide was employed. The yeast was completely solubilized and Se quantified by the method of standard additions using ICPMS. A total selenium concentration of 2064.6 \pm 45.4 μ g/g (n = 6, RSD = 2.2%) was obtained.

Extraction of SeMet and Met. A complete hydrolysis of yeast protein into its constituent amino acids is necessary for the quantitative extraction of SeMet and Met. Aqueous extractions

Table 2. Isotopic Distributions of Natural and Enriched Forms of Met and SeMet Used in Eq 1 for LC Species-Specific Isotope Dilution MS


	natural abundance	enriched ${}^{13}CC_4H_{12}O_2NS^+$	
m/z	$C_5H_{12}O_2NS^+$	(99.3%)	
149	0.000 00	0.000 00	
150	0.890 69	0.006 30	
151	0.060 50	0.894 39	
152	0.045 67	0.051 37	
153	0.002 69	0.045 31	
154	0.000 42	0.002 21	
155	0.000 02	0.000 40	
156	0.000 00	0.000 02	
	natural	enriched	
,	abundance	$^{13}CC_4H_{12}O_2NSe^+$	
m/z	$C_5H_{12}O_2NSe^+$	(99.1%)	
191	0.000 00	0.000 00	
192	0.008 35	0.000 08	
193	0.000 50	0.008 37	
194	0.087 96	0.001 21	
195	0.076 86	0.088 80	
196	0.227 81	0.078 10	
197	0.013 79	0.227 48	
198	0.466 74	0.015 59	
199	0.027 95	0.467 63	
200	0.084 52	0.023 71	
201	0.005 03	$0.084 \ 46$	
202	0.000 46	0.004 13	
203	0.000 02	0.000 42	
204	0.000 00	0.000 02	


are incapable of digesting proteins and liberating the bulk of SeMet from an enriched yeast; generally only 10-25% of the total selenium is extracted.^{7,31} Recent studies employing enzymatic digestion have shown that SeMet accounted for 50%⁶ and 46%⁸ of the total selenium in a supplement and a selenized yeast, respectively. Acid hydrolysis of the same samples yielded SeMet extraction efficiencies of $63\%^6$ and $65\%^8$ in the supplement and selenized yeast, respectively. Although enzymatic digestion is a popular extraction method for samples of high protein content, it has been suggested that incomplete digestion of the proteins occurs.⁸ An in-house study of several extraction protocols²⁰ concluded that using methanesulfonic acid for acid hydrolysis, based on a slightly modified method developed by Wrobel et al.,⁸ was the most effective, reproducible, and cost-efficient approach for yeast.

Isotope Dilution Calculations. The following equation was used in isotope dilution analysis for the quantitation of analytes in the yeast digest:

$$C_x = C_y \frac{v_y}{m_x} \frac{A_y - B_y R_n}{B_x R_n - A_x} \frac{AW_x}{AW_y}$$
(1)

where C_x is the analyte concentration $(\mu g/g)$, C_y is the spike concentration $(\mu g/g)$, v_y is the volume (mL) of spike used to prepare the blend solution of sample and spike, m_x is the mass (g) of sample used, A_y is the abundance of the reference ion in the spike, B_y is the abundance of spike ion in the spike, A_x is the

Figure 1. (a) Reversed-phase SIM MS chromatogram of selenized yeast digest; (b) mass spectrum of natural abundance Met; (c) mass spectrum of natural abundance SeMet; (d) mass spectrum of Met in the selenized yeast digest with ¹³C-enriched spike; (e) mass spectra of SeMet in the selenized yeast digest with ¹³C-enriched spike.

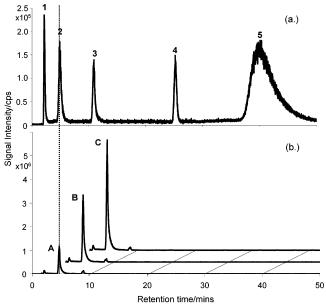
abundance of reference ion in the sample, B_x is the abundance of spike ion in the sample, R_n is the measured reference/spike ion ratio (mass bias corrected) in the blend solution of sample and spike, AW_x is the atomic weight of analyte in the sample, and AW_y is the atomic weight of analyte in the spike.

The relative abundances of natural and enriched species for isotope dilution analysis with LC/MS were calculated by a software program (Isotope Pattern Calculator v 3.0) developed by Yan³² and are summarized in Table 2. These data were used to calculate the theoretical reference-to-spike ion ratios needed for eq 1. For isotope dilution analysis using ICPMS, the isotopic compositions of Se isotopes recommended by IUPAC³³ were used for the calculations. The mass bias correction factor (the ratio of "theoretical reference-to-spike ion ratio" to "measured reference-to-spike ion ratio" to "measured reference-to-spike ion ratio" to five replicate measurements of natural abundance standards, matrix matched with the same concentration of methanesulfonic acid as in the samples.

LC/MS Analysis of Yeast Digest. The most commonly used separation mechanism for the on-line analysis of amino acids by LC/MS is reversed-phase ion pairing.^{29,30} As only two amino acids were the target of this study, reversed phase without an ion-pairing agent (which can sometimes compete with the target analyte for ionization in the ES MS source) was employed. Figure 1a shows a typical selected ion monitoring (SIM) LC/MS chromatogram of the yeast digest. A low v/v percentage of formic acid (0.02%) in the eluent was found to favor the separation of Met and SeMet,

⁽³²⁾ Yan, J. http://www.geocities.com/junhuayan/pattern.htm, 2001.
(33) Rosman, K. J. R.; Taylor, P. D. P. Pure Appl. Chem. 1998, 70, 217–235.

Table 3. Methionine and Selenomethionine Concentrations Determined in Selenium-Enriched Yeast A^a


		Met, $\mu g/g$ by LC/MS			
	$\frac{\text{Met } \mu g/g}{\text{by GC/MS}^b}$ $\frac{13 \text{C ID}}{13 \text{C ID}}$	presample prep std addn	postsample prep std addn	¹³ C- enriched ID	
mean SD RSD (%) LOD	5955 33 0.55 3.4	5368 316 5.9 1.56	5606 189 3.4 1.00	5522 26 0.5 0.87	
			SeMet, µg/g by LC/MS		
	$\frac{\text{SeMet } \mu g/g}{\text{by GC/MS}^b}$ $\frac{13 \text{C ID}}{13 \text{C ID}}$	presample prep std addn	postsample prep std addn	¹³ C- enriched ID	
mean SD RSD (%) LOD	3404 12 0.35 1.0	3210 252 7.9 0.59	3462 147 4.2 0.95	3395 45 1.3 1.79	
		SeMet, µg/g by LC–ICPMS			
	$\frac{\text{SeMet } \mu g/g}{\text{by GC/MS}^b}}{\frac{74 \text{Se ID}}{74}}$	presample prep std addn	postsample prep std addn	⁷⁴ Se- enriched ID	
mean SD RSD (%) LOD	3417 8 0.23	2923 211 7.2 1.68	3102 96 3.1 0.96	3450 22 0.6 1.41	

^{*a*} LOD are listed for each technique and method of quantification employed. ^{*b*} Data from ref 18.

and baseline separation is achieved despite the similarity of the compounds. The insets show the mass spectra of Met (Figure 1b) and SeMet (Figure 1c), distinguished by the natural isotopic profiles of S and Se, respectively. The theoretical isotopic compositions of these species are given in Table 2. For standard additions, the molecular ions of protonated Met at m/z 150 and protonated SeMet at m/z 198 were monitored in SIM mode for integration. The results for the quantitation of Met and SeMet by pre- and postsample preparation standard additions are presented in Table 3.

Panels d and e of Figure 1 illustrate how the natural isotopic profiles of Met and SeMet are distorted due to the addition of ¹³C-enriched spikes. Reference and spike ions at m/z 150 and 151 for Met and m/z 198 and 199 for SeMet, respectively, were monitored in SIM mode for integration. Peak areas were used to calculate the reference-to-spike ion ratios of Met (m/z 150/151) and SeMet (m/z 198/199) for use in eq 1. Concentrations of 5521.7 \pm 26.2 and 3395.0 \pm 44.5 μ g/g for Met and SeMet, respectively, were obtained.

Analysis of Yeast Digest by LC/ICPMS. LC coupled to ICPMS for the analysis of organoselenium compounds is a popular technique in bioinorganic speciation studies. The ICP source is not compatible with the high carbon content of organic solvents unless a stream of oxygen (necessary to oxidize the carbon) is introduced into the plasma with the sample. To eliminate the need for oxygen, reversed-phase chromatography is often used with a small volume of methanol and an ion-pairing agent,^{6–8,10} or ion-

Figure 2. Anion-exchange ICPMS chromatograms of (a) Se standards. Peaks: 1, seleno-DL-cystine; 2, seleno-DL-methionine; 3, selenite; 4, selenate; 5, selenoadenosylhomocysteine, (b) Selenized yeast digest on AE ICPMS with the internal standard addition of SeMet on two levels (the chromatograms are shifted on the *x* and *y* axis to improve clarity). Peaks: A, yeast digest; B, yeast digest + 7.5 μ g/g SeMet; C, yeast digest + 15 μ g/g SeMet.

exchange chromatography with aqueous eluents is employed.^{12,24} In this study, anion-exchange chromatography with a gradient previously developed for the separation of water-soluble compounds from selenized yeast was used.³⁴ Figure 2a shows the elution profile for several calibration standards to which that for the acid digest of the selenized yeast was compared. The major peak can be seen to agree with the retention time of SeMet (Figure 2b). A proportional increase in peak size due to addition of the internal standard of SeMet to the yeast sample is also shown in Figure 2b. The concentration of SeMet determined in the yeast by pre- and postsample preparation standard additions with LC/ICPMS is summarized in Table 3.

The same principles of ID based on eq 1 used for LC/MS apply to the analysis of the selenized yeast digest by LC/ICPMS, except that elemental isotopes replace the molecular ions monitored in LC/MS. In Figure 3, chromatograms a and b illustrate the elution profiles obtained for a natural abundance standard and a spiked veast digest, respectively. In each chromatogram, the isotopes of selenium at 74, 78, and 82 are shown. The increase in the peak area of isotope 74 due to the addition of the ⁷⁴Se-enriched SeMet spike is clearly evident (Figure 3b). The extent of enhancement is confirmed by the theoretical distribution of isotopes calculated and displayed in insets A and B. The selenium isotopes at 74, 77, 78, and 82 were monitored and used to calculate the 77/74, 78/74, and 82/74 isotope ratios necessary for the quantification of SeMet. The concentration of SeMet determined by ID LC/ICPMS in the yeast using the 82/74 reference-to-spike isotope ratio, was $3449.8 \pm 22.3 \, \mu g/g$.

Evaluation of SeMet and Met Quantification by LC Techniques. As noted earlier, several calibration strategies for

⁽³⁴⁾ McSheehy, S.; Szpunar, J.; Haldys, V.; Tortajada, J. J. Anal. At. Spectrom. 2002, 17, 507–514.

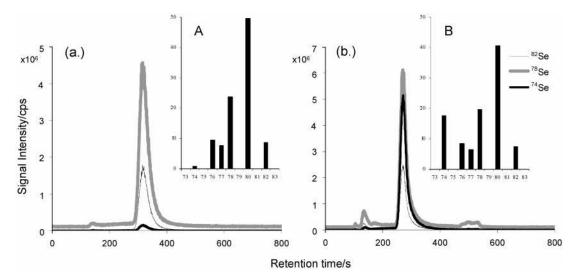


Figure 3. AE ICPMS chromatograms of (a) natural abundance standard and (b) selenized yeast digest spiked with ⁷⁴Se-enriched SeMet. Insets A and B show the respective theoretical distributions of Se isotopes.

quantification of bioinorganic species exist. In this study, six methods of quantifying SeMet, of which three were also used for quantifying Met in the acid hydrolysis digests, were compared (cf. Table 3). External calibration was not considered an appropriate technique for use in this study, as it does not compensate for interferences ascribed to matrix effects. There is generally good agreement between the sets of results, with the major discrepancy being a low result obtained for SeMet based on standard additions with LC/ICPMS (an average of 13% lower for standard addition) compared to the ID LC/ICPMS technique. The ID analyses show a great improvement in precision (expressed as relative standard deviation, RSD) over the standard additions technique and are more fit for the accurate and precise measurements needed for these analytes. Species-specific isotope dilution also provides a quantitation technique that accounts for matrix effects.

The SeMet ID data obtained in this study are in good agreement with reference data generated by ID using ⁷⁴Seenriched and ¹³C-enriched spikes combined with GC/MS¹⁸ (Table. 3). However, the Met data obtained by LC techniques in this study are, on average, ~8% lower than the data obtained by the GC/MS reference method. This discrepancy could have arisen due to the difference in mass bias obtained with the techniques GC/MS and LC/MS. It has been observed that the mass bias for LC/MS suffers greater variation from day to day and is less precise than the mass bias obtained for GC/MS. Since this set of results was obtained, efforts have been made, with success to improve the mass bias of the LC/MS technique for the certification campaign, by manipulation of the ES MS parameters.

The LODs for ID LC/MS and ID LC/ICPMS methodologies are based on three standard deviations of the average response from spiked blank samples (n = 3) with concentrations normalized to 0.25 g of yeast test sample and are comparable to the ID GC/MS reference method. The LODs for LC/MS and LC/ICPMS methodologies were based on three standard deviations of the average response from blanks (n = 3) with concentrations normalized to 0.25 g of yeast test sample and are also found to have values comparable to those obtained by other calibration methods.

CONCLUSIONS

Two analytical techniques, LC/MS and LC/ICPMS, were developed based on species-specific isotope dilution for the determination of Met and SeMet in selenized yeast. Results obtained are in good agreement with a GC/MS reference method developed in-house and will likely prove to provide satisfactory parallel techniques for the certification of this candidate yeast CRM. LC provides a relatively straightforward alternative technique for quantitation of Met and SeMet wherein no derivatization procedures are required as in GC. However, the sample analysis time for LC is considerably greater compared to GC.

Mean values of the set of results for Met and SeMet give a Met-to-SeMet ratio of 1.68:1. This information is useful for subsequent investigations into the mechanism of incorporation of Se into yeast and for supplementary data characterizing the proposed reference material.

ACKNOWLEDGMENT

The authors are grateful to Institut Rosell-Lallemend for providing the sample of Se-enriched yeast. S.M. thanks NSERC for financial support.

Received for review September 15, 2004. Accepted October 15, 2004. Accepted Accepted