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Abstract

MOTIVATION:  Transcriptional profiling using microarrays can reveal important

information about cellular and tissue expression phenotypes, but these measurements are

costly and time consuming. Additionally, tissue sample availability poses further

constraints on the number of arrays that can be analyzed in connection with a particular

disease or state of interest. It is therefore important to provide a method for the

determination of the minimum number of microarrays required to separate, with

statistical reliability, distinct disease states or other physiological differences.

RESULTS:  Power analysis was applied to estimate the minimum sample size required

for two-class and multi-class discrimination. The power analysis algorithm calculates the

appropriate sample size for discrimination of phenotypic subtypes in a reduced

dimensional space obtained by Fisher Discriminant Analysis (FDA). This approach was

tested by applying the algorithm to existing data sets for estimation of the minimum

sample size required for drawing certain conclusions on multi-class distinction with

statistical reliability. It was confirmed that when the minimum number of samples

estimated from power analysis is used, group means in the FDA discrimination space are

statistically different.

CONTACT:  gregstep@mit.edu
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Introduction

DNA and protein arrays are becoming standard tools for probing the cellular state

and determining important cellular behavior at the genomic and protein levels. Oligo-

nucleotide and cDNA arrays (Schena et al., 1995; Lockhart, et al., 1996) are being

employed increasingly for determining discriminatory genes and discovering new classes

of disease subtypes that are differentiated at the level of transcription (Golub et al., 1999;

Stephanopoulos et al., 2002). Data-driven hypotheses are developed from these types of

measurements that suggest, in turn, novel experiments furthering biomedical research.

There are certain issues of statistical reliability that need to be addressed in the

implementation of array technologies. Microarray data are typically subjected to analyses

such as hypothesis testing, classification, clustering, and network modeling that rely on

statistical parameters in order to draw conclusions (Alizadeh, 2000; Stephanopoulos et

al., 2002; Golub et al., 1999). However, these parameters cannot be reliably estimated

with only a small number of array samples and poor sample distributions of gene

expression levels. Since the statistical reliability of conclusions largely depends on the

accuracy of the parameters used, a certain minimum number of arrays is required to

ensure confidence in the sample distribution and accurate parameter values.

This study is concerned with the determination of the minimum number of gene

expression arrays required to ensure statistical reliability in disease classification and

identification of distinguishing expression patterns. This is an important issue considering

the scarcity of tissue samples that can be used for transcriptional profiling and the fact

that microarray measurements are rather costly in terms of time and reagents required. As

a result, there is a tendency to carry out only a small number of microarray measurements
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that in many cases are inadequate for the intended purpose. Conclusions based on an

inadequate number of arrays will not be statistically sound.

The method proposed here first identifies differentially expressed genes across

disease subtypes, hereafter called discriminatory genes, using Wilks’ lambda score

(Johnson & Wichern, 1992; Stephanopoulos et al., 2002; Dillon & Goldstein, 1984) and

leave one out cross-validation (LOOCV) (Lachenbruch & Mickey, 1968). Then, Fisher

Discriminant Analysis (FDA) (Stephanopoulos et al., 2002; Dillon & Goldstein, 1984;

Zhao & Maclean, 2000) is invoked to define linear combinations of these discriminatory

genes that form a lower dimensional discrimination space where disease subtypes

(classes) are maximally separated. Finally, the minimum number of array samples

necessary is estimated to ensure satisfactory separation of the linear combinations (i.e. the

projections) of the discriminatory genes in the discrimination space. It should be noted

that the minimum number of array samples is estimated only in the reduced dimensional

space, and therefore the composite expressions of the genes are well characterized and

not necessarily the individual genes themselves.

Systems and Methods

The data-set

The previously published set of leukemia gene expression data (Golub et al.,

1999) was used in this work. The data set comprises 72 samples of which 47 were

classified as of acute lymphoid leukemia (ALL) and 25 as acute myeloid leukemia

(AML). A further division of ALL samples into 38 B-lineage acute lymphoid leukemia

(B-ALL) and 9 T-lineage acute lymphoid leukemia (T-ALL) was considered in extending

the sample determination approach to the multi-class case of three disease subtypes (B-

ALL, T-ALL, and AML). The sample classification among the three subtypes given in
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Golub et al. was also used here, as it was based on both clinical information and

validation through their pattern discovery technique.

Selection of discriminatory genes

Several statistical measures have been proposed to identify discriminatory genes

for two conditions (e.g. cancerous and normal tissues). Parametric tests such as P-value

(Golub et al. 1999) and t-test (Thomas et al. 2001) are based on differences of group

means, while non-parametric tests such as Wilcoxon rank sum (Mann-Whitney) test are

based on differences of rank sums in groups (Thomas et al. 2001). Parametric tests may

perform poorly due to violation of their underlying assumptions, such as normality and

equal variance in the various groups. A non-parametric test does not rely on these

assumptions and works well with a small sample size, but the results may be more

critically sensitive on the nature of the samples used for the training of the classifier than

those in parametric tests.  No method is unanimously optimal for all kinds of data.

Selection of a method for application to a certain data set should depend on the

characteristics of the data, the extent of violation of the underlying assumptions, and the

sample size. We propose a well-characterized alternative measure, called Wilks’ lambda

score (Johnson and Wichern 1992; Dillon and Goldstein 1984) to assess discriminatory

powers of the individual genes. Wilks’ lambda, which originated from ANOVA, is not

limited only to two-class comparisons but can also be used for multi-class cases. It

produces more robust test results than multiple two-class comparisons using t-test

because the Wilks’ lambda is based on group-variance instead differences between group

means and rank sums.

Genes whose expression distribution has high between-group variance (the groups

are well-separated) and small within-group variance (the samples inside each group are

relatively similar) are deemed to be discriminatory for the sample classes (Dillon and
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Goldstein 1984; Dudoit et al. 2001). The between-group variance (Bi) of the expression

of a certain gene i is proportional to the sum of the differences between group means of

expression levels. The within-group variance of the expression of gene i (Wi) is the sum

of group variances of the expression levels of the gene in a single class. With the total

variance of expression levels of gene i, )()( ii
T

iiiT x1xx1x −−= , the within- and the

between-group variances are defined respectively as follows.
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The vector, xi (Nx1), contains the expression level of gene i in N samples and ix

is the mean expression of gene i in all N samples. The superscript j represents class j

among the c classes. For the two genes shown schematically in Figure 1, gene 1 has a

large between-group variance and a small within-group variance while gene 2 has a small

between-group variance (overlapping distributions across the classes) and a large within-

group variance. For gene 1,the large ratio of the between-group variance to within-group

variance indicates a gene with a discriminatory expression pattern. Without loss of

information, the above procedure is implemented through a statistical test based on

Wilks’ lambda (Λi) that allows one to establish a formal boundary between

discriminatory genes and non-discriminatory genes:

i

i
i T

WΛ = (3)

In order to compare the Wilks’ lambda (Λi) score to a distribution with known

parameters, it is transformed to the F distribution as follows (Dillon & Goldstein, 1984;

SAS 1989):
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where N is the total number of samples and c is the number of classes. In this form,

discriminatory genes are selected by applying a statistical cutoff determined from the F

distribution using some level of significance (in this case α=0.01). Note that a high F

value signifies a more discriminatory gene relative to one with a low F value.

As a parametric measure, Wilks’ lambda score might produce a high false

positive error due to violation of the underlying assumptions, especially normality.  This

is especially true for genes that have small difference in their expressions between

groups. In order to improve the false-positive rate, we incorporate an error rate

calculation through leave-one-out cross-validation (LOOCV) procedure into the

discriminatory analysis (Dillon and Goldstein 1984; Lachenbruch and Mickey 1968). In

this procedure, a series of many LOOCVs are performed to get a good error estimate (see

Figure 2a). The first step in this iterative procedure consists of randomly dividing the data

set being considered into c test samples (i.e. one test sample for each class) and N-c

training samples. The training samples are used to generate an initial set of discriminatory

genes using Wilks’ lambda score (F statistic values). Using the gene with highest F value,

a FDA classifier is constructed and the error rate calculated for the c test samples (see

next section). A second classifier is then constructed using the top two discriminating

genes, which is again applied to the test samples.  The number of genes included in the

classifier is thus sequentially increased to form more complex classifiers until all genes

selected with the Wilks’ lambda score have been included. At each step, the number of

misclassified samples is determined for calculation of the misclassification error rate (see

next paragraph). A new division of the samples into training and test sets is then

considered, and the procedure is repeated.
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For the estimation of error rates, the entire LOOCV procedure is repeated g times

using a different test and training sets, until all samples have been withheld in the test set

at least once. If we denote by mp the number of misclassified samples in the g cross-

validations for a given number of discriminatory genes (p) used in the classifiers, the

averaged error rate is given by e(p) = mp/(c×g). Then, the error rates from the g cross-

validation iterations can be computed as function of the number of discriminatory genes.

Using the error rate curve, the number of discriminatory genes can be determined at the

point where the averaged error rates show an asymptotic behavior (see Figure 3d and 4d).

Then, a final set of 45 discriminatory genes is determined based on the frequencies by

which they appeared as discriminatory genes during the g LOOCVs.  (see Figure 2a). The

final list of genes (Figure 3d) is shorter than the original list of discriminatory genes

(Figure 3c), thus enabling us to reduce the false positive error by identifying a small set

of genes robust to sample variation. If a gene with small expression difference between

the two classes of samples shows up consistently in the LOOCV procedure, it indicates

that the observed difference, even though small, is statistically reliable. Other methods

have also introduced to reduce false positives in identifying discriminatory genes (Storey

et al. 2001; Tusher et al. 2001), and may be used instead of LOOCV at the user’s

discretion.

Dimensional reduction by discriminant analysis

Fisher Discriminant Analysis (FDA) is a linear method of dimensionality

reduction from the expression space comprising all selected discriminatory genes to just a

few dimensions where the separation of sample classes is maximized. FDA is similar to

Principal Component Analysis (PCA) (Alter, 2000; Holter et al., 2000) in the linear

reduction of data (Johnson & Wichern, 1992; Dillon & Goldstein, 1984). The major

difference is that the discriminant axes of the FDA space are selected such as to
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maximize class separation in the reduced FDA space, instead of variability as in the case

of PCA. The discriminant axes of FDA, termed as discriminant weights (V), maximizing

the separation of sample classes in their projection space can be shown to be equivalent

to the eigenvectors of W-1B, the ratio of between-group variance (B) to within-group

variance (W), as shown in Eq. 5.

Λ=− VBVW 1 (5)

where B=T-W, ( ) ( )∑
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−−=
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x1Xx1XW , and ( ) ( )TTT x1Xx1XT −−= . The

eigenvalues (ΛΛΛΛ) indicate the discrimination power for the corresponding discriminant

axes. Further details of FDA, and its application in classification of microarray data are

described in Stephanopoulos et al. (2002).  Figures 3e and 4e show the projection of the

expression data in the 2-class (AML and AML) or the 3-class (B-ALL, T-ALL and AML,

respectively.

A classification rule can be built in the FDA space. A new sample is projected

into the FDA space using the discriminant weights (V). Then, the new sample will be

assigned to the predefined class whose mean is closest to the projection of the new

sample (Johnson & Wichern, 1992): a new sample (x) will be allocated to class j if

( ) ( ) 222
ˆˆˆ VxxVxxyy kjj −≤−=−  for all k ≠ j (6)

where ŷ  is a projection of the new sample into the discriminant axes (V). It has been

shown (Johnson & Wichern, 1992) that FDA is an optimal classification procedure in the

sense of the error rates under two assumptions: 1) multivariate normality of the p

discriminatory genes, and 2) equal p×p covariance matrices for each of the c classes.

Violation of the assumptions affects several aspects of FDA. For instance, with unequal

covariance matrices, a quadratic classification rule in the FDA projection space performs
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better than the linear classification rule in Eq. 6. Agreement between the quadratic rule

and the linear one will decline as the sample sizes decreases, the differences in class

covariance matrices increase, the class means become closer, or the number of

discriminatory genes increases. In this case study, we employed the linear FDA classifier

because of simplicity and appropriateness in our gene selection procedure. However, we

tried to minimize the effect of violations of the assumptions: false positives have been

minimized by 2-step selection of a small sub-set of genes, and we ensured sufficient

mean difference among classes using power analysis (see next section). Other classifiers

have also been introduced which can be applied to various microarray data (Dudoit et al.

2000; West et al. 2001), and in general these may be substituted for the FDA classifier.

Determination of the minimum sample size using power analysis

Determining the number of microarray samples has been presented as an

important issue previously (Pan et al. 2001; Zien et al 2001) and is one of the first things

to be considered when attempting classification of samples through microarrays. We

present power analysis for determination of the minimum sample size required for

accurate classification. Instead of using individual genes, we used the c-1 dimensional

FDA projections (y in Eq. 6) in our analysis, because the FDA classification is based on

those projection variables. Then, we validated the estimated minimum sample size by

testing the entire methodology presented in this paper: selecting discriminatory genes,

building a FDA classifier, and finally calculating the actual power (see Results).

Power analysis (Cohen, 1988; Kraemer & Thiemann, 1987; Mace, 1974) has been

used in many applications and is based on two measures of statistical reliability in the

hypothesis test, the confidence level (1-α) and power (1-β). The test compares the null

hypothesis (H0) that the means of classes are the same against the alternative hypothesis

(H1) that the means of classes are not same. While the confidence level of a test is the
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probability of accepting the null hypothesis, when the means of classes are in fact same,

the power of a test is the probability of accepting the alternative hypothesis, when the

means of classes are in fact different (see “G*Power reference material”). Alternatively,

the type I error (false positives, α) is the probability of accepting the alternative

hypothesis, when the means of classes are in fact same while the type II error (false

negatives, β) is the probability of accepting the null hypothesis, when the means of

classes are in fact different (see “G*Power reference material”). The estimation of the

sample size in power analysis is done in such a way that the two statistical reliability

measures, the confidence and the power, in the hypothesis test can reach predefined

values. Typical analyses may require as 95% confidence and 95% power, for example.

The confidence level and the power are calculated from the distributions of the

null hypothesis (H0) and the alternative hypothesis (H1). Defining these distributions

depends on the statistical measure being used in the hypothesis test. In the case of two-

class distinction having a one-dimensional FDA projection, the normalized mean

difference follows the t distribution in the FDA space. This t statistical measure for the

hypothesis test is defined below (Kraemer & Thiemann, 1987; Mace, 1974).

210 : µµ =H  and 211 : µµ ≠H (7)

( )
21

21

11 nnS
t

p +
−= yy (8)

where µi and iy  are the actual mean and the sample mean of the one-dimensional

projection variable (yi) in class i. Sp is the pooled standard deviation of the projection

variable of the two classes, ni is the number of samples in class i, N is the total number of

samples and N-2 is the degrees of freedom in the t distribution. While the distribution of

H0 with all classes having the same mean is defined as a central distribution, the

distribution of H1 with all classes having different means is a non-central. The effect size
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(∆e) should be set in advance, before power analysis is conducted. The effect size is a

critical mean difference that can be considered important enough to warrant attention.

Power analysis estimates the minimum sample size to ensure the power in the test for the

effect size.  The non-central distribution H1 is defined by the non-centrality parameter

(∆), which is defined by the effect size (see below). For the case of two-class distinction,

the effect size (∆e) is the critical mean difference normalized by the pooled standard

deviation (Sp). Thus, the distributions of H0 and H1 are defined as follows.
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The confidence level and the power are calculated using the defined distributions

of H0 and H1 for a given sample size and an initial guess for the effect size determined on

the basis of engineering judgement or prior knowledge of the system. The critical value

of the inverse t distribution at the probability of 1-α/2, shown by the dotted line in Figure

3b is first identified for the distribution of H0 (here, α = 0.05 to give a 95% confidence

level). For this confidence level, the power is determined next using the distribution of H1

in the region from this critical t value to positive infinity (indicated in Figure 3b by the

area under the H1 distribution after the critical value). If the power calculated is below the

predefined value 1-β (here, 95%), the sample size is increased until the power reaches

this threshold, as shown in Figure 3a. Figure 3b shows the confidence level, power, type I

error and type II error in the distributions of H0 and H1 defined by the determined sample

size. The sample size estimated from this power analysis is the total number of samples,
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so that the number of samples required in each class is obtained by dividing the total

sample size by the number of classes (c). This assumes that the standard deviation matrix

is approximately similar for each class, implying that equal numbers of samples are

needed for each class.

In the case of distinguishing c > 2 classes, instead of the t statistic (see Eq. 8), the

F statistic measure derived from Pillai’s V is used for the estimation of the sample size

(Olson, 1974). Pillai’s V is the trace of the matrix defined by the ratio of between-group

variance (B) to total variance (T), and is a statistical measure often used in multivariate

analysis of variance (MANOVA) (SAS 1989; Olson, 1974).
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where λi is the ith eigenvalue of W-1B and h is the number of factors being considered in

MANOVA, defined by h=c-1. When W and B are computed in Eq. 5, the c-1 dimensional

FDA projections are used, because they are the test variables for this analysis. A high

Pillai’s V means a high amount of separation between the samples of classes, with the

between-group variance being relatively large compared to the total variance. The

hypothesis test can be designed as shown below using the F statistic transformed from

Philai’s V (see “Other F-tests”).

cH µµµ === ...: 210  and jiH ji ,0:1 ∃≠− µµ (12)

( ) ( )
( ) ( )[ ] ( )[ ]spcNsphF

spcNssV
phsVFH +−−

+−−−
= ,~

1
:0 (13)

( ) ( )
( ) ( )[ ] ( )[ ]NsspcNsphF

spcNssV
phsVFH e∆=∆+−−

+−−−
= ,,~

1
:1



14

with ( )crit

crit
e Vs

V
−

=∆ (14)

where p and c are the number of variables and the number of classes, respectively. s is

defined by min(p,h). The confidence level and the power can be calculated using these

defined distributions of H0 and H1 for a given sample size and an effect size. The same

procedure used in the case of two-class distinction is used here to estimate the minimum

sample size for statistical reliability whereby the sample size is increased until the

calculated power reaches the predefined threshold value of 1-β (95% for the cases shown

here). Figure 4a and 4b show the calculated sample size and the distributions of H0 and

H1 for the case of leukemia samples from three classes.

The above approach is applicable only to FDA projection variables and not to the

expression data from a large number of individual genes, because the denominator in the

F statistic (Eq. 13 and 14), which generally has a positive value, becomes negative, due

to a large number of genes (p). PCA can be used to reduce the number of variables (p) to

resolve such a problem. There is, however, a limitation that the number of PCs (p) cannot

be larger than N-c+s=N-1 and in most array cases the maximum number of PCs (p=N-

c+s) does not capture enough discriminating characteristics among the classes. Thus, we

use only the projections through FDA in our analysis.  This analysis may produce a

misleading sample size estimate when the real gene expression data are not consistent

with the assumptions (normality and equal variance) underlying the statistics used in

power analysis. To check the effect of possible violations of the assumptions on the

estimated sample size, the actual power and mean differences between classes are

compared to the pre-defined values (see Results). The actual values in both cases studied

were sufficiently large that we need not be worried about the impact of data which does

not perfectly match the normality or equal variance assumptions.
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Algorithm

Figure 2 provides a schematic of the leave one out cross-validation (Figure 2a) for

error rate estimation and power analysis algorithms (Figure 2b). Each LOOCV first splits

the data set into randomly selected sets of N-c training and c test sets. Then,

discriminatory genes are selected on the basis of their Wilks’ lambda. The number of

genes included in the FDA classifier is increased by one in order of decreasing magnitude

of their F value. The number of misclassified c test samples is counted as a function of

the number of genes. The above procedure is repeated g times for different randomly

selected training and test sets. The average error rates calculated by e(p)=mp/(c×g) are

then plotted vs. the number of genes included in the classifier and the discriminatory

genes are selected based on the number of times they are identified as “discriminatory” in

all the iterations.

For power analysis, it is first necessary that the type I and type II errors, an initial

sample size, and a reasonable effect size are selected for the initiation of the algorithm.

Then, after the test is designed in terms of the null hypothesis, the alternative hypothesis,

and an appropriate statistic measure (t-test or F test), the distributions of H0 and H1 are

determined using the degrees of freedom and the non-centrality parameter. Next, the

inverse of the F distribution at the value of 1-α in the probability is identified and the

power is calculated using the distribution of H1. If the calculated power is less than the

predefined power, 1-β, then the sample size is increased and the power is recalculated

using the same α, β, and effect size but a new sample size until it reaches the preset

power value. Following determination of the number of samples from power analysis, the

actual effect size and power are computed and their values compared to the initial

guesses. The actual effect size and power should be larger than those used/calculated in

the original analysis so as to not underestimate the sample size.
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Implementations and Results

Power analysis was applied to two-class distinction between ALL and AML

subtypes of leukemia. The null hypothesis (H0) was that the two group means (i.e. the

group averages in the FDA space) were the same, with the alternative hypothesis (H1)

that the two group means were not the same. The mean difference normalized by the

pooled standard deviation was used as the t statistic measure. The effect size was preset

to 2, which corresponds to a mean difference 2 times larger than the pooled standard

deviation and the predefined confidence and power were set to 95% (equivalent to

α=0.05 and β=0.05). Figure 3a shows the dependence of the power calculated from the

H1 distribution on the sample size. 8 samples from each class (16 total) are required for

the FDA projection to establish a sufficient base for the H1to be accepted. This indicates

that with these 8 samples from each class, there is mean difference between ALL and

AML so that an accurate classifier can be constructed in the FDA projection space with

statistical reliability.

In order to validate this minimum sample size, the proposed procedures for

discriminatory gene selection and FDA classification were applying to 8 randomly

chosen samples from each class and then the actual effect size and the actual power were

calculated. The procedure of discriminatory gene selection identified 50 discriminatory

genes (Figure 3d). This final list of 50 genes is shorter than the 388 discriminatory genes

obtained by using a simple Wilks’ lambda score metric without the error rate calculation

(Figure 3c), thus enabling us to reduce the errors due to false positives. Then, using the

50 discriminatory genes, FDA classification was performed (Figure 3e). In the FDA

projection space, the actual normalized sampled mean difference was computed to be

equal to 7.2453. This is more than three times larger than the effect size used for power

analysis, confirming that the effect size chosen was reasonable enough not to
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underestimate the sample size. There are two potential explanations for the difference

between the sampled mean difference and the effect size: 1) only the most discriminatory

genes were selected with a stringent level of significance in Wilks’ lambda and by the

LOOCV, and 2) the FDA further screens out the maximal discriminating information

from the most discriminatory genes. The actual confidence and power were also close to

100%.

As a multi-class case study, a distinction of three subtypes, B-ALL, T-ALL, and

AML was considered. The H0 is that the three group means are same, while H1 that at

least one of the group means is different from the rest. The F statistic measure was used

for power analysis and the effect size was chosen to be 0.538. This effect size is

equivalent to 0.7 critical Pillai’s V for three classes, meaning that the between-group

variance is 0.7 of the total variance. The predefined confidence and power were set to be

95%, equivalent to α=0.05 and β=0.05. The minimum sample size was computed to be 7

samples from each class from the power curve shown in Figure 4a. The distributions of

H0 and H1 are shown in Figure 4b. After the gene selection procedure was applied to

seven randomly selected samples from each class, the final set of 80 discriminatory genes

was identified. With those genes, the FDA was done as shown in Figure 4e. In the FDA

space, the actual measure of effect size defined by V/(s-V) was computed to be 1.7552,

which is about three times larger than the one used for power analysis for the same

reasons given in the previous case. The actual confidence and power were also close to

100%.

Discussion and Conclusions

This study has addressed the issue of statistical reliability for the classification of

disease subtypes on the basis of the sample size. The appropriate statistical measures

have been defined for two-class and multi-class problems, and these statistics have been
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applied in a power-analysis framework to determine the minimal sample size based on

the distributions of the statistic measures. This framework has a been applied in earlier

studies (Thall, 1995) for determining the minimum number of subjects required in

clinical trial studies, when a new drug is discovered and its efficacy is being evaluated. In

this case, the minimal sample size determined from power analysis is used ensure

statistical reliability of an efficacy measure.

This reliability issue can also be central in other applications involving any

statistical analysis, with this study giving only one example. For instance, correlations

between genes are often considered in microarray studies in the search for co-regulated

genes. A small number of samples will result in unreliable correlation coefficients, so

when additional samples are included, the estimated correlation coefficients will show a

high degree of variability. Thus, the appropriate sample size should be determined by

power analysis to ensure that the distribution of correlation coefficients is reliable.

Another application is the construction of a regression model using gene expression data

to estimate the level of an important cellular variable. For instance, gene expression

regression models of urea level in liver tissues should also be supplemented by power

analysis to determine the sample size for the model to have statistically reliable

regression parameters. Although the range of uses is broad, the appropriate statistical

measures and their distributions should be carefully chosen in these sorts of applications.

Power analysis determines the sample size based on the assumption of

homogeneous sampling from the entire population of each class (ie., a disease subtype as

in this study). Therefore, during sample collection, if the number of samples suggested by

power analysis doesn’t cover the broad population of each subtype to capture the inherent

variance of the population, the distributions of parameters will be biased toward the type

of samples collected. As a result, a poor sampling can make power analysis appear to
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underestimate the necessary sample size.  Furthermore, statistical inference based on the

calculated parameters can be misleading. The FDA has recently noticed the importance

of broad sampling and requested pharmaceutical industries to include clinical trial studies

on pediatric patients in order that the efficacy measure should not be biased to adults. As

a result, a well-designed sampling strategy is required together with a reasonable estimate

of sample size calculated from power analysis to ensure statistical reliability.

This study uses linear combinations of individual genes as variables in the

classifier instead of the individual genes themselves. Although the discriminatory genes

used for the classifier are chosen based on Wilks’ lambda score and the error rate

calculated through LOOCV, the number of selected genes is usually still large (50 or

more depending on the situation). If all individual genes are considered independently in

constructing a classifier, and new samples are classified using the sum of all gene

contributions to the classifier, the classifier will not capture the interaction of the genes

and may be biased to redundant characteristics. In addition, the parameters in the

classifier will be subject to statistical variations of the individual genes. If all the genes

are considered together as seen in multiple discriminant analysis (MDS), it may be

difficult to estimate the model parameters due to the large number of discriminatory

genes and singularity in the data. On the other hand, the linear combinations of individual

genes obtained from FDA capture the important discriminating characteristics at the

outset because the algorithm seeks the most relevant directions (weights) for separation

of classes. Thus, the number of variables used for the classifier is significantly reduced to

several FDA projection variables (the number of classes – 1), while capturing in a large

degree the discriminating characteristics in data. This reduction in variables is achieved

with significant accuracy cost in discrimination.
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The use of FDA also reduces the amount of noise obscuring the information

content of the data. Signals that nearly appear to be random noise will be filtered out

during the process of obtaining the weights for the linear combinations. Just as the first

few PCs in PCA usually capture the important patterns and the last few PCs only random

noise, the first few discriminant functions in FDA captures the important discriminating

characteristics in the data. Only systemic noise that happens to have similar patterns to

the real signals may be retained in the data projected through the linear combination.

Finally, the interactions and relative contributions of the individual genes to the

classification can be interpreted from the discriminant weights in the linear combinations,

improving the understanding the discriminant features in the data. As a result, the FDA

classifier using linear combinations as variables can provide the preferable aspects in

classification, including robustness in performance, non-complexity in modeling and

improvement in interpretation.
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